Check for
Updates

Experiences with TA-Bot in CS1

Jack Forden
Marquette University

Milwaukee, WI, USA
jack.forden@marquette.edu

ABSTRACT

Automated Assessment Tools (AATs) have been used in under-
graduate CS education for decades. TA-Bot, a modular AAT, has
existed in some form for 25 years serving thousands of students
across multiple universities. Class sizes throughout the last decade
have continued to grow, while the number of instructors remains
stagnant. AATs help instructors mitigate issues without additional
resources, while simultaneously providing students with helpful
feedback. The research team implemented novel features into the
new, web-based TA-Bot such as dynamic rate limiting between
submissions, custom code style feedback, and a gamified points
system. The experiment discussed in this paper used TA-Bot over
the course of three semesters involving 145 students in CS1. During
the first semester, student and instructor feedback was collected on
how to improve the tool. The second semester was used to rate limit
submissions using a new dynamic rate limiting system. Finally, the
third semester of TA-Bot was used as a control group with simple
submission input/output checking. Instructors found that TA-Bot
helped mitigate issues with continual increases in class sizes. When
using TA-Bot with a dynamic rate limit, students were more in-
clined to start their assignment earlier. In addition to this, TA-Bot
provides students with the ability to compare their solution against
test cases, while simultaneously providing code-style advice using
curated novice-friendly examples.

CCS CONCEPTS

« Social and professional topics — Student assessment; « Ap-
plied computing — Learning management systems.

KEYWORDS

automated assessment tools, gamification, unit testing, study be-
haviors, CS1

ACM Reference Format:

Jack Forden, Alexander Gebhard, and Dennis Brylow. 2023. Experiences with
TA-Bot in CS1. In Proceedings of the ACM Conference on Global Computing
Education Vol 1 (CompEd 2023), December 5-9, 2023, Hyderabad, India. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3576882.3617930

1 PROBLEM AND MOTIVATION

For many computer science students taking a CS1 course, it may
be their first experience with programming. In some universities
(including the authors’), a CS1 course is also often attended by

® This work is licensed under a Creative Commons Attribution
o International 4.0 License.

CompEd 2023, December 5-9, 2023, Hyderabad, India
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0048-4/23/12.
https://doi.org/10.1145/3576882.3617930

Alexander Gebhard
Marquette University
Milwaukee, WI, USA

alexander.gebhard@marquette.edu

57

Dennis Brylow
Marquette University
Milwaukee, WI, USA

dennis.brylow@marquette.edu

non-CS majors or offered as an elective for similar fields. This
mix of students can lead instructors to walk a tightrope of course
design. If it is too easy then students with previous programming
experience are never challenged. If the pace is too fast it can leave
newer students demotivated and may lead to an increase in dropout
rates. Any increase in dropout rates should be a sign of concern as
universities have historically struggled with retaining students.

According to Bennedsen and Caspersen the failure rate in CS1
courses in the United States is around 28% [5]. A multinational
study found the global pass rate of CS1 to be around 75% [22]. The
authors for both papers concluded that the pass rate is in line with
other rigorous courses such as mathematics or physics, however
both papers state that more work can be done to make CS1 courses
accessible to a wider range of students. While the rigor of a course
can play a part, there are any number of factors, such as stress,
anxiety, time mismanagement, or inability to get help outside of
class, which can result in students doing poorly. Enrollment is
increasing in Computer Science classes, instructors have to manage
the increase in students in their courses. This increase in enrollment
consequently has decreased the time an instructor or TA might
have for helping each individual student.

The goal of the updated version of TA-Bot is to improve the
experience for instructors and students. For instructors, TA-Bot
was designed to create a platform that helped monitor, track, grade,
and most importantly, get useful insights into student coding habits,
submission rates, and grammar styles.

Starting assignments earlier has been shown to improve student
scores [23]. Individual feedback and attention to each student is
also important to continue fostering good learning environments.
While there are numerous existing AATs, these are often in-house
projects, or platforms with a singular purpose in mind. AATs such
as these offer little assistance for institutions that might wish to
adopt them. While the goal is to facilitate the process of individual
feedback, in the case that a TA or instructor is not readily available,
TA-Bot should still be a platform that allows for flexibility, feed-
back, and advice for each student submission. It is important that
students think of TA-Bot as an additional tool that can help them
in the interim of instructor feedback, rather than a gatekeeper that
increases the complexity of the course.

2 BACKGROUND AND RELATED WORK

Automated Assessment Tools (AATs) are used in courses to provide
automated feedback on students’ submissions. Students enjoy the
feedback AATs provide, which allows them to modify their submis-
sions before the deadline. Teachers also enjoy the freedom AATs
provide by allowing them to focus their attention on other parts of
instruction rather than the repetitive testing of numerous student
submissions [20]. AATs often incorporate other tools, such as static
code analysers, to further help students improve their work.

https://doi.org/10.1145/3576882.3617930
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3576882.3617930
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576882.3617930&domain=pdf&date_stamp=2023-12-05

CompEd 2023, December 5-9, 2023, Hyderabad, India

Using static code analyzers in computer science courses is not
new, however recent work has been done to incorporate them
into AATs for CS1 courses [8] [2] [17]. PyTA (a wrapper around a
Python static code analysis tool called Pylint [3]) was integrated
into weekly programming assignments [14]. PyTA gave students an
opportunity to opt-in to a curated list of available explanations for
specific Python errors. When compared to infrequent PyTA users,
students who often used PyTA required fewer submissions to pass
an exercise or to rectify the most common errors, and encountered
less of the same repeating errors in their resubmissions.

More recent work has been done to integrate gamification into
AATs in CS1/CS2 courses as well. Deterdign et al. define gami-
fication as “the use of design elements characteristic for games in
a non-game context” [7]. Call et al. introduced gamification into
an ATT in a CS2 course [6]. Students in the course were placed
into teams. The teams were awarded points by completing activi-
ties, such as passing test cases, submitting assignments early, and
posting/responding to forum posts. A public leaderboard informed
teams of their standing in the class. The top teams were awarded
bonus points on an exam. Call et al. found that these activities
motivated students to finish assignments earlier, follow the best
version control practices, and help others on the class forums. The
new web TA-Bot extends gamification by offering a new incentive
enabling students to gain feedback more often on the third day.

Another avenue of gamification was researched through the Mar-
moset Project [24], which aimed to improve student programmers
experience. Marmoset used the interesting concept of “tokens”. For
each assignment a student was given 2 or 3 tokens, which when
used, would allow the student to see curated feedback on which
test cases they were passing or failing. A token would only be given
back to a student 24 hours after use. TA-Bot builds on top of the
rate limiting system found in the Marmoset Project by dynamically
rate limiting based on the days until the assignment is due. This
approach has recently been emphasized as an effective method for
encouraging students to reflect on their submissions and decrease
their dependence on automated grading. [13]

More recently, AAT’s have implemented aspects of mobile gam-
ing, such as limiting a player’s time and reward systems, to cultivate
game-based rewards [11]. The authors implemented a submission
energy system for managing student submissions. A full charge
consisted of three submissions (energy units). A student submission
would consume an energy unit, which would regenerate after an
hour. The outcome showed a modest reduction in student procrasti-
nation. The authors note that their submission energy limits might
have been too lenient and that more work in this area needs to
be done. TA-BOT aims to build on the authors’ concept of rate-
limiting student submissions through gamification with a harsher
submission limiting system.

One of the most widely used AATs, Web-CAT [9], is built with
the ideals of Test Driven Development (TDD) [4]. This is evident in
one of the three main metrics Web-CAT uses. One of the three code
analysis points is code correctness, which is solely based on student-
written test cases. This score, combined with test completeness
and test validity, is combined for a final composite score, which is
relayed to students or a professor for further manual grading. Users
can manually develop plugins which can significantly change how
Web-CAT operates without needing to change the underlying code

58

Jack Forden, Alexander Gebhard, & Dennis Brylow

base. This design decision allows Web-CAT to be more flexible than
a static closed system.

3 TA-BOT

TA-Bot originated from a series of shell scripts written at Purdue
University. While initially developed to automatically compile and
test student submissions in CS1, our institution frequently uses the
tool in upper level courses. Command-line TA-Bot has also been
adapted by others into a structured system that can run students’
code on the Embedded Xinu operating system [15]. This iteration
of TA-Bot was purely command-line based. Students would submit
their work from a department machine to a centralized server.
The student’s submission is then stored in a directory awaiting
execution. This iteration of TA-Bot batch compiled, tested, and
created summary reports. Instructors used other Linux tools such as
cron (usually scheduled for very early in the morning) to regularly
schedule runs at selected intervals. Students were then emailed
once all submissions were finished being reviewed. The resulting
email included the contents of the files the student had submitted,
whether the student passed or failed each test case, and (in the case
that the student failed), the differing output of the expected output
to the student’s output (See Figure 1). This command-line TA-Bot
has been used in testing the submissions of thousands of students
at our university as well as others for the past 25 years.

s s e ek ko s o s ok ok sk ket e ook ok kot sk sk ek s b ok ek e

Compiling... ----------
Test 01-empty (4 points)
=== enpty.test

PASSED ENCODE PASSED DECODE

PASSED ENCODE

Test 82-simple (5 points)
=== allAlpha.test
1cl

< THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

FATLED DECODE

> THYHOBXEHEJWYSLSRGOGYAKQCQRLWCWWDADMELCLG N
=== Hello.test ===

1cl

< HELLO

PASSED ENCODE FAILED DECODE

> HETQH

=== HelloWorld.test
1c1

< HELLO WORLD

PASSED ENCODE FAILED DECODE

i HETQHQDEVQZQ

== H.test PASSED ENCODE PASSED DECODE

Figure 1: An image of a command-line TA-Bot email output

3.1 Web TA-Bot

The limitations of the legacy command line version of TA-Bot have
become steadily more produced over time. As TA-Bot was com-
posed of bash scripts, its automated run time is executed by setting
up a time-based automated task. Setting up an extra run that is
not scheduled requires a manual intervention from the instructor.
Additionally, TA-Bot limits an instructor’s ability to provide more
detailed automated feedback to students. After the scripts are fin-
ished, instructors have the option to manually score and provide
feedback before submissions are sent to students. This instructor
feedback is limited to plain text. This limitation removes a multitude
of possible feedback opportunities.

3.1.1 Time Between Submission (TBS). The goals of the new web-
based TA-Bot are twofold: to incentivize students to start assign-
ments earlier and to promote better programming practices in CS1

Experiences with TA-Bot in CS1

pylint-errors

C0325 (superfluous-parens)

X Problematic code:

X = input()

y = input()
if (x == y):
pass

V' Correct code:

X = input()

y = input(}

if x ==
pass

Rationale:

Occurs when parentheses do not need to be used for a
single item following an if , for, or other keyword.

Figure 2: An example of a custom pylint feedback error page

students. Starting good programming practices early saves profes-
sors from having to correct bad habits later. In order to decrease the
significant learning curve for CS1 students, we chose to design this
new iteration of TA-Bot with a user-friendly web interface as op-
posed to the traditional command-line TA-Bot. This web interface
additionally allows the feedback to be significantly robust.

Although the command line TA-Bot typically ran once nightly
to serve as a rate limit, the web-based TA-Bot runs with a far more
dynamic rate limiting system. Pettit et al. demonstrated that imple-
menting some form of rate limiting incentivized students to submit
higher quality code [19]. TA-Bot’s rate-limiting implementation
is designed to serve as additional motivation to encourage earlier
submissions. Spacco et al. found when students start an assign-
ment earlier, their scores are higher [23]. Implementing a rate limit
in an AAT is not a new endeavor. As mentioned previously, the
Marmoset Project implemented a token-based rate limit system.
Students were given 2-3 tokens that would renew 24 hours after
use [24]. Athene [19] is an AAT that used a static rate limit of 15
minutes between submissions.

TA-Bot implements a novel concept called time between submis-
sions (TBS) to incentivize earlier submissions. On the day the project
is assigned, the TBS is set at five minutes. Once a student uploads
and gets instant feedback, they are prevented from resubmitting
until the 5 minute TBS cooldown period expires. Every day, as the
assignment gets closer to the due date, the TBS is increased up to a

59

CompEd 2023, December 5-9, 2023, Hyderabad, India

maximum of two hours. If the student waits until the due date to
get feedback, they will be prevented from submitting again until
the 2 hour TBS is up. In the case that an assignment is handed out
Monday and due the next Monday, a student who chose to start the
assignment the Sunday before the assignment is due would have
significantly fewer possible submissions than a student who took
advantage of the significantly lower TBS at the start of the week.

3.1.2 Pylint and Gamification. In addition, TA-Bot implements
static code analysis via Pylint [3]. While Pylint helps identify stylis-
tic errors in student code, it also adds another level of difficulty for
CS1 students. Pylint errors can be complex and confusing at times.
With this in mind, we extended a popular repository by Vladyslav
Krylasov that contained explanations and examples of common
Pylint errors [12]. We modified our own version to be more ac-
commodating for CS1 students, with detailed examples of common
errors and their respective solutions. In the results page, the line
that causes the Pylint error is highlighted (see Figure 3), and both
the error itself and a link to an explanation page is provided. The
page includes text-based rationale to explain the suggestion and
why Pylint flagged it (see Figure 2). The errors displayed to students
are a curated subset of the total possible Pylint suggestions. The jus-
tification for creating this subset was to avoid possible suggestions
that are outside of the scope of a CS1 course.

The number of test cases that the student passes, as well as the
number of Pylint suggestions present, are combined to calculate
an overall score. This score is out of a maximum of 100 points.
60 points were from the test cases, with each test case weighted
evenly. 40 points came from Pylint suggestions. If a student had 5 or
fewer Pylint suggestions, they received the full 40 points dedicated
to Pylint. The number of points the student receives for Pylint
decreases as Pylint offers more suggestions. If a student had more
than 10 Pylint errors, they could only receive 10 points for the
Pylint portion of the score. When the Pylint score and test case
score combined is greater than 75 points on their final submission
from the previous assignment, then students have the opportunity
to freeze the TBS on the third day of a week-long assignment.
Instead of the TBS being 45 minutes on the third day, students
will get a TBS of 5 minutes. Our hypothesis is that this motivates
students to minimize the number of Pylint errors in their code and
maximize the number of test cases passed. It is important to note
that the resulting TA-Bot score are not automatically converted
to grades; human graders still follow a more general rubric for
assigning points.

3.1.3 Leveling System. Another avenue for implementing gamifi-
cation into TA-Bot arose when implementing our leveling feature.
TA-Bot takes a novel approach to gamification with a unique lev-
eling system that does not appear to correspond to features in
any other AATs attested in the research literature. Test cases for
each weekly project were separated into different levels, with each
level featuring progressively more sophisticated test scenarios. All
students start on Level 1. Students are not shown the test cases
for the next level until they pass at least half of the test cases on
their current level. Starting large, week-long assignments can be
daunting for CS1 students. TA-Bot encourages students to start
with the basic test cases and gradually work their way up to the
more advanced test cases in a TDD fashion.

CompEd 2023, December 5-9, 2023, Hyderabad, India

TA-Bot Upload

Cha Radioactive Decay and Growth

This program takes in various inputs and plugs them into an equation to determine what thg

1
2
3
4 # would be and what it would end up with for the number of atoms.

5 test = input(“"Would you like to calculate radiocactive growth or decay? ")

6 while True:

7 if test == "growth" or test == 'Growth':

8 percent_growth = float(input("what's the percent rate of growth? "))
o number = int(input(“What is the initial number of atoms? "))

Jack Forden, Alexander Gebhard, & Dennis Brylow

3 : Line too long (108/100) (see more)
%57 : Consider merging these comparisons with “in" to “test in (
0517 : Consider merging these comparisons with "in" to "test
%528 : Consider merging these comparisons with "in" to “test

)" (see more)
e)" (see more)
(‘done’, 'Done’)" (see more)

10 days = int(input("How much time do you have (in days)? "))

11 percent_growth = percent_growth * .e1

12 for r in range(1, days + 1):

13 number += (percent_growth * number)

14 print(fThe radioactive growth took {days} days.")

15 print(f"The number atoms grew to about {number} atoms.")

16 test = input("Would you like to calculate radioactive growth or decay again? ")

17 elif test == "decay" or test == "Decay":

18 percent_decay = float(input("what is the percent rate of decay? "))

19 percent_decay = percent_decay * .01

20 number = float(input(“what is the initial number of atoms? "))

21 days = @

22 while number > 10:

23 number -= (percent_decay * number)

24 days += 1

25 print(f"The radiocactive decay took {days} days.")

Level1 Level 2 Level 3 [Level 1] 03-growth-simple.test
Result: FAILED
Test Description: “User calculates growth with the same numbers

v v v x x 2c2

< The number atoms grew to about 767 atoms.

> The number atoms grew to about 766.7519984894951 atoms.

Figure 3: An image of web-based TA-Bot showing an example submission

3.1.4 Design. The design of the new, web-based TA-Bot page (Fig-
ure 3) emphasizes simplicity. We have chosen to display the sub-
mitted code at the top left of the page, with line numbers that can
be highlighted when Pylint detects a suggestion. These Pylint sug-
gestions are displayed in greater detail at the top right, with their
respective line numbers in bold text. Each Pylint suggestion has
an accompanying “See more” hyperlink which directs a student to
a simplified code example relevant to the suggestion encountered.
Student test case results were displayed in the bottom left. Each
green check or red X is clickable, allowing students the ability to
get more information on the test case. If the student failed a test
case, a standard Linux diff [10] shows the student the difference
between their output and the expected output. To navigate from
one level to another, a student would simply click on “Level #”.

3.1.5 Behind the Scenes: Web TA-Bot. Web-based TA-Bot uses a
back-end API implemented in Python using the Flask library [18].
Due to its popularity and student familiarity, Python was chosen as
the new programming language for TA-Bot. (Command-line TA-Bot
relies on several scripting languages, including Bash and Expect.)
The front-end UI is written in Typescript with UI components
coming from Sementic UI [16]. The front-end Ul communicates
with the back-end API via a series of JavaScript web requests.
Once a student uploads code, it is stored in a staging directory
awaiting execution. Every TA-Bot project has a series of expected
outputs for a given input (i.e. if this input is entered in student code,
then this output should be printed). These are stored in separate
text files on the TA-Bot server. A separate execution is performed
for each input. The student code is run in a sandbox to minimize
the security and performance impact on the TA-Bot server via
an application called Piston [21]. Piston is a Docker-based code
execution engine that runs code inside containers. Piston reports

the output of the code, which is then used to compare against the
expected output. If the output from the student’s code matches the
expected output, then the student passes the test case and receives
appropriate credit. If the outputs do not match or an error occurs
when Python tries to execute the file, then the student fails the
test case. A standard Linux diff is used to show the student the
difference between their output and the expected output.

TA-Bot, as with most other AATs mentioned in this paper, uses
this expected output vs. student output to determine if a student
passes the test case. TA-Bot does support the ability to run other
types of tests, such as indeterministic tests, where the system cannot
automatically determine if the output is correct. With indeterminis-
tic tests, instructors need to manually review if the output is correct.
This type of test is common in programs where multiple threads are
running, since the order in which the threads complete cannot be
determined. Wilcox provides an overview of possible test types that
AATs support [25]. TA-Bot supports output analysis by comparing
the student’s output to an instructor’s expected output. TA-Bot
doesn’t support reflection, object instantiating, and instrumenta-
tion. Test case results as well as user account information are stored
in a MySQL server. In addition, teachers have the ability to submit
the most recent submission from all students for a given project
to MOSS [1], with the results emailed once they are completed.
TA-Bot is an open-source and readily accessible tool for any univer-
sity considering its adoption. To facilitate ease of adoption, TA-Bot
has been constructed within Docker containers, streamlining the
installation process for all required packages. To set up your own
TA-Bot instance, you can follow the simple steps provided in the
documentation available at: https://github.com/JForden

60

Experiences with TA-Bot in CS1

4 EXPERIMENT DESIGN

Our new incarnation of TA-Bot was introduced in a summer 2021
CS1 course for new, first-generation college students. This course
is designed to motivate and enable low-income and first-generation
students to enter and succeed in higher education. During the
course, we gathered informal feedback from students to improve
the tool before its full release. TA-Bot made its full roll out in the
Fall 2021 and Spring 2022 semesters in our CS1 course. The Fall
2021 semester had 2 primary instructors with a total of 100 students
enrolled across both instructors. The Spring 2022 semester had 44
students enrolled with one primary instructor.

With the implementation of TA-Bot, we created ten weekly as-
signments (both semesters used the same assignments) based on
chapters from the class. Students were given an assignment based
on class content the week after they covered the content in class.
Assignments were released on Monday morning, and students had
until the following Monday to submit their work. TA-Bot did not
accept submissions after the deadline.

To determine the effectiveness of TA-Bot, TA-Bot stored the
following data every time a student made a submission: date & time,
submitted code, Pylint output, and which test cases the student
passed or failed. In the Fall 2021 semester, the leveling system, time
between submission (TBS), and the ability to unlock a lower TBS on
the third day of the assignment were all enabled. We used Spring
2022 as our control semester. During this semester, students could
submit as often and as frequently as they wanted. We did have a
five minute cooldown between a student’s submissions in order
to not overload the server. The leveling system was also disabled,
so students could see all test cases from their first submission. We
gathered and analyzed student feedback, instructor feedback, and
submission data from both semesters.

5 RESULTS AND DISCUSSION
5.1 Pylint

While instructors found the Pylint feature useful as an additional
indicator of student progress, students were often confused by the
meaning of errors and how to resolve them. Although all possi-
ble Pylint errors were reviewed before the semester started, some
Pylint errors still caused confusion amongst students. These often
resulted from Pylint suggestions that were outside the scope of
what students had learned up to that point in the semester. This
demonstrates a downside in the errors we chose to document. Un-
like PyTA, which used a curated list of Pylint errors, we used a more
complete repository containing hundreds of Pylint errors. Before
the semester started, we disabled a handful of Pylint errors that
weren’t relevant for the class. Errors related to topics not covered in
class or errors that did not get at the goal of making students better
programmers (such as spell checking) were disabled. Nonetheless,
during the Fall 2021 semester, we had to disable errors that were
generating too many false positives or were overly confusing to
students. One such error we disabled during the Fall 2021 semester
was Pylint error C0103, triggered whenever a constant is not in
all uppercase letters. This error generated too many false positives
and decreased student gamification scores. Students also often got
multiple suggestions from Pylint on each submission, leading to
students feeling overwhelmed and thus ignoring the suggestions

61

CompEd 2023, December 5-9, 2023, Hyderabad, India

completely. Going forward, we look to further refine the list of
errors enabled to minimize student confusion.

5.2 Time Between Submission

After interviewing students and instructors, a common theme that
emerged was negative student impressions of TBS. This was ex-
pected, as TBS encouraged students to work on the assignments
earlier in the week, and could be perceived as penalizing those who
waited until later. Due to many students being on a cooldown period
when the submission deadline passed, instructors were sometimes
asked to upload final submissions on behalf of the students. An
example of this is a student uploading their submission at 7 a.m.
with a final deadline of 8 a.m. A student would realize they still
failed test cases, yet were unable to resubmit their assignment due
to the TBS. Students made the argument that it was unfair to pre-
vent further submissions as the assignment was technically due
at 8 a.m. While this is a deliberate design decision, a clear flaw in
this feature is its reliance on instructors being willing to enforce
hard deadlines. Allowing a final, manual submission undermined
the TBS system and often resulted in a final submission that had
been lightly modified and untested. A common complaint from stu-
dents was that other commitments prevented them from working
on assignments when the TBS period was low. Student opinion was
that a higher TBS later in the week was a punishment rather than
an incentive to start earlier. When TBS was not enabled during the
Spring 2022 semester, instructor and student feedback was more
positive about uploading at their convenience.

The heatmaps show the number of students who have made
their first TA-Bot submission for the weekly assignment on a given
day for the Fall 2021 (see Figure 4) and Spring 2022 (see Figure 5)
semesters. Each column represents one week-length assignment.
Columns with all zeros represent a week where no homework was
assigned. Students who made a submission early Monday morning
(before the assignment was due at 8 a.m.) were included in the
Sunday count to not interfere with the next week’s data. In the Fall
2021 semester, there is noticeably more students starting the first
three days when TBS was enabled. When TBS was disabled in the
Spring 2022 semester, students tended to wait until after lab on Day
4 to start. This demonstrates that TBS did push some students to
start earlier in the week when they could submit with a smaller
cooldown. Even though students viewed TBS as a punishment for
starting later, it did appreciably alter student submission habits.

- D 1
H - D:§ 2 30
N Doy a IF2o
o -|Day 5 "
Day 6
N Day 7 .

Sep Dec

Figure 4: Day of students’ first submission with TBS enabled

5.3 Gamification

At the start of the fall semester, the ability to unlock a submission
was only possible on the third day. Due to instructor and student

CompEd 2023, December 5-9, 2023, Hyderabad, India

2 -|Day 1 20
N 6 - |Day 2 15
N 4 Day 3
9 Day 4 |} 10
o 6 Day 5
2 Day 6 |[5
N 9 Day 7
Feb Mar Apr May 0

Figure 5: Day of students’ first submission with TBS disabled

feedback, we changed this design to allow students to pre-unlock
the shortened TBS (still redeemed on the third day) from the mo-
ment the weekly assignment was activated. After looking into the
data, the ability to “unlock” an extra day of shortened TBS was
redeemed 43 total times by 26 unique students. After talking to
both students and instructors, it became clear that there was gen-
eral confusion about the feature. TAs began deferring questions to
instructors, who in turn passed them to the research team. Another
issue arose from the course structure. As this course was co-taught,
some labs were on Tuesday, while others were on Thursday. Some
students in the Thursday section felt that the week day chosen was
too early in the week, as students often waited to start until after
their weekly lab. In the future, rewards for a high score could be
modified to include multiple reward options.

5.4 Leveling System

What we learned from the deployment of our leveling system was
the importance of deliberately designing coursework that plays to
the strengths of the Web TA-Bot system. The weekly assignments
early in the semester were too simplistic, resulting in bimodal re-
sults with students failing most test cases or immediately passing
all test cases on each level. While the goal was to promote break-
ing a large weekly assignment into smaller chunks, students often
attempted to finish the whole assignment before making a submis-
sion. Even as more complex assignments used base and edge cases,
students felt the level system was an additional hurdle rather than
a road map that encouraged good coding practices. The leveling
system might be better suited for CS2/CS3 courses that have assign-
ments with multiple parts. In addition, students in CS2/CS3 courses
will be more familiar with the development process, so the leveling
might not be as overwhelming.

5.5 Instructor Feedback

At the end of the semester, instructors were interviewed, and they
were asked a series of questions using a Likert scale for their re-
sponses. The responses to these questions were a numeric value
between 1 and 5, which correlated to: strongly disagree, disagree, nei-
ther agree nor disagree, agree, or strongly agree. Questionnaire results
indicated that instructors felt TA-Bot significantly helped reduce
administrative tasks. Instructors reported that reviewing students
code was less time-consuming than in previous semesters, with an
average response of strongly agree. The respondents noted that the
administrator view saved significant time by allowing instructors
to view students code without needed to manually download and

62

Jack Forden, Alexander Gebhard, & Dennis Brylow

run the script from the course management tool. Similarly, instruc-
tors responded that they strongly agree that TA-Bot helped identify
issues in students code more quickly. Instructors strongly agree that
TA-Bot helped them manage a larger number of students than in
prior semesters without TA-Bot.

5.6 Student Feedback

Common themes in feedback gathered from students centered on
TA-Bot output formatting and TBS. Students struggled to under-
stand issues in their output when looking at the standard Linux
diff. Detail-oriented issues such as spelling mistakes in output state-
ments occasionally required TA intervention before they were re-
solved. Instructors also noted that they received a significant num-
ber of complaints about the TBS version of TA-Bot. Some students
expressed their view that the increase in TBS punished students
who did not start earlier. Conversely, students enjoyed the instant
feedback TA-Bot provided without TBS enabled.

6 CONCLUSION

With Computer Science class enrollments in our institution quadru-
pling over the past decade, and the national aggregate CS1 dropout
rate hovering around 30%, tools such as TA-Bot are needed to im-
prove student and instructor experiences. This paper presents novel
features added to an existing, well-tested AAT system affection-
ately codenamed “TA-Bot” by local students; new aspects included
a testcase complexity leveling system, a dynamic Time Between
Submissions (TBS) timer, and a gamified implementation of Pylint
code style analysis. This improved model of TA-Bot can provide
students with immediate feedback on their project code correctness
and style without an instructor present, while also incentivizing
students to start their week-length programming projects earlier.
For instructors, TA-Bot reduced the time and effort of testing stu-
dent code, freeing them to concentrate on other pedagogical issues
not as amenable to automation.

7 FUTURE WORK

The new, web-based TA-Bot involved several different pedagogical
changes, each of which warrants further research. While TA-Bot
helped reduce administrative tasks, it occasionally caused confusion
when students did not understand aspects of the system, such as
the Linux diff output format. We plan to draw from UI/UX research
to implement a diff using more visual elements such as text, color,
or images. We hypothesize that by simplifying the output, it might
help students understand their errors more quickly. Additionally,
we plan on experimenting with different types of rate limiting to
further research the TBS timer system. This rework could involve
the TBS timer being tied to the number of submissions rather than
the date. By basing the cooldown on the number of submissions,
we hope to see students make higher quality submissions. Finally,
we plan on changing the methodology for how Pylint results are
scored. Rather than taking away points whenever Pylint errors
occur, students could be rewarded for fixing Pylint errors after their
original submission.

Experiences with TA-Bot in CS1 CompEd 2023, December 5-9, 2023, Hyderabad, India

REFERENCES Education (Minneapolis, MN, USA) (SIGCSE ’19). Association for Computing Ma-
[1] Alex Aiken. 1994. Moss (for a Measure Of Software Similarity). http://theory. chinery, New York, NY, USA, 6.66—671. https://doi.org/10.1145/3287324.3287503
stanford.edu/~aiken/moss/ [15] Matthew H. Netkow and Dennis Brylow. 2010. Xest: An Automated Framework

for Regression Testing of Embedded Software. In Proceedings of the 2010 Workshop

[2] Kirsti Ala-Mutka, Toni Uimonen, and Hannu-Matti Jarvinen. 2004. Supporting . o
on Embedded Systems Education (Scottsdale, Arizona) (WESE ’10). Association for

Students in C++ Programming Courses with Automatic Program Style Assess-

ment. JITE 3 (01 2004), 245-262. https://doi.org/10.28945/300 Computing Machinery, New York, NY, USA, Article 7, 8 pages. https://doi.org/

[3] Python Code Quality Authority. 2022. Piston. Retrieved August 19, 2022 from 10'1145{1930277"1939284 . .
hitps://github.com/PyCQA/pylint [16] Semantic Organization. 2022. Semantic UL Retrieved August 19, 2022 from

[4] Kent Beck. 1999. Extreme Programming Explained. Addison-Wesley. httPS:/ / gxthub.Fom/ Selmantlchrg/ Semqnnc—UI» .

[5] Jens Bennedsen and Michael E. Caspersen. 2019. Failure Rates in Introductory [17] José Carlos Paiva, José Paulo Leal, and Alvaro Figueira. 2022. Automated Assess-
Programming: 12 Years Later. ACM Inroads 10, 2 (apr 2019), 30-36. https: ment in Computer Science Education: A State-of-the-Art Review. ACM Trans.
//doi.org/10.1145/3324888 ’ Comput. Educ. 22, 3, Article 34 (jun 2022), 40 pages. https://doi.org/10.1145/

[6] Tristan Call, Erik Fox, and Gina Sprint. 2021. Gamifying Software Engineering 3513140 .)

Tools to Motivate Computer Science Students to Start and Finish Programming [18] Pallets. 2022. Flask. Retrieved August 19, 2022 from https://github.com/pallets/
Assignments Earlier. IEEE Transactions on Education (2021), 1-9. https://doi.org/ flask .
10.1109/TE.2021.3069945 [19] Raymond Pettit, John Homer, Roger Gee, Susan Mengel, and Adam Starbuck. 2015.

[7] Sebastian Deterding, Dan Dixon, Rilla Khaled, and Lennart Nacke. 2011. From An EmPirical Study of Iterative Improvement in Programming Assignments. In

Game Design Elements to Gamefulness: Defining "Gamification”. In Proceedings Proceedings of the 46th ACM Technical Symposium on Computer Science Education

of the 15th International Academic MindTrek Conference: Envisioning Future Media (Kansas City, Missouri, USA) (SIGCSE "15). Association for Computing Machinery,

Environments (Tampere, Finland) (MindTrek ’11). Association for Computing New York, NY{USA’ 410-415. https://doi.org/10.1145/2676723.2677279

Machinery, New York, NY, USA, 9-15. https://doi.org/10.1145/2181037.2181040 Raymond Pettit and James Prather. 2017. Automated Assessment Tools: Too
[8] Stephen H. Edwards, Nischel Kandru, and Mukund B.M. Rajagopal. 2017. Inves- Many Cooks, Not Enough Collaboration. J. Comput. Sci. Coll. 32, 4 (April 2017),

™
=

tigating Static Analysis Errors in Student Java Programs. In Proceedings of the 11?’121~)))

2017 ACM Conference on International Computing Education Research (Tacoma, [21] Brla'n Seymour. 2'022~ Piston. Retrieved August 19, 2022 from https://github.com/
Washington, USA) (ICER ’17). Association for Computing Machinery, New York, eflgmeer—man/ piston . . s .

NY, USA, 65-73. https://doi.org/10.1145/3105726.3106182 [22] Simon, Andrew Luxton-Reilly, Vangel V. Ajanovski, Eric Fouh, Christabel Gon-

[9] Stephen H. Edwards and Manuel A. Perez-Quinones. 2008. Web-CAT: Auto- salvez, Juho Leinonen, Jack Parkinson, Matthew Poole, and Neena Thota. 2019.
matically Grading Programming Assignments. In Proceedings of the 13th Annual Pass Rates in Introdlfctory Programming and in cher STEM DiSCiPI.ine& In Pro-
Conference on Innovation and Technology in Computer Science Education (Madrid, ceedings of the Working Group Reports on Innovation and Technology in Computer

: : 5 ot : : Science Education (Aberdeen, Scotland Uk) (ITiCSE-WGR ’19). Association for
Spain) (ITICSE 0 8). Association for Computing Machinery, New York, NY, USA, Computing Machinery, New York, NY, USA, 53-71. https://doi.org/10.1145/
328. https://doi.org/10.1145/1384271.1384371 3344429.3372502
[10] Free Software Foundation. 2022. GNU Operating System. Retrieved August 19,)

[23] Jaime Spacco, Davide Fossati, John Stamper, and Kelly Rivers. 2013. Towards
Improving Programming Habits to Create Better Computer Science Course
Outcomes. In Proceedings of the 18th ACM Conference on Innovation and Tech-
nology in Computer Science Education (Canterbury, England, UK) (ITiCSE ’13).
Association for Computing Machinery, New York, NY, USA, 243-248. https:
//doi.org/10.1145/2462476.2465594

[24] Jaime Spacco, William Pugh, Nat Ayewah, and David Hovemeyer. 2006. The

Marmoset Project: An Automated Snapshot, Submission, and Testing System. In

Companion to the 21st ACM SIGPLAN Symposium on Object-Oriented Programming

Systems, Languages, and Applications (Portland, Oregon, USA) (OOPSLA °06).

Association for Computing Machinery, New York, NY, USA, 669-670. https:

//doi.org/10.1145/1176617.1176665

Chris Wilcox. 2016. Testing Strategies for the Automated Grading of Student

Programs. In Proceedings of the 47th ACM Technical Symposium on Computing

Science Education (Memphis, Tennessee, USA) (SIGCSE ’16). Association for Com-

puting Machinery, New York, NY, USA, 437-442. https://doi.org/10.1145/2839509.

2844616

2022 from https://www.gnu.org/software/diffutils/

[11] Michael S. Irwin and Stephen H. Edwards. 2019. Can Mobile Gaming Psychology
Be Used to Improve Time Management on Programming Assignments?. In Pro-
ceedings of the ACM Conference on Global Computing Education (Chengdu,Sichuan,
China) (CompEd ’19). Association for Computing Machinery, New York, NY, USA,
208-214. https://doi.org/10.1145/3300115.3309517

[12] Vladyslav Krylasov. 2022. Pylint Errors. Retrieved August 19, 2022 from https:
//github.com/vald-phoenix/pylint-errors

[13] Juho Leinonen, Paul Denny, and Jacqueline Whalley. 2022. A Comparison of
Immediate and Scheduled Feedback in Introductory Programming Projects. In
Proceedings of the 53rd ACM Technical Symposium on Computer Science Education
- Volume 1 (Providence, RI, USA) (SIGCSE 2022). Association for Computing Ma-
chinery, New York, NY, USA, 885-891. https://doi.org/10.1145/3478431.3499372

[14] David Liu and Andrew Petersen. 2019. Static Analyses in Python Programming
Courses. In Proceedings of the 50th ACM Technical Symposium on Computer Science

[25

63

http://theory.stanford.edu/~aiken/moss/
http://theory.stanford.edu/~aiken/moss/
https://doi.org/10.28945/300
https://github.com/PyCQA/pylint
https://doi.org/10.1145/3324888
https://doi.org/10.1145/3324888
https://doi.org/10.1109/TE.2021.3069945
https://doi.org/10.1109/TE.2021.3069945
https://doi.org/10.1145/2181037.2181040
https://doi.org/10.1145/3105726.3106182
https://doi.org/10.1145/1384271.1384371
https://www.gnu.org/software/diffutils/
https://doi.org/10.1145/3300115.3309517
https://github.com/vald-phoenix/pylint-errors
https://github.com/vald-phoenix/pylint-errors
https://doi.org/10.1145/3478431.3499372
https://doi.org/10.1145/3287324.3287503
https://doi.org/10.1145/1930277.1930284
https://doi.org/10.1145/1930277.1930284
https://github.com/Semantic-Org/Semantic-UI
https://doi.org/10.1145/3513140
https://doi.org/10.1145/3513140
https://github.com/pallets/flask
https://github.com/pallets/flask
https://doi.org/10.1145/2676723.2677279
https://github.com/engineer-man/piston
https://github.com/engineer-man/piston
https://doi.org/10.1145/3344429.3372502
https://doi.org/10.1145/3344429.3372502
https://doi.org/10.1145/2462476.2465594
https://doi.org/10.1145/2462476.2465594
https://doi.org/10.1145/1176617.1176665
https://doi.org/10.1145/1176617.1176665
https://doi.org/10.1145/2839509.2844616
https://doi.org/10.1145/2839509.2844616

	Abstract
	1 Problem and Motivation
	2 Background and Related Work
	3 TA-Bot
	3.1 Web TA-Bot

	4 Experiment Design
	5 Results and Discussion
	5.1 Pylint
	5.2 Time Between Submission
	5.3 Gamification
	5.4 Leveling System
	5.5 Instructor Feedback
	5.6 Student Feedback

	6 Conclusion
	7 Future work
	References

