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ABSTRACT
Automatic underwater vehicle hull Design optimization is a com-
plex engineering process for generating a UUV hull with optimized
properties on a given requirement. First, it involves the integra-
tion of involved computationally complex engineering simulation
tools. Second, it needs integration of a sample efficient optimization
framework with the integrated toolchain. To this end, we inte-
grated the CAD tool called FreeCAD with CFD tool openFoam for
automatic design evaluation. For optimization, we chose Bayesian
optimization (BO), which is a well-known technique developed for
optimizing time-consuming expensive engineering simulations and
has proven to be very sample efficient in a variety of problems,
including hyper-parameter tuning and experimental design. Dur-
ing the optimization process, we can handle infeasible design as
constraints integrated into the optimization process. By integrating
domain-specific toolchain with AI-based optimization, we executed
the automatic design optimization of underwater vehicle hull de-
sign. For empirical evaluation, we took two different use cases of
real-world underwater vehicle design to validate the execution of
our tool.
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1 INTRODUCTION
Artificial Intelligence (AI) and Machine Learning (ML) are becom-
ing increasingly useful for both system-level design [1–4] and con-
trol [5–7]. However, its application to real-world designs is still
nascent for a variety of reasons. The first challenge is that these
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areas involve complex tools and require cumbersome, integrated
toolchains. Integrating these tools requires domain knowledge, as
well as the development of tool-level integration platforms. The
next challenge involves the complexity of carrying out evaluations
due to the high cost of data labeling. In this work, we aimed to
address both challenges in the context of an underwater vehicle hull
design optimization problem. The design of an underwater vehicle
hull involves multiple steps: CAD design of the hull, generation of
stereolithography (STL) files, generation of a computational fluid
dynamics (CFD) simulation environment, creation of volume mesh-
ing, fixing of the initial and boundary conditions, and solution of
Navier-Stokes equations at the mesh level. For a fully automated de-
sign optimization process, it is necessary to integrate the execution
of all of these processes in a single tool.

Another aspect of this work relates to optimization algorithms.
There are many gradient-free and gradient-based algorithms avail-
able; however, in recent times, Bayesian Optimization (BO) [8–
10] has emerged as a well-established paradigm for optimizing
expensive-to-evaluate functions in a sample-efficient manner, and it
has been successfully applied to many scientific domains. Bayesian
Optimization is a complex optimization process that provides the
benefits of both model-based and simulation-based optimization
approaches. To this end, BO creates a probabilistic model of an
unknown function during the optimization process and uses this
model to simulate and search for the best candidate sample to be
used in the next evaluation. Constraints may exist which make
some of the designs and design space infeasible, and these must
be handled appropriately during the optimization process. In this
work, we have made the following contributions:

(1) A ready-to-use underwater vehicle design tool using aMyring
hull-based parametric CAD seed design,

(2) Integration of a constrained Bayesian Optimization frame-
work for UUV hull design problem.

This fully automated optimization toolchain can be used as a good
starting point to study and test different optimization methods on
real-world complex problems, in addition to providing a useful tool
for underwater vehicle hull designers. The code for running the
experimentation and installing the toolchain can be found here
https://github.com/vardhah/ConstraintBOUUVHullDesign.
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2 PROBLEM FORMULATION AND
APPROACH

In this section, we formulate the UUV hull design problem as a
constrained optimization problem. The hull shape of an underwater
vehicle is indicated as Ω and can be defined using a multivariate
parameter 𝑥 , that is, 𝑥 ≜ Ω. If 𝑓 is the objective function that maps
a 3D shape Ω with a complex property of coupled two-way solid-
fluid dynamics, that is, drag force (𝐹𝑑 ) (𝑓 : Ω ↦→ 𝐹𝑑 .), then the
optimization problem can be formulated as:

Ω∗ = argmin
𝑥 ∈𝐷𝑆

𝑓 (𝑥) (1)

Here, 𝐷𝑆 is our design search space. The UUV hull contains elec-
tronics, sensors, and other mechanical and electrical components.
Packing them into the hull imposes a non-linear constraint on the
optimization process. The hull design problem can then be formu-
lated as a constrained optimization problem defined as follows:

Ω∗ = argmin
𝑥 ∈𝐷𝑆

𝑓 (𝑋 ) (2)

𝑠 .𝑡 . 𝑔(𝑥) ≤ 0 (3)

Here, constraint function 𝑔(𝑥) ensures that all selected components
can be packed inside the designed UUV hull. To solve this opti-
mization problem, we utilize a constrained Bayesian Optimization
framework as formulated by [11].

2.1 Constrained Bayesian Optimization
Bayesian Optimization relies on a probabilistic model of the system
of interest during optimization, and the fidelity of the model is
the most decisive factor in the optimization process. We use the
Gaussian process [12] defined below to model system behavior (𝑓 ):

𝑓 ∼ GP(𝜇 (.), 𝜅 (., .)) (4)

Here 𝜇 (.) is the mean function and 𝜅 (., .) is the covariance kernel.
For any given pair of input points 𝑥, 𝑥 ′ ∈ 𝑅𝑑 , these are defined as:

𝜇 (𝑥) = E[𝑓 (𝑥)] (5)
𝜅 (𝑥, 𝑥 ′) = E[(𝑓 (𝑥) − 𝜇 (𝑥)) (𝑓 (𝑥 ′) − 𝜇 (𝑥 ′)] (6)

In the Bayesian sequential design optimization process, a crucial
step at each iteration is to select the most promising candidate 𝑥∗
for evaluation in the next iteration. In the BO setting, this is done
by defining an acquisition function. The design of an acquisition
function is a critical component in the performance efficiency of the
BO. Let 𝑥+ be the best-evaluated sample so far. To select a candidate
point 𝑥 in the next iteration, an improvement is defined according
to Mockus et al. [9] as follows:

𝐼 (𝑥) =𝑚𝑎𝑥{0, 𝑓 (𝑥) − 𝑓 (𝑥+)} (7)

The expected improvement in such a case is defined as an EI ac-
quisition function, which has a closed-form solution for estimating
it from a new candidate point, as given by Mockus et al. [9] and
Jones et al. [13]:

𝐸𝐼 (𝑥) = E
[
𝐼 (𝑥) |𝑥) |

]
(8)

𝐸𝐼 (𝑥+) = (𝑓 (𝑥∗) − 𝜇+)Φ( 𝑓 (𝑥
∗) − 𝜇+)
𝜎+

+ 𝜎+𝜙 ( 𝑓 (𝑥
∗) − 𝜇+)
𝜎+

) (9)

Here, 𝜙 is the standard normal cumulative distribution and Φ is the
standard normal probability density function. Using this EI function,

the most promising candidate sample is selected by choosing 𝑥+
that has the maximum EI value.

𝑥∗ = argmax
𝑥+∈𝐷𝑆

𝐸𝐼 (𝑥+) (10)

The newly selected sample 𝑥∗ is evaluated and is included in the
evaluated data set, called 𝑋 . Accordingly, the posterior probability
distribution is estimated by the conditioning rules for Gaussian
random variables, as below:

𝜇∗ = 𝜇 (𝑥∗) + 𝜅 (𝑥∗, 𝑋 )𝜅 (𝑋,𝑋 )−1 (𝑓 (𝑋 ) − 𝜇 (𝑋 )) (11)

(𝜎∗)2 = 𝜅 (𝑥∗, 𝑥∗) − 𝜅 (𝑥∗, 𝑋 )𝜅 (𝑋,𝑋 )−1𝜅 (𝑋, 𝑥∗) (12)

Constrained BO, which is an extension to standard BO meant to
model infeasibility during the inequality-constrained optimization
routine, is formulated and proposed by [11]. We use this formu-
lation for our experimentation, and it models both function and
constraint as Gaussian processes. Let 𝑔 be the constraint function
that is unknown a priori; the first step in this setting is to model 𝑓
and 𝑔 as Gaussian processes:

𝑓 ∼ GP(𝜇1 (𝑥), 𝜅1 (𝑥)) (13)
𝑔 ∼ GP(𝜇2 (𝑥), 𝜅2 (𝑥)) (14)

𝜇1 (𝑥) = E[𝑓 (𝑥)] (15)
𝜅1 (𝑥, 𝑥 ′) = E[{𝑓 (𝑥) − 𝜇1 (𝑥)}{𝑓 (𝑥 ′) − 𝜇1 (𝑥 ′)}] (16)

𝜇2 (𝑥) = E[𝑔(𝑥)] (17)
𝜅2 (𝑥, 𝑥 ′) = E[{𝑔(𝑥) − 𝜇2 (𝑥)}{𝑔(𝑥 ′) − 𝜇2 (𝑥 ′)}] (18)

The improvement function in this case is modified as:

𝐼𝐶 (𝑥+) = Δ(𝑥+)𝑚𝑎𝑥{0, 𝑓 (𝑥∗) − 𝑓 (𝑥+)} (19)

Δ(𝑥+) ∈ {0, 1} (20)

Δ(𝑥+) is a feasibility indicator function that is 1 if 𝑔(𝑥+) ≤ 0, and 0
otherwise. It causes Δ(𝑥+) to be a Bernoulli random variable whose
probability of getting a feasible design is:

𝑃𝐹 (𝑥+) := 𝑃𝑟 (𝑔(𝑥) ≤ 0) =
∫ 0

−∞
𝑃 (𝑔(𝑥+) |𝑥+, 𝑋 )𝑑𝑔(𝑥+) (21)

Due to the Gaussian behavior of 𝑔(.), Δ(𝑥+) would be a univariate
Gaussian random variable. The modified expected improvement to
include the effect of infeasibility gives a joint acquisition function:

𝐸𝐼𝐶 (𝑥+) = E[𝐼𝐶 (𝑥+) |𝑥+] (22)
= E[Δ(𝑥+)𝐼 (𝑥+) |𝑥+] (23)
= 𝑃𝐹 (𝑥+)𝐸𝐼 (𝑥+) (24)

This joint acquisition function can be further optimized using stan-
dard optimization algorithms. Since our acquisition function has
the property of being smooth and continuous, we used a two-step
optimization to find 𝑥∗. The first step is Monte Carlo optimization
and the second step is limited memory BFGS [14] (see Figure 1).

2.2 Integrated Toolchain
For design automation, exploration, and optimization, we integrated
the necessary simulation tools for completely automated execution.
To this end, we integrated the CAD design tool FreeCAD [15]
with the CFD simulation tool OpenFoam [16]. FreeCAD is used to
design a parametric CADmodel and generate the 3DCAD geometry
from a given set of parameters along with its stereolithography
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Figure 1: Constrained Bayesian Optimization - Overview

(STL) file without any manual intervention. OpenFoam uses this
STL file to conduct fluid physics simulations via finite volume
discretizations. Volume meshing is done using a castellated 3D
parametric volumetric mesh which is further split and refined in the
vicinity of the body surfaces. Other CFD simulation requirements,
like solver settings and initial and boundary conditions, can also be
set up from a Python environment. In the meshed volume, RANS
with kw-SST turbulence fluid physics is solved, and the output of
interest is fetched from OpenFoam and transferred back into the
Python environment. Accordingly, it is possible to both control and
run the entire design optimization pipeline from a single Python
environment. This integration of tools and capability to control the
parameters and environmental conditions gives us the flexibility
to run an optimization framework with design tools in the loop
without human intervention (refer to Figure 2).

2.3 Parametric CAD Model and Baseline
Packing Geometry

For automatic design optimization, it was imperative to design a
parametric CAD model with the flexibility and adaptability to be
able to create a 3D model from a given set of parameters without
manual intervention. The parametric CAD design should maintain
the experimenter’s assumptions in order to generate a valid CAD
design based on the given parameters. To ensure this, we use a strin-
gent design methodology for completely constrained designs [17].
For the parametric CAD seed design, we used a Myring hull[18] as
our baseline architecture. It is the most commonly used axisymmet-
rical hull shape, due to a number of advantages such as streamlined
flow behavior and satisfactory geometry for both hydrodynamic

and hydrostatic pressure. A Myring hull has three different body
sections: nose, tail, and cylindrical center:

Figure 3: Myring hull: Geometry and parameters

The nose and tail equations for a Myring hull are given by:

𝑟1 (𝑥) =
1
2
𝐷

[
1 −

(𝑥 − 𝑎

𝑎

)2] 1
𝑛 (25)

𝑧 = (𝑥 − 𝑎 − 𝑏) (26)

𝑟2 (𝑥) =
1
2
𝐷 −

[ 3𝐷
2𝑐2

− tan𝜃
𝑐

]
𝑧2 +

[ 𝐷
𝑐3

− tan𝜃
𝑐2

]
𝑧3 . (27)

Here, 𝑟1 and 𝑟2 define the radius of the nose and tail of the hull
at a distance, 𝑥 , measured from the tip of the nose. Other body
parameters are: 𝑎, 𝑏, 𝑐 , 𝐷 , 𝑛, and 𝜃 , corresponding to nose length,
body length, tail length, cylindrical body diameter, nose shaping
parameter, and tail shaping parameter, respectively (see Figure 3).

The baseline design used for internal component packing and
placement comes from another automated tool [19]. Component se-
lection and packing are not within the scope of this paper; however,
three-dimensional packing of components in an arbitrary shape
is an NP-complete problem. Based on the capabilities of our ex-
ternal component selection and packing tool, we utilized a simple
design with conical end caps (nose and tail) and a cylindrical body
to determine the exact required hull dimensions. These conical-
shaped parametric designs are optimized to minimize internal hull
volume while ensuring that packed components have no interfer-
ences. These baseline designs, however, are not optimal from the
perspective of producing minimal-drag designs. Once components
are packed and the parameters of a baseline design are found, this
fixed geometry will act as a minimal constraint in the optimization
of the hull design. (see Figures 4 and 5).

Figure 4: Selected components in the UUV in a specific
packing configuration
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Figure 2: Optimization pipeline using integrated CAD and CFD tools with Bayesian Optimization

Figure 5: Selected components in baseline packed geometry

2.4 Infeasible Design Heuristics
Since a parametric Myring hull can assume a wide range of shapes
[18], the generated hull shape needs to be tested for interference
with the baseline packed design. Any Myring hull parameters that
cause interference with the baseline design are deemed to be infeasi-
ble. Since the computational cost of CAD assembly and running an
interference test is much less than CFD simulation, the in-feasibility
test on an optimized design is conducted during the CAD modeling
and assembly stage (refer to Figure 2). Running full CFD analysis on
an infeasible design is a waste of computational time and resources,
and it delays the optimization process. To address this situation,
we implemented a heuristic that works as follows (for a minimiza-
tion problem): for an infeasible design that is detected during CAD
assembly, return the maximum drag value to the optimizer for all
evaluated samples up to that point, instead of running a full CFD
analysis. The opposite can be done for a maximization problem.
However, for starting the experiment we need at least one drag
value of in-feasible design. Accordingly, we run the first infeasible
design and store its drag value.

3 DESIGN EXPERIMENTATION AND
RESULTS

In this section, we present two different experiments carried out
using our optimization pipeline. In both cases, selected components
are the same and consequently, the baseline packing geometry is
identical. The operating conditions (i.e., the velocity of operation,
initial and boundary conditions) and environmental conditions (e.g.,

Symbol Minimum Maximum

𝑎 𝑎𝐵 𝑎𝐵 + 2500 mm
𝑐 𝑐𝐵 𝑐𝐵 + 2500 mm
𝑛 0.1 5.0
𝜃 0𝑜 50𝑜

𝑙 = 𝑎 + 𝑏 + 𝑐
Table 1: Range of design parameters for optimization

turbulence intensity) are kept constant based on mission require-
ments. The baseline packing geometry is as shown in Figure 6. The
design space (𝐷𝑆) of the search process is selected as shown in
Table 1.

𝐷𝐵

𝑎𝐵 𝑏𝐵 𝑐𝐵

Figure 6: Baseline 3D hull design with 𝑎𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 555 cm,
𝑏𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 2664 cm, 𝑐𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 512 cm, 𝐷𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 1026 cm

3.1 Experiment 1
In this experiment, we only optimize the nose and tail shapes,
defined by parameters 𝑛 and 𝜃 . The range of the design space for
optimization of parameters 𝑛 and 𝜃 is given in Table 1. Due to it
being a computationally costly process, we run 50 iterations of
optimization using our optimization pipeline. The most optimal
design (shown in Figure 8) has a drag value of approx 69 Newtons.

3.2 Experiment 2
In this experiment, we also optimized the nose and tail length
(parameters 𝑎 and 𝑏) in addition to their shapes (parameters 𝑛 and
𝜃 ). The design space for optimization of all four variables is given
in Table 1. Again, we run 50 sequential optimization steps using
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Figure 7: Optimal UUV hull shape with fixed nose and tail
length. Optimal design parameters: 𝑛 = 1.0; 𝜃 = 50.0

Figure 8: Optimization process vs number of
evaluation/iteration: L2 distance between successive

selected samples (left), Drag value of best-selected sample
in Newton (right)

our optimization pipeline. The most optimal design is shown in
Figure 8 and had a drag value of approximately 36 Newtons. This is
a 50% reduction in drag due to the streamlined nose and tail shapes
and would save a large amount of energy consumption during
real-world operation of the vehicle.

Figure 9: Optimal UUV hull shape with nose and tail length
as a free parameter. Optimal design parameters: 𝑎 = 2643.86;

𝑐 = 1348.72; 𝑛 = 1.144; 𝜃 = 22.03

3.3 Analysis of result
In both experiments, the allocated budget was 50 evaluations since
the evaluation time was tens of minutes. But BO converges to
optimal/near-optimal design in a few iterations. In exp1 (refer to
right side plot in figure 8) even in 12 iterations a near-optimal design
was found and no significant further improvement is observed. In
exp2 (refer to right plot in figure 10) only in 10 iterations the optimal
design was found and no further improvement was observed. This
sample efficiency is due to the dynamic probabilistic modeling of
the design space on labeled samples and state-of-the-art acquisition
functions and accordingly costly optimization calculation. However,

Figure 10: Optimization process vs number of
evaluation/iteration: L2 distance between successive
selected samples (left), Drag value of the best-selected

sample in Newton (right)

with the current multi-core implementation of BO, it takes milli-
second to seconds for finding a new sample to evaluate and it is
prudent to use BO in use caseswhere sample labeling and evaluation
time can not be reduced beyond seconds.

4 RELATEDWORK
One of the first well-known studies on optimizing UUV hull design
for low drag was conducted by Gertler [20] in 1950. Later in 1976,
Myring [18] studied viscous-inviscid flow interaction methods to
predict drag and concluded that there is low variability in body
drag force when the nose or tail varies from slender to stout within
a specific range, but it increases dramatically outside that range.
To design shapes for better performance, bio-inspired hull shapes
for UUVs are becoming popular [21]. To this end, Dong et al. [21]
designed a gliding robotic fish with the streamlined shape of a
whale shark. Stewart et al. [22] designed a hybrid UAV-UUV system
inspired by seabirds. A four-fin bio-inspired UUV was studied by
Geder et al. [23]. They also showed that fish can achieve both high
maneuverability and excellent gliding performance by equipping
themselves with controllable fins and tails.

More recently, with extraordinary developments in computing
capability and the maturity of mesh-based analysis tools, computa-
tional fluid dynamics (CFD) simulations are now widely applied to
analyze UUV hydrodynamic performance. Most research is based
on either the Reynolds-averaged Navier-Stokes (RANS) formula-
tion or the large eddy simulation (LES). Since RANS treats viscous
effects much better than potential flow theory and needs fewer
computational resources, it is more frequently used than LES. With
the advent of computer-aided design, traditional CFD can be lever-
aged inside an optimization loop to seek an optimal UUV design
for given flow conditions; see, e.g., Alam et al. [3]. Many differ-
ent optimization algorithms have been considered; for example,
adjoint methods [24] and genetic algorithms [25]. [26] integrated
machine learning model with numerical simulation to get opti-
mized design faster than the traditional methods. Schweyher et
al. [27] used an evolutionary strategy- Genetic Algorithm to ob-
tain a minimum-drag body. Application of Bayesian Optimization
to find a minimum-drag shape was studied in 2D small arbitrary
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shapes by Eismann et al. [28] and an axisymmetric body of rota-
tion by Vardhan et al [29]. Both works did not consider constraint
modeling during the design process. A deep neural network-based
approach is used to study the effects of UUV shape on drag force
by [30].

5 CONCLUSION AND FUTUREWORKS
In this work, we developed an end-to-end design automation toolchain
for constrained optimization problems for underwater vehicle hull
design. We integrated the state-of-the-art AI-based optimization
algorithm called Bayesian optimization along with the capability to
handle constraints during the optimization process. Since this inte-
grated tool is generic, the most interesting future work of interest
is the extension and integration of other optimization algorithms
with the current evaluation toolchain and comparing the perfor-
mance of AI-based bayesian optimization with these optimization
methods that are currently used in the domain of CFD-based op-
timization. To this end, it would be interesting to compare BO
with other simulation-based optimization methods like GA, Nelder
Mead, and Particle Swarm Optimization along with the most used
gradient-based optimization method i.e. adjoint-assisted optimiza-
tion. A detailed comparative study can give us a better picture of
the standing of AI-based optimizers in comparison to other existing
optimization methods.
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