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Abstract

Recent digital rights frameworks give users the right to delete their data from systems that
store and process their personal information (e.g., the “right to be forgotten” in the GDPR).

How should deletion be formalized in complex systems that interact with many users and
store derivative information? We argue that prior approaches fall short. Definitions of machine
unlearning Cao and Yang [2015] are too narrowly scoped and do not apply to general interactive
settings. The natural approach of deletion-as-confidentiality Garg et al. [2020] is too restrictive:
by requiring secrecy of deleted data, it rules out social functionalities.

We propose a new formalism: deletion-as-control. It allows users’ data to be freely used
before deletion, while also imposing a meaningful requirement after deletion—thereby giving
users more control.

Deletion-as-control provides new ways of achieving deletion in diverse settings. We apply it to
social functionalities, and give a new unified view of various machine unlearning definitions from
the literature. This is done by way of a new adaptive generalization of history independence.

Deletion-as-control also provides a new approach to the goal of machine unlearning, that
is, to maintaining a model while honoring users’ deletion requests. We show that publishing
a sequence of updated models that are differentially private under continual release satisfies
deletion-as-control. The accuracy of such an algorithm does not depend on the number of
deleted points, in contrast to the machine unlearning literature.
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Someday, this baby and other babies from her cohort will be 30 and there will be
an absolutely bananas cache of data about what form and hue their poops took.
Maybe someone will hack it and it will derail a presidential campaign news cycle.

Alexandra Petri, from “What I’ve been up to the last four months”

1 Introduction

The long-term storage of modern data collection carries serious risks, including often-surprising
disclosures [Fowler, 2022, Carlini et al., 2021, JASON, 2022, Cohen and Nissim, 2020, Ng, 2022],
manipulation, and epistemic bubbles. The permanence of our digital footprints can also chill
expression, with every word weighed against the risk of out-of-context blowback in the future.

Data protection laws around the world have begun to challenge this permanence. The EU’s
General Data Protection Regulation provides an individual data subject the right to request “the
erasure of personal data concerning him or her” and delineates when a data controller must oblige.
California followed suit in 2020, and similar rights take effect in Virginia, Colorado, Connecticut,
and Utah in 2023 National Conference of State Legislatures [2022].

In the modern data ecosystem, however, it is not easy to articulate what constitutes the “era-
sure” of personal data. Data is not merely stored in databases—it is used to train machine learning
models, compute and publish statistics, and drive decisions. Such complexity and nuance chal-
lenges simplistic thinking about erasure, and the sheer number of ways data are used precludes
case-by-case reasoning about erasure compliance.

Giving users more control over data is today a central policy goal. Decades of cryptography
has given us good definitional tools for reasoning about non-disclosure of data—enabling the de-
velopment of technical solutions, informing policy decisions, and influencing practice. But we lack
similar tools for reasoning about control over data and, in particular, deletion. While there has
been a flurry of recent work on so-called machine unlearning [Cao and Yang, 2015, Ginart et al.,
2019, Ullah et al., 2021, Bourtoule et al., 2021, Sekhari et al., 2021, Gupta et al., 2021, . . . ], often
directly motivated by legal compliance, there remain basic gaps in our understanding.

This paper sheds light on what data deletion means in complex data processing scenarios,
and how to achieve it. We provide a formulation that unifies and generalizes previous technical
approaches that only partially answer this question. Though we make no attempt to strictly adhere
to any specific legal right to erasure, we aim to incorporate more of its contours than prior technical
work on erasure.

Our new formulation, called deletion-as-control, requires that after an individual Alice requests
erasure, the data controller’s future behavior and internal state should not depend on Alice’s data
except insofar as that data has already affected other parties in the world. In this way, Alice’s
autonomy need not require secrecy; she has a say about how her data is used regardless of past or
future disclosure.

Our definition meaningfully captures a variety of data controllers, including ones facilitating
social interactions and maintaining accurate predictive models. In contrast, prior approaches yield
a patchwork of, at times, contradictory and counterintuitive interpretations of erasure.
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1.1 Touchstone Examples

In order to understand our and prior approaches to data deletion, it is helpful to have in mind a
few concrete examples of functionalities that separate our approaches from prior ones. We describe
four touchstone functionalities, then briefly discuss how they relate to prior approaches and our
new notion.

Private Cloud Storage. Users can upload files for cloud storage and future download. Only the
originating user may download a file and the files are never used in any other way. The existence
of files is only ever made known to the originating user, and the controller publishes no other
information.

Public Bulletin Board. Users can submit posts to the public bulletin board. The bulletin board
simply displays all user posts currently in the controller’s internal storage, with no other func-
tionalities (e.g. responding, messaging, etc.).

Batch Machine Learning. Users contribute data during some collection period. At the end of
the period, the data controller trains a predictive model on the resulting dataset. The data
controller then publishes the model.

Public Directory + Usage Statistics. Users upload their name and phone number to be listed
in a directory. The data controller allows anybody to search for a listing in the directory, and
each week reports a count of the number of distinct users that have looked up a phone number
so far. (Other statistics are possible too—the weekly count of new users, say.)

The touchstone examples and prior approaches Figure 1 summarizes how the touchstone
functionalities fare under deletion-as-control and under three prior approaches to defining deletion:
deletion-as-confidentiality, machine unlearning, and simulatable deletion (Section 1.4).1 Together,
the touchstone functionalities illustrate that prior approaches constitute an inconsistent patchwork,
each falling short on at least two of the examples.

Deletion-as-confidentiality [Garg et al., 2020] is over-restrictive. Briefly, it requires that third
parties cannot distinguish whether a data subject Alice requested erasure from the controller or
simply never interacted with the controller in the first place. This implies, among other things,
that Alice’s data is kept confidential from all other parties even if Alice never requests its era-
sure. This confidentiality-style approach is well-suited for Private Cloud Storage, but deletion-as-
confidentiality precludes inherently social functionalities, like the Bulletin Board and Directory.
No controller implementing these functionalities could ever satisfy deletion-as-confidentiality. Why
would Alice post messages if they could never be made public?

On the other hand, machine unlearning—even in its strongest incarnation, due to Gupta et al.
[2021]—is too narrowly scoped. It is specialized to the setting of machine learning and does not
consider general interactive functionalities. The definition is not applicable to the Cloud Storage,
Bulletin Board, and Directory functionalities. Definitions from the machine unlearning literature

1We introduce the terms deletion-as-confidentiality and simulatable deletion for the definitions of Garg et al.
[2020] and Godin and Lamontagne [2021], respectively, to more clearly distinguish them from each other and from
deletion-as-control. Garg et al. [2020] use the term deletion-compliance; Godin and Lamontagne [2021] use strong
deletion-compliance and weak deletion-compliance, respectively.
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are meaningful for the Batch Machine Learning functionality, where they correspond to versions of
history independence.

Even where multiple definitions are meaningful, they may impose different requirements. For
example, both deletion-as-confidentiality and deletion-as-control admit implementations of Batch
Machine Learning that are persistent in that the published models never need to be updated.
On the other hand, history independence requires that any useful model be updated after enough
deletion requests.

The touchstone examples and deletion-as-control We show that each of the touchstones
can be implemented in a manner that satisfies our new notion, deletion-as-control.

Private Cloud Storage. To remove a user, the controller deletes all the user’s files from its
internal storage. Such a controller satisfies deletion-as-control if its data structures are history
independent (Corollary 3.10).

Public Bulletin Board. To remove a user, the controller deletes all of the user’s posts from its
internal storage and, as a result, from the public-facing bulletin board. As with cloud stor-
age, such a controller satisfies deletion-as-control if its data structures are history independent
(Corollary 3.10).

Batch Machine Learning. Deletion-as-control is achieved if the dataset is deleted after training
and training is done with differential privacy, e.g., using DP-SGD Bassily et al. [2014] (Corol-
lary 5.2). To remove a user, the controller does nothing—it simply ignores deletion requests.
The resulting deletion guarantee is parameterized by the privacy parameters ϵ and δ.

Public Directory + Usage Statistics. Deletion-as-control can be achieved by combining dif-
ferential privacy and history independence (Corollary 6.5). The statistics are computed using
a mechanism that satisfies a stringent form of DP—pan-privacy under continual release—while
the public directly is implemented using a history independent data structure. To remove a user,
the controller deletes their listing from the public directory and its associated data structures,
but leaves the data structures for the DP statistics unaltered.

1.2 Contributions

Defining deletion-as-control Our primary contribution is a formalization of deletion-as-control,
an important step towards providing individuals greater control over the use of personal data. The
new notion applies to general data controllers and interaction patterns among parties, building on
the modeling of [Garg et al., 2020]. As described below, it unifies existing approaches within a
coherent framework and captures all the touchstone examples of Section 1.1.

The goal embodied by deletion-as-control is not so much to hide data from others as to exercise
control over how the data is used. Until Alice requests erasure, deletion-as-control should not limit
the controller’s usage of her data. But after erasure, the data controller’s future behavior and
internal state should not depend on Alice’s data except insofar as that data has already affected
other parties in the world. In this way, Alice’s autonomy need not imply secrecy; she has a say
about how her data is used regardless of past or future disclosure.

Our approach provides new ways of achieving meaningful deletion in diverse settings.

5



Private Cloud
Storage

Public Bulletin
Board

Batch Machine
Learning

Public Directory
+ Usage Stats

Deletion-as-Confidentiality
[Garg et al., 2020] ✓ ⊤ ✓ ⊤
Machine unlearning
[Gupta et al., 2021, . . . ]

✗ ✗ ✓ ✗

Simulatable deletion
[Godin and Lamontagne, 2021] ✓ ⊥ ⊥ ⊥
Deletion-as-control ✓ ✓ ✓ ✓
(this work) (Corollary 3.10) (Corollary 3.10) (Corollary 5.2) (Corollary 6.5)

✓: Definition is satisfied by implementations with meaningful deletion guarantees.
⊥: Definition is under-restrictive: allows vacuous implementations with no meaningful deletion of any kind.
⊤: Definition is over-restrictive: no implementation of the functionality satisfies the definition.
✗: Definition does not apply to the functionality.

Figure 1: Application of deletion definitions to touchstone functionalities.

Capturing social functionalities via history independence Deletion-as-control applies to a
wide range of controllers that provide “social” functionalities where prior approaches fall flat (e.g.,
the Public Bulletin Board touchstone). Along the way, we give a new unified view of the various
machine unlearning definitions from the literature.

Both flow from a theorem roughly stating that deletion-as-control is implied by adaptive history
independence, a generalization of the cryptographic notion of history independence [Micciancio,
1997, Naor and Teague, 2001] that we introduce. An implementation of a data structure is history
independent if its memory representation reveals nothing more than the logical state of the data
structure. That history independence is related to deletion is intuitive, and appears in [Garg
et al., 2020, Godin and Lamontagne, 2021]. Machine unlearning imposes a similar requirement in
the specific context of machine learning. Oversimplifying, a learned model (akin to the memory
representation) must reveal nothing more than a model retrained from scratch (akin to the logical
state). We make these connections precise.

New algorithms for machine learning via differential privacy Deletion-as-control provides
a new approach for machine learning in the face of modern data rights. Very roughly, differential
privacy (DP) provides deletion-as-control for free. Intuitively, if a person has (approximately) no
impact on a trained model, mitigating that impact is trivial. In particular, if using an adaptive
pan-private algorithm to maintain the model, it does not need to be updated in response to deletion
requests, unlike machine unlearning algorithms. For the first time, this approach enables a mean-
ingful deletion guarantee while bounding the worst-case loss compared to deletion-free learning.

Specifically, we describe two ways of compiling DP mechanisms into controllers satisfying
deletion-as-control. The first applies to DP mechanisms that are run in a batch setting on a
single, centralized dataset (e.g., the Batch Machine Learning touchstone). The second applies to
mechanisms satisfying an adaptive variant of pan-privacy under continual release [Chan et al., 2011,
Dwork et al., 2010b, Jain et al., 2021], including controllers that periodically update a model on
an ongoing basis. The compilation from differential privacy is by way of deletion-as-confidentiality
Garg et al. [2020], which we prove implies deletion-as-control.
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Figure 2: Overview of the relationships be-
tween definitions and the roles of specific
example controllers. Each oval represents
a definition, and each icon represents an
implementation of a touchstone functional-
ity satisfying the corresponding definition.
Oval containment corresponds to an impli-
cation between the definitions, though only
roughly and subject to technicalities that
we do not attempt to capture in this figure.

We combine this result with existing algorithms for private learning under continual release
[Kairouz et al., 2021] to obtain new controllers that maintain a model with accuracy essentially
identical to that of a model trained on the entire set of added records.

Capturing complex mechanisms via composition We show that deletion-as-control captures
more functionalities than those collectively captured by history independence, differential privacy,
and deletion-as-confidentiality. Specifically, we show how to implement the Public Directory +
Usage Statistics touchstone, a functionality that cannot satisfy any of the above three properties.
To do so, we prove that deletion-as-control enjoys a limited form of parallel composition.

1.3 Defining deletion-as-control

We define deletion-as-control in a way that allows arbitrary use of a person’s data before deletion,
but not after. The challenge is to provide meaningful privacy guarantees despite this feature, even
in a general setting with an adaptive and randomized data controller, data subject (Alice), and an
environment (representing all parties other than the data controller and Alice).

Our proposal is that after deletion, the data controller should be able to produce a plausible
alternate explanation for its current state without appealing to Alice’s participation. More specifi-
cally, the state of the controller after deletion can be plausibly attributed to the interaction between
the controller and the environment alone. By this we mean that the state is about as likely—with
probability taken over the controller’s random coins—in the real world as in the hypothetical ‘ideal’
world where the environment’s messages to the controller are unchanged but where Alice does not
interact with the controller whatsoever. The result is that, after Alice’s deletion, the controller’s
subsequent states depend on the interaction with Alice only insofar as that interaction affected
other parties’ interactions with the controller.

Importantly, we only require that the controller’s state is plausible in the ideal world given
the messages sent by the environment. We do not require the environment’s messages themselves
to be plausible in the ideal world. For example, suppose that on a public bulletin board, Bob
simply copies and reposts Alice’s posts. Bob’s messages in the ideal world would still contain the
content of Alice’s posts, even though Alice is completely absent in the hypothetical ideal world.
This is unavoidable—we want to allow the controller and the environment to use the subject’s data
arbitrarily before deletion. So the environment’s queries may depend on the data subject’s inputs,
directly or indirectly.

7



In a bit more detail, our definition compares real and ideal worlds defined in a non-standard
way.2 The real world execution, denoted ⟨C,E,Y⟩, involves three parties: a data controller C, a
special data subject Y, and an environment E representing all other parties. (The notation ⟨· · ·⟩
denotes the transcript of an execution between the parties listed.) The execution ends after Y
requests deletion and C processes the request. The real execution specifies (i) C’s state stateC, (ii)
the queries q⃗E sent by E to C, and (iii) the randomness RC used by C. The ideal world execution,
denoted ⟨C(R′

C),D(⃗qE)⟩, involves the same controller C and a dummy environment D that simply
replays the queries q⃗E. The controller’s ideal world randomness R′

C is sampled by a simulator
Sim(⃗qE, RC, stateC). The ideal execution specifies (i) C’s ideal state state′C, and (ii) the simulated
randomness R′

C used by C.

Definition 1.1 ((ϵ, δ)-deletion-as-Control (simplified)). Given C, E, Y, and Sim, consider the
following experiment. Sample RC ← {0, 1}N; run the real execution (⃗qE, stateC) ← ⟨C(RC), E,Y⟩;
sample R′

C ← Sim(⃗qE, RC, stateC); and run the ideal execution (⃗q′E, state
′
C)← ⟨C(R′

C),D(⃗qE)⟩.
We say a controller C is (ϵ, δ)-deletion-as-control compliant if there exists Sim such that for all

E and Y: (i) R′
C

ϵ,δ
≈ RC; (ii) state′C = stateC with probability at least 1− δ.

The notation
ϵ,δ
≈ denotes approximate indistinguishability parameterized by ϵ and δ (as in the

definition of differential privacy). We give a complete version of Definition 1.1 in Section 2.

1.4 Prior Work

We give a brief discussion of prior definitions of deletion. Machine unlearning and deletion-as-
confidentiality are discussed in detail in Sections 3.4 and 4, respectively.

Deletion-as-confidentiality Garg et al. [2020] define deletion-as-confidentiality.3 It requires
that the deleted data subject Alice leaves (approximately) no trace: the whole view of the environ-
ment along with the state of the controller after deletion should be as if Alice never existed. As a
result, no third party may ever learn of Alice’s presence — even if she never requests deletion. The
strength of this definition is its strong, intuitive, interpretable guarantee.

But deletion-as-confidentiality is too restrictive (Figure 1). The stringent indistinguishability
requirement precludes any functionality where users learn about each other. Implementations of
the Private Cloud Storage and Batch Machine Learning functionalities can satisfy deletion-as-
confidentiality, using history independence (cf. Section 3). But the Bulletin Board and Directory
are ruled out. If Bob ever looks up Alice’s messages, the confidentiality required by the definition
is impossible.

Simulatable deletion Godin and Lamontagne [2021] introduce simulatable deletion as a relax-
ation of deletion-as-confidentiality, motivated by the observation that deletion-as-confidentiality
rules out social functionalities.4 Roughly, simulatable deletion requires that after a data subject
Alice is deleted, the resulting state of the controller is simulatable given the environment’s view.

2The non-real world is more ‘hypothetical’ or ‘counter-factual’ than ‘ideal.’ Regardless, we use the term ‘ideal
world’ for continuity with [Garg et al., 2020] and decades of cryptography.

3Deletion-as-confidentiality is called deletion-compliance in Garg et al. [2020] and strong deletion-compliance in
Godin and Lamontagne [2021].

4Simulatable deletion is called weak deletion-compliance in Godin and Lamontagne [2021].
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This means that any information about Alice that is present in the controller’s state is already
present in the view of other parties.

Simulatable deletion is too permissive. A controller may indefinitely retain any information that
has ever been shared with any third party. For example, the Public Bulletin Board need not delete
Alice’s posts if they have ever been read!5 As a result, simulatable deletion is essentially vacuous
for functionalities where the controller’s state need not be kept secret. The controller can simply
publish its state, making simulation trivial. Turning to our touchstone examples (Section 1.1), while
simulatable deletion imposes a meaningful requirement for the Private Cloud Storage functionality,
it allows implementations with no meaningful deletion of any kind for the other three functionalities.

Machine unlearning This recent line of work specializes the question of deletion to the setting
of machine learning [Cao and Yang, 2015, Ginart et al., 2019, Ullah et al., 2021, Bourtoule et al.,
2021, Sekhari et al., 2021, Gupta et al., 2021, . . . ]. Given a model θ⃗ ← Learn(x⃗) and a data point
x∗ ∈ x⃗, that literature requires sampling a new model θ′ ← Unlearn(θ⃗, x∗, x⃗) approximately from
the distribution Learn(x⃗ \ {x∗}) (i.e., approximating retraining from scratch). As we explain in
Section 3.4, these definitions correspond to versions of history independence.

A drawback of machine unlearning is that it specialized to the setting of machine learning. It
does not apply to general data controllers and interaction patterns among parties, including the
Cloud Storage, Bulletin Board, and Directory functionalities (Figure 1).

History independence-style definitions of machine unlearning do impose a meaningful require-
ment for the Batch Machine Learning functionality. In fact history independence is a conceptually
stricter requirement than deletion-as-control, setting aside many technicalities (Section 3.4). Differ-
entially private (DP) learning illustrates the difference. Roughly, DP learning provides deletion-as-
control for free; the resulting model can be published once and never updated. In contrast, history
independence require updating the model when there are many deletions. To see why, consider x⃗
of size n and suppose all n people request deletion. These definitions would require the final model
θ∗ be essentially trivial—it should perform about as well as a the model θ0 trained on an empty
dataset. With the DP learner described above, θ∗ performs just as well as the initial model θ.

1.5 Paper Structure

In Section 2 we define deletion-as-control. In Section 3 we define Adaptive History Independence
and prove that it implies deletion-as-control (Theorem 3.8). We also show that the machine un-
learning definition of Gupta et al. [2021] is a special case of Adaptive History Independence (Propo-
sition 3.12). In Section 4 we show that deletion-as-confidentiality is a strengthening of our definition
(Theorem 4.3). In Section 5, we relate differential privacy to our definition (Theorem 5.9) and in
the process we define adaptive pan-private in the continual release model. Lastly, in Section 6 we
prove a narrow composition result for our definition.

5Godin and Lamontagne [2021] actually consider a version of the Bulletin Board functionality for which simulatable
deletion is meaningful. Crucially, their functionality does not track whether a post has been read. Hence their
controller must actually delete Alice’s posts. But if the bulletin board keeps read receipts or actively pushes new
messages out to users, say, it would not have to delete these posts.
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2 Deletion-as-control

We define deletion-as-control in a way that allows arbitrary use of a person’s data before deletion,
but not after. Under such a definition, an adversary might completely learn the data before it is
deleted, and even make it available after it is deleted! The challenge is to provide a meaningful
guarantee despite this limitation, even in a general setting with adaptive and randomized data
controllers, data subjects, and environments (representing all parties other than the data controller
and distinguished data subject).

2.1 (ϵ, δ)-indistinguishability

We consider a notion of similarity of distributions closely related to differential privacy (Ap-
pendix B).

We present some further technical tools in the appendices: a novel coupling lemma for this notion
of indistinguishability (Appendix A) as well as background on differential privacy (Appendix B).

Definition 2.1. Given parameter ϵ ≥ 0 and δ ∈ [0, 1), we say two probability distributions P and
Q on the same set X (with the same σ-algebra of events ΣX ) are (ϵ, δ)-indistinguishable and write

P
ϵ,δ
≈ Q if, for every event E ∈ ΣX ,

P (E) ≤ eϵQ(E) + δ and Q(E) ≤ eϵP (E) + δ .

Slightly overloading this notation, we say two random variables X and Y taking values in the same

measurable space (X ,ΣX ) are (ϵ, δ)-indistinguishable, denoted X
ϵ,δ
≈ Y if, for every event E ∈ ΣX ,

Pr[X ∈ E] ≤ eϵ Pr[Y ∈ E] + δ and,

Pr[Y ∈ E] ≤ eϵ Pr[X ∈ E] + δ .

Because algorithms in our model run in unbounded time, their (countably infinite) random
tapes belong to an uncountably infinite set. This means that not all sets of random tapes have
well-defined probability. The σ-algebra ΣX captures the set of events E for which P (E) and Q(E)
are defined. This issue does not affect most proofs and definitions; we only make the σ-algebra of
events explicit when necessary.

In our case, the set X of random tapes for a single machine is {0, 1}N. Any execution that
terminates reads only a finite prefix of the tape, and so the natural σ-algebra ΣX is the smallest
one containing the sets Ew =

{
w∥x : x ∈ {0, 1}N

}
for all w ∈ {0, 1}∗, where ∥ denotes string

concatenation (that is, Ew is the set of infinite tapes with a particular finite prefix w). ΣX contains
every event E that depends on only finitely many bits of the tape. This is the standard σ-algebra
for an infinite set of fair coin flips (see, e.g., Polyanskiy [2018]).

2.2 Parties and simplified execution model

Our definition uses the real/ideal cryptography, though not with a typical indistinguishability
criterion. See Section 2.5 for complete details.

The real world execution, denoted ⟨C,E,Y⟩, involves three (possibly randomized) parties: a
data controller C, an environment E, and a special data subject Y. The real interaction is arbitrary,
limited only by the execution model described below. Parties have authenticated channels over

10



which they may interact freely. While Y has only a single channel to C, the environment has an
unbounded number of channels (representing unbounded additional parties). While these channels
are authenticated, the controller cannot distinguish the single channel to Y from those to E. The
interaction continues until the data subject Y requests deletion, ending after the data controller C
processes the request. We denote by stateC the final state of the controller.

The ideal world execution, denoted ⟨C,D⟩, involves the interaction of the same controller C as
well as a dummy environment D. D takes as input the transcript from the real execution, denoted τ ,
and simply replays only E’s queries, denoted q⃗E. If q⃗E is empty, then D terminates without sending
messages. Observe that C’s responses and state in the ideal world are not fixed. They depend on
C’s ideal-world randomness, denoted R′

C. Moreover, the ideal interaction is defined relative to a
particular instantiation of the real world interaction. In particular, the queries q⃗E may depend on
C’s real-world randomness, denoted RC.

The controller’s real-world randomness RC consists of infinitely-many random bits sampled
uniformly at random from {0, 1}N. We denote this distribution U . In the ideal world, a simulator
Sim takes as input (⃗qE, RC, stateC) and generates C’s ideal-world randomness R′

C. When we wish
to emphasize the controller’s randomness in the execution, we write ⟨C(RC),E,Y⟩ and ⟨C(R′

C),D⟩.
An execution involves parties sending messages to each other until some termination condition is

reached. Starting with E (real) or D (ideal), parties get activated when they receive a message, and
deactivated when they send a message. Only a single party is active at a time. Parties communicate
over authenticated channels. Because E represents all users besides the distinguished data subject
Y, E has many distinct channels to C. Importantly, authentication allows parties to know on which
channel a message was received, but not which party (i.e., E or Y) is on the other end of that
channel. Each party is initialized with a uniform random tape which may only be read once over
the course of the whole execution. If a party wishes to re-use bits from its randomness tape, it
must store them in its internal state.

The real execution ⟨C,E,Y⟩ ends when Y requests deletion from C. The data subject’s delete
message activates the controller, who can then remove Y’s data. The ideal execution ⟨C(R′

C),D(⃗qE)⟩
ends after D sends its last query from q⃗E to C. In both cases, the execution ends after the final
activation of C. We consider the controller’s state at the end of the execution: stateC = C(⃗qE;RC)
in the real world, and state′C = C(⃗qE;R

′
C) in the ideal world. If an execution never ends, the state

is defined to be ⊥ and the transcript τ and its subset q⃗E are defined to be empty. For example, the
real execution ends if and only if Y requests deletion.

Remark 2.2 (Keeping time). In Section 5, we need a global clock. Balancing modelling simplicity
with generality, we allow the environment to control time. Specifically, we introduce a special query
tick that E can send to C thereby incrementing the clock. We do not allow Y to query tick.

2.3 Defining Deletion-as-Control

We require that the internal state of the controller is about as likely in the real world and the
ideal world, where probability is taken over C’s random coins. Let stateC and state′C be the internal
states in the real and ideal executions. Consider a random variable R′

C which is sampled uniformly
conditioned on state′C = stateC in the ideal execution where C uses randomness R′

C. Informally, our

definition requires that the distributions of R′
C and RC are close: R′

C

ϵ,δ
≈ RC. We do not require that

the real and ideal executions are themselves (ϵ, δ)-indistinguishable. Instead, we require that the
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Figure 3: The real (left) and ideal (right) executions. The communications with the controller C are
meant to be “public API” calls (e.g. accessing a public website, possibly using login credentials).
Notice that the dummy environment in the ideal world sends message q⃗E,i regardless of what the
previous responses were.

“explanations” in the real and ideal executions are (ϵ, δ)-indistinguishable—viewing the controller’s
randomness as the explanation of its state (relative to the environment’s queries q⃗E).

We extend this idea by considering ways of sampling R′
C other than the conditional distribution

described above (which may not always be defined). In general, we allow a simulator Sim to sample
R′

C as a function of the queries q⃗E from E to C, the real-world randomness RC, and the real-
world state stateC. (Although we view the simulator’s output as an infinite-length bit sequence, it

actually only needs to output a finite prefix.) We require that R′
C

ϵ,δ
≈ RC and that state′C = stateC

(or stateC = ⊥) except with probability δ. Sampling R′
C conditioned on state′C = stateC is a useful

default simulation strategy that we use throughout the paper, but there are sometimes much simpler
ways to sample R′

C.

Definition 2.3 (Deletion as control). Given a controller C, an environment E, a data subject Y
and a simulator Sim, we consider the following experiment:

• RC ← U (RC is a uniform random tape)

• (τ, stateC)← ⟨C(RC), E,Y⟩, where q⃗E ⊆ τ are the messages from E to C.

• R′
C ← Sim(⃗qE, RC, stateC)

• (τ ′, state′C)← ⟨C(R′
C),D(⃗qE)⟩.

We say a controller C is (ϵ, δ)-deletion-as-control compliant if there exists Sim such that for all E
and Y and for R′

C, RC sampled as above:

1. R′
C

ϵ,δ
≈ RC (i.e., RC and R′

C are similarly distributed),
and

2. With probability at least 1− δ, either
state′C = stateC or stateC = ⊥.

For a particular class of data subjects Y, we say a controller C is (ϵ, δ)-deletion-as-control compliant
for Y if there exists Sim such that the above holds for all E and for all Y ∈ Y.

Example 2.4 (XOR Controller). Consider a controller C⊕ which maintains a k-bit state state ∈
{0, 1}k which is initialized uniformly at random. Upon receiving a message x ∈ {0, 1}k, C⊕ updates
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its state state ← state ⊕ x, sending nothing in return. If it receives any other message, including
delete, it does nothing.

C⊕ satisfies (0, 0)-deletion-as-control. To see why, consider an execution of the real world, which
ends when the data subject sends delete. At this point, state = R ⊕ xY ⊕ xE, where R ∈ {0, 1}k is
the random initialization, xY is the XOR of all messages x sent by Y, and xE is the XOR of all
messages x sent by E. Let Sim compute xE from the queries q⃗E, and output R′ = state⊕xE = R⊕xY.
This satisfies the definition: (1) R′ is uniformly distributed because xY is independent of R; (2)
state′ = R′ ⊕ xE = state.

Definition 2.5 (Default simulator). The default simulator Sim∗ samples R′
C as follows:

Sim(⃗qE, RC, stateC) :

Return R′
C ∼ U

∣∣
C(⃗qE;R′)=stateC

if such an R′ exists;

Otherwise, return R′
C = RC.

As we show next, E and Y can be assumed to be deterministic without loss of generality.

Lemma 2.6 (Deterministic environments and subjects). Consider a controller C. Suppose that for
some ϵ, δ ≥ 0, C satisfies Definition 2.3 for all deterministic environments E and data subjects Y
with simulator Sim. Then C satisfies Definition 2.3 (even for randomized E and Y) with the same
simulator Sim.

Proof. Fix a controller C, and let Sim be the simulator which show that C satisfies Definition 2.3
for all deterministic environments and data subjects. Now consider a pair of randomized ITMs E
and Y with random coins denoted by RE and RY.

For a fixed string r, let Er denote the deterministic environment in which E’s random tape is
fixed to RE = r; similarly for Yr. Given strings rE and rY, we can consider the execution of the
deletion game in Definition 2.3 with the deterministic machines ErE and YrY . Let R′

C,rE,rY
denote

the random coins output by the simulator in that game, and let PrE,rY denote the distribution of
R′

C,rE,rY
. By hypothesis, R′

C,rE,rY
≈ϵ,δ RC for every rE and rY.

Now consider the deletion game with the randomized machines E,Y. Let R′
C denote the output

of the simulator in that game. Since the simulator Sim does not depend on the environment or
data subject, the distribution of R′

C conditioned on the event that RE = rE and RY = rY is exactly
PrE,rY . Thus, we have

(RE, RY, R
′
C) ≡ (RE, RY, R

′
C,RE,RY

) ≈ϵ,δ (RE, RY, RC) ,

where ≡ denotes that two random variables have identical distributions and we have used the
convexity of the ≈ϵ,δ relation. Dropping the first two components, we get that R′

C ≈ϵ,δ RC, as
desired.

Furthermore, by hypothesis, we have that state = state′ with probability at least 1− δ for each
setting of rE and rY (since state depends only on RE and RY via the queries q⃗E). Averaging over
rE and rY shows that the overall probability that state = state′ is also at least 1− δ.

2.4 Discussion of the definition

On constraining C’s state Our definition imposes a condition on the internal state of the
controller at a moment in time. Namely that, immediately after the data subject Y is deleted,
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the actual state of the controller stateC can be plausibly attributed to the interaction between the
controller and the environment alone. This in turn provides a guarantee for anything the controller
may do in the future. Namely, if the real controller was replaced by the ideal controller at the
moment of Y’s deletion, the environment would never know.

As an alternative, one might consider restricting future behavior directly. We prefer to restrict
the state as well. It is simpler to describe—for instance, because there is a natural termination
condition. It is also future-proof: Any controller that satisfied the future-behavior version but not
the state version could choose to, in the future, violate the guarantee by publishing the state at the
time of Y’s erasure. Imposing the condition on the state directly makes it impossible for the future
behavior of the real and ideal controllers to deviate, rather than merely possible for them not to.

Differential privacy and deletion As we will see later in this paper, differential privacy (DP)
can in some cases provide deletion-as-control almost automatically, with no additional action re-
quired of the data controller (Prop. 5.1 and Thm. 5.9). We believe that this makes sense both from
the point of view of what DP means and the spirit of data protection regulations. When greater pro-
tection is warranted, deletion-as-control should not serve as the sole basis of analysis—nor should,
perhaps, a right to erasure.

We’re guided by a simple intuition: If a single individual has almost no influence on the result
of data processing—the condition guaranteed by differential privacy—then nothing needs to be
done to remove that individual’s influence. This intuition closely tracks some prior approaches
to deletion. For instance, to show that differentially private controllers satisfy deletion-as-control,
we actually show that they meet the much stricter requirements of (approximate) deletion-as-
confidentiality Garg et al. [2020]; see Lem. 5.10. Some existing machine unlearning algorithms
embody the same intuition, leaving the trained model unaltered as long as the deleted data points
had no effect on the resulting model Ginart et al. [2019].6

The fact that DP can provide deletion-as-control fits well with the data protection regulations,
like GDPR and CCPA, that inspire our work. Generally, these laws give individuals rights regarding
the processing of personal data relating to them.But these rights, including the right to erasure,
do not extend to data that have been sufficiently anonymized.7 If one believes that in some cases,
DP anonymizes data for the purposes of GDPR, say, then in such cases the data controller need
not take any further action when a data subject requests deletion. Whether DP releases constitute
personal data is explored in recent work bridging computer science formalisms with legal analysis
Nissim et al. [2017], Altman et al. [2021]. Though the general question remains unresolved, DP has
been used to argue compliance with privacy laws for several high-profile data releases, including
by the U.S. Census Bureau US Census Bureau [2023], Facebook King and Persily [2020], and
Google Google [2020].

Of course, DP is not always the answer. For example, if a model was trained using data
collected without proper consent, one might require that no benefit derived from the ill-gotten data
remains. The Federal Trade Commission first adopted this type of algorithmic disgorgement in a

6In contrast, Thudi et al. [2022] argue that any definition where a data controller “do[es] not need to do anything
and can claim the unlearning is done”—including machine unlearning definitions based on approximate history
independence (Section 3.4)—is “not well-defined”. We disagree.

7Recital 26 states this explicitly: “The principles of data protection should therefore not apply to anonymous
information, namely information which does not relate to an identified or identifiable natural person or to personal
data rendered anonymous in such a manner that the data subject is not or no longer identifiable.”
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2021 settlement with photo sharing app Everalbum [Slaughter et al., 2020]. Differential privacy
should not shield against such algorithmic disgorgement.8

Deleting groups Our definition provides a guarantee for an individual data subject. What about
groups? If many people request to be deleted, then each individual person enjoys the individual-level
guarantee provided by deletion-as-control. But the group does not necessarily enjoy an analogous
group-level guarantee. For example, the group-level deletion guarantee for the DP-based controllers
in Section 5 decays linearly with the group size. For large groups, the group as a group doesn’t
enjoy meaningful protection.

This seems unavoidable in contexts where (useful) statistics are published once and not subse-
quently updated. It reflects a fundamental difference between deletion-as-control and the history
independence-style definitions in the machine unlearning literature, discussed in Section 3.4. Sup-
pose, for example, that a controller trains a model θ using data from n people. Then all n people
request deletion, leaving the controller with a model θ∗. History independence would require that
θ∗ be essentially trivial: θ∗ should perform about as well as a the model θ0 trained on an empty
dataset (Section 3.4). On the other hand, the DP-based controllers in Section 5 allow θ∗ to perform
very well on the learning task.

An individual-level guarantee is in line with data privacy laws. To whit, the GDPR grants a
right to erasure to “the data subject” who is “[a] natural person” (Art. 4, 17). Even so, group-
level deletion may be more appropriate in some settings (e.g., algorithmic disgorgement discussed
above). Exploring group deletion is an important direction for future work.

Composition Composition is an important property of good cryptographic definitions. We do
not yet have a complete picture of how deletion-as-control composes. Theorem 6.4 states a limited
composition theorem that applies to parallel composition of two controllers at least one of which
satisfies a very strong guarantee (specifically, it must implement a deterministic functionality with
perfect, as opposed to approximate, deletion-as-control). By induction, this extends to the parallel
composition of k controllers if all but one satisfy the strong guarantee. This can be used to reason
about complex interactive functionalities built from multiple strongly history-independent data
structures.

Proving more general composition for deletion-as-control is an important question for future
work. Addressing it seems challenging since it is closely related to still-open questions about com-
position for differential privacy. For example, it was shown only very recently that differential
privacy composes when mechanisms are run concurrently with adaptively interleaved queries [Vad-
han and Zhang, 2022]. While that result allows adaptive query ordering, the dataset itself is fixed
in advance. Deletion-as-control allows both queries and data to be specified adaptively. Proving
composition of deletion-as-control seems only harder than the analogous question for differential
privacy.

Other limitations of our approach We touch on two limitations of our approach. First, there
is no quantification of “effort.” The EU’s right to be forgotten stems from Google v Costeja, where
the Court of Justice for the European Union ruled that a search engine may be required to remove
certain links from search results Court of Justice of the European Union [2013]. But there are

8Achille et al. [2023] seem to disagree, writing: “In many ways, differential privacy (DP) can be considered the
‘gold standard’ of model disgorgement”.
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limits. Today, Google will only remove the result from search queries related to the name of the
person requesting deletion, but not from other search queries Google. This suggests a definition in
which results are hidden from a low-resource adversary who only makes general searches, but not
from an adversary with more side information or time, carrying out more targeted or exhaustive
searches respectively. Modeling that sort of subtlety appears to require fundamental changes from
all existing approaches, ours included.

Second, a failure of deletion as we formulate it doesn’t map to an explicit attack on a system. It
corresponds instead to a disconnect between the real execution and a counterfactual one in which
Alice’s data never existed but her effect on others’ data remains. In this sense the definition is quite
different from standard cryptographic ones, and it doesn’t obviously correspond to an adversarial
model nor combine well with other cryptographic definitions. This is also true of the history-
independence approach, including the definitions in prior work on machine unlearning. Deletion-
as-confidentiality [Garg et al., 2020] does have a more straightforward cryptographic flavor but, as
we argue, its strict requirement is ill suited for many application.

2.5 Real and ideal executions in detail

Our definition involves the interaction of three parties in the real execution (C, E, and Y) and two
parties in the ideal execution (C and D). Formally, the parties in our definition are interactive Turing
machines (ITM) with behavior specified by code. An execution involves sequentially activating and
deactivating the ITMs until a termination condition is reached. Activations are tied to message-
passing as described below. At any time, at most one ITM is active. We denote the executions
using ⟨C,E,Y⟩ or ⟨C,D⟩, respectively.

We require that each ITM eventually terminates for every setting of its tapes. (Note that this
does not imply termination of an execution involving multiple such ITMs, who may for example
pass messages back and forth forever.) One way to enforce termination is to ask that every party
come with a time bound limiting the number of steps it executes when activated. We do not model
this particular detail explicitly.

Each ITM has five tapes: work, input, output, randomness, and channel ID. An ITM’s state at
a given time includes only the contents of its work tape at the time. An ITM may freely read from
and write to the work tape. The input tape is read-only and is reset when an ITM is deactivated.
(At the start of the execution, input tapes are initialized with channel IDs as described below.)
The output tape is write-only and is reset when an ITM is activated.

The randomness tape is initialized with uniform random bits.9 To avoid a priori bounds on
running time or randomness complexity, the randomness tape is countably infinite. It may only
be read once over the course of the whole execution. That is, reading a bit from the randomness
tape automatically advances that tape head one position, and there is no other way to move that
tape head; if an ITM wishes to re-use bits from its randomness tape, it must copy them to its work
tape.10

9One could instead view the controller’s randomness as consisting of i.i.d. samples from an efficiently-sampleable
distribution that may depend on C (e.g., Laplace noise or Gaussian noise). Uniform bits is without loss of generality,
as the simulator Sim defined below may be inefficient.

10This is a departure from the model of Garg et al. [2020], wherein the randomness tape may be read multiple
times without counting as part of the state. That would allow a controller to avoid deleting anything by, for instance,
encrypting its state using its randomness as a secret key—a detail that was overlooked in Garg et al. [2020]. Our fix
is to make the randomness read-once. As a result, a party must store in the work tape any randomness that it will
later reuse.
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Messages between parties are passed over authenticated channels, represented by a channel
ID cID associated with two parties A and B. A single pair of parties may have many associated
channels. Party A sends a message by writing (cID,msg) to its output tape, where msg ∈ {0, 1}∗ ∪
{delete}, where delete is a special message (i.e., not in {0, 1}∗). When A finishes writing its output,
A is immediately deactivated. If cID corresponds to a channel ID between A and another party B,
then (cID,msg) is written to B’s input tape and B is activated. Otherwise, the special message fail
is written to A’s input tape and A is activated. Importantly, B does not learn the party that sent
msg, only the channel cID over which it was sent.

Each ITM’s channel ID tape is initialized with the cID’s for channels over which the ITM
can communicate. The channel ID tape is read-once, just like the randomness tape. In the real
execution, E’s tape is initialized with cIDs (countably infinite, as with the randomness tape). In
the ideal execution, D’s tape is similarly initialized with cIDs. The first is for communication with
Y and the remainder are for communication with C. Y’s input tape is initialized with only one cID
for communication with C and one cID for communication with E. C’s input is initially empty. It
must learn the cIDs from messages it receives, and cannot distinguish its channel with Y from its
channels with E or D.

The executions begin with the activation of E or D. Parties are deactivated when they write a
message to their output tape and the recipient is activated. If a party halts without writing to its
output tape, E or D is activated.

The real execution The real execution involves three (possibly randomized) parties: C, E, and
Y using randomness RC, RE, and RY in {0, 1}N, respectively. The execution ends after Y requests
deletion from C. More precisely, after Y sends delete to C, C is activated one final time. The
execution then ends when C halts or writes to its output tape. Note that the real execution may
never terminate if Y never sends delete. We denote the real execution as ⟨C(RC),E(RE),Y(RY)⟩.
When appropriate we omit the randomness, writing ⟨C,E,Y⟩.

The execution generates a (possibly empty) transcript τ of all messages sent to and received by
C: τ = ((t, sendert, receivert, cIDt,msgt))t. For each t: one of sendert or receivert is always C; cIDt is
an id of a channel between sendert and receivert; and msgt ∈ {0, 1}∗ ∪ {delete}. Though they may
freely communicate, we omit messages between E and Y from the transcript. The transcript can
be further divided into queries and answers. The queries are messages sent to C (by either E or
Y). We denote by q⃗ the sub-transcript containing all queries, and by q⃗E only those messages sent
by E. The answers a⃗ are messages to someone from C. We denote by a⃗E ⊆ τ the ordered messages
from C to E.

The real execution ⟨C(RC),E(RE),Y(RY)⟩ defines a transcript τ , a state stateC, and randomness
RC. The transcript τ is defined above. The state stateC consists of the contents of C’s work tape
at the end of the execution. If the execution does not terminate, we define stateC = ⊥ and the
transcript τ and its subset q⃗E are defined to be empty.

The ideal execution The ideal execution involves two parties: C and D. The dummy party D’s
input tape is initialized with the same channel IDs as E’s tape in the real execution. The dummy
simply replays the queries in q⃗E if any. At every activation, it sends the next query in the sequence
to C using the same cID as in the real execution. Note that the answers D receives from C may be
different from the real-world answers; however, D sends the same queries q⃗E regardless.

The controller C is exactly as in the real execution except that its randomness tape is initialized
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using simulated randomness R′
C ← Sim(⃗qE, RC, stateC) instead of uniform randomness RC ∼ U .

The simulator is an (inefficient) algorithm Sim that takes as input q⃗E, stateC, and RC and produces
output R′

C. Note that RC and R′
C consist of countably infinitely-many bits; hence RC and R′

C

cannot be treated as conventional inputs and outputs to Sim. Instead, we give Sim access to a
special tape on which RC is written. Sim may overwrite finitely-many bits of this tape before it
halts. We denote by R′

C the final contents of this tape.
We denote the ideal execution as ⟨C(R′

C),D(⃗qE)⟩. The ideal execution ends after D sends its
last query from q⃗E to C. When this happens, C is activated one final time. The execution ends
when C halts or writes to its output tape. state′ is defined as the final state of C. Note that
the ideal-world execution terminates if the real-world execution terminates. If the ideal execution
does not terminate, we define state′ = ⊥. In this case, q⃗E must be infinitely long and hence the
corresponding real execution did not terminate.

3 History Independence and Deletion-as-control

History independence (HI) is concerned with the problem that the memory representation of a
data structure may reveal information about the history of operations that were performed on it
Micciancio [1997], Naor and Teague [2001], Hartline et al. [2005]. HI requires that the memory rep-
resentation reveals nothing more than the current logical state of the data structure. Setting aside
a number of technical subtleties, the conceptual connection to machine unlearning is immediate: if
we consider a machine learning model as a representation of a dictionary data structure with insert
and remove (i.e., unlearn) operations, a model is HI if and only if it satisfies machine unlearning.

In this section, we state the definition of (non-adaptive) history independence (Section 3.1).
We then define a more general notion that allows for implementations that satisfy the conditions
of HI approximately and adaptively (Section 3.2). The generalization is complex since we must
explicitly model adaptivity in the interactions between a data structure and those issuing queries
to it. Briefly, an adaptive adversary A interacting with the data structure produces two equivalent
query sequences. Adaptive history independence (AHI) requires that the joint distribution of A’s
view and the data structure’s state is the same under both sequences. Approximate AHI requires
these distributions to be (ϵ, δ)-close.

We show that data controllers that satisfy approximate AHI also satisfy our notion of deletion-
as-control (Section 3.3) with the same parameters. Finally, we show how existing definitions of
machine unlearning and the corresponding constructions are all (weakenings of) our general notion
of history independence (Section 3.4).

3.1 History independence

An abstract data type (ADT) is defined by a universe of operations {op} and a mapping ADT :
(op, sadt) 7→ (s′adt, outadt). We call sadt, s

′
adt ∈ {0, 1}∗ the logical states before and after operation,

where s′adt is a deterministic function of sadt and op. We call outadt ∈ {0, 1}∗∪{⊥} the logical output,
which may be randomized. In subsequent sections we will assume without loss of generality that
operations op(id) are tagged by id ∈ {0, 1}∗. We omit the tags where possible to reduce clutter.

Given an initial logical state s0adt and a sequence of operations σ = (op1, op2, . . . ), the ADT

defines a sequence of logical states (s1adt, s
2
adt, . . . ) and a sequence of outputs

−→
out = (out1adt, out

2
adt, . . . )

by iterated application of ADT. We denote by ADT(σ).state the final logical state that results from
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this iterated application. When no initial state is specified, it is assumed to be the empty state.

Definition 3.1. We say two sequences of operations σ and σ′ are logically equivalent, denoted

σ
L≡ σ′, if ADT(σ).state = ADT(σ′).state. Logical equivalence is an equivalence relation, and we

denote by [σ] a canonical sequence in the equivalence class of sequences {σ′ : σ′ L≡ σ}.

An implementation (e.g., a computer program for a particular architecture) is a possibly ran-
domized mapping Impl : (op, s) 7→ (s′, out). We call s the physical state and out the physical
output. Both may be randomized. Given an initial state and sequence of operations, Impl defines a
sequence of physical states and outputs by iterated application. When no initial state is specified,
it is assumed to be the empty state.

Definition 3.2 (History independence [Naor and Teague, 2001]). Impl is a weakly history inde-
pendent implementation of ADT (WHI-implements ADT) if

σ
L≡ σ′ =⇒ Impl(σ).state ≡ Impl(σ′).state, (1)

where ≡ denotes equality of distributions. Impl is a strongly history independent implementation
of ADT (SHI-implements ADT) if for all initial states s

σ
L≡ σ′ =⇒ Impl(σ, s).state ≡ Impl(σ′, s).state. (2)

One can obtain approximate, nonadaptive versions of history independence by replacing ≡ with
ϵ,δ
≈ in Definition 3.2. However, because the sequence of queries is specified ahead of time, such a
definition’s guarantees are not meaningful in interactive settings—see Example 3.3.

We do not define correctness of an implementation of an ADT. Thus every ADT trivially
admits a SHI implementation (e.g., Impl always outputs ⊥). Omitting correctness simplifies the
specification of the ADT while allowing flexibility—for example, if approximate correctness suffices
for an application. The usefulness of an implementation requires separate analysis. However, history
independence simplifies this step: it suffices to analyze the utility for the canonical sequences of
operations [σ] instead of arbitrary sequences σ.

3.1.1 Strongly History Independent Dictionaries

To illustrate history independence, consider the dictionary ADT, which models a simple key-value
store. Looking ahead, we will use history independent dictionaries to build deletion-compliant
controllers from differential privacy. For our purposes, the keys will be party IDs id; the values can
be arbitrary. The ADT supports operations insert(id), delete(id), get(id), and set(id, value), where
set associates the key corresponding to id with value, and get returns the most recently set value.
We assume that insert(id) is equivalent to set(id,⊤) where ⊤ is a special default value.

Dictionaries are typically implemented as hash tables, but such data structures are generally
not history independent.

For example, in hashing with open addressing, deletions are typically done lazily (by marking
the cell for a deleted key with a special, “tombstone” value). So one can tell whether an item
was deleted but also learn the deleted item’s hash value. Storing a dictionary as a sorted list is
inefficient—updates generally take time Ω(n), where n is the current number of keys—but it enjoys
strong history independence. The sorted representation depends only on the logical contents of the
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dictionary, not on the order of insertions nor which items were inserted then deleted. Since we do
not focus on efficiency here, the reader may think of the sorted list as our default implementation
of a dictionary. 11

3.2 Adaptive History Independence (AHI)

The history independence literature gives no guarantees against adaptively-chosen sequences of
queries, because the two sequences σ and σ′ are fixed before the implementation’s randomness is
sampled.

Example 3.3. Consider an implementation Impl of a dictionary with two operations: insert(id)
and delete(id). Upon initialization, Impl outputs the first n bits of its uniform randomness tape,
denoted r, and stores it in state s1 = r. If the first operation is insert(r), Impl will store the
subsequent sequence of operations it its state. Otherwise, Impl ignores all subsequent operations,
setting s = r. Impl produces no outputs other than the initial out1 = r. Impl satisfies (0, 2−n)-
approximate nonadaptive strong history independence: for any sequences σ and σ′ fixed in advance,
and for any initial s, Impl(σ, s).state = r = Impl(σ′, s), except with probability 2 · 2−n. However, an

adaptive adversary that sees out1 = r can easily produce distinct σ
L≡ σ′ such that Impl(σ).state =

σ ̸= σ′ = Impl(σ′).state.

Inspired by [Gupta et al., 2021], we extend the well-studied notion of history independence
to the adaptive setting, where the sequence σ of operations is chosen adaptively by an algorithm
interacting with an implementation of an ADT.

We consider an interaction ⟨Impl(R),A⟩ between an algorithm A and the implementation Impl
with random tape R ∼ U (Figure 4).

In the interaction, A adaptively outputs an operation
opi ← A(op1, out1, . . . , opi−1, outi−1), and receives the output outi in return. The interaction defines
a sequence of operations σ and corresponding outputs

−→
out. Eventually, A outputs a sequence σ∗

that is logically equivalent to the sequence σ of operations performed so far. Impl is executed on
σ∗ and alternate randomness R∗, resulting in s∗ = Impl(σ∗;R∗).state. We consider two variants:
R∗ = R, or R∗ ∼ U independent of R.

We consider the adversary’s ability to distinguish the real state s = Impl(σ;R).state and the
logically equivalent state
s∗ = Impl(σ∗;R∗).state, given its view VImpl,A = (σ, σ∗,

−→
out). Our definition of adaptive history

independence requires that the joint distributions of (VImpl,A, s) and (VImpl,A, s
∗) be (ϵ, δ)-close.

We restrict ourselves to adversaries A such that ⟨Impl,A⟩ always terminates, which we call valid
adversaries.

Definition 3.4 (Adaptive (weak) history independence). An implementation Impl of an ADT is
(ϵ, δ)-history independent (AHI) if for all valid adversaries A:

(VImpl,A, s)
ϵ,δ
≈ (VImpl,A, s

∗)

where the distributions are given by the following probability experiment. The experiment has
two versions (identical or independently drawn randomness):

11In fact, a strongly history independent hash table implementation with constant expected-time operations was
described by Blelloch and Golovin [2007].
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Figure 4: Adaptive history independence game, from Definition 3.4

1: R ∼ U
2: Either R∗ = R (identical randomness), or R∗ ∼ U (independent randomness)
3: (σ,

−→
out, s)← ⟨Impl(R),A⟩

4: A outputs σ∗

5: s∗ ← Impl(σ∗;R∗).state

6: If σ∗ ̸L≡ σ, then s∗ ← s
7: VImpl,A ← (σ, σ∗,

−→
out)

We say an implementation Impl is (ϵ, δ)-AHI if it satisfies either version of the definition (identical
or independently drawn randomness).

Note that for both versions of Definition 3.4, R and R∗ are identically distributed. One can
generalize the definition to allow for any joint distribution over (R,R∗) such that the two marginal
distributions are identical (all of our proofs would still go through for this general notion). However,
we avoid this generality since the two versions that we present are sufficient for our needs.

The AHI definiton here corresponds to the approximate, adaptive version of weak history in-
dependence (Definition 3.2), which considers only the state state at a single point in time. This
suffices for our purposes. One could generalize Definition 3.4 to allow an adversary to see the full
internal state in the real execution at multiple points in time; this would correspond to strong
history independence. We leave such an extension for future work.

From Strong Nonadaptive HI to Adaptive History Independence To illustrate the defi-
nition, consider the case of strongly history independent dictionaries. The hash table construction
of Blelloch and Golovin [2007] is a randomized data structure with the following property: for every
setting of the random string R = r, and for every two logically equivalent sequences σ, σ∗, the data
structure stores the same table s(σ, r) = s(σ∗, r). (In fact, essentially all (0, 0)-strongly HI data
structures can be modified to satisfy this strong guarantee [Hartline et al., 2005]).

The data structure’s answers will thus depend only on the logical data set. However, they might
also depend on the randomness r—for instance, the answers might leak the length of the probe
sequence needed to find a given element or other internal information. In an adaptive setting,
queries might depend on r via the previous answers. To emphasize this dependence, we write the
realized query as σ(r).
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This construction satisfies (0, 0)-adaptive HI with identical randomness (where R′ = R in Step 2
of Definition 3.4) but not the version with fresh randomness (R′ ⊥ R). To see why it satis-
fies the definition with identical randomness, consider the tuples (σ(R), σ(R)∗,

−→
out, s(σ,R)) and

(σ(R), σ(R)∗,
−→
out, s(σ∗, R)) resulting from the game in Def. 3.4. By logical equivalence, the tuples

are the same, and hence identically distributed. On the other hand, if we select R′ independently
of R, then the adversary will, in general, see a difference between σ(R) and s(σ∗, R′) (for instance,
the hash functions corresponding to R and R′ will be different with high probability).

3.3 AHI and Deletion-as-Control

We prove two theorems showing that data controllers that implement history independent ADTs
satisfy deletion-as-control. Before that, two technicalities remain. First, the statement only makes
sense if the ADT itself supports some notion of deletion. Second, there is a mismatch between
the syntax of ADTs/implementations and the deletion-as-control execution. Next we define ADTs
supporting logical deletion and controllers relative to an implementation to handle the two issues,
then state and prove the main theorems of this section.

Consider an ADT where operations {op(id)} are tagged with an identifier id ∈ {0, 1}∗ (e.g., the
channel IDs). For a sequence σ of operations and an id∗, let σ−id∗ be the sequence of operations
with every operation with identifier id∗ removed (that is, op(id∗) for all values of op).

Definition 3.5 (Logical Deletion). ADT supports logical deletion if there exists an operation delete

such that for all sequences of operations σ and for all IDs id∗: (σ∥delete(id∗)) L≡ σ−id∗.

Logical deletion is important for ensuring the correctness property of deletion compliance (that
the states in the two worlds are identical). Conversely, if an ADT does not support logical deletion,
then one would expect any controller that faithfully implements the ADT to violate the deletion
requirement.

The notion of logical deletion applies to a wide variety of abstract data types, not only dic-
tionaries. For example, consider a public bulletin board, where users can post messages visible to
everyone. The natural ADT would allow creation of new users, insertion and maybe deletion of
specific posts, and deletion of an entire user account. This latter operation would undo all previous
actions involving that account. We consider a family of data controllers C that are essentially just
implementations of ADTs that can interface with the execution.

Definition 3.6 (Controller relative to an implementation). Let Impl be an implementation of an
ADT. We define the controller CImpl relative to Impl as the controller that maintains state state and
works as follows:

• On input (cID,msg):

– (state′, out)← Impl(op(cID), state), where op← msg.

– Write (cID, out) to the output tape.

• On input fail: Halt.

We say C is history independent (adaptively/strongly/weakly) if Impl is history independent
(adaptively/strongly/weakly).

Theorem 3.7. For any ADT that supports logical deletion and any SHI implementation Impl, the
controller C = CImpl satisfies (0, 0)-deletion-as-control with the simulator that outputs R′

C = RC.
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Without the condition on the simulator, this is a corollary of the theorem below. The proof in
Appendix C uses a foundational result in the study of history independence. Roughly, that SHI
implies canonical representations for each logical state of the ADT [Hartline et al., 2005].

Theorem 3.8. For any ADT that supports logical deletion and any Impl of the ADT satisfying
(ϵ, δ)-AHI (with either variant of Definition 3.4), the controller C = CImpl is (ϵ, δ)-deletion-as-
control compliant.

The proof uses a simple, novel result on indistinguishability, dubbed the Coupling Lemma,
which we present and prove in Appendix A.

Proof of Theorem 3.8. Fix any deterministic E and Y. By Lemma 2.6 this is without loss of gen-
erality. Throughout this proof, we drop the subscript Impl from the controller CImpl, and drop the
subscript CImpl from the controller’s state stateCImpl

and randomness RCImpl
.

Definition 3.4 considers two variants of AHI, depending on how the randomness R used in
the initial Impl evaluation (with sequence σ) relates to the randomness R∗ used in the logically
equivalent evaluation (with sequence σ∗). (Either R and R∗ are sampled i.i.d. or R∗ = R.) Let D
be the joint distribution over (R,R∗) for which Impl enjoys the (ϵ, δ)-AHI guarantee. Observe that
the marginal distribution of R∗ is U .

To prove that the controller C is deletion-as-control compliant, we will use the following simu-
lator Sim: Sim(⃗qE, R, state) samples (R̃, R̃∗) from D conditioned on the following event:

q⃗E(R̃) = q⃗E ∧ C(⃗qE; R̃
∗) = state,

where q⃗E(R̃) are the queries from E to C in the execution ⟨C(R̃),E,Y⟩. Sim outputs R′ = R̃∗. The
real execution’s state is state = C(⃗q(R);R). The ideal execution’s state is state′ = C(⃗qE(R);R

′).

Claim 3.9. Define f and g as follows:

f(R) =
(
q⃗E(R), C(⃗q(R);R)

)
g(R,R∗) =

(
q⃗E(R), C(⃗qE(R);R

∗)
)
,

Then (R,R∗) ∼ D =⇒ f(R)
ϵ,δ
≈ g(R,R∗).

The proof of the claim is below. We use the claim to complete the proof of the theorem.
Consider a procedure that samples R ∼ U , and then samples (R̃, R̃∗) ∼ D

∣∣
f(R)=g(R̃,R̃∗)

(if possible,

otherwise uniformly). Observe that this is exactly the distribution of R ∼ U and the intermediate
vales (R̃, R̃∗) sampled by Sim defined above. Applying the Coupling Lemma (Lemma A.1) to

the preceding claim, we get that the joint distribution over (R, R̃, R̃∗) satisfies (R̃, R̃∗)
ϵ,δ
≈ D, and

f(R) = g(R̃, R̃∗) with probability at least 1− δ.
Sim outputs R′ = R̃∗. Because the marginal distribution of R̃∗ is U , we have that R′ ϵ,δ

≈ U . The
equality of f and g implies that state′ = C(⃗qE(R);R

′) = C(⃗q(R);R) = state. Hence, CImpl satisfies
(ϵ, δ)-deletion-as-control with the simulator Sim.

Proof of Claim 3.9. We will use the adaptive history independence of Impl. We define an AHI
adversary A = AE,Y (see Figure 5)

which gets query access to the implementation Impl in the AHI game. A emulates the execution
⟨C,E,Y⟩ internally, querying Impl as needed to implement C. When the execution terminates, A
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outputs σ∗ = q⃗E, the queries sent from E to C. The actual sequence of queries received by Impl in
the real execution is σ = q⃗, including all queries from both E and Y.

We claim that σ∗
L≡ σ. To see why, observe that σ∗ = σ−Y is the query sequence with all

queries from Y removed. Moreover, σ ends in delete(Y). By the hypothesis that ADT supports

logical deletion σ
L≡ σ−Y = σ∗.

Figure 5: Reduction from (ϵ, δ)-AHI to (ϵ, δ)-deletion-as-control.

By the (ϵ, δ)-AHI of Impl, (VImpl,A, s)
ϵ,δ
≈ (VImpl,A, s

∗). By construction, the state s = Impl(σ;R).state
is exactly the controller’s state s = C(⃗q;R) in the real execution ⟨C(R),E,Y⟩. Likewise, the
state s∗ = Impl(σ∗;R∗) is exactly the the controller’s state s′ = C(⃗qE;R

∗) in the ideal execution
⟨C(R∗),D(⃗qE)⟩. A’s view VImpl,A consists of (σ, σ∗,

−→
out) = (⃗q(R), q⃗E(R),

−→
out). Hence,

f(R) = (⃗q(R), s)
ϵ,δ
≈ (⃗q(R), s′) = g(R,R∗). (3)

As a corollary to Theorem 3.8, any history independent implementation of the Private Cloud
Storage touchstone or the Public Bulletin Board examples (from Section 1.1) satisfy deletion-as-
control.

The Private Cloud Storage functionality works like a key-value store: each user has their own
dictionary Did. To upload a file, a user sends Upload(id, filename, file) to the controller, which
internally adds (filename, file) to Did (if filename already exists in Did then nothing happens).
To download one of their own files, the user sends Download(id, filename) to the controller and
receives the corresponding file from Did, if one exists. To delete their account, the user sends
Delete(id), in which the controller removes dictionary Did. Two sequences of operations are logi-
cally equivalent if, for every user id, the dictionary Did has the same logical content after applying
the two sequences.

We define the Public Bulletin Board functionality as follows: users can post a message by
sending Post(id,msg) to the controller; they can receive all messages currently on the board by
sending Read(); and they can delete all of their messages by sending Delete(id) to the controller.
Internally, the Public Bulletin Board stores an ordered list of (id,msg) pairs (ordered by insertion
time). Two sequences of operations are logically equivalent if they yield the same ordered list of
(id,msg) pairs.
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Corollary 3.10. The Private Cloud Storage and Public Bulletin Board touchstone controllers
(Section 1.1) implemented with (ϵ, δ)-adaptive history independence each satisfy (ϵ, δ)-deletion-as-
control.

3.4 From Prior Definitions of Machine Unlearning to History Independence

We claim that AHI captures the essence of existing definitions of “machine unlearning” (that is,
protocols that update a machine learning model to reflect deletions from the training data). Each
definition in the literature corresponds to a special case of history independence, though each
weakens the definition in one or more ways (even when their constructions satisfy the stronger,
general notion). For illustration, we discuss the approach of Gupta et al. [2021] in detail.

The basic correspondence comes via considering an abstract data type, which we dub the
Updatable ML, that extends a dictionary: it maintains a multiset x⃗ of labeled examples from some
universe Z. In addition to allowing insert() and delete() operations, it accepts a possibly randomized
operation predict which outputs a predictor (or other trained model) ψ trained on x⃗. The accuracy
requirement for ψ is generally not fully specified, not least because many current machine learning
methods don’t come with worst-case guarantees. The literature on machine unlearning generally
requires that the distribution of the final predictor ψ (e.g., the model parameters) is approximately
the same as it would be for a minimal sequence of operations that leads to the same training data
set. In particular, deleting an individual Y should mean that ψ looks roughly the same as if Y had
never appeared in x⃗. In principle one could satisfy the requirement by simply retraining ψ from
scratch every time the data set changes, though this may be practically infeasible. The literature
therefore focuses on methods that allow for faster updates.

Specializing history independence to updatable ML First, we spell out how AHI (Def-
inition 3.4) specializes to the Updatable ML ADT. Given a sequence of updates and prediction
queries σ = (u1, ..., ut), let [σ] denote a canonical equivalent sequence of updates. For example, [σ]
may (a) discard any insertion/deletion pairs that operate on the same element, with the insertion
appearing first, and (b) list the remaining operations in lexicographic order. In an interaction with
an implementation Impl that is initialized with an empty data set, an adversary makes a sequence of
queries σ (of which only the updates actually affect the state) and, eventually, terminates at some
time step t. Let s the resulting state of the controller based on randomness R, and let x⃗t be the
final logical data set. After the interaction ends, the adversary outputs some logically equivalent
sequence σ∗ (for example, it could choose the canonical sequence σ∗ = [σ]). Finally, run Impl from
scratch with randomness R′ and queries σ∗ to get state s∗. The logical data set x⃗t is the same for
σ and σ∗ by construction. Definition 3.4 requires that

(σ, s)
ϵ,δ
≈ (σ, s∗) . (4)

Definitions from the literature. The exact definition of deletion varies from paper to paper
(and some papers do not define terms precisely). All formulate the problem in terms of what we call
the Updatable ML ADT. We claim their definitions are variations on adaptive history independence
(Eq. 5), each with one or more of the following weakenings:

Restricted queries Some papers consider only a subset of allowed operations—e.g., in Ginart
et al. [2019], Ullah et al. [2021], Sekhari et al. [2021] data is inserted as a batch, and then
only deletions occur.
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One output versus future behavior Some consider only the output of the system at one time
(e.g., Neel et al. [2020], Sekhari et al. [2021], Gupta et al. [2021]), while others also consider the
internal state (e.g., Ginart et al. [2019]). The narrower approach does not constrain the future
behavior of the system. Among those definitions that consider the full state, none discuss
issues of internal representations; in this section, we also elide this distinction, assuming that
datasets can be represented internally using strongly history-independent data structures.

Nonadaptive queries Except for Gupta et al. [2021], the literature considers only adversaries
that specify the set of queries to be issued in advance. For constructions that are (0, 0)-HI
(that is, in which the real and ideal distributions are identical), this comes at no loss of
generality. However, the nonadaptive and adaptive versions of (ϵ, δ)-HI for δ > 0 are very
different [Gupta et al., 2021]. Even in Gupta et al. [2021], the length t of the query sequence
is chosen nonadaptively.

Symmetric vs asymmetric indistinguishability Ginart et al. [2019] and Gupta et al. [2021]
consider a one-sided weakening of (ϵ, δ)-indistinguishability (discussed in Remark 3.11).

The definitions of Ginart et al. [2019], Ullah et al. [2021], Bourtoule et al. [2021] consider exact
variants of unlearning (with ϵ = δ = 0), while others Guo et al. [2020], Sekhari et al. [2021], Neel
et al. [2020], Gupta et al. [2021], Golatkar et al. [2020a,b] consider approximate variants.

Despite generally formulating weaker definitions, the algorithms in the literature often satisfy
history independence. In particular, because the constructions in Ginart et al. [2019], Cao and
Yang [2015] are fully deterministic, it is easy to see that they satisfy adaptive, (0, 0)-strong history
independence (by Theorem 1 in Hartline et al. [2005]). Some constructions satisfy additional
properties, such as storing much less information than the full data set x⃗t (e.g., Sekhari et al.
[2021], Cao and Yang [2015]).

Adaptive Machine Unlearning (Gupta et al. [2021]) We discuss the relationship to one
previous definition—that of Gupta et al. [2021]—in detail, since the definition is subtle and the
relationship is technically nontrivial. In our notation, the data structure maintains several quanti-
ties: a data set x⃗, a collection of models θ⃗, some supplementary data supp used for updating, and
the most recently output predictor ψ. We say that an implementation of the Updatable ML ADT
meets the syntax of Gupta et al. [2021] if its state can be written s = (x⃗t, θ⃗t, suppt, ψt). Given an
initial data set x⃗0, the execution proceeds for t steps. At each step i, the adversary (called the
“update requester”) sends an update ui, which is either an insertion or deletion. The data structure
then updates its state to obtain (x⃗i, θ⃗i, suppi, ψi) and returns ψi to the adversary.

The condition required by Gupta et al. is described by three parameters α, β, γ > 0. For every
time t and initial dataset x⃗0, with probability 1− γ over the updates u⃗ = u1, ..., ut that arise in an
interaction between the data structure (initialized with x⃗0 and randomness R) and the adversary,
the models θ⃗t should be distributed similarly to the models θ⃗∗0 one would get in a counterfactual
execution in which the data structure was initialized with the data set x⃗∗0 = x⃗t (that is, u⃗ applied
to x⃗0) resulting from the real execution in canonical form (say, in sorted order), and no updates
were made. They require:

Pr
u⃗=(u1,...,ut)

(
θ⃗t
∣∣
x⃗0,u1,...,ut

≈α,β θ⃗∗0
∣∣
x⃗∗
0

)
≥ 1− γ (5)

where x⃗∗0 = (u⃗ applied to x⃗0).
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Remark 3.11. Gupta et al. actually require only a one-sided version of the condition on distribu-
tions enforced by (α, β)-closeness. Specifically, no event should be much more likely in the models
resulting from a real interaction than in ones generated from scratch with the resulting data set.
This condition is inherited from a definition proposed by Ginart et al. [2019].

As far as we know, all the actual algorithms designed for machine unlearning satisfy the stronger,
symmetric version of the definition in Equation (5).

Proposition 3.12 (AHI implies Adaptive Machine Unlearning). Let Impl be a data structure that
implements the Updatable ML ADT and satisfies (ϵ, δ)-approximate history independence with fresh
randomness (Definition 3.4). If Impl fits the syntax of machine unlearning, then for all β > 0, it
also satisfies (α, β, γ)-unlearning (Equation (5)) with α = 3ϵ and γ = 2δ

β + 2δ
1−exp(−ϵ) .

Proof. Consider an Updatable ML data structure Impl that satisfies approximate HI and fits the
syntax of Gupta et al. [2021], that is, its state s can be written (x⃗t, θ⃗t, suppt, ψt).

Let UpReq be an update requester for the machine unlearning definition. UpReq first chooses a
time step t at which it will terminate and an initial data set x⃗0, and then executes an interaction
with Impl during which it makes update queries u⃗ = (u1, ..., ut) and receives predictors ψ1, ...ψt. Let
x⃗t be the final logical data set. We define a corresponding adversary A for history independence as
follows:

1: procedure A(given black-box access to UpReq)
2: Run UpReq to obtain t and x⃗0.
3: Compute a sequence of updates u⃗ such that u⃗0 ◦ ∅ = x⃗0
4: Output queries u⃗0 followed by the operation predict
5: Receive ψ0

6: for i = 1 to t do
7: Run UpReq on input ψi−1 to get next update ui
8: Output query ui followed by predict
9: Receive ψi

10: Output σ∗ = [σ] = [u⃗] where u⃗ = u⃗0∥u1, ..., ut, and σ is the full realized sequence (namely,
u⃗ with interleaved predict queries).

To apply HI, we consider an interaction between Impl and A, followed by a new execution of
Impl with queries σ∗ (which equals [u⃗] for this adversary) and fresh randomness. Let x⃗t be the final
data set (in both executions). Equation (4) implies that

(σ, x⃗t, θ⃗t, suppt, ψt︸ ︷︷ ︸
s

)
ϵ,δ
≈ (σ, x⃗t, θ⃗

∗
0, supp

∗
0, ψ

∗
0︸ ︷︷ ︸

s∗

) .

In particular, since the realized updates u⃗ form a subsequence of σ, we have

(u⃗, θ⃗t)
ϵ,δ
≈ (u⃗, θ⃗∗0) . (6)

To draw the connection with Adaptive Machine Learning, we must define what it means to initialize
Impl with a nonempty data set (since such initialization occurs in the definition of Adaptive Machine
Unlearning). On input a nonempty data set x⃗0, we can compute the canonical sequence of updates
u⃗0 that would lead to x⃗0 (as in Step 3 in A above) and run Impl with u⃗ as its first queries, before
real interactions occur. With this definition, the triple (u⃗, θ⃗t, θ⃗

∗
0) is distributed exactly as in (5).
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By Lemma A.3, with probability at least 1 − γ over u⃗, we have θ⃗t|u⃗
ϵ′,δ′

≈ θ⃗∗0, where ϵ
′ = 3ϵ and

γ = 2δ
δ′ +

2δ
1−exp(−ϵ) , as desired.

The converse implication does not hold, but we claim that it would after some modifications of
the definition of [Gupta et al., 2021]:

• The indistinguishability condition of [Gupta et al., 2021] (Equation (5)) applies only to the
current collection of models θ⃗t; as such, it does not constrain the system’s entire future be-
havior but only the distribution of the output at a particular time (see Section 2.4). History
independence requires indistinguishability of the entire state (x⃗t, θ⃗t, suppt).

• In [Gupta et al., 2021], the stopping time t is determined before the execution begins. In
contrast, the History Independence adversary may choose the stopping point adaptively.

• As discussed in Remark 3.11, the indistinguishability condition of [Gupta et al., 2021] is one-
sided. Our definition of history independence requires the stronger, symmetric guarantee.

We do not include a formal statement of the equivalence, since by the time one spells out the
strengthened model, the equivalence is nearly a tautology. The only difference not listed above is
whether one requires indistinguishability of the states s and s∗ conditioned on the updates u⃗—as
in Eq. (5)—or rather indistinguishability of the pairs (u⃗, s) and (u⃗, s∗)—as in Equation 4. These
turn out to be equivalent up to changes of parameters, as shown by Lemma A.3.

We conjecture that the protocols of Gupta et al. [2021] satisfy adaptive history independence.
A formal proof of this statement would require an appropriately symmetric strengthening of the
max-information bound of [Rogers et al., 2016] (Thm 3.1 in ver. 2 on arXiv).

4 Deletion-as-confidentiality and Deletion-as-control

We study the relationship between the notion of deletion as confidentiality from Garg et al. [2020]
(hereafter “the GGV definition”) and our notion of deletion-as-control (Definition 2.3). Similar
to Definition 2.3, deletion-as-confidentiality also considers two executions, real and ideal. At the
end of the two executions, they compare the view of the environment VE and the state of the
controller stateC. Simplifying away (important but technical) details, the real GGV execution is
roughly the same as in deletion-as-control. The ideal GGV execution simply drops all messages
between Y and C. Informally, deletion-as-confidentiality requires that E’s view and C’s final state
are indistinguishable in the real and ideal worlds.

In Section 4.1, we define deletion-as-confidentiality—the definition closest in spirit to the GGV
definition but in our execution model. (We cannot directly compare our definition to GGV as
they are defined in different models of interaction, stemming from a need in deletion-as-control
to ‘sync’ the real and ideal executions.) In Section 4.2, we show that for many data subjects Y,
deletion-as-confidentiality for Y implies deletion-as-control for Y (Theorem 4.3). Finally, we show
that the implication cannot hold for all data subjects due to the differences in the execution models
(Theorems 4.4 and 4.5).
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4.1 Definition

Below, we define deletion-as-confidentiality by describing how it differs from deletion-as-control.
After the definition, we briefly explain how our adaptation of deletion-as-confidentiality differs
from that in Garg et al. [2020].

Similar to Definition 2.3, deletion-as-confidentiality also considers two executions—real and
ideal. The real execution is almost the same as before, involving the three parties C, E, and
Y. We will be interested in the view of the environment E, denoted V real

E and the state of the
controller C, denoted staterealC , at the end of the execution. V real

E consists of E’s randomness
RE and the transcript of its messages τ realE = (⃗qrealE , a⃗realE ). (Both the view and state are ⊥ if
the execution does not terminate.) The GGV definition requires that controller’s state and the
environment’s view are indistinguishable in the real world and in the ideal world wherein the data
subject never communicates with anybody. This definition inherently requires that C can never
reveal any information about one user’s data or participation to another data or participation to
another. Any information about user Y that C reveals to the E becomes part of E’s view in the
real world. If Y later requests deletion, this information would not be part of E’s view in the ideal
world.

The first major difference between GGV and deletion-as-control is the ideal execution. The
ideal GGV execution also involves the same three parties C, E, and Y—no dummy party D as in
deletion-as-control. The difference between the real and ideal GGV executions is that ideal GGV
execution drops all messages between Y and C. This execution results in some view V ideal

E and
some state stateidealC .

The second major difference between the GGV execution and deletion-as-control concerns how
the execution terminates. Recall that in the deletion-as-control game, the real execution ends as
soon as C processes Y’s first deletemessage (i.e., the next time C halts). And the ideal execution ends
when all of E’s queries from the real execution have been replayed by the dummy D. In contrast,
the real and ideal GGV executions ends when E sends a special finish message to C. At that point,
one of two things happens. If Y’s last message to C was delete, then the execution immediately
terminates. Otherwise, Y sends delete to C, and the execution ends as soon as C processes that
message. This difference means that the execution’s end time can depend on Y’s view in deletion-as-
control, but not in GGV. Theorem 4.5 leverages this gap to construct a controller that satisfies GGV
but not deletion-as-control. This difference reflects our two fundamentally different approaches to
defining the ideal execution. Y has no affect on the GGV ideal execution, and hence E must end
the execution. Deletion-as-control introduces a mechanism to “sync” the real and ideal executions,
thereby allowing Y to end both executions.

The last major difference between GGV and deletion-as-control is the indistinguishability re-
quirement between the real and ideal executions. The GGV definition requires that the joint
distribution of the variables (V real

E , staterealC ) is close to that of (V ideal
E , stateidealC ). That is, the view

of the environment E and the state of the controller C should be nearly the same irrespective of
whether the subject Y sent its data to the controller and then deleted it, or did not send its data at
all. In contrast, deletion-as-control imposes no requirement on VE. Moreover, GGV only requires
indistinguishability for Y’s that do not send any messages to E. Without this restriction the def-
inition would be far too limiting. For most useful controllers, Y would be able to tell whether its
messages are being delivered to C or not (for example, by receiving an acknowledgement of data
receipt), and if it conveys this information to E, E’s view will become different in real and ideal
executions.
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Definition 4.1 ((ϵ, δ) Deletion-as-Confidentiality for Y). For a data subject Y, a controller C is
(ϵ, δ)-deletion-as-confidentiality compliant for Y if for all E, in the executions involving C, E, and
Y,

(V real
E , staterealC )

ϵ,δ
≈ (V ideal

E , stateidealC ).

Definition 4.2 (Deletion-as-Confidentiality, adapted from Garg et al. [2020]). Let Ysilent be the
set of data subjects Y that never send any messages to E. C is (ϵ, δ)-deletion-as-confidentiality
compliant if it is (ϵ, δ)-deletion-as-confidentiality compliant for all Y ∈ Ysilent.

The version of deletion-as-confidentiality in Definition 2.3 differs from the original definition
of Garg et al. [2020] in a few important ways. First, [Garg et al., 2020] allows users to request
deletion of the information shared in specific interactions between Y and C. To do this, they define
protocols that produce protocol-specific deletion tokens. Simplifying, we take deletion of a user’s
data to be all or nothing. Second, [Garg et al., 2020] allows users to delete many times, whereas
we focus on a single deletion. Third, C’s randomness tape is not read-once in [Garg et al., 2020].
As explained in Footnote 10, this allows a controller to evade deletion by encrypting its state with
its randomness. Finally, the execution model of [Garg et al., 2020] does not have authenticated
channels. As they show, authentication is necessary for non-trivial functionalities. In light of this,
we chose to build authentication into our execution model (in the form of channel IDs).

4.2 Control vs. Confidentiality

In spirit, deletion-as-confidentiality imposes a stronger indistinguishability requirement than deletion-
as-control. The former requires that no information about the deleted data is ever revealed, whereas
the latter only requires that the effect of the deleted data is not present after the deletion happens.
One might thus expect that any C that satisfies Definition 4.2 would also satisfy Definition 2.3.
But deletion-as-control captures more general environments and data subjects than deletion-as-
confidentiality. First, deletion-as-control allows Y to communicate freely with E, whereas deletion-
as-confidentiality does not (i.e., Y ∈ Ysilent). Second, deletion-as-control imposes a requirement
as soon as Y deletes, whereas deletion-as-confidentiality only requires indistinguishability after E
terminates the execution (which may be much later).

Let Ysilent be as in Definition 4.2 and Ydummy be the set of Y that only delete when instructed
by E. Let Ylift = Ysilent ∩ Ydummy.

Theorem 4.3. For any C and any Y ∈ Ylift, if C is (ϵ, δ)-deletion-as-confidentiality compliant for
Y, then it is also (ϵ, δ)-deletion-as-control compliant for Y.

Theorems 4.4 and 4.5 show that the restriction in Theorem 4.3 that Y ∈ Ylift = Ydummy ∩Ysilent
is necessary.

Proof of Theorem 4.3. Fix any controller C that is (ϵ, δ)-deletion-as-confidentiality compliant for
subset of Y’s that call delete only when instructed to by E. Then, in particular, C is deletion-
as-confidentiality compliant for deterministic environments E and data subjects Y in this class.
By Lemma 2.6, it is sufficient to consider deterministic (E,Y) pairs to prove deletion-as-control
compliance.

Fix a deterministic environment E and data subject Y that calls delete only when instructed to
by E. Then, by Definition 4.1, we have

(V real
E , staterealC )

ϵ,δ
≈ (V ideal

E , stateidealC ), (7)
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where the randomness in the two distributions is only over the controller’s randomness RC. Fur-
thermore, since Y only deletes when E instructs it to, the GGV game and deletion-as-control game
result in the same stateC upon termination.

We will construct a simulator Sim that satisfies Definition 2.3 for C, E, Y. Recall that Sim’s
task is as follows. For some randomly sampled value RC and the resulting transcript τ = (⃗q, a⃗) and
controller state stateC, the simulator is given RC, stateC, and q⃗E (the sequence of messages sent by
E to C). The simulator is required to produce a R′

C such that when C interacts with the dummy
environment D(⃗qE) using randomness R′

C, it results in the same state stateC with probability at

least 1− δ; further, R′
C

ϵ,δ
≈ RC (with randomness coming from sampling the two).

In our case, we will use the “default simulator” (from Definition 2.5), which works as follows:

Sim(⃗qE, rC, stateC) :

Return R′
C ∼ U

∣∣
C(⃗qE;R′)=stateC

if such an R′
C exists

Otherwise, return R′ ∼ U .

If such an R′
C exists, then the final state of C when interacting with D(⃗qE) using randomness R′

C will
be equal to stateC. This is because, in C’s view, this interaction is identical to the ideal execution
of Definition 4.1 with C using randomness R′

C and E,Y. It remains to prove that R′
C exists with

probability at least 1− δ and that the distribution of R′
C is (ϵ, δ)-close to that of RC.

We can now apply Lemma A.1 to prove both of the statements. Define the following determin-
istic functions:

f(X) = (V real
E (X), staterealC (X)), and

g(Y ) = (V ideal
E (Y ), stateidealC (Y )),

where V real
E (X) denotes the view of E when X is used as the randomness for C in the real world.

Let X = RC, Y = RC, and let P ≡ Q be the distribution that both X and Y are sampled from.

Then, by Equation (7), f(X)
ϵ,δ
≈ g(Y ). Lastly, the simulator Sim defined samples R′

C from the

conditional distribution described in Lemma A.1. Thus, by the lemma, we have that R′
C

ϵ,δ
≈ RC

and that (V real
E (X), staterealC (X)) = (V ideal

E (Y ), stateidealC (Y )) with probability at least 1 − δ. In
particular, we have that staterealC = stateidealC with probability at least 1− δ.

Thus, the simulator Sim for C satisfies both conditions of (ϵ, δ)-deletion-as-control for deter-
ministic (E,Y) and by Lemma 2.6, C also satisfies (ϵ, δ)-deletion-as-control for randomized (E,Y),
where Y calls delete only when instructed to by E. Lastly, since Sim does not rely on the code of Y
or E, we can use the same simulator for all Y’s in the class of data subjects that calls delete only
when instructed to by E.

Theorem 4.4. There exists C and Y ∈ Ydummy \ Ysilent such that C satisfies (0, 0)-deletion-as-
confidentiality, but C does not satisfy (ϵ′, δ′)-deletion-as-control for Y any ϵ′ <∞, δ′ < 1.

Proof. Consider C that implements a write-only SHI dictionary modified as follows. Recall that
communications in our execution model are in the form (cID,msg), where cID is a channel ID
known only to the communicating parties. If C receives message msg = cID with channel ID
cID′ ̸= cID, then it ignores all subsequent delete messages of the form (cID, delete). In words,
the user communicating on channel cID′ can instruct C to ignore deletion requests from the user
communicating on channel cID.
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It is easy to see that C satisfies (0, 0)-deletion-as-confidentiality. First, VE is identical in the real
and ideal executions because the dictionary is write-only and C sends no messages. Second stateC
is identical in the real and ideal executions because the dictionary is SHI.

Recall Ydummy \Ysilent is the set of data subjects Y that send messages to E and only delete when
instructed by E. Consider Y that inserts itself into the dictionary, sends its cIDY to E, and then calls
delete. Consider E that sends cIDY to C as soon as it receives it from Y. By construction, stateC
contains Y’s data at the end of the real execution, but state′C in the dummy execution does not.
Thus, if the implementation D is perfectly correct, there are no RC, R

′
C such that stateC = state′C.

This violates Definition 2.3 for any δ < 1 and any ϵ <∞.

Theorem 4.5. For any δ > 0, there exists C and Y ∈ Ysilent such that (i) C satisfies (0, δ)-deletion-
as-confidentiality for Y, and (ii) C does not satisfy (ϵ′, δ′)-deletion-as-control for Y for any ϵ <∞,
δ′ < 1.

Proof of Theorem 4.5. Let T > 1/δ. Consider C implementing a write-only SHI dictionary D
modified as follows. Upon receiving the first message from a channel cID, sample tcID ∈ [1, T ]
uniformly at random, store it in the dictionary with key cID, and reply with tcID. Upon receiving
delete from cID, check the current size of the dictionary. If |D| = tcID, remove cID the next time C
is activated. Otherwise, remove cID immediately.

Consider Y that (i) sends insert() to C on its first activation, (ii) receives tcIDY
in response, and

(iii) sends delete to C after tcIDY
− 1 additional activations.

Claim 4.6. C∗ satisfies (0, δ)-deletion-as-confidentiality for Y∗.

Proof. Fix E and Y ∈ Ysilent. Because D is write-only, VE is exactly the same in the real and ideal
deletion-as-confidentiality executions. That view consists of k calls to insert() sent to C and the
responses t1, . . . , tk.

In contrast, staterealC may differ at the end of the real and ideal executions. But only if |D| = tcIDY

when Y calls delete. In particular, staterealC ̸= stateidealC requires E to make exactly tcIDY
− 1 calls to

C.insert() over the course of the execution. But E has no information about tcIDY
besides its prior

distribution. From C it receives only the ti, which are independent. From Y it receives nothing, as
Y ∈ Ysilent. Therefore, the probability that staterealC ̸= stateidealC is at most 1/T .

dTV

(
(V real

E , staterealC ), (V ideal
E , stateidealC )

)
= dTV

(
staterealC , stateidealC

)
<

1

T

Hence (V real
E , staterealC )

0, 1
T≈ (V ideal

E , stateidealC ).

Claim 4.7. C∗ does not satisfy (ϵ′, δ′)-deletion-as-control for Y∗ for any ϵ <∞, δ′ < 1.

Proof. Consider E that repeats two operations: (i) activate Y, and (ii) send insert() to C along a
new channel. The execution ⟨C(RC),Y,E⟩ always ends with Y calling delete when |D| = tcIDY

. By
construction, D does not remove Y from D. So at the end of the real execution, stateC contains the
dictionary D that includes Y.

In contrast, the dummy execution ⟨C(R′
C),D(⃗qE)⟩ includes no calls to insert() from Y. So at

the end of the dummy execution, state′C contains the dictionary D′ that does not include Y. Thus,
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if the implementation D is perfectly correct, there are no RC, R
′
C such that stateC = state′C. This

violates Definition 2.3 for any δ < 1 and any ϵ <∞.

This completes the proof of Theorem 4.5.

5 Differential Privacy and Deletion-as-control

This section describes two ways of compiling (ϵ, δ)-differentially private mechanisms M into con-
trollers satisfying (ϵ, δ)-deletion-as-compliance. The first applies to DP mechanisms that are run in
a batch setting on a single, centralized dataset: data summarization, query release, or DP-SGD, for
example (Section 5.1). The second applies to mechanisms satisfying pan-privacy under continual
release (Section 5.3). Along the way we define non-adaptive event-level pan privacy (one intrusion)
with continual release, first defined by Chan et al. [2011], Dwork et al. [2010b], and an adaptive
variant, building on the adaptive continual release definition of Jain et al. [2021] (Section 5.2). Both
of our compilers make use of a SHI dictionary D (Section 3.1.1).

There is a strong intuitive connection between (approximate) history independence and deletion-
as-control, as illustrated by the results of the previous section. This intuition is so strong that
many prior works on machine unlearning essentially equate deletion with history independence
(Section 3.4).

However, the examples of this section show that our notion of deletion-as-control is much broader
than history independence. For instance, consider a controller as follows. At some time t0 the
controller computes a differentially-private approximation outt0 to the current number of users in
the data set, and the controller stores outt0 and makes it available at all later times. Intuitively, this
controller does not satisfy any version of history independence: even if every user request deletion
at time t0 + 1, the stored outt0 is unchanged—making this history easy to distinguish from one
where the all users deleted at time t0 − 1. It could, however, still satisfy deletion-as-control.

Keeping time Throughout this section we consider systems with a global clock. This allows for
controllers that publish the number of weekly active users, say. For simplicity and generality, we
allow the environment to control time. Specifically, we introduce a special query tick that only E
can send to C to increment the clock.

5.1 Batch differential privacy

LetM : D 7→M(D) be a non-interactive differentially private mechanismM.
Algorithm 1 defines a simple controller Cbatch

M that satisfies deletion-as-control.
It works in three phases: before tick, during tick, and after tick. At the beginning, Cbatch

M
populates a dataset D stored as a SHI dictionary from its input stream, returning ⊥ in response
to every query. When it receives the tick, it evaluates M(D), stores the result as out, and erases
the dictionary D. For all future queries, Cbatch

M simply returns out. We assume for simplicity that
the mechanismM is a function only of the logical contents of D, and is independent of its memory
representation.

Proposition 5.1.

1. IfM is (ϵ, δ)-DP, then Cbatch
M satisfies (ϵ, δ)-deletion-as-control.
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Algorithm 1 Cbatch
M satifying deletion-as-control from batch DP mechanismM

1: procedure Initialize ▷ Run on first activation
2: Initialize a SHI dictionary D
3: Initialize out = ⊥ ▷ ⊥ is never returned byM

4: procedure Activate(op(id))
5: if (op ̸= tick) ∧ (out = ⊥) then
6: // before tick

7: D.op(id) ▷ Insert/modify/delete item
8: Return ⊥
9: else if (op = tick) then

10: // during tick

11: Set out←M(D)
12: Delete D ▷ eg: iteratively call D.delete(id)
13: Return out
14: else
15: // after tick

16: Return out

2. For any ϵ > 0, suppose M is the Laplace mechanism with parameter ϵ applied to a count of
the number of record in its input. Then Cbatch

M satisfies (ϵ, δ)-deletion-as-control but is not
(ϵ′, δ′)-HI for any ϵ′ <∞ and δ′ < 1.

The second part of the proposition really applies to any DP mechanism that releases useful
information about its inputs—the argument relies just on the fact thatM acts differently on the
empty data set than it does on a data set with many records. In particular, the DP Machine learning
example from Section 1.1, which trains a model using DP-SGD, satisfies deletion-as-control.

Corollary 5.2. The (ϵ, δ)-DP Machine Learning touchstone controller (Section 1.1) satisfies (ϵ, δ)-
deletion-as-control.

Proof of Proposition 5.1. (1) To reduce clutter, let C = Cbatch
M throughout this proof. The simulator

is described in Algorithm 2. We must show that for all deterministic E and Y (i) R′
C

ϵ,δ
≈ RC, and

(ii) (D′, out′) = (D, out) with probability at least 1− δ.
Fix deterministic E and Y. Until a tick query, C’s output is determinstically ⊥. Hence, all

queries that precede tick are fixed in advance—including whether the sequence contains a tick at
all. If there is no tick, then the whole sequence is fixed.

We consider two cases depending on whether the real sequence of queries q⃗ includes tick. Suppose
there is no tick in q⃗. By construction, C’s state out = ⊥ and D may be non-empty. Sim(⃗qE, RC, out)
outputs R′

C = RC. Consider D in the real execution resulting from queries q⃗ and randomness RC,
and D′ in the ideal execution resulting from q⃗E and R′

C. The only difference between q⃗ and q⃗E is Y’s
queries. Because q⃗ ends with delete from Y, and dictionaries support logical deletion, the logical
contents of D and D′ are identical. Applying Theorem 1 from Hartline et al. [2005]12, D′ = D. In
this case, the simulation is perfect.

12The theorem states that reversible (0, 0)-SHI data structures have canonical representations, up to initial ran-
domness.
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Suppose there is a tick in q⃗. By construction, C’s state D is empty and out ̸= ⊥. The simulator
samples R′

C uniformly conditioned on out′ = out (if such R′
C exists, uniformly otherwise). Consider

D in the real execution resulting from queries q⃗, and D′ in the ideal execution resulting from q⃗E.
D and D′ represent fixed neighboring datasets: differing only on Y. Take f(R) = M(D;R) and

g(R) = M(D′;R). Because M is (ϵ, δ)-DP, f(R)
ϵ,δ
≈ g(R). The simulator samples R′

C as in the
statement of Lemma A.1. Applying that lemma completes the proof.

(2) WhenM is the Laplace mechanism, Cbatch
M satisfies deletion as control by part (1). To see

why it does not satisfy even weak, nonadaptive history independence, consider a (nonadaptive)
sequence σn of n distinct insertions, followed by a tick, followed by n corresponding deletions. The
minimal equivalent sequence σ∗ = [σn] consists only of the tick. The value out generated at the tick
will follow n+Lap(1/ϵ). If we consider the event En = {out < n/2}, then En occurs with probability
at least 1 − exp(ϵn/2) in the real world. However, if we were to run a dummy execution of the
controller Cbatch

M with σ∗, the probability of En would be at most exp(ϵn), regardless of whether we
use the same randomness R as in the real world or a fresh string R′. Suppose, for contradiction,
that Cbatch

M satisfies (ϵ′, δ′)-HI. Then

1− exp(−ϵn) ≤ Pr
real

(En) ≤ exp(ϵ′) · Pr
dummy

(En)

≤ exp(ϵ′ − ϵn) + δ′ .

For any ϵ′ > 0 and δ′ < 1, we can get a contradiction by choosing n > 1
ϵ ln

(
eϵ

′
+1

1−δ′

)
.

Algorithm 2 Sim for C = Cbatch
M

1: input RC, q⃗E, out
2: if tick /∈ q⃗E then
3: R′

C ← RC

4: else
5: Run the default Sim (Def. 2.5)

Namely, sample R′
C uniformly conditioned on out′ = out, where out′ = C(⃗qE;R

′
C) is the

output of C in the ideal execution (with queries q⃗E). If no such R′
C exists, sample R′

C uniformly
at random.

6: Return R′
C

5.2 Adaptive pan-privacy with continual release

In this section, we formalize the definition of adaptive pan-privacy with continual release (against
a single intrusion), extending the non-adaptive versions originally defined in Chan et al. [2011],
Dwork et al. [2010b]. The continual release setting concerns an online controller that processes
a stream of elements and produces outputs at regular time intervals. We say two streams are
(event-level) neighboring if they differ in at most one stream item. We consider privacy against an
adversary that can adaptively choose neighboring streams (one of which is processed by the online
mechanism) and inspect the internal state of the online algorithm once. This adaptive game defines
the adversary’s view. Informally, adaptive pan-privacy under continual release requires that, for all
adaptive adversaries, the adversary’s view for the two streams is (ϵ, δ)-close.
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Preliminaries A stream x ∈ ({regular, intrusion, challenge} × X )∗ consists of elements of the
form (code, op(id)). The control code code ∈ {regular, intrusion, challenge} controls the execution
of the pan-privacy continual release security game and is never seen by the mechanism itself (see
Algorithm 3). The data operation op(id) ∈ X is sent to the pan-private mechanism. The universe
of data operations X includes a special tick operation (which requires no id tag) which indicates to
the mechanism that one time step has passed.

Definition 5.3 (Online Algorithm). An online algorithm M is initialized with a time horizon T
and is defined by an internal algorithm I. Algorithm M processes a stream of elements through
repeated application of I : (op(id), stateM) 7→ (state′M, out), which (with randomness) maps a stream
element and the current internal state to a new internal state and an output (which may consist
of ⊥). For simplicity, we only consider online algorithms that produce outputs when a tick occurs.
That is, op(id) ̸= tick implies that out = ⊥. The internal state ofM includes a clock which counts
the number of ticks that have previously occurred in the stream. When M’s internal number of
clock ticks reaches T , it stops processing new stream elements and always outputs ⊥.

Any stream x with a single instance of challenge naturally gives rise to two neighboring sequences
of data operations x(in) and x(out) which include or exclude the challenge operation, respectively.

Definition 5.4 (Event-level neighboring sequences). For stream x containing a single instance of
challenge, we define two event-level neighboring sequences x(in) and x(out) as follows:

x(in) := {op(id) | (regular, op(id)) ∈ x or

(challenge, op(id)) ∈ x}
x(out) := {op(id) | (regular, op(id)) ∈ x}.

Event-level pan privacy We formalize the definition of non-adaptive pan-privacy with continual
release (against a single intrusion), based on [Chan et al., 2011, Dwork et al., 2010b]. Although our
version of the definition is identical in spirit to previous definitions, our setting has two complications
which are notationally challenging but not conceptually so. First, the algorithm M may process
any number of sequence items before producing an output. Second, we consider sequences as
neighboring if they differ by insertion or deletion of items, which causes a discrepancy in sequence
indices. We have chosen to write the non-adaptive definition so that it is clearly a special case of
the adaptive version, defined later in the section.

Let x be a stream with a single intrusion. For online algorithm M and side ∈ {in, out}, we
denote by V

(side)
M,x = (state,

−→
out) the view of an attacker who sees (i) the sequence of outputs

−→
out

produced by M(x(side)), and (ii) a snapshot of stateM of the internal state of M at the time
indicated by intrusion in x.

Definition 5.5 (Non-Adaptive Event-Level PP with CR [Chan et al., 2011, Dwork et al., 2010b]).
An online algorithmM satisfies (ϵ, δ)-non-adaptive event-level pan-privacy in the continual release
model if for all streams x with at most one challenge and at most one intrusion:

V
(in)
M,x

ϵ,δ
≈ V

(out)
M,x .
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Adaptive pan privacy We define adaptive event-level pan privacy with continual release against
a single intrusion, following the continual-release model of Jain et al. [2021] (which did not allow for
intrusions). In this game, the adversary A decides when to increment timesteps (i.e., by querying
(regular, tick)), when to issue a single challenge query, when to intrude, and when to terminate
the game (i.e., using code = ⊥). Depending on whether side is in or out, M is either given the
challenge query or not. Thus, the neighboring data streams we consider differ by the insertion
or deletion of a single query. We require that for the challenge query, op ̸= tick. We assume for
simplicity thatM(op(id)) produces no output unless op = tick.

Algorithm 3 Privacy game Π
(side)
M,A for the adaptive event-level pan privacy with continual release

model. The game halts if any assertion fails.

1: procedure RunGame(time horizon T ∈ N)
2: // initialize global variables

3: M.Initialize(T )
4: intruded← false
5: challenged← false

6: // interaction between A and M
7: out← ⊥
8: repeat
9: (code, op(id))← A(out)

10: out← Activate(code, op(id))
11: until code = ⊥

12: procedure Activate(code, op(id))
13: if code = intrusion then
14: Assert: intruded = false
15: intruded← true
16: return stateM

17: if code = regular then
18: returnM(op(id)) ▷ If op ̸= tick, thenM(op(id)) = ⊥

19: if code = challenge then
20: Assert: (challenged = false) and (op ̸= tick)
21: challenged← true
22: if side = in then
23: RunM(op(id)) ▷ By assumption op(id) ̸= tick andM(op(id)) = ⊥
24: return ⊥

25: else
26: return ⊥

Definition 5.6. We denote by V
(side)
M,A the view of A in the game Π

(side)
M,A , consisting of A’s internal
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randomness and the transcript of all messages A sends and receives.13

Definition 5.7 (Adaptive Event-Level PP with CR). A mechanismM is (ϵ, δ)-DP in the adaptive
event-level pan-privacy with continual release model if for all adversaries A,

V
(in)
M,A

ϵ,δ
≈ V

(out)
M,A .

Remark 5.8. The definition above makes sense in a setting where the state stateM does not
have information about the mechanism’s future random coins. If the adversary could deduce future
randomness, then security would be unachievable: an adversary could intrude at time 0, learn all
the algorithm’s randomness, and then easily tell whether the mechanism had received x∗ or not.

An alternative, which does allow for the adversary learning future randomness, is to require
that the challenge is possible only before intrusion (specifically, Line 20 additionally assert that
intruded = false). This definition is satisfiable by interesting mechanisms—for example, a mecha-
nism that initializes a counter with Laplace noise, then adds subsequent stream elements x in [0, 1]
to the counter, and outputs the final value on the first clock tick, satisfies the weaker, alternative
definition.

5.3 From pan-privacy to deletion-as-control

Algorithm 4 describes a general transformation from an event-level pan private algorithm to a
controller satisfying deletion-as-control. It uses as a building block a strongly history independent
dictionary D (Section 3.1.1). For each id, the controller passes the first operations op(id) to the
underlying pan private mechanismM. It also passes all tick, which produce output. Cpp

M uses the
dictionary D to check whether a given id has already issued a query toM. To delete, id is removed
from D butM is unaffected. (Note that a deleted user can then issue a new query toM; we make
no guarantees for such users.)

We assume that the randomness tape of Cpp
M defined in Algorithm 4 is partitioned into two

independent strings: RM to be used by the mechanismM, and RD to be used by D. Additionally,
we assume that the state of Cpp

M can be partitioned into one part containing stateM and another
part with stateD. Beyond from stateM and stateD, the controller Cpp

M uses only ephemeral state
and no additional randomness.

13One could instead define A’s view as its internal state at the end of the game. Our version of the view contains
enough information to compute that internal state and is simpler to work with.
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Algorithm 4 Cpp
M Deletion Compliant Controller Based on Event-Level Pan-Private Algorithm

1: procedure Initialize(Time horizon T ∈ N, privacy parameters ϵ, δ, query access to event-level
pan-private algorithmM)

2: InitializeM with parameters (ϵ, δ, T )
3: Initialize an empty SHI dictionary D

4: procedure Activate(op(id))
5: if op = tick then ▷ By assumption Y can never query tick
6: returnM(tick)

7: if op = delete then
8: D.delete(id) ▷ If id /∈ D, nothing happens.
9: return ⊥

10: if id ∈ D then
11: return ⊥
12: if id /∈ D then
13: D.insert(id)
14: M(op(id))
15: return ⊥ ▷ If op ̸= tick, thenM(op(id)) = ⊥

Theorem 5.9. If a controller M satisfies (ϵ, δ)-adaptive event-level pan-privacy with continual-
release, then the composed controller Cpp

M as described in Algorithm 4 satisfies (ϵ, δ)-deletion-as-
control.

We will prove the statement by showing that Cpp
M satisfies (ϵ, δ)-deletion-as-confidentiality

(Lemma 5.10) and then apply Theorem 4.3 to prove that Cpp
M satisfies (ϵ, δ)-deletion-as-control.

Lemma 5.10. If a controller M satisfies (ϵ, δ)-adaptive event-level pan-privacy with continual
release, then the composed controller Cpp

M as described in Algorithm 4 satisfies (ϵ, δ)-deletion-as-
confidentiality (Definition 4.1).

Proof. To reduce clutter, let C = Cpp
M throughout this proof. Fix a controller M that satisfies

(ϵ, δ)-adaptive event-level pan-privacy, and fix E and Y in the deletion-as-confidentiality game. We

must show that (V real
E , staterealC )

ϵ,δ
≈ (V ideal

E , stateC) using the pan-privacy hypothesis. Recall that in
the deletion-as-confidentiality game, Y does not send any messages to E.

Below, we construct an adversary A = AE,Y for the adaptive pan-privacy game of M (see
Figure 6). After adaptively queryingM (as in Algorithm 3), A produces output Z. We will argue
two key properties: First, if side = in, then Z = Z(in) will be distributed as (V real

E , staterealC ). The
latter is the view of the environment and state of the controller in the real confidentiality execution
(Definition 4.1). Second, if side = out, then Z(out) will be distributed as (V ideal

E , stateidealC ), the
corresponding quantities in the ideal confidentiality execution. The adaptive pan-privacy of M
implies that A’s views with side ∈ {in, out} are (ϵ, δ)-indistinguishable. Post-processing implies

that Z(in)
ϵ,δ
≈ Z(out), completing the proof.

Adversary A emulates a real GGV execution among E, Y, and C, passing messages among them
and performing each party’s computations as defined in Section 4 and depicted in Figure 6. To
emulate E and Y, A simply runs their code. To emulate C, A maintains an internal SHI dictionary
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Figure 6: How A emulates a real GGV execution among E, Y, and Cpp
M.

D as in Algorithm 4 (using state stateD) but does not emulate M directly. Instead, A makes a
queries in the pan-privacy game by calling Activate in Algorithm 3 as follows. Let idY be Y’s
id. When the emulated parties E or Y sends message (id, op) intended for emulated C, A does the
following:

1. If op is a special message from E to terminate the alive phase of execution: Run D.delete(idY),
call
Activate(intrusion,⊥). Upon receiving stateM, end the GGV execution and output Z =
(VE, stateC) where VE is the view of the emulated E and stateC = (stateM∥stateD).

2. Else if op = delete: Run D.delete(id) and send response ⊥ to party id (on behalf of the
emulated C).

3. Else if id ∈ D: Send response ⊥ to party id (on behalf of the emulated C).

4. Else if id ̸= idY: D.insert(id), Activate(regular, op(id)), and forward the response from M
to party id (on behalf of the emulated C).

5. Else: Call Activate(challenge, op(id)) and forward the response to Y (on behalf of the emu-
lated C).

Let µGGV be the sequence of queries to M made by the emulated C (all calls to Line 14 of
Algorithm 4). Each query in µGGV results in a single call to Activate. These in turn may result in
a query toM on Lines 18 and 23 of Algorithm 3. But, due to the pan-privacy game some of these
queries may not actually reachM: if side = out (Line 22), or if an assertion is violated (Lines 14
or 20). Let µPP ,side be the sequence of queries that actually reach M for side ∈ {in, out} (i.e.,
all calls to Lines 18 and 23).

Claim 5.11. Consider an execution of the adversary A above in the pan-privacy game with mech-
anismM. Then, with probability 1:

1. µPP ,in = µGGV ,real , and

2. µPP ,out = µGGV ,ideal .
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Proof. Part 1 (side = in): As explained before the claim, every query toM made by the emulated
C corresponds to a call to Activate (and vice-versa). Every call to Activate results in a query
in µPP ,in unless side = out or one of the assertions in Algorithm 3 (Lines 14 and 20) is violated.
Because side = in, it suffices to show that the assertions are never violated. One assertion requires
that intrusion is only called once (Line 14). This is by the construction of A above.

The second assertion requires that challenge is called only once and only with op ̸= tick (Line 20).
This follows three properties of µGGV . First, challenge is only called when Y makes a non-delete
query. Second, Y cannot make tick queries. Finally, µGGV contains at most one non-delete query
from Y. This follows automatically from the restrictions on Y in the deletion-as-confidentiality
game; specifically, after Y makes a delete query to C, it may not send any additional messages to
C.

Part 2 (side = out): By construction of A, Y’s queries in µGGV causes A to send a challenge
query in the pan-privacy game. The only difference from Part 1 is that these queries are never sent
to M in the pan-privacy game (Line 22 of Algorithm 3). And, although the emulated Y receives
⊥ responses from A (on behalf of C)–which it would not get in the ideal world–Y can not send
messages to E and so can not influence the view of E at all.

Next we show that Z(in) is distributed as (V real
E , staterealC ). Consider a real-world GGV execution

where all parties use the same randomness as in A’s emulated execution. If side = in, the view of
the real-world GGV environment V GGV ,real

E is identical to the view of the emulated environment

V PP ,in
E . From E’s view, the only difference between the two executions is howM is implemented and

queried. By Part 1 of Claim 5.11, the queries processed byM are identical in the two executions.
Hence E’s views of the two executions are identical. Likewise, the states stateC = (stateD∥stateM)
are identical in the two executions.

Finally we show that Z(out) is distributed as (V ideal
E , stateidealC ). Consider an ideal-world GGV

execution where all parties use the same randomness as in A’s emulated execution. In the ideal
GGV execution, Y cannot send messages to C, whereas in the emulated execution it can; however,
by part 2 of Claim 5.11, the queries processed by M are identical in the two executions. Hence
E’s views of the two executions are identical. Likewise, the states stateC = (stateD∥stateM) are
identical in the two executions.

Lastly, Z(side) is a post-processing of V
(side)
A,M in the adaptive pan-privacy game. Hence, by event-

level (ϵ, δ)-adaptive-pan-privacy with continual release, we have Z(in)
ϵ,δ
≈ Z(out). Finally, since the

dictionary D is SHI, the state stateD in the emulation is identically distributed to stateD in the
GGV real and ideal worlds (since in all cases Y’s removal from D is undetectable). This implies

that (V real
E , staterealC )

ϵ,δ
≈ (V ideal

E , stateidealC ), completing the proof.

Proof of Theorem 5.9. Our proof combines Lemma 5.10 and Theorem 4.3. To reduce clutter, let
C = Cpp

M throughout this proof. Fix an (ϵ, δ)-adaptive event-level pan-private controller M with
continual release. Then, by Lemma 5.10, the controller C described in Algorithm 4 satisfies (ϵ, δ)-
deletion-as-confidentiality. Recall that deletion-as-confidentiality only considers the subset of data
subjects Ylift satisfing two requirements. First, Y does not send messages to E. Second, Y only
delete’s when instructed to by E. If we restrict to this class Ylift of data subjects, then by Theo-
rem 4.3, C is (ϵ, δ)-deletion-as-control compliant for Ylift.

What remains to argue is that for C specifically, we can restrict to Ylift without loss of generality
(using the same simulator Sim as for Y ∈ Ylift). It suffices to show that for any (E,Y) there exists
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Figure 7: Construction of E′ and Y′ with internal emulated parties E, Y interacting with Cpp
M..

(E′,Y′) with Y′ ∈ Ylift such that the transcripts in the executions ⟨C(RC),E,Y⟩ and ⟨C(RC),E
′,Y′⟩

are identical. Intuitively, this holds because C only ever sends ⊥ to Y. Recall that Y cannot make
any tick queries, which is the only way forM(op(id)) (or C) to produce non-⊥ output. Hence, the
view of Y can easily be simulated by E, and the restriction that Y does not communicate with E
is without loss of generality. From there, we can restrict Y to be a dummy party without loss of
generality, satisfying the requirements of Ylift.

Fix any E, Y. Figure 7 depicts E′ and Y′. The subject Y′ forwards messages from E′ to C, but
sends no messages to E′. The environment E′ emulates E and Y in its head and emulates their
interactions with other parties as follows:

• E′ passes messages between emulated parties E and Y freely.

• E′ forwards queries from E intended for C; similarly, E′ forwards responses from C to E.

• E′ forwards queries from Y intended for C to the external Y′ (who then forwards this to C).
When reactivated, E′ sends the response ⊥ to Y.

By construction, Y′ satisfies the condition that it only sends delete if E′ tells it to, and it never
sends any message to E′. Hence, Y′ ∈ Ylift. By the construction in Algorithm 4, C always sends ⊥
in response to Y’s queries. Using this, it is easy to show that the emulation is perfect. Hence, the
transcripts seen by C in the two executions ⟨C(RC),E,Y⟩ and ⟨C(RC),E

′,Y′⟩ are identical.

5.4 Examples of pan-private controllers

5.4.1 Counters

Perhaps the most widely studied algorithm that is pan-private under continual release is the tree
mechanism of Dwork et al. [2010a], Chan et al. [2011]. Although originally formulated without
pan-privacy, it relies on the composition of summations over different time intervals. Each of these
can be made pan-private against a single intrusion by adding noise when the counter is initialized
and again at release [Dwork et al., 2010b]. The overall mechanism retains the same asymtptotic
guarantees, since the noise at most doubles, and enjoys pan-privacy. We summarize its properties
here:
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Proposition 5.12 (Combining Dwork et al. [2010b] with Dwork et al. [2010a], Chan et al. [2011]).
There is an (ϵ, δ)-adaptively event-level pan-private under continual-release algorithm that takes a
time horizon T and a sequence of inputs x1, x2, ... ∈ [0, 1] and at the t-th tick, for t ∈ [T ], releases
outt such that

outt =
∑

i :xi received
by time t

xi + Zt,

where Zt’s are distributed (independently of xi’s but not each other) as Zt ∼ N(0, σ2t ) with σt =

O

(√
log3 T log(1/δ)

ϵ

)
.

In Section 6, we use the tree mechanism as a building block to construct a controller that
satisfies deletion-as-control but not history independence, confidentiality, nor differential privacy.
Moreover, one can use the tree mechanism to construct a controller that satisfies deletion-as-control
but not history independence (cf. Proposition 5.1). The controller could, for example, use the tree
mechanism to count the number of distinct users n it has seen. Applying Theorem 5.9, a controller
could publish n+N(0, σ2t ) even after all users have requested deletion, all while satisfying deletion-
as-control. Such functionality is impossible under history independence.

5.4.2 Learning under Pan-Private Continual Release (and with Deletion)

As an example, we show how the results of this section allow one to maintain a model trained via
gradient descent with relatively little noise—the algorithm’s error is similar to that of state of the
art federated machine learning algorithms.

Consider the following optimization problem: given a loss function ℓ : Θ × X → R and a data
set x⃗ = (x1, ..., xn), we aim to find h ∈ Θ which approximately minimizes

Lx⃗(h) =
n∑

i=1

ℓ(h;xi) . (8)

To analyze convergence, we assume a convex loss function. Nevertheless, the method we give
applies more broadly—the privacy or deletion guarantees hold regardless of convexity, and the
algorithms makes sense as long as the loss function is roughly convex near its minimum.

Algorithms for this problem that are differentially private under continual release were studied
for online learning and efficient distributed learning [Kairouz et al., 2021]. The algorithm they
consider is not panprivate. However, it only access the data via the tree-based mechanism for
continual release of a sum Dwork et al. [2010a], Chan et al. [2011] (in this case, releasing the sum of
the gradients of users’ contributions to the overall loss function over the evaluation of a first-order
optimization algorithm). We observed above that this can be made panprivate with only a constant
factor increase in the added noise (Proposition 5.12)

To allow us to apply the convergence analysis of Kairouz et al. [2021] as a black box, we assume:
1. Θ is convex, and ℓ(·;x) is convex for every choice of x; 2. ℓ is 1-Lipschitz in h (that is, suppose
Θ ∈ Rd and for all h, h′ and x, we have |ℓ(h;x)− ℓ(h′;x)| ≤ ∥h− h′∥2); 3. One new user arrives
between adjacent ticks, though deletions may occur at any time.

Proposition 5.13 (Derived from Theorem 5.1 from arXiv v3 of Kairouz et al. [2021]). There is
an (ϵ, δ)-adaptively pan-private, continual-release algorithm that takes takes a time horizon T , a
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learning rate λ > 0, and a sequence of inputs x1, x2, ... and at the t-th tick releases a model ht such
that, for every t ∈ [T ], data set x⃗t ∈ Zn (consisting of records received by tick t), h∗ ∈ Θ, and
β > 0, with probability at least 1− β over the coins of the algorithm,

Lx⃗t(ht)− Lx⃗t(h
∗) = O

∥h∗∥ ·
 1√

n
+ d1/4

√
ln2(1/δ) ln(1/β)

ϵn


This result immediately yields a controller that satisfies (ϵ, δ)-deletion as control and maintains

a model whose accuracy tracks that of the best model trained on all the arrivals so far (where
repeated arrivals of the same user are ignored). The version above uses a fixed learning rate λ
which can be tuned to get error Õ(d1/4/

√
n) for any particular n; however, one could also decrease

the learning rate as 1/
√
t to get bounds that hold for all data set sizes.

In contrast to the HI-style algorithms proposed for machine unlearning Gupta et al. [2021], this
controller need not update the model when a user is deleted.

6 Parallel Composition

In this section, we show that our definition does more than unify approaches to deletion based on
history independence, confidentiality, and differential privacy. We describe a controller that satis-
fies deletion-as-control but none of the other three notions. To prove that the controller satisfies
deletion-as-control, we prove that the definition enjoys a limited form of parallel composition: a
controller that is built from two constituent sub-controllers, each of which is run independently
(Figure 8), will be deletion compliant if the component controllers are compliant and satisfy ad-
ditional conditions. We focus on a special case that suffices for our needs, and leave a general
treatment of composition of deletion-as-control for future work.

To anchor the discussion, we consider the touchstone composed controller “Public Directory
with DP Statistics,” described in Algorithm 5. It provides a public directory (e.g., a phone book)
which, in addition to answering directory queries, periodically reports the total number of users that
have made queries to the directory. We build the touchstone controller C from two SHI dictionaries
D and U (Section 3.1.1) and the pan-private tree mechanismM (Proposition 5.12). D implements
the directory functionalities of reading and writing. M keeps track of an approximate count of
users—current and former—that have looked up an entry in D for the first T epochs (e.g., the time
between ticks). U is an auxiliary dictionary used to ensure thatM counts distinct users.

To prove that C satisfies deletion-as-control, we prove that one can build deletion-as-control
controllers from two constituent sub-controllers by parallel composition. We consider the special
case where one sub-controller satisfies (0, 0)-deletion-as-control and implements a deterministic
functionality, and where both sub-controllers are query-response controllers. We define these next.
Note that the controllers given in Section 3.2 and Section 5 are all query-response controllers.
While we restrict our attention to a single controller of each type, the result immediately extends by
induction to many query-response controllers satisfying (0, 0) deletion-as-control with deterministic
functionalities.

Definition 6.1 (Deterministic functionality). A controller C implements a deterministic function-
ality if for all E, Y, the transcript of ⟨C(RC),E,Y⟩ is independent of RC.
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Algorithm 5 Public directory with DP statistics

1: procedure Initialize(time horizon T ∈ N, privacy parameters ϵ, δ) ▷ Run on first activation
2: Initialize two SHI dictionaries D for the directory and U for users.
3: Initialize the tree mechanismM with parameters (ϵ, δ, T )

4: procedure Activate(cID, op(arg))
5: if op = delete then
6: D.delete(cID)
7: U .delete(cID)
8: return ⊥
9: if op = set then

10: D.set(cID, arg)
11: return ⊥
12: if op = get then
13: if cID /∈ U then
14: U .set(cID, 1)
15: Insert the value 1 intoM’s data stream
16: return D.get(arg)
17: if op = getCount then
18: returnM(tick)

Figure 8: Parallel composition of controllers C0 and C1.
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Definition 6.2 (Query-response controller). C is a query-response controller if it always replies
to the same party that activated it. Namely, when C is activated with (cID,msg) on its input tape,
it always halts with (cID,msg′) on its output tape for some msg′.

The example controllers we discuss are generally query-response. But a messaging server, for
example, might not be: a request from Alice to send something Bob could result in a push from
the server to Bob.

Definition 6.3 (Parallel composition). Let C0 and C1 be controllers. We define their parallel
composition, denoted C0∥1, to be the controller that emulates C0 an C1 internally. When activated
with opid, C0∥1 computes out0 ← C0(opid) and out1 ← C1(opid) and returns out0∥1 = (out0, out1).
The controllers C0 and C1 are emulated with disjoint portions of C0∥1’s randomness tape R0∥1 =
(R0, R1) and work tape state0∥1 = (state0, state1).

Theorem 6.4. Let C0 and C1 be query-response controllers and let C0∥1 be their parallel compo-
sition. If C0 satisfies (ϵ, δ)-deletion-as-control, and if C1 satisfies (0, 0)-deletion-as-control and has
deterministic functionality, then C0∥1 satisfies (ϵ, δ)-deletion-as-control.

Proof of Theorem 6.4. Define the parallel simulator
Sim0∥1(⃗qE, R0∥1, state0∥1) as outputting R′

0∥1 = (R′
0, R

′
1) where each half is computed using the

corresponding simulator. That is, for each i ∈ {0, 1}:

R′
i ∼ Simi(⃗qE, Ri, statei).

By hypothesis, all of the following hold for all E, Y.

• (R′
0

ϵ,δ
≈ R0) AND (R′

1 ≡ R1),

• (state1 = state′1) OR (state1 = ⊥)
• With probability at least 1− δ: (state0 = state′0) OR (state0 = ⊥).

We must show that for all E, Y, both of the following hold in the real-ideal probability experiment
given in Definition 2.3.

• R′
0∥1

ϵ,δ
≈ R0∥1

• With probability at least 1−δ: state0∥1 = state′0∥1 ̸= ⊥ or state0∥1 = ⊥ (i.e., the real execution

doesn’t terminate).

We consider the state first. First, observe the following:

(state0 = ⊥) =⇒ (state1 = ⊥), and
(state0 ̸= ⊥) =⇒ (state1 ̸= ⊥) =⇒ (state1 = state′1)

This is because both state0 and state1 result from a single real execution ⟨C0∥1,E,Y⟩ that either
terminates (state0∥1 = ⊥) or does not (state0∥1 ̸= ⊥). Hence,

Pr
[
state0∥1 ∈ {state′0∥1,⊥}

]
= Pr

[
state0 ∈ {state′0,⊥}

]
≥ 1− δ
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.

It remains to show that R′
0∥1

ϵ,δ
≈ R0∥1. Below, we prove that R

′
0 and R′

1 are independent random

variables. This suffices because (R′
0

ϵ,δ
≈ R0) and (R′

1 ≡ R1).
Let q⃗ be the queries received by C0∥1 in the real execution. By construction, these are also the

queries received by the emulated C0 and C1. Observe that for i ∈ {0, 1} there exists randomized
Si such that R′

i ∼ Si(Ri, q⃗). Namely, R′
i only depends on Ri and q⃗. This is because R′

i ←
Simi(Ri, q⃗E, statei) where q⃗E and statei are deterministic functions of Ri and q⃗ (and the code of
C0∥1, E, Y which are fixed).

The above implies two useful facts. First, R′
1 is independent of R′

0 conditioned on q⃗. This
follows from the fact that R′

i ∼ Si(Ri, q⃗), combined with the fact that R1 and R0 are independent
(by construction). Second, R′

1 is independent of the random variable q⃗. That is, for all r′1 and
q, Pr[R′

1 = r′1 |⃗q = q] = Pr[S1(R1, q⃗) = r′1 |⃗q = q] = Pr[S1(R1, q) = r′1] = Pr[R′
1 = r′1]. The

middle equality uses the independence of q⃗ and R1, which follows from the hypothesis that C1 has
a deterministic functionality.

Fix r′0 and r′1. We check independence of R′
0 and R′

1 as follows.

Pr[R′
0 = r′0 ∧R′

1 = r′1] = Pr[R′
0 = r′0] ·

∑
q

Pr[⃗q = q|R′
0 = r′0] · Pr[R′

1 = r′1 |⃗q = q,R′
0 = r′0]

= Pr[R′
0 = r′0] ·

∑
q

Pr[⃗q = q|R′
0 = r′0] · Pr[R′

1 = r′1 |⃗q = q]

= Pr[R′
0 = r′0] · Pr[R′

1 = r′1] ·
∑
q

Pr[⃗q = q|R′
0 = r′0]

= Pr[R′
0 = r′0] · Pr[R′

1 = r′1]

The second equality uses the independence of R′
1 and R′

0 conditioned on q⃗. The third equality uses
the independence of R′

1 and q⃗.

Corollary 6.5. The Public Directory with DP Statistics (Algorithm 5) satisfies (ϵ, δ)-deletion-as-
control.

Proof. Let C0 be the controller Cpp
M defined relative to the pan-private tree mechanism M (Algo-

rithm 4). Let C1 be the controller relative to a SHI dictionary (Definition 3.6). By construction,
C0 and C1 are query-response controllers and C1 has a deterministic functionality. C0 satisfies (ϵ, δ)
deletion-as-control and C1 satisfies (ϵ, δ) deletion-as-control (Theorems 5.9 and 3.8 respectively).
Algorithm 5 is equivalent to the parallel composition C0∥1 of C0 and C1. By parallel composition,
Algorithm 5 satisfies (ϵ, δ) deletion-as-control.

7 Conclusion

Defining deletion-as-control in a way that is both expressive and meaningful is the central challenge
of our work. We believe that our definition succeeds, providing a new perspective to the ongoing
discussion on how to give users control over their data.

More work is needed to understand how deletion-as-control handles the complexity of real-
life functionalities. For example, we are far from understanding the implications for something
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like Twitter, though the Public Bulletin Board serves as a starting point. Analyzing complex
functionalities may involve further studying the adaptive variants of history independence and
pan-privacy defined in this work. Beyond specific functionalities, more work is needed to interpret
the guarantees provided by our notion. In particular, we have a limited view of what can be said
about groups of individuals and about composition.

These are directions for future technical work, but also for normative, legal, and policy con-
siderations. Consider, for example, the goal of machine unlearning: maintaining a model while
respecting requests to delete. The algorithms in the machine unlearning literature seek to approx-
imate what one would get by retraining from scratch (that is, history independence). But using
adaptive pan-privacy, one can satisfy deletion-as-control without updating the model in response
to deletion requests. Each behavior might be appropriate for a different setting, depending on the
most relevant measure of model accuracy. The difference may also relate to whether one adopts
an individual- or group-based view of a right to erasure. We hope that our work inspires further
exploration of these questions.

Acknowledgements

We are grateful to helpful discussions with many colleagues, notably Kobbi Nissim. A.C. by the
National Science Foundation under Grant No. 1915763 and by the DARPA SIEVE program under
Agreement No. HR00112020021. A.S. and M.S. were supported by NSF awards CCF-1763786 and
CNS-2120667, as well as faculty research awards from Google and Apple. P.V. was supported by
the National Research Foundation, Singapore, under its NRF Fellowship programme, award no.
NRF-NRFF14-2022-0010.

References

A. Achille, M. Kearns, C. Klingenberg, and S. Soatto. Ai model disgorgement: Methods and
choices. arXiv preprint arXiv:2304.03545, 2023.

M. Altman, A. Cohen, K. Nissim, and A. Wood. What a hybrid legal-technical analysis teaches us
about privacy regulation: The case of singling out. BUJ Sci. & Tech. L., 27:1, 2021.

R. Bassily, A. Smith, and A. Thakurta. Private empirical risk minimization: Efficient algorithms
and tight error bounds. In 2014 IEEE 55th annual symposium on foundations of computer
science, pages 464–473. IEEE, 2014.

G. E. Blelloch and D. Golovin. Strongly history-independent hashing with applications. In 48th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2007. doi: 10.1109/
FOCS.2007.36.

L. Bourtoule, V. Chandrasekaran, C. A. Choquette-Choo, H. Jia, A. Travers, B. Zhang, D. Lie,
and N. Papernot. Machine unlearning. In 42nd IEEE Symposium on Security and Privacy, 2021.
doi: 10.1109/SP40001.2021.00019.

Y. Cao and J. Yang. Towards making systems forget with machine unlearning. In 2015 IEEE
Symposium on Security and Privacy, pages 463–480. IEEE, 2015.

48



N. Carlini, F. Tramer, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee, A. Roberts, T. Brown,
D. Song, U. Erlingsson, et al. Extracting training data from large language models. In 30th
USENIX Security Symposium (USENIX Security 21), pages 2633–2650, 2021.

T.-H. H. Chan, E. Shi, and D. Song. Private and continual release of statistics. ACM Transactions
on Information and System Security (TISSEC), 14(3):1–24, 2011.

A. Cohen and K. Nissim. Linear program reconstruction in practice. Journal of Pri-
vacy and Confidentiality, 10(1), Jan. 2020. doi: 10.29012/jpc.711. URL https://

journalprivacyconfidentiality.org/index.php/jpc/article/view/711.

Court of Justice of the European Union. Press release no 70/14. https://curia.europa.eu/

jcms/upload/docs/application/pdf/2014-05/cp140070en.pdf, May 2013.

C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our data, ourselves: Privacy
via distributed noise generation. In International Conference on the Theory and Applications of
Cryptographic Techniques, EUROCRYPT ’06, pages 486–503, St. Petersburg, Russia, 2006.

C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum. Differential privacy under continual ob-
servation. In L. J. Schulman, editor, Proceedings of the 42nd ACM Symposium on Theory of
Computing, STOC 2010, pages 715–724. ACM, 2010a. doi: 10.1145/1806689.1806787.

C. Dwork, M. Naor, T. Pitassi, G. N. Rothblum, and S. Yekhanin. Pan-private streaming algo-
rithms. In ICS, pages 66–80, 2010b.

C. Dwork, F. McSherry, K. Nissim, and A. D. Smith. Calibrating noise to sensitivity in private
data analysis. J. Priv. Confidentiality, 2016. doi: 10.29012/jpc.v7i3.405.

B. Fowler. Data breaches break record in 2021. CNET, 2022. URL https://www.cnet.com/news/

privacy/record-number-of-data-breaches-reported-in-2021-new-report-says/.

S. Garg, S. Goldwasser, and P. N. Vasudevan. Formalizing data deletion in the context of the right
to be forgotten. In Advances in Cryptology–EUROCRYPT 2020: 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May
10–14, 2020, Proceedings, Part II 30, pages 373–402. Springer, 2020.

A. Ginart, M. Guan, G. Valiant, and J. Y. Zou. Making ai forget you: Data deletion in machine
learning. In Advances in Neural Information Processing Systems, pages 3513–3526, 2019.

J. Godin and P. Lamontagne. Deletion-compliance in the absence of privacy. In 2021 18th Inter-
national Conference on Privacy, Security and Trust (PST), pages 1–10. IEEE, 2021.

A. Golatkar, A. Achille, and S. Soatto. Eternal sunshine of the spotless net: Selective forgetting in
deep networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9304–9312, 2020a.

A. Golatkar, A. Achille, and S. Soatto. Forgetting outside the box: Scrubbing deep networks of
information accessible from input-output observations. arXiv preprint arXiv:2003.02960, 2020b.

Google. Right to be forgotten overview. https://support.google.com/legal/answer/10769224.
Accessed: 2023-04-18.

49

https://journalprivacyconfidentiality.org/index.php/jpc/article/view/711
https://journalprivacyconfidentiality.org/index.php/jpc/article/view/711
https://curia.europa.eu/jcms/upload/docs/application/pdf/2014-05/cp140070en.pdf
https://curia.europa.eu/jcms/upload/docs/application/pdf/2014-05/cp140070en.pdf
https://www.cnet.com/news/privacy/record-number-of-data-breaches-reported-in-2021-new-report-says/
https://www.cnet.com/news/privacy/record-number-of-data-breaches-reported-in-2021-new-report-says/
https://support.google.com/legal/answer/10769224


Google. Helping public health officials combat covid-19. https://blog.google/technology/

health/covid-19-community-mobility-reports/, 2020. Accessed: 2023-04-18.

C. Guo, T. Goldstein, A. Hannun, and L. van der Maaten. Certified data removal from machine
learning models, 2020.

V. Gupta, C. Jung, S. Neel, A. Roth, S. Sharifi-Malvajerdi, and C. Waites. Adaptive machine
unlearning. Advances in Neural Information Processing Systems, 34:16319–16330, 2021.

J. D. Hartline, E. S. Hong, A. E. Mohr, W. R. Pentney, and E. C. Rocke. Characterizing history
independent data structures. Algorithmica, 42(1):57–74, 2005.

P. Jain, S. Raskhodnikova, S. Sivakumar, and A. D. Smith. The price of differential privacy
under continual observation. CoRR, abs/2112.00828, 2021. URL https://arxiv.org/abs/

2112.00828.

JASON. Consistency of data products and formal privacy methods for the 2020 Census. Panel
Report JSR 21-02, JASON, The MITRE Corporation, 1 2022.

P. Kairouz, B. McMahan, S. Song, O. Thakkar, A. Thakurta, and Z. Xu. Practical and private
(deep) learning without sampling or shuffling. In M. Meila and T. Zhang, editors, Proceedings of
the 38th International Conference on Machine Learning (ICML), 2021.

S. P. Kasiviswanathan and A. D. Smith. On the ‘semantics’ of differential privacy: A bayesian
formulation. Journal of Privacy and Confidentiality, 2014. Available as v3 of https://arxiv.
org/abs/0803.3946.

G. King and N. Persily. Unprecedented facebook urls dataset now available for aca-
demic research through social science one. https://socialscience.one/blog/

unprecedented-facebook-urls-dataset-now-available-research-through-social-science-one,
2020. Accessed: 2023-04-18.

D. Micciancio. Oblivious data structures: applications to cryptography. In Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing, pages 456–464, 1997.

M. Naor and V. Teague. Anti-persistence: History independent data structures. In Proceedings of
the thirty-third annual ACM symposium on Theory of computing, pages 492–501, 2001.

National Conference of State Legislatures. State laws related to digital privacy. https://www.

ncsl.org/technology-and-communication/state-laws-related-to-digital-privacy,
June 2022. Accessed: 2023-04-18.

S. Neel, A. Roth, and S. Sharifi-Malvajerdi. Descent-to-delete: Gradient-based methods for machine
unlearning, 2020.

A. Ng. Homeland Security records show ’shocking’ use of phone data, ACLU says. Politico, 2022.
URL https://www.politico.com/news/2022/07/18/dhs-location-data-aclu-00046208.

K. Nissim, A. Bembenek, A. Wood, M. Bun, M. Gaboardi, U. Gasser, D. R. O’Brien, T. Steinke,
and S. Vadhan. Bridging the gap between computer science and legal approaches to privacy.
Harv. JL & Tech., 31:687, 2017.

50

https://blog.google/technology/health/covid-19-community-mobility-reports/
https://blog.google/technology/health/covid-19-community-mobility-reports/
https://arxiv.org/abs/2112.00828
https://arxiv.org/abs/2112.00828
https://arxiv.org/abs/0803.3946
https://arxiv.org/abs/0803.3946
https://socialscience.one/blog/unprecedented-facebook-urls-dataset-now-available-research-through-social-science-one
https://socialscience.one/blog/unprecedented-facebook-urls-dataset-now-available-research-through-social-science-one
https://www.ncsl.org/technology-and-communication/state-laws-related-to-digital-privacy
https://www.ncsl.org/technology-and-communication/state-laws-related-to-digital-privacy
https://www.politico.com/news/2022/07/18/dhs-location-data-aclu-00046208


Y. Polyanskiy. Two fundamental probabilistic models. https://ocw.mit.edu/courses/

6-436j-fundamentals-of-probability-fall-2018/resources/mit6_436jf18_lec02/,
2018. Accessed: 2023-04-18.

R. Rogers, A. Roth, A. Smith, and O. Thakkar. Max-information, differential privacy, and post-
selection hypothesis testing. In IEEE Symposium on Foundations of Computer Science, FOCS
’16, pages 487–494, 2016. https://arxiv.org/abs/1604.03924.

A. Sekhari, J. Acharya, G. Kamath, and A. T. Suresh. Remember what you want to forget:
Algorithms for machine unlearning. arXiv preprint arXiv:2103.03279, 2021.

R. K. Slaughter, J. Kopec, and M. Batal. Algorithms and economic justice: A taxonomy of harms
and a path forward for the federal trade commission. Yale JL & Tech., 23:1, 2020.

A. Thudi, H. Jia, I. Shumailov, and N. Papernot. On the necessity of auditable algorithmic def-
initions for machine unlearning. In 31st USENIX Security Symposium (USENIX Security 22),
pages 4007–4022, 2022.

E. Ullah, T. Mai, A. Rao, R. Rossi, and R. Arora. Machine unlearning via algorithmic stability.
arXiv preprint arXiv:2102.13179, 2021.

US Census Bureau. Why the Census Bureau chose differential privacy. Technical Report C2020BR-
03, US Census Bureau, March 2023.

S. Vadhan and W. Zhang. Concurrent composition theorems for all standard variants of differential
privacy. arXiv preprint arXiv:2207.08335, 2022. To appear in the 55th Annual ACM Symposium
on Theory of Computing (STOC), 2023.

A Lemmas on Couplings and Marginal Distributions

Lemma A.1 (Coupling Lemma). Let P,Q be probability distributions on sets X and Y, respectively,
and let f : X → Z and g : Y → Z be (deterministic) functions with the same codomain Z. Suppose
that f(X) ≈ϵ,δ g(Y ) when X ∼ P and Y ∼ Q.

Consider the collection of distributions {Qx ∈ ∆(Y) : x ∈ X} on the set Y, where Qx denotes
the distribution on Y conditioned on the event that g(Y ) = f(x) (that is Qx = Q|{y:g(y)=f(x)}). In
the case that g−1(f(x)) is empty, Qx assigns probability to a default value ⊥ ∈ Y.

If we select X ∼ P and then sample Y ′ ∼ QX (so that Pr(Y ′ = y|X = x) = Qx(y)), then

1. Y ′ ≈ϵ,δ Y , and

2. f(X) = g(Y ′) with probability at least 1− δ over (X,Y ).

For example, consider an (ϵ, δ)-DP mechanism M using randomness R ∼ U , and let x,x′ be
a pair of neighboring inputs. Take f(R) = M(x;R) and g(R) = M(x′;R). Lemma A.1 gives

a way to jointly sample randomness (R,R′) such that R ∼ U , R′ ϵ,δ
≈ U , and with probability at

least 1 − δ: M(x;R) = M(x′;R′). For simple DP mechanisms, it is easy to understand what
this sampler does. For instance, let Lap(1/ϵ;R) be an algorithm that samples from the Laplace
distribution when R ∼ U is uniform. Consider M(x;R) = f(x) + Lap(1/ϵ;R) for some f with
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sensitivity 1. The sampler in Lemma A.1 samples R ∼ U , and samples R′ uniformly conditioned
on Lap(1/ϵ;R′) = f(x′)− f(x).

Proof. Consider the randomized map G∗ : Z → Y that inverts g for inputs drawn from Q—namely,
G∗(z) returns a random element according to Q|{y:g(y)=z} and returns the default element ⊥ with
probability 1 if g−1(z) is empty. Running G∗ on g(Y ) returns a sample distributed identically to
Y conditioned on g(Y ). That is,(

g(Y ), G∗(g(Y ))
)
≡

(
g(Y ), Y

)
.

Since the ≈ϵ,δ relation is preserved by processing, and since f(X) ≈ϵ,δ g(Y ), we have(
g(Y ), G∗(g(Y ))

)
≈ϵ,δ

(
f(X), G∗(f(X))

)
.

Now for every x ∈ X , the random variable G∗(f(x)) is distributed as Qx. Therefore, G∗(f(X))
is distributed as Y ′ from the theorem statement and Y ′ ≈ϵ,δ Y (the first requirement of the
theorem). Furthermore, g(Y ′) equals f(X) except when f(X) lies outside the image of g. Since
f(X) ≈ϵ,δ g(Y ), the value f(X) lies outside the image of g with probability at most δ. This
establishes the theorem’s second requirement.

A computable analogue of Lemma A.1 To demonstrate deletion-as-control compliance, we
need a simulator to sample ideal-world randomness R′

C whose marginal distribution is close to
the uniform distribution while also guaranteeing that state′C = stateC. A natural strategy is to
sample R′

C from distribution conditioned on the equality of the states. Applying Lemma A.1, the
resulting distribution suffices for our purposes in this paper, where X = RC and Y = R′

C. But
there is a technicality that needs to be dealt with. In full generality, the conditional distributions
Qx in that lemma may not be sampleable in finite time. This will not be a problem for us, as our
applications of the lemma will be restricted to functions that depend only a finite prefix of RC and
R′

C. For completeness, we state a computable analogue of Lemma A.1. Elsewhere, we will elide
this technicality and invoke the simpler Lemma A.1.

Lemma A.2 (Computable Coupling Lemma). Let P , Q, X , Y, Z, f , g, and Qx as in Lemma A.1.
Let X = {0, 1}∗ = Y. Suppose that g(y) depends only on a finite prefix of y ∈ {0, 1}∗. Suppose also
that for all x ∈ {0, 1}∗, either f(x) depends only on a finite prefix of x ∈ {0, 1}∗, or g−1(f(x)) = ∅.
Then for any x, Y ∼ Qx can be written as Y1∥Y2 where |Y1| is finite and Y2 is uniform in {0, 1}∗
and independent of Y1.

In our applications, X and Y will be RC and R′
C respectively. f and g will be functions of the

real and ideal executions, respectively. By construction, an ideal execution is always finite, and
therefore g(Y ) will only depend on a finite prefix of R′

C. A real execution is either finite—in which
case f(X) only depends on a finite prefix of RC—or it is infinite. If it is infinite the real execution
(and f) outputs ⊥, whereas the ideal execution (and g) can never output ⊥.
Lemma A.3 (Conditioning Lemma [Kasiviswanathan and Smith, 2014]). Let (A,B) and (A′, B′)

be pairs of random variables over the same domain A × B such that (A,B)
ϵ,δ
≈ (A′, B′). Then for

all δ′ > 0, with probability at least 1− γ over a← A, we have

B|A=a
ϵ′,δ′

≈ B′|A′=a ,

where ϵ′ = 3ϵ and γ = 2δ
δ′ +

2δ
1−exp(−ϵ) .
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B Differential Privacy Preliminaries

A dataset x = (x1, . . . , xn) ∈ X n is a vector of elements from universe X . Two datasets are
neighbors if they differ in at most one coordinate. Informally, differential privacy requires that
an algorithm’s output distributions are similar on all pairs of neighboring datasets. We use two
different variants of differential privacy. The first one (and the main one used in this paper) is the
standard definition of differential privacy.

Definition B.1 (Differential Privacy [Dwork et al., 2016, 2006]). A randomized algorithm M :
X n → Y is (ϵ, δ)-differentially private if, for every pair of neighboring datasets x,x′ ∈ X n, the
distributions ofM(x) andM(x′) are defined for the same σ-algebra ΣY and

M(x)
ϵ,δ
≈ M(x′) .

Differential privacy protects the privacy of groups of individuals, and is closed under post-
processing. Moreover, it is closed under adaptive composition. For a fixed dataset x, adaptive
composition states that the results of a sequence of computations satisfies differential privacy even
when the chosen computationMt(·) at time t depends on the outcomes of previous computations
M1(x), . . . ,Mt−1(x). Under adaptive composition, the privacy parameters add up.

Lemma B.2 (Post-Processing). If M : X n → Y is (ϵ, δ)-differentially private, and B : Y → Z is
any randomized function, then the algorithm B ◦M is (ϵ, δ)-differentially private.

Lemma B.3 (Group Privacy). Every (ϵ, δ)-differentially private algorithm M is
(
kϵ, δ e

kϵ−1
eϵ−1

)
-

differentially private for groups of size k. That is, for all datasets x,x′ such that ∥x−x′∥0 ≤ k and
all subsets Y ⊆ Y,

Pr[M(x) ∈ Y ] ≤ ekϵ · Pr[M(x′) ∈ Y ] + δ · e
kϵ − 1

eϵ − 1
.

Definition B.4 (Composition of (ϵ, δ)-differential privacy). SupposeM is an adaptive composition
of differentially private algorithms M1, . . . ,MT . If for each t ∈ [T ], algorithm Mt is (ϵt, δt)-
differentially private, thenM is (

∑
t ϵt,

∑
t δt)-differentially private.

C Strong History Independence and Deletion-as-control

We show that strong history independence implies deletion-as-control. Throughout, we use SHI to
mean (0, 0)-SHI.

A foundational result in the study of history independent data structures characterizes the
behavior of SHI implementations of a large class of ADTs called reversible ADTs.

Definition C.1 (Reversible ADT). An ADT is reversible if, for all logical states A and B reachable
from the initial state, there exists some finite sequence of operations σ such that ADT(A, σ).state =
B. That is, all reachable states are mutually reachable.

Theorem C.2 (Hartline et al. [2005]). A reversible data structure is SHI if and only if each
logical state has a single canonical memory representation for every setting of the implementation’s
randomness tape.
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Claim C.3. If an ADT supports logical deletion, then it is reversible. The converse is not true.

Proof. (Logical deletion =⇒ reversible): To prove reversibility, it is sufficient to give a sequence
of operations that takes the ADT back to its initial state. Fix a state A that is reachable from the
initial state. Pick any sequence σ that takes the initial state to A. Delete all of the id’s in σ one
by one. By logical deletion, the resulting state is the initial state.

(Reversible ≠⇒ logical deletion): Consider the ADT where the set of (non-delete) operations
is the space of IDs and the logical state consists of the most recent ID. Suppose also that outadt = ⊥
always. This ADT is reversible: for any IDs A and B, ADT((A,B)).state = B. (We note that this
ADT trivially admits a SHI implementation.)

Consider two sequences of IDs (A,C) and (B,C), where A ̸= B. If this ADT supports logical
deletion, then we derive a contradiction:

(A,⊥) = ADT((A,C, delete(C))) = ADT((C, deleteC))

= ADT((B,C, delete(C))) = (B,⊥),

where the first and last equalities follow from logical deletion and the second and third follow by
construction. This counter example illustrates that deletion may require the data controller to keep
sufficient records of all users to update the state.

We now prove that SHI implies deletion-as-control. We restate the theorem for convenience.

Theorem 3.7. For any ADT that supports logical deletion and any SHI implementation Impl, the
controller C = CImpl satisfies (0, 0)-deletion-as-control with the simulator that outputs R′

C = RC.

Proof of Theorem 3.7. Fix C and any E and Y in the deletion-as-control game. By the definition of
logical deletion, the sequence q⃗ in the real world and q⃗′ in the ideal world are logically equivalent.
Let Sim be the simulator that always outputs R′

C = RC. By Theorem C.2, the real-world and
ideal-world states are identical (since the randomness and the logical states are identical). So, we
satisfy the first condition of deletion-as-control. Furthermore, since the value of R′

C equals the value
of RC, they are identically distributed. Thus, this controller satisfies (0, 0)-deletion-as-control.
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