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ABSTRACT
This paper introduces a multimodal solution for autonomous retail
customer-product interaction recognition using a combination of
vibration and load sensing. Scalable and robust customer-product
interaction recognition is important for autonomous retail. Cur-
rent efforts focus on computer vision-based approaches, which are
prone to occlusion from both customers and shelves. A densely
deployed load cell array can mitigate this issue, however, the high
cost and maintenance effort make it difficult to scale up for large de-
ployments. Vibration-based approaches are also explored to detect
such interaction, however, the robustness over noisy environments
is limited.

We propose a multimodal solution with sparse vibration and load
sensing on the shelves. These two modalities are complementary in
terms of information – load sensing can effectively detect theweight
changes on the shelf while vibration sensing can recognize detailed
interaction. Preliminary results are presented to demonstrate the
complementarity of these two modalities. Our system is able to
augment product recognition performance with the combination
of sparse vibration and load sensing.

CCS CONCEPTS
• Computer systems organization→ Sensors and actuators.

KEYWORDS
Vibration sensing; load sensing; multimodal system

ACM Reference Format:
Yue Zhang, Shiwei Fang, Carlos Ruiz, Zhizhang Hu, Shubham Rohal, and Shi-
jia Pan. 2023. Augmenting Vibration-Based Customer-Product Interaction
Recognition with Sparse Load Sensing. In Cyber-Physical Systems and In-
ternet of Things Week 2023 (CPS-IoT Week Workshops ’23), May 09–12, 2023,
San Antonio, TX, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/
10.1145/3576914.3589560

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0049-1/23/05. . . $15.00
https://doi.org/10.1145/3576914.3589560

1 INTRODUCTION
Autonomous retail utilizes sensors to acquire information on the in-
teraction between customers and products and achieves intelligent
inventory monitoring, as well as cashier-less checkout [3, 7, 18].
Current prevailing solutions are mostly focusing on computer vi-
sion [4, 8], which is sensitive to the occlusion that comes from
both shelves and customers in the environment. Therefore, many
sensing modalities are investigated as complementary solutions to
computer vision or standalone solutions. For example, RFID tags are
placed on each product for identification and tracking [16, 17]. It is
low cost to install for individual products, however, the installation
for all the products in large-scale retail stores becomes expensive,
in terms of both labor and cost. Load sensor arrays are then de-
veloped, as a complementary modality to computer vision [18],
which can effectively detect products by their weights without the
requirement of the Line-of-Sight (LoS). However, it requires dense
deployment (e.g., 24 sensors per shelf), which poses challenges for
cost, installation, and maintenance. The vibration-based approach
has been explored to reduce the need for dense deployments [20], as
the acoustic signals propagate in solid and contain rich information.
However, this approach faces challenges from ambient acoustic
sources in the environment.

To effectively and robustly detect and recognize the product that
the customer interact with, we combine load and vibration sensing,
as they are complementary in detection and recognition perfor-
mance. The intuition is twofold. First, load sensing is sensitive to the
weight changes on the shelf only, therefore its detection accuracy is
high [18]. However, an accurate detection requires a dense deploy-
ment, which is costly. We design a shelf loading sensing scheme
that can effectively detect the weight change with low-cost and
sparse deployed pressure sensors. Second, the customer-product in-
teraction (pick-up or put down a product) causes the shelf to vibrate,
and this vibration signal contains rich information. For example,
products with different textures (glass v.s. plastic) may excite the
surface on different frequency bands, resulting in different vibration
waveforms [6]. However, there are many ambient vibration sources
that can be detected by the vibration sensor, which pose challenges
for accurate detection. Therefore, these two modalities are effective
on different tasks.

We combine these two modalities with a task-level fusion, where
the low-cost load sensing is used for detecting the events, and
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Figure 1: Illustration of our multimodal sensing system that
combines vibration sensing with low-cost load sensing.

the vibration sensing is used for recognizing the products cus-
tomers interact with. To verify the proposed multimodal scheme,
we implement the system and conduct real-world experiments. Our
preliminary analysis demonstrates a 2.6× and 1.6× improvement
for the product interaction detection and recognition performance
respectively, compared to the single modality-based approach. Our
contributions are summarized as follows.

• We introduce a low-cost vibration and load sensing combi-
nation for robust customer-product interaction recognition
at autonomous retails.

• Wedesign a shelf load sensing scheme leveraging the existing
retail shelf’s structure (the right angle lever structure in a
peg hook) and two low-cost pressure sensors.

• We identify the complementary performance of the noisy
vibration and load sensing, and propose a task-level multi-
modal fusion scheme that mitigates noises’ impacts in both
modalities.

• We conduct real-world experiments and preliminary analysis
on our design.

2 RELATEDWORK
This section lists sensing modalities explored for autonomous retail
and compares their advantages and disadvantages.

Computer Vision Only. Computer vision is the most widely used
solution in autonomous retail nowadays [4, 8]. In most cases, multi-
ple overhead cameras are used to track customer and their activities
in the store [3, 7]. With the development of posture tracking [5]
and image recognition [15], they often can achieve high accuracy
when the Line-of-Sight (LoS) is guaranteed. However, in real-world
scenarios, it often requires multiple cameras to cover one area from
different angles to ensure that, which results in a high cost of com-
putation and maintenance. Apart from this, this performance is also
impacted by the lighting condition in the store and the distance of
interaction from the camera.

L1
L2

Rotating point F1

F2

Sensing point

Contact 
point

Figure 2: Converting shelf into low-cost load sensor with
sparsely placed pressure sensors.

RFID Only. RFID, on the other hand, has been explored to detect
events or customer interaction with products in the store [16, 17].
Individual RFID tags are placed on each product and are scanned
by the scanner placed on the shopping carts, shelves, or checkout
counter to identify the products. Since the tag provides a one-to-one
mapping to the product identity, the recognition accuracy is high.
However, despite the low cost of each tag, the total cost of the tag
and labeling quickly accumulates when the number of products
scales up.

Shelf Load Sensing. To compensate for the disadvantages of vi-
sion and RFID in autonomous retail settings, load-based sensing has
been explored. Multiple load cells are placed underneath the shelves
to capture the weight changes on the shelve caused by product pick-
up and putting down [9, 10, 13]. This approach produces accurate
product recognition and interaction detection results when only
one product is placed on top by identifying the weight difference.
However, it fails to recognize item(s) when the same amount of
weight changes are caused by different product interactions.

Multimodal Fusion. Many multimodal approaches have been
explored to the overcome the challenges presented by eachmodality.
For example, vision plus load/weight sensing have been explored
to overcome the occlusion problem presented by vision, while still
leveraging its effective customer tracking [11, 18]. Apart from this,
the vision plus RFID approach has also been explored [12]. Although
they overcome the vision’s occlusion problem, they require dense
deployment and the retrofitting cost is still high. In this work,
we explore fine-grained multimodal sensing on the shelf, which
provides a low-cost solution that can be further fused with existing
vision-based approaches.

3 SYSTEM DESIGN
The system consists of three major modules – multimodal sensing,
load-dominant event detection, and vibration-dominant product
recognition – as shown in Figure 1. First of all, we design a low-cost
and scalable load sensing scheme based on the lever structure in
existing retail shelves. Second, we leverage the complementarity of
load sensing and vibration sensing to design a cross-modal event
detection method that is robust to ambient noises. Finally, we lever-
age the informative vibration signal segments for accurate product
recognition.
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Put 
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Figure 3: Pressure sensor outputs and event detection. (a) de-
picts raw pressure sensor signals when a soda can is picked
up and put down on the shelf multiple times. (b) shows the
filtered signals after the median filter and the moving aver-
age filter. (c) shows the windowed standard deviation values
calculated from the filtered signal.

3.1 Converting Shelf for Low-Cost Load Sensing
To effectively detect product interaction, we convert the retail shelf
into a load sensor leveraging its structural characteristics. The retail
shelf, a.k.a. gondola, often uses the peg hook design for the shelf
installation on the frame/back panel, as shown in Figure 2. The
peg hook structure acts as a right-angle lever when force is applied
to the shelf, depicted as L1. The output arm of the right angle is
against the frame or the back panel of the shelf. The force applied
to the lever can be modeled with equation 𝐹1𝐿1 = 𝐹2𝐿2. Therefore,
when a product is placed on the shelf with a contacting point 𝐿1
distance away from the rotating point, the force 𝐹1 applied will
cause the force 𝐹2 = 𝐹1𝐿1/𝐿2 applied at the sensing point as shown
in Figure 2. Since the structure of the peg hook has a structure with
𝐿1 >> 𝐿2, sensing at the output arm of the right-angle lever would
results in a higher signal-to-noise ratio. Therefore, this allows us to
use a low-cost (noisy) pressure sensor to capture the load change.

3.2 Load-Dominant On-Shelf Event Detection
The load change on the shelf directly reflects the interaction be-
tween the customer and the product – whether it is a pick-up that
reduces the pressure at the sensing point or a put-down that in-
creases the pressure at the sensing point. Figure 3 (a) depicts the
raw pressure sensor’s signal when a product (soda can, 380 grams)
is picked up and put down multiple times in one minute. We can
observe that the trend of the changes in the signals matches with
the load change (pick up and put down) on the shelf.
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Figure 4: Filtered signals from pressure sensors on two sides
of the shelf. (a-c) shows signals from the pressure sensor
installed on the left side of the shelf, when the customer
interacts with the product at left side, middle, and right side
of the shelf. (d-e) shows the corresponding signals from the
sensor on the right side.

Filtering. Because the raw signal contains a strong salt and pepper
noise, and white noise. We use a median filter and a moving average
filter to denoise the signal. Figure 3 (b) shows the filtered signal,
where the pressure changes and stabilization trends are observable.
Single-Sensor Detection. To efficiently extract interaction events
that cause shelf load changes, we first apply a sliding window of
size𝑊 on the filtered signal and calculate the standard deviation
of the values in this window as 𝜎 [18]. This sliding window will
output an array of values that reflect the pressure variation in time,
as shown in Figure 3 (c). For the 𝑘𝑡ℎ window, if 𝜎𝑘 is larger than a
threshold 𝑇ℎ𝜎 , we consider that an event occurs. For consecutive
windows with 𝜎𝑘 > 𝑇ℎ𝜎 , we consider them as part of the same
event and select the timestamp of the 𝑘𝑡ℎ window with the highest
𝜎𝑘 value as the 𝑖𝑡ℎ event’s time 𝑇𝑖 . The pressure sensor values at
the start and the end of the event indicate the event category –
whether it is a pick-up or put-down of the product – as an example
shown in Figure 3 (b).
Shelf-Level Detection. Since the pressure sensor measures the
load on the side of the shelf leveraging the peg hook structure, this
sensitivity across the shelf varies. Figure 4 shows the filtered signals
from sensors on two sides of the shelf. (a-c) depict signals captured
by the sensor on the left side of the shelf, and (d-e) show signals
from the sensor on the right side, with the customer interacting on
the left side, middle, and right side of the shelf. We observe that
events occurring at locations close to the sensor, e.g., signals in (a),
show a higher signal-to-noise ratio (SNR) in terms of the voltage
changes caused by load changes. Therefore, for each shelf, we install
pressure sensors on both sides of the shelf-frame contacting point
to efficiently capture load changes at different locations on the shelf.
We merge these two sensors detected events for robust detection.
For these two pressure sensors, they independently detect 𝑁 and𝑀
events at 𝑇 1

𝑖
, 𝑖 = 1...𝑁 and 𝑇 2

𝑗
, 𝑗 = 1...𝑀 . Assuming only one event
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occurs on the shelf at a time, we consider when |𝑇 1
𝑖
−𝑇 2

𝑗
| < 𝑇ℎ𝐸𝑣𝑒𝑛𝑡

as the same event, and report the event time as the one with a higher
𝜎 value.

3.3 Vibration-Dominant Product Recognition
The vibration sensor is placed on the back panel of the retail shelves
to efficiently acquire the vibration signals induced by the customer-
product interaction [20]. However, as the acoustic signals often
contain information from multiple ambient sources, e.g., people
passing by or a cart running into the shelf, it is difficult to model
all the vibration sources in the environment. Therefore, our sys-
tem uses the event detected by the load sensing to extract the
corresponding vibration signal segments for recognition. First, we
conduct an energy-based event detection [20] on the vibration data,
and output the timestamp 𝑇 𝑣𝑖𝑏

𝑗
of all the detected potential events.

We consider the vibration sensing and load sensing detect the same
event when |𝑇𝑖 − 𝑇 𝑣𝑖𝑏

𝑗
| < 𝑇ℎ𝑎𝑙𝑖𝑔𝑛 , and outputs vibration signal

segments for all qualified 𝑇 𝑣𝑖𝑏
𝑗

.
For each extracted signal segment, we first normalize its signal

energy, then extract the frequency components’ amplitude as the
feature of this event signal. A classifier is trained with vibration
signal segment and product identity labels. In this study, we adopt
the support vector machine (SVM) model [19] with a radial basis
function (RBF) kernel as the classifier for its strong empirical per-
formance in vibration signal-based classification tasks [20]. To tune
the hyperparameters of the SVM model, we conduct 𝑘-fold cross-
validation grid search. The searching space consists of the SVM
model’s regularization parameter (referred to as "C") and the RBF
kernel coefficient (referred to as "𝛾"). The selected hyperparameters
are the combination that maximizes the performance metric in the
left-out data after the 𝑘-fold split [14].

4 IMPLEMENTATION AND PRELIMINARY
RESULTS

We implement the system and acquire real-world data with three
products of small sizes to demonstrate the feasibility of our multi-
model scheme.

4.1 Experiment Setup
Figure 5 depicts the experimental setup. The pair of pressure sen-
sors are installed on two sides of the shelf marked as 𝑆𝑒𝑛𝑠𝑜𝑟𝐿 and
𝑆𝑒𝑛𝑠𝑜𝑟𝑅 in Figure 5 (a) and (b). The vibration sensor, marked as
𝑆𝑒𝑛𝑠𝑜𝑟𝑣𝑖𝑏 , is mounted on the center of the back panel. Figure 5 (d)
shows the vibration sensor geophone [2] installed on the back panel
of the retail shelves. The load sensing setup is shown in Figure 5 (e),
where a pressure sensor [1] is placed between the frame and the
peg hook’s right angle lever output arm. We test the multimodal
scheme for interaction detection and recognition over three prod-
ucts shown in Figure 5 (c). Each of the products is put down and
picked up 14 times on the shelf at three different locations marked
as orange crosses. The environment is noisy with ambient acoustic
noises such as foot stepping and speech. We also record the ground
truth video.

Event Detection. We set the median filter window sizes as one
second and the moving average filter window size as 0.5 seconds.

(c) Testing products

(e) Load sensing

Pressure sensor

(d) Vibration sensing 

Geophone

(a) Shelf top view (b) Shelf side view

221g 222g 172g

SensorL SensorRSensorVib

Figure 5: Experimental setup. (a) and (b) shows the sensor
placement relative to the shelf with circle marks. The dashed
line circles represent pressure sensors, and the solid line
circles represent the vibration sensor. (c) lists the testing
products with similar weights. (d) shows the vibration sens-
ing step with a geophone sensor placed on the back panel. (e)
depicts load sensing setup with the pressure sensor placed at
the output arm of the right angle lever.

For event detection, we empirically set the threshold𝑇ℎ𝜎 as 0.5, and
𝑇ℎ𝑒𝑣𝑒𝑛𝑡 as 0.2 seconds. Baseline: We consider the event detection
of vibration sensing described in Section 3.3 as the baseline.

Product Recognition. We set the threshold 𝑇ℎ𝑎𝑙𝑖𝑔𝑛 as 0.2 seconds.
From the exploratory signal analysis, we observe that the frequency
bands between 10-90𝐻𝑧 and 300-400𝐻𝑧 are themost representative,
thus we select frequency components in these bands as features. We
repeat the product recognition experiment 100 times and report the
average F1 score and its standard deviation. In each repetition, we
conduct a stratified sampling to randomly sample 80% of the data as
the training data, and the rest forms the testing data. The stratified
sampling process empirically guarantees the distribution of each
product’s vibration signal segments is consistent between training
and testing data. The hyperparameter tuning process is conducted
with a 5-fold cross-validation grid search in the training data. We
adopt the same sets of candidate values (0.001,0.01,0.1,1,10) for the
"C" and "𝛾" parameters. Finally, we test the model in the testing data
with the selected best hyperparameter setting. Baseline:We also
conduct the load sensing only product recognition as the baseline.
The absolute value of difference in the windows of [𝑇𝑖−0.6𝑠 ,𝑇𝑖−0.2𝑠]
and [𝑇𝑖+0.2𝑠 ,𝑇𝑖+0.6𝑠] plus the𝜎 for the 𝑖𝑡ℎ event are used as features
for recognition, and the SVM model’s setting is identical.
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Table 1: Load Distribution Analysis

Load Location 𝑆𝑒𝑛𝑠𝑜𝑟𝐿 Range (mV) 𝑆𝑒𝑛𝑠𝑜𝑟𝑅 Range (mV)

left 36.9(1.85) –
middle 18.2(3.04) 27.3(2.71)
right – 48.7(3.13)

Evaluation Metrics. We use the F1 score as the event detection
and product recognition performance metric, calculated as:

F1 =
TP

TP + 1
2 (FP + FN)

, (1)

where TP is number of true positives, FP is number of false positives,
and FN is number of false negatives. For event detection, if the
interval between the detected event and ground truth (i.e., labeled
from video) is less than 0.2 seconds, we report it as TP, otherwise,
it is FP. For production recognition, if the predicted production ID
is match with the ground truth (interacted product ID), we report
it as TP.

4.2 Results and Analysis
We analyze both the low-cost load sensing approach and the multi-
modal task-level fusion performance.

4.2.1 Pressure Sensor Characterization. We use a soda can (380
grams) as the standard load change on the shelf and pick up/put
down it at different locations (left, middle, and right) as shown in
Figure 5 (a). We also investigate the impact of addition load (0, 2
Kg, and 4 Kg) on the load sensing. We characterize the pressure
sensors’ output range by measuring the voltage change in response
to each interaction event.

First, we demonstrate 𝑆𝑒𝑛𝑠𝑜𝑟𝐿 and 𝑆𝑒𝑛𝑠𝑜𝑟𝑅 ’s output difference
in Table 1. We observe that the interaction event location impact
the pressure sensor’s output range – the closer the location is to the
sensor, the larger the output changes (higher SNR). This is because
when the load is applied at different locations on the shelf, the load
distributions on the peg hook on two sides of the shelf are different.
For example, when the load is applied on the left side of the shelf, it
is mainly distributed on the left side peg hook and cause a detectable
pressure change. As a result, the pressure changes on the right side
peg hook is limited and almost not detectable. Therefore, we did
not report the sensor output range in these cases.

Since the pressure sensor’s sensitivity decreases when the pres-
sure increases [1], we further characterize our load sensing scheme
with different amounts of additional loads on the shelf. Table 2
shows the range of the sensor output changes caused by the pick-
up/putting down of a soda can when different amounts of additional
loads are placed on the shelf. We can observe that with the increase
of the additional load, the sensor reading changes decrease.

4.2.2 Event Detection and Product Recognition. Figure 6 (a) presents
the F1 scores of event detection using vibration and load sensing.
The green bar represents the F1 score achieved by the vibration-
based detection (0.38). The lower performance could be caused
by the ambient acoustic noises, which contribute to false positive
detection. The yellow bar depicts the F1 score of load sensing (0.98),

Table 2: Additional Load Analysis

Additional Load 𝑆𝑒𝑛𝑠𝑜𝑟𝐿 Range (mV) 𝑆𝑒𝑛𝑠𝑜𝑟𝑅 Range (mV)

0 36.9(1.85) 48.7(3.13)
2 Kg 30.9(3.54) 41.6(2.50)
4 Kg 21.2(1.93) 26.5(2.84)
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Figure 6: Results of customer-product interaction. (a) event
detection accuracy. (b) product recognition accuracy.

which shows a significant advantage over the vibration-based ap-
proach in terms of on-shelf event detection (2.6×). Figure 6 (b)
shows the recognition F1 scores, with the vibration sensing results
depicted by the green bar (0.81) and the load sensing results by the
yellow bar (0.50). The vibration-based approach outperforms the
load sensing approach (1.6×), as the vibration signals contain more
distinctive information about the contact between the product and
the shelf. In summary, this result verified our task-level multimodal
fusion design – load sensing for on-shelf interaction detection and
vibration sensing for on-shelf interaction recognition.

5 DISCUSSION
The preliminary results are promising and lead to multiple technical
directions we can explore.

Physical Augmentation for Load Sensing. In this study, we placed
a pressure sensor directly between the retail shelf frame and the
shelf. However, this placement could result in data drift over a long
period of time when pressure is continuously applied to the sensor.
In addition, the pressure sensor’s sensitivity also varies in different
pressure ranges. Therefore, it is important to dynamically calibrate
the system for continuous and long-term monitoring. We plan
to take the physical and data-driven combined approach, where
we can modify both the mechanical placement of the sensor and
the algorithm to reduce the impact of data drift and sensitivity
variation.

Robust Inference Fusion. This preliminary work verifies the com-
plementarity of the two low-cost modalities used for on-shelf prod-
uct interaction recognition with a task-level fusion. We will further
look into multimodal inference fusion techniques to further im-
prove the accuracy and robustness of the interaction detection and
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recognition. For example, load sensing is efficient for distinguishing
products with obvious weight differences, which can help the inter-
action recognition. In addition, when multiple products are picked
up and put down, the combination of the load and vibration sensing
can capture better spaciotemporal characteristics for recognition
over mixed signals.

Low Power Design. Power and communication are two important
aspects for us to further optimize the per-shelf system design for
a scalable system, such as autonomous retail (hundreds of thou-
sands of shelves). We will investigate and characterize the power
consumption for each sensing modality. We plan to explore the
low-power design and design trigger-based scheme for signal pro-
cessing, communication, and inference.

6 CONCLUSION
In this paper, we present a multimodal solution that combines
vibration- and load- sensing for customer-product interaction recog-
nition in autonomous retails. We present a low-cost shelf load sens-
ing scheme with sparsely deployed pressure sensors and introduce
the multimodal sensing design that leverages the advantage of
these two modalities. The load sensing is robust to ambient acous-
tic noise, while the vibration sensing achieves higher accuracy in
recognition. We conduct real-world data collection with the pro-
posed system, and our multimodal approach achieves 2.6× and 1.6×
F1 score compared to the baseline method.

ACKNOWLEDGEMENT
This project was supported in part by AiFi Inc.

REFERENCES
[1] 2023. Force Sensitive Resistor. https://www.sparkfun.com/products/9376
[2] 2023. Geophone - SM-24 - SEN-11744 - SparkFun Electronics. https://www.

sparkfun.com/products/11744
[3] AiFi. 2022. AIFI opens 80 computer vision-powered autonomous stores, an in-

dustry benchmark for platform scalability. https://www.prnewswire.com/news-
releases/aifi-opens-80-computer-vision-powered-autonomous-stores-an-
industry-benchmark-for-platform-scalability-301603023.html

[4] Yuanqiang Cai, Longyin Wen, Libo Zhang, Dawei Du, and Weiqiang Wang. 2021.
Rethinking object detection in retail stores. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 35. 947–954.

[5] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh. 2019. OpenPose:
Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2019).

[6] Jonathon Fagert, Amelie Bonde, Sruti Srinidhi, Sarah Hamilton, Pei Zhang, and
Hae Young Noh. 2022. Clean vibes: Hand washing monitoring using structural
vibration sensing. ACM Transactions on Computing for Healthcare (HEALTH) 3, 3
(2022), 1–25.

[7] Howard Huang. 2021. Amazon go store review, Impressions, and
thoughts. https://www.whatshuang.com/posts/amazon-go-store-review-
impressions-and-thoughts

[8] Ji-Ye Jeon, Shin-Woo Kang, Hyuk-Jae Lee, and Jin-Sung Kim. 2022. A Retail Object
Classification Method Using Multiple Cameras for Vision-Based Unmanned
Kiosks. IEEE Sensors Journal 22, 22 (2022), 22200–22209.

[9] Murao Kazuya, Imai Junna, Terada Tsutomu, and Tsukamoto Masahiko. 2017.
Activity Recognition and User Identification based on Tabletop Activities with
Load Cells. 58, 1 (2017).

[10] Ming-Hong Lin, Muhammad Atif Sarwar, Yousef-Awwad Daraghmi, and Tsì-Uí
İk. 2022. On-shelf load cell calibration for positioning and weighing assisted
by activity detection: Smart store scenario. IEEE Sensors Journal 22, 4 (2022),
3455–3463.

[11] Lizheng Liu, Bo Zhou, Zhuo Zou, Shih-Ching Yeh, and Lirong Zheng. 2018. A
Smart Unstaffed Retail Shop Based on Artificial Intelligence and IoT. In 2018
IEEE 23rd International Workshop on Computer Aided Modeling and Design of
Communication Links and Networks (CAMAD). 1–4. https://doi.org/10.1109/
CAMAD.2018.8514988

[12] Xiaochen Liu, Yurong Jiang, Kyu-Han Kim, and Ramesh Govindan. 2020. Grab:
Fast and accurate sensor processing for cashier-free shopping. arXiv preprint
arXiv:2001.01033 (2020).

[13] Kazuya Murao, Junna Imai, Tsutomu Terada, and Masahiko Tsukamoto. 2015.
Recognizing activities and identifying users based on tabletop activities with load
cells. In Proceedings of the 17th International Conference on Information Integration
and Web-based Applications & Services. 1–6.

[14] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[15] Jingtian Peng, Chang Xiao, and Yifan Li. 2021. RP2K: A Large-Scale Retail Product
Dataset for Fine-Grained Image Classification. arXiv:2006.12634 [cs.CV]

[16] Yacine Rekik, Evren Sahin, and Yves Dallery. 2009. Inventory inaccuracy in retail
stores due to theft: An analysis of the benefits of RFID. International Journal of
Production Economics 118, 1 (2009), 189–198.

[17] George Roussos. 2006. Enabling RFID in retail. Computer 39, 3 (2006), 25–30.
[18] Carlos Ruiz, Joao Falcao, Shijia Pan, Hae Young Noh, and Pei Zhang. 2019. Aim3s:

Autonomous inventory monitoring through multi-modal sensing for cashier-less
convenience stores. In Proceedings of the 6th ACM International Conference on
Systems for Energy-Efficient Buildings, Cities, and Transportation. 135–144.

[19] Vladimir Vapnik. 1999. The nature of statistical learning theory. Springer science
& business media.

[20] Yue Zhang, Carlos Ruiz, Shubham Rohal, and Shijia Pan. 2023. CPA: Cyber-
Physical Augmentation for Vibration Sensing in Autonomous Retails. In Pro-
ceedings of the 24th International Workshop on Mobile Computing Systems and
Applications. 8–14.

271

https://www.sparkfun.com/products/9376
https://www.sparkfun.com/products/11744
https://www.sparkfun.com/products/11744
https://www.prnewswire.com/news-releases/aifi-opens-80-computer-vision-powered-autonomous-stores-an-industry-benchmark-for-platform-scalability-301603023.html
https://www.prnewswire.com/news-releases/aifi-opens-80-computer-vision-powered-autonomous-stores-an-industry-benchmark-for-platform-scalability-301603023.html
https://www.prnewswire.com/news-releases/aifi-opens-80-computer-vision-powered-autonomous-stores-an-industry-benchmark-for-platform-scalability-301603023.html
https://www.whatshuang.com/posts/amazon-go-store-review-impressions-and-thoughts
https://www.whatshuang.com/posts/amazon-go-store-review-impressions-and-thoughts
https://doi.org/10.1109/CAMAD.2018.8514988
https://doi.org/10.1109/CAMAD.2018.8514988
https://arxiv.org/abs/2006.12634

	Abstract
	1 Introduction
	2 Related Work
	3 System Design
	3.1 Converting Shelf for Low-Cost Load Sensing
	3.2 Load-Dominant On-Shelf Event Detection
	3.3 Vibration-Dominant Product Recognition

	4 Implementation and Preliminary Results
	4.1 Experiment Setup
	4.2 Results and Analysis

	5 Discussion
	6 Conclusion
	References

