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ABSTRACT
Differentially private stochastic gradient descent (DP-SGD) adds

noise to gradients in back-propagation, safeguarding training data

from privacy leakage, particularly membership inference. It fails to

cover (inference-time) threats like embedding inversion and sensi-

tive attribute inference. It is also costly in storage and computation

when used to fine-tune large pre-trained language models (LMs).

We propose DP-Forward, which directly perturbs embedding

matrices in the forward pass of LMs. It satisfies stringent local DP
requirements for training and inference data. To instantiate it us-

ing the smallest matrix-valued noise, we devise an analytic matrix

Gaussian mechanism (aMGM) by drawing possibly non-i.i.d. noise

from a matrix Gaussian distribution. We then investigate perturb-

ing outputs from different hidden (sub-)layers of LMs with aMGM

noises. Its utility on three typical tasks almost hits the non-private

baseline and outperforms DP-SGD by up to 7.7pp at a moderate pri-

vacy level. It saves 3× time and memory costs compared to DP-SGD

with the latest high-speed library. It also reduces the average suc-

cess rates of embedding inversion and sensitive attribute inference

by up to 88pp and 41pp, respectively, whereas DP-SGD fails.
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1 INTRODUCTION
The deep learning architecture of transformer [68] is now gain-

ing popularity in computer vision and has been widely utilized in

natural language processing (NLP). Transformer-based language

models (LMs), such as BERT [20] and GPT [59, 60], have remarkably

achieved state-of-the-art performance in almost every NLP task.

They are first pre-trained on massive (public) self-labeled corpora

and then fine-tuned for various tasks using much smaller, poten-

tially private corpora. It avoids training from scratch and the possi-

ble shortage of task-specific corpora while earning versatility.

Training data contributing to the improved utility of fine-tuned

LMs can be sensitive. LMs can (unintentionally) memorize them [12]

and become vulnerable tomembership inference attacks (MIAs) [63]

that identify whether an example is in the training set. Worse still,

verbatim training text (e.g., SSNs) can be extracted via only black-

box access to GPT-2 [13]. It is also possible to recover personal

health information (e.g., patient-condition pairs) from BERT trained

over a clinical corpus [42] based on the extraction attack [13].

Differential privacy (DP) [22] has emerged as the de facto privacy
standard for protecting individual privacy. To thwart MIAs on indi-

viduals’ training data, DP stochastic gradient descent (DP-SGD) [1]

can be used. It clips the gradients of each example in a batch and

adds random Gaussian noise to the aggregated gradient. It is more

general than earlier attempts [17, 18] that focus on convex prob-

lems and has been implemented in modern ML frameworks, such as

PyTorch and TensorFlow. One can apply it to fine-tune LM-based

NLP pipelines while ensuring example-level privacy, assuming each

individual contributes an example, typically a sequence-label pair.

Unfortunately, DP-SGD often uses a trusted party to curate users’

sensitive training data. Although it can be done distributively [9, 50]

via secure aggregation [15] with extra costs and trust assumptions,

it offers central DP (CDP) at its core.
1
Instantiating per-example

gradients as large as entire pipelines (e.g., >110M parameters for

BERT-Base) is obliviously costly. Moreover, maintaining the utility

of pipelines trained by the noisy aggregated one is tricky due to

1
Distributed DP-SGD adds local noise too small to achieve LDP. But it is protected by

secret sharing. When all shares are aggregated, they cancel out each other, assuming

an honest majority. It thus faces a “synchronization” issue begging for identification

and recovery mechanisms with computation and communication overheads [9].
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the dimensional “curse.” A recent study [79, Table 4] shows that the

average accuracy in fine-tuning LMs for four NLP tasks at moderate

privacy is 65.7% (vs. 91.8% without DP). Finally, the inference-time

embeddings are not perturbed by the noise added during training,

leaving inference queries vulnerable to various recovery attacks [56,

64], ranging from sensitive attributes (e.g., authorship) to raw text.

1.1 Natural Privacy via Perturbing Embeddings
We propose DP-Forward, a radically different approach that per-

turbs forward-pass signals: Users can locally inject noise into the

embeddings of (labeled) sequences before sharing them for training,

in contrast to perturbing gradients in back-propagation (possibly

by an untrusted party). It is meant for provable local DP (LDP) guar-

antees, thus protecting against stronger adversaries than DP-SGD.

Our approach also naturally fits the federated learning (FL) set-

ting that does not gather users’ data but with substantial differences

– FL typically shares noiseless local model updates. Note that any

subsequent computation (e.g., gradient computation) on noisy em-

beddings incurs no extra privacy loss due to the free post-processing

of LDP. One might force DP-SGD to offer LDP by adding “enough”

noise to the orders-of-magnitude larger per-example gradient from

a user, but it may yield unusable models at a similar privacy level.

DP-Forward also extends its applicability to inference via adding
noise to users’ test-sequence embeddings, ensuring LDP as in

training. As a “side” benefit, it can effectively mitigate emerging

embedding-based privacy risks [56, 64] beyond MIAs.

It is evident that the design goals of DP-Forward naturally align

in tandem with our overarching objectives: LDP (vs. CDP), more

direct protection of raw data (vs. gradients) against new threats [56,

64], and can be as efficient as regular non-private training (allowing

batch processing of noisy embeddings). The foundation support-

ing these desiderata, unfortunately, was unavailable. A dedicated

mechanism to perturb the forward-pass signals is indispensable.

Specifically, we need to derive noises for embeddings of train-

ing/inference text sequences obtained through the forward pass

of LM-based pipelines as a real- and matrix-valued function. One

might adopt the classical Gaussian mechanism (GM) [23] to add

i.i.d. noise drawn from a univariate Gaussian distribution. Yet, GM

calibrates its noise variance based solely on a sufficient condition
for DP, and its variance formula is not applicable to a low privacy

regime [7]. Another candidate is the matrix-variate Gaussian (MVG)

mechanism [14], tailored for matrix-valued data: It exploits possibly

non-i.i.d. noise from amatrix Gaussian distribution to perturb more

important rows/columns less. Although it may show better utility

over GM [14], it is still sub-optimal due to the sufficient condition.

To optimize MVG, we propose an analytic matrix Gaussian mech-

anism (aMGM) by integrating a necessary and sufficient condition
from the analytic GM (aGM) [7] for non-i.i.d. noise calibration. Our

challenge lies in manipulating the two covariance matrices instead

of a single variance. We deduce a constraint only on the two smallest
singular values (Section 4.2), indicating that i.i.d. noise (as in aGM)

may already be optimal for general applications like DP-Forward.
2

A transformer-based pipeline contains an input embedding layer,

encoders, and task layers. All these layers prominently manipulate

2
With extra assumptions, dedicated allocation of other singular values by optimiz-

ing/maximizing utility functions specific to applications could help.

embeddings of text inputs in training and subsequent inference. We

investigate adding aMGM noise to embeddings output by any hid-

den (sub-)layer before task layers (Figure 1). To ensure sequence-level
LDP, we need to estimate the 𝐿2-sensitivity [23] of “pre-noise” func-

tions for any two sequences. It is non-trivial since the functions can

include different (sub-)layers that may not even be Lipschitz [39].

Our strategy is to normalize the function outputs to have a fixed

Frobenius (or 𝐿2) norm, similar to gradient clipping [1]. It works

especially well for deeper sub-layers, achieving comparable task

accuracy to the non-private baseline (Section 5). For the first few

(sub-)layers, we also make two specializations in relaxing LDP to

the token level, elaborated in Appendix A.2, to improve accuracy.

1.2 Our Contributions
Motivated by prevailing privacy concerns in LM fine-tuning and

inference and inherent shortcomings of DP-SGD, we initiate a for-

mal study of an intuitive but rarely studied approach and explore

its integration with a transformer-based NLP pipeline. Specifically:

1)We propose DP-Forward fine-tuning, which perturbs the forward-

pass embeddings of every user’s (labeled) sequence. It offers more

direct protection than DP-SGD perturbing aggregated gradients.

Its provable guarantee (Theorem 1) is a new sequence-level LDP

notion (SeqLDP, Definition 4), with the more stringent (𝜖, 𝛿)-LDP
guarantee to hold w.r.t. only sequences. Moreover, DP-Forward can

naturally extend to inference, ensuring the standard LDP (Theo-

rem 3) for test sequences without labels, whereas DP-SGD cannot.

2) To instantiate an optimal output perturbation mechanism for DP-

Forward, we propose aMGM, owning independent interests for any

matrix-valued function. By exploiting a necessary and sufficient DP

condition from aGM [7], it can draw possibly non-i.i.d. noise from a

matrix Gaussian distribution like MVG [14] while producing orders-

of-magnitude smaller noise for high-dimensional data (Section 5.3).

3) We conduct experiments
3
on three typical NLP tasks in Section 5,

showing how crucial hyperparameters (e.g., the sequence length)
impact task accuracy. To fairly compare with DP-SGD on privacy-

vs.-utility: i) We perturb labels by the randomized response [70]

such that DP-Forward fine-tuning offers the standard LDP for

sequence-label pairs (Theorem 2). ii) We “translate” DP-Forward

with standard LDP to (example-level) CDP (as offered by DP-SGD)

via shuffling [25]. Our accuracy gain (for deep-layer DP-Forward

instantiations) is up to 7.7 percentage points (pp), compared to DP-

SGD or its recent improvements [78, 79] (reviewed in Section 7.3),

at a similar privacy level. Efficiency-wise, DP-SGD incurs >3× time

and GPU-memory costs even with the latest Opacus library [77].

4) We evaluate three classes of privacy threats. Like DP-SGD, DP-

Forward (including the two token-level designs in Appendix A.3)

can effectively defend against sequence-level MIAs, but only DP-

Forward can thwart the two threats on (inference-time) embeddings.

Specifically, Section 6 shows that DP-SGD totally fails in two embed-

ding inversion attacks, while DP-Forward remarkably reduces their

success rates by up to 88pp. For a neural-network-based attribute

inference attack, DP-SGD reduces its success rates by only 15pp on

average, while DP-Forward achieves ∼41pp reduction, making the

attack predict like assigning all labels to the majority class.

3
Our code is available at https://github.com/xiangyue9607/DP-Forward.

https://github.com/xiangyue9607/DP-Forward
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Figure 1: A typical NLP pipeline built atop a pre-trained LM such as BERT with our matrix-valued Gaussian noise layer

In short, DP-Forward is a better alternative to DP-SGD in training

(and testing) deep-learning models, e.g., gigantic LM-based ones.

2 PRELIMINARIES AND NOTATIONS
2.1 Transformer Encoders in BERT
Modern transformer-based LMs, including BERT [20] and GPT [59],

are first pre-trained on enormous unannotated (public) corpora to

learn contextualized text representations. Later, they can be fine-

tuned for various downstream NLP tasks (e.g., sentiment analysis,

question answering) using much smaller, task-specific datasets.

We consider BERT (Figure 1), which comprises a stack of 𝐿 iden-

tical layers (i.e., bidirectional transformer encoders [68]). Each layer

has two sub-layers: the dot-productmulti-head attention (MHA) [68]

with ℎ heads and a feed-forward network (FFN). Each sub-layer has

an extra residual connection, followed by layer normalization [6].

Let𝑋 = ⟨𝑥𝑖 ⟩𝑛𝑖=1 be an input sequence of 𝑛 tokens (e.g., characters,
words, sub-words, q-grams), where 𝑥𝑖 is from a vocabulary V . The

input embedding layer first maps each 𝑥𝑖 to its representation inR
𝑑
,

which is the sum of the token, segment, and position embeddings.

We re-use𝑋 to represent the hidden embedding matrix in R𝑛×𝑑 . For
each of ℎ attentions Att𝑖 in the MHA layer, we derive the query, key,

and value matrices𝑄,𝐾,𝑉 ∈ R𝑛×𝑑/ℎ (ℎ divides 𝑑) by multiplying𝑋

with head-specific weights𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 ∈ R𝑑×𝑑/ℎ . Its output is

Att𝑖 (𝑄,𝐾,𝑉 ) = softmax( 𝑄𝐾
⊤√︁

𝑑/ℎ
)𝑉 ,∀𝑖 ∈ [1, ℎ] .

The input to softmax(·) is an𝑛×𝑛matrix of pairwise dot products.

Finally, MHA concatenates (denoted by | |) all the head outputs into
a matrix in R𝑛×𝑑 , right multiplied by a projection matrix𝑊𝑂 ∈
R𝑑×𝑑 :

MHA(𝑋 ) = [Att1 | | · · · | |Attℎ]𝑊𝑂 .

FFN is composed of two linear mappings with a ReLU activation

in between. It separately and identically operates on each 𝑥𝑖∈[1,𝑛] ,

FFN(𝑥𝑖 ) = ReLU(0, 𝑥𝑖𝑊1 + 𝑏1)𝑊2 + 𝑏2,

where𝑊1,𝑊2, 𝑏1, and 𝑏2 are trainable matrix/vector-valued param-

eters. Its output on 𝑋 is FFN(𝑋 ) = [FFN(𝑥1)⊤ | | · · · | |FFN(𝑥𝑛)⊤].
The residual connection for sub-layers is 𝑋 + MHA(𝑋 )/FFN(𝑋 ).

The layer normalization LN(𝑥𝑖 ) normalizes all 𝑥𝑖 entries to have

zero mean and unit variance using an extra scale-then-shift step.

At the output of the final encoder, the hidden embedding matrix

is reduced to a sequence feature in R1×𝑑 . Standard reduction meth-

ods include mean pooling [61] (computing

∑𝑛
𝑖=1 𝑥𝑖/𝑛) or taking the

last embedding of a special token [CLS] for classification [20].

The pre-training of BERT is based on two self-supervised tasks:

masked language model (MLM) and next sentence prediction [20].

We adopt MLM: It randomly masks out some tokens, indexed by I,
in an input sequence 𝑋 . The objective is to predict those masked

tokens using their context by minimizing the cross-entropy loss

𝐿MLM = −
∑︁
𝑖∈I

log Pr[𝑥𝑖 |𝑋 ;𝜃 ], with 𝑋 = 𝑋 \ {𝑥𝑖 |𝑖 ∈ I}, (1)

where 𝜃 denotes all the parameters of BERT transformer encoders.

2.2 (Local) Differential Privacy
DP [22] is a rigorous, quantifiable privacy notion. It has two popu-

lar models, central and local. In central DP, a trusted data curator

accesses the set X of all individuals’ raw data and processes X by a

randomized mechanismM with some random noise. Formally:

Definition 1 (Central DP). For privacy parameters 𝜖 ≥ 0 and
0 ≤ 𝛿 ≤ 1, M fulfills (𝜖, 𝛿)-DP if, for all neighboring datasets X
and X′ (denoted by X ≃ X′) and any subset O of the outputs ofM,

Pr[M(X) ∈ O] ≤ 𝑒𝜖 Pr[M(X′) ∈ O] + 𝛿.
We call it 𝜖-DP or pure DP when 𝛿 = 0.

The neighboring notion is application-dependent (to be discussed

in Section 3.1). Typically, it involves the “replace-one” relation: X′

can be obtained fromX by replacing a single individual’s data point

(e.g., a sequence-label pair). CDP offers plausible deniability to any

individual in a dataset. In contrast, local DP (LDP) [38] removes the

trusted curator, allowing individuals to locally perturb their data

usingM before being sent to an untrusted aggregator for analytics.

Definition 2 (Local DP). For 𝜖 ≥ 0, 0 ≤ 𝛿 ≤ 1, M is (𝜖, 𝛿)-LDP
if, for any two inputs 𝑋,𝑋 ′ and any possible output subset O ofM,

Pr[M(𝑋 ) ∈ O] ≤ 𝑒𝜖 Pr[M(𝑋 ′) ∈ O] + 𝛿.
Similarly, we call it 𝜖-LDP when 𝛿 = 0.
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Table 1: Acronyms (newly proposed ones are marked with ∗)

NLP Natural Language Processing

LM Language Model

BERT Bidirectional Encoder Representations from Transformers

MLM Masked Language Modeling

MHA Multi-Head Attention

FFN Feed-Forward Network

MIA Membership Inference Attack

DP-SGD Differentially Private Stochastic Gradient Descent

PLRV Privacy Loss Random Variable

(C)DP (Central) Differential Privacy

LDP Local Differential Privacy

Seq(L)DP
∗

Sequence (Local) Differential Privacy

GM Gaussian Mechanism

RR Randomized Response

MVG Matrix-Variate Gaussian (Mechanism)

aGM Analytic Gaussian Mechanism

aMGM
∗

Analytic Matrix Gaussian Mechanism

Privacy Loss Random Variable (PLRV). For a specific pair of inputs
X ≃ X′

, the privacy loss (or the “actual 𝜖 value”) [7] incurred by

observing an output 𝑂 is the log-ratio of two probabilities:

LM,X,X′ (𝑂) = ln

Pr[M(X) = 𝑂]
Pr[M(X′) = 𝑂] .

When 𝑂 varies according to M(X), we get the PLRV LM,X,X′ . A

helpful way to workwith DP is to analyze tail bounds on PLRVs [23],

which we utilize to build our proposed mechanism in Section 4.2.

DP has two desirable properties: free post-processing and compos-
ability. The former means that further computations on the outputs

of an (𝜖, 𝛿)-DP mechanism incur no extra privacy loss. The latter

allows us to build more complicated mechanisms atop simpler ones:

sequentially (and adaptively) running an (𝜖, 𝛿)-DP mechanism for 𝑘

times on the same input is at least (𝑘𝜖, 𝑘𝛿)-DP. The two properties

also hold for LDP when considering a dataset has only one row.

An output perturbation mechanismM for a matrix-valued func-

tion 𝑓 : X → R𝑛×𝑑 is given by computing 𝑓 on the inputs and then

adding random noise drawn from a random variable to its outputs.

Gaussian Mechanism (GM). For (𝜖, 𝛿)-DP, a typical instance of
M is the classical GM [23], which adds noise 𝑍 ∈ R𝑛×𝑑 with each

entry i.i.d. drawn from a univariate Gaussian distributionN(0, 𝜎2).
The variance 𝜎2 = 2 ln(1.25/𝛿)𝑆2

2
(𝑓 )/𝜖2 with the 𝐿2-sensitivity:

𝑆2 (𝑓 ) = sup

X≃X′
| |𝑓 (X) − 𝑓 (X′) | |𝐹 ,

where | | · | |𝐹 denotes the matrix Frobenius norm [34].

Table 1 summarizes the acronyms throughout this work.

3 DP-FORWARD
We study BERT-based pipelines as an example due to their superior

performance in classification tasks. DP-Forward can be readily ap-

plied to other (transformer-based) NLP or computer vision models

that involve matrix-valued computation during the forward pass.

Suppose each user holds a sequence-label pair (𝑋,𝑦) or only 𝑋
for fine-tuning or testing a pipeline at an untrusted service provider.

Sharing redacted𝑋 (with common PII removed) or its feature, a non-

human-readable real-valued embedding matrix, is leaky [56, 64, 67].

For DP-Forward training, users perturb their embeddingmatrices

locally to ensure (new notions of) LDP before being shared, and they

should also perturb the corresponding labels if deemed sensitive

(Section 3.4).We explore different options for splitting pipelines into

pre-noise functions 𝑓 (·) and post-noise processing 𝑝 (·) in Section 3.2:
Users can access 𝑓 (·) to derive embeddingmatrices, perturbed by an

output perturbation mechanism M (e.g., GM); the service provider

runs 𝑝 (·) on noisy (labeled) embeddings for fine-tuning (Section 3.3)

or pre-training (Section 3.6). The challenge lies in analyzing 𝑆2 (𝑓 )
for different pipeline parts, which we address by normalizing 𝑓 (·).

DP-Forward can be naturally used to protect inference sequences
(Section 3.5), unlike DP-SGD. It exploits the free post-processing

(i.e., inference works on noisy embeddings), incurring minimal

changes to pipelines with the extra “plug-and-play” noise layer.

3.1 Notions of Sequence (Local) DP
Embeddings 𝑓 (𝑋 ) encode semantic information of input sequences

𝑋 , each of which has 𝑛 tokens (Section 2.1). Fine-tuning (or subse-

quent inference of) NLP pipelines essentially processes 𝑓 (𝑋 ). DP-
Forward fine-tuning protects every 𝑋 by an output perturbation

mechanism M over 𝑓 (𝑋 ), in contrast to DP-SGD, which perturbs

aggregates of gradients 𝑓 ′ (𝑋,𝑦) over 𝑋 and label 𝑦. Simply put, our

(𝜖, 𝛿)-LDP holds for 𝑋 while DP-SGD provides CDP for (𝑋,𝑦).
Sequence-only protection is meaningful since sequences often

convey (implicit) sensitive information (e.g., authorship), whereas
labels (e.g., a single bit denoting positive/negative) can be public. We

defer to Section 3.4 for achieving “full” LDP over (𝑋,𝑦). To bridge

the gap between theoretical guarantees of DP-SGD andDP-Forward,

we first define sequence DP
4
(SeqDP) in the central setting.

Definition 3 (SeqDP). For 𝜖 ≥ 0, 0 ≤ 𝛿 ≤ 1,M is (𝜖, 𝛿)-SeqDP, if
∀X ≃ X′ that only differ in a sequence at some index 𝑖 : (𝑋𝑖 , 𝑦𝑖 ) ∈ X
and (𝑋 ′

𝑖
, 𝑦𝑖 ) ∈ X′,∀𝑋𝑖 , 𝑋 ′

𝑖
, and any possible output subset O,

Pr[M(X) ∈ O] ≤ 𝑒𝜖 Pr[M(X′) ∈ O] + 𝛿.

3.1.1 Label DP. The recently proposed notion of label DP [26, 31]

is originally studied in PAC learning [16]. It only protects labels (not
the corresponding inputs/images): (𝜖, 𝛿)-DP is only w.r.t. labels.

Our SeqDP is “more secure” than or at least “complements” label

DP, which has an inherent flaw [11]: As labels typically rely on their

sequences (but not vice versa), it is very likely to recover the true

labels from the raw sequences, even if the labels are protected (by

any label-DP mechanism). The follow-up [72] shows the impossi-

bility of label protection under label DP even with arbitrarily small

(𝜖, 𝛿) when models generalize. Moreover, labels can be absent (e.g.,
inference or self-supervised learning), for which SeqDP upgrades

to the standard (𝜖, 𝛿)-DP, whereas label DP is simply inapplicable.

3.1.2 Sequence Local DP (SeqLDP). We further define SeqLDP, the

local counterpart of sequence DP. Note that the above discussion
of label DP in relation to SeqDP also carries over to SeqLDP.

Definition 4 (SeqLDP). For 𝜖 ≥ 0, 0 ≤ 𝛿 ≤ 1, M satisfies (𝜖, 𝛿)-
SeqLDP, if ∀𝑋,𝑋 ′ with the same 𝑦, and any possible output subset O,

Pr[M(𝑋,𝑦) ∈ O] ≤ 𝑒𝜖 Pr[M(𝑋 ′, 𝑦) ∈ O] + 𝛿.
4
One could generalize it to “feature” (or “input”) DP, as DP-Forward also allows other

types of features beyond embeddings (and its essence is input-only privacy). To keep

our focus on NLP, we use “sequence” here. (PixelDP [41] treats pixels as image features.)
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In theory, SeqLDP remains a strong notion (like the standard

LDP). It is meant to be information-theoretic protection on sequence

and bounds the indistinguishability of any𝑋,𝑋 ′
(differing by up to𝑛

tokens), and hence governing the “usefulness” of noisy embeddings.

3.1.3 Sequence-Level SeqLDP vs. Token-Level SeqLDP. In practice,

as a strong notion balancing seemingly conflicting requirements

(ideal theoretical guarantees and empirical utility), attaining amean-

ingful range of 𝜖 for SeqLDP is a struggle. Adding Gaussian noise

to the outputs of 𝑓 (·) for (𝜖, 𝛿)-SeqLDP requires bounding the 𝐿2-

sensitivity 𝑆2 (𝑓 ),∀𝑋,𝑋 ′
. Our approach is to normalize the outputs

(with extra benefits elaborated in Section 3.2), similar to clipping gra-

dients in DP-SGD. It generally works better when 𝑓 (·) has more

layers (at the same meaningful range of 𝜖) since fewer (trainable)

parameters/layers of 𝑝 (·) are “affected” by the noisy outputs.

Unfortunately, when 𝑓 (·) includes the first few layer(s), e.g., only
the input embedding layer is available to the users (say, for sav-

ing user-side storage and computation overheads), it leads to poor

utility. As a comprehensive study, we resort to row-wise normaliza-

tion with the (composition of) Lipschitz constants [39] to maintain

utility for those cases.
5
In contrast to the general normalization, it

aims for weaker SeqLDP at the token level (cf. event-level vs. user-
level LDP [81]), a finer granularity in the “protection hierarchy,”

protecting any neighboring sequences (vs. datasets) differing in any

single token (vs. sequence). Details are deferred to Appendix A.

3.2 Our Approach for Sequence LDP
DP-Forward in our paper (except Appendix A) applies the general

normalization approach to any 𝑓 (·) for sequence-level (Seq)LDP.
Let 𝑓 (·) be an arbitrarily deep forward pass, ranging from the

first (input embedding) layer itself to all but the last (task) layer in

a BERT-based pipeline (Figure 1). Correspondingly, let 𝑝 (·) be the
remaining layers, ranging from the last task layers themselves to all

but the first (input embedding) layer. Every sequence𝑋 becomes an

embedding matrix 𝑓 (𝑋 ) ∈ R𝑛×𝑑 at the output of layers in encoders

or R1×𝑑 before task layers (Section 2.1). To offer (𝜖, 𝛿)-SeqLDP, we
adopt a suitable output perturbation mechanismM, such as GM,

considering that a dataset has only one labeled sequence.

SinceM can work on the output of any hidden layer, estimating

𝑆2 (𝑓 ) is non-trivial. Specifically, MHA itself, let alone more lay-

ers included, is not Lipschitz continuous, meaning its outputs can

change arbitrarily for even slight input variation [39]. To address

this, our approach is to normalize or clip the function outputs:

| |𝑓 (·) | |𝐹 = 𝐶 or 𝑓 (·)/max(1, | |𝑓 (·) | |𝐹
𝐶

)

as in DP-SGD [1], where 𝐶 is a tunable parameter. We then have

𝑆2 (𝑓 ) = 2𝐶 . Such normalizationmakes task utility less “sensitive” to

the choice of𝐶 since signal and noise increase proportionally with𝐶 ,

whereas the signal may be unchanged when 𝑓 (·) is not clipped. It
also has many other benefits, such as stabilizing training, avoiding

overfitting, and accelerating convergence [2]. Hence, we resort to

normalization in our experiments. One can then calibrate Gaussian

noise 𝑍 and derive 𝑓 (𝑋 ) + 𝑍 for the post-noise layers 𝑝 (·).

5
One might also resort to the weaker random DP [33] – (𝜖, 𝛿 )-DP holds on all but a

small𝛾 -proportion of “unlikely” X ≃ X′
for an extra parameter𝛾 ∈ (0, 1) . It is useful

when the global sensitivity is hard to compute. Exploring it is left as future work.

Note that we remove the residual connection when adding noise

to the output of the first MHA layer to avoid 𝑝 (·) reaccessing 𝑋
(dashed arrow, Figure 1) to maintain free post-processing. This

may lead to instability (e.g., gradient vanishing) [79], but it can
be mitigated by pre-training new BERT without such a residual

connection to keep consistent with later fine-tuning/inference.

DP-Forward using GM suffers from the “curse of dimensionality”

when 𝑑 is large (e.g., 768 for BERT-Base). To alleviate the curse,

we can append two linear maps, 𝑀1, 𝑀2 ∈ R𝑑×𝑑 ′ with 𝑑′ ≪ 𝑑 ,

such that 𝑓 (·) and 𝑝 (·) respectively have 𝑀1 and 𝑀2. Both maps

are randomly initialized and updated like other weights using gra-

dients. The raw embedding matrix is first right multiplied by 𝑀1,

leading to R𝑛×𝑑
′
or R1×𝑑

′
, before being normalized. Our privacy

guarantee will not be affected since 𝑆2 (𝑓 ) remains the same. We

then use 𝑀2 to restore the dimensionality to be compatible with

the raw pipeline; 𝑀2 incurs no extra privacy loss due to the free

post-processing. Nevertheless, it needs dedicated efforts to modify

the pipeline; dimension-reduced embedding matrices may also lose

useful information, degrading task utility. We thus make 𝑀1 and

𝑀2 optional (see Section 5.2).

3.3 DP-Forward Fine-tuning
Suppose we use a raw, public BERT checkpoint

6
for fine-tuning. In

the forward pass of the 𝑖-th (𝑖 ≥ 1) step, it offers the latest 𝑓 (𝑖−1) (·)
to a batch of users, mimicking the regular mini-batch SGD. 𝑓 (0)

is from the raw checkpoint. Users are randomly chosen (without

replacement), and their number is a fixed parameter. Users in the

batch individually compute their noisy embeddings 𝑓 (𝑖−1) (𝑋 ) + 𝑍
to ensure SeqLDP (Theorem 1). They then send them with unper-

turbed labels 𝑦 to the service provider, who runs 𝑝 (𝑖−1) (·) over
(𝑓 (𝑖−1) (𝑋 ) + 𝑍,𝑦) to compute the batch loss; any post-processing

of embeddings under SeqLDP incurs no extra privacy degradation

on 𝑋 . 𝑝 (0) here includes the rest raw BERT part and randomly

initialized task layers.

During the back-propagation, the service provider can update

𝑝 (𝑖−1) (·) to 𝑝 (𝑖 ) (·) via the gradient (derived from the loss and

noisy embeddings) of the post-noise layers. To avoid accessing

users’ raw 𝑋 , it needs to freeze the pre-noise layers 𝑓 (𝑖−1) (·) as
𝑓 (0) . Parameter freezing is compatible with the more recent zero-

shot or in-context learning paradigm [52]. It is useful when models

are gigantic and full fine-tuning is expensive. However, the more

layers are frozen, the worse the utility might be (even in non-private

settings).

There are two general ways to update 𝑓 (𝑖−1) (·) securely: i) We

can assume an extra trusted party (as in DP-SGD), but it becomes

central DP. ii) Users can first derive the gradients for the layers

inside 𝑓 (𝑖−1) (·) locally on their 𝑋 and then resort to secure ag-

gregation [9] for global updates at the service provider. However,

it is costly. For better utility, we update 𝑓 (𝑖−1) (·) in experiments,

requiring us to consider privacy degradation across different epochs
due to the composability (as detailed below). Dedicated approaches

(that balance efficiency, privacy, and utility) are left as future work.

6
Using noisy BERT for fine-tuning (and subsequent inference) is deferred to Section 3.6.
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Theorem 1. Let 𝑓 (·) be the pre-noise function (of BERT-based
pipelines) and M be GM with 𝜖 ≥ 0, 0 ≤ 𝛿 ≤ 1. DP-Forward fine-
tuning runningM on normalized/clipped 𝑓 (·) ensures (𝜖, 𝛿)-SeqLDP.

The proof follows that of GM [23]. The crux is that 𝑆2 (𝑓 ),∀𝑋,𝑋 ′

is given by the output normalization, independent of the inputs.

Privacy Accounting.An epoch refers to an entire transit of the pri-
vate training corpus. Every 𝑋 is used once per epoch. The number

of epochs 𝑘 is a hyperparameter, which is typically small. Repeated

applications of GM over the same 𝑋 ask for estimating the overall

privacy loss due to the composability (unless freezing 𝑓 for re-using

𝑓 (𝑋 ) +𝑍 ). The well-known moments accountant [1] (or its general-

ization to Rényi DP [53]) only provides a loose upper bound, which
is even inapplicable if unbounded moments exist. Gaussian DP [10]

proposes an accountant based on the central limit theorem. Yet, it

leads to significant underestimation by a lower bound. Instead, we
resort to a recent numerical accountant [32], which outperforms

RDP or GDP by approximating the true overall 𝜖 to arbitrary accu-

racy. It composes the privacy curve of a mechanism by truncating

and discretizing PLRVs with their PDFs convoluted by FFT [32].

3.4 DP-Forward with Shuffling versus DP-SGD
DP-Forward ensures SeqLDP for fine-tuning, while DP-SGD offers

central DP (for sequence-label pairs). To facilitate a fair comparison

(on privacy-utility tradeoffs), we make two changes. First, we also

perturb the labels with a suitable mechanism for the standard LDP,

i.e., extending the protection from sequence to sequence-label pairs.

Second, we use shuffling [25] to “translate” our (label-protected)

DP-Forward with LDP to claim (example-level) CDP as DP-SGD.

Discrete Labels Perturbation. For most NLP tasks, e.g., bi-/multi-

nary classification in the GLUE benchmark [69], the size |y| of label
space is often small. A simple yet effective solution for discrete data

is randomized response (RR) [70] proposed decades ago! Specifically,

RR perturbs a true label 𝑦 to itself 𝑦 = 𝑦 with the probability

Pr[𝑦 = 𝑦] = 𝑒𝜖/(𝑒𝜖 + |y| − 1),
or to ∀𝑦 ∈ y \ 𝑦 uniformly, where y denotes the label space.

When |y| is large, we can use prior to “prune” y to smaller y′ [31].
The prior can be publicly available (e.g., auxiliary corpora similar to

the users’ data) or progressively refined from a uniform distribution

via the multi-stage training [31]. One can then estimate an optimal

|y′ | by maximizing the probability that the output is correct, i.e.,
Pr[𝑦 = 𝑦]. With (prior-aided) RR [31], we can achieve full LDP.

Theorem 2. Let 𝑓 (·) be the pre-noise function (of BERT-based
pipelines), M be GM with 𝜖1 ≥ 0, 0 ≤ 𝛿 ≤ 1, and M𝑅𝑅 be (prior-
aided) RR with 𝜖2 ≥ 0. DP-Forward fine-tuning perturbing 𝑓 (𝑋 ) and
𝑦 separately byM andM𝑅𝑅 ensures (𝜖1 + 𝜖2, 𝛿)-LDP.

The proof follows from the basic composition theorem [23].

Privacy Amplification by Shuffling. If noisy embedding-label

pairs are also shuffled properly, DP-Forward can claim example-

level CDP (as in DP-SGD), which “amplifies” LDP guarantees by

Θ(
√
𝑁 ) for a total number of 𝑁 users (without extra noise addi-

tion) [25].We then show that DP-Forward qualitatively outperforms

DP-SGD from the SNR perspective under a similar privacy regime.

Suppose we train for an epoch, and the normalization factor is𝐶 .

For DP-SGD, the batch size is𝑏; the subsampling probability and the

number of training steps are respectively 𝑏/𝑁 and 𝑁 /𝑏. If each step

is (𝜖, 𝛿)-DP, the overall privacy loss is (𝑂 (𝜖
√︁
𝑏/𝑁 ), 𝛿)-DP using the

strong composition and privacy amplification by subsampling [1].

DP-Forward with shuffling can also be seen as composing 𝑁

subsamplings, each a fraction of size 1 [66]. It is (𝑂 (𝜖
√︁
1/𝑁 ), 𝛿)-DP,

which is “amplified” from (𝜖, 𝛿)-LDP. For an easier analysis of SNR,

we omit 𝜖2 of RR since the overall 𝜖 is dominated by composing

subsampled Gaussian. So, our Gaussian noise variance is 𝑏× smaller

than DP-SGD’s in each step; the SNR of each entry in embeddings

vs. the aggregation of 𝑏 gradients can be estimated as 𝑂 (𝐶/
√
𝑛𝑑)

for DP-Forward vs.𝑂 (𝐶/
√
𝑑′) for DP-SGD, where 𝑑′ is the gradient

dimension and is much larger than 𝑛𝑑 , the embedding-matrix size.

3.5 DP-Forward Inference
Given only fine-tuned pipeline parts 𝑓 (·), users can derive the noisy
embedding matrices of their test sequences for inferences at the
service provider while ensuring (𝜖, 𝛿)-LDP. Inference using noise
aligned to the noisy fine-tuning is also beneficial for task accuracy.

Local inference (as in DP-SGD) without noise forces the service

provider to reveal its entire pipeline, losing its intellectual property

and incurring more time and storage costs for both 𝑓 (·) and 𝑝 (·).

Theorem 3. Let 𝑓 (·) be the fine-tuned pre-noise layers (of BERT-
based pipelines) and M be GM with 𝜖 ≥ 0, 0 ≤ 𝛿 ≤ 1. DP-Forward
inference running M on normalized/clipped 𝑓 (·) ensures (𝜖, 𝛿)-LDP.

The proof is inherited from GM [23]. Different from DP-Forward

fine-tuning, LDP holds for test sequences since the labels are absent.

3.6 DP-Forward Pre-training
Directly using the raw BERT might not “match” DP-Forward fine-

tuning/inference, degrading task utility. Pre-training BERT with

DP-Forward on publicly available text (e.g., Wikipedia), besides the

private user-shared data, can make future operations “adaptive” to

noise. It requires us to modify the raw MLM objective in Eq. (1):

𝐿∗
MLM

= −
∑︁
𝑖∈I

log Pr[𝑥𝑖 |M(𝑓 (𝑋 ));𝜃∗],

where 𝜃∗ denotes the parameters of “noisy” BERT. This endows the

noisy BERT with some “de-noising” ability since the objective is to

predict the rawmasked tokens from noisy embeddingsM(𝑓 (𝑋 )). It
does not really breach privacy due to the free post-processing; LDP

is ensured for each sequence, as the pre-training is self-supervised

(without labels). Such noisy pre-training can also be outsourced to

dedicated GPU clusters, enabling “de-noising BERT as a service.”

De-noising as post-processing is not new, but most prior arts

need prior knowledge, e.g., Bayesian prior. aGM formulates it as an

unusual estimation problem since a single noisy output is observed

for each input, which can then be solved by appropriate estimators,

e.g., the Bayesian one [7]. Another attempt [41] trains a separate

noisy auto-encoder, which learns the identity function 𝑓 (𝑋 ) = 𝑋
stacked before an image classification network, to de-noise the noisy

input. It has limited applications for only noisy input embeddings

and incurs extra changes when migrating it to an NLP pipeline.
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4 OPTIMIZING MATRIX GAUSSIAN NOISE
To instantiateM for 𝑓 (·) ∈ R𝑛×𝑑 of DP-Forward, a natural question
is whether the classical GM is optimal. The answer is no. Its privacy

analysis applies a sufficient but not necessary condition for (𝜖, 𝛿)-DP
while using Gaussian tail approximations, and its variance formula

cannot extend to 𝜖 > 1 for a single run (e.g., inference) [23].
Another candidate is the matrix-variate Gaussian (MVG) mecha-

nism [14], tailored for matrix-valued functions. It exploits possibly

non-i.i.d. noise from amatrix Gaussian distribution and outperforms

GM in several usage cases [14]. Yet, it is not optimal either, with the

root cause still being based on a sufficient DP condition (Section 4.1).

To improve it, we resort to a necessary and sufficient condition from

aGM [7] for calibrating the matrix Gaussian noise (Section 4.2).

4.1 Matrix-Variate Gaussian (MVG) Mechanism
In contrast to the classical GM, MVG adopts possibly non-i.i.d. noise
𝑍 ∈ R𝑛×𝑑 drawn from the zero-mean matrix Gaussian distribution

MN𝑛,𝑑 (0, Σ,Ψ), where Σ ∈ R𝑛×𝑛 and Ψ ∈ R𝑑×𝑑 are the row- and

column-wise covariance matrices. Intuitively, it adds less noise to

more “important” rows or columns for possible better utility.

Definition 5 (Matrix Gaussian Distribution). The PDF for an
𝑛 × 𝑑 random variable 𝑍 followingMN𝑛,𝑑 (0, Σ,Ψ) has the form:

Pr (𝑍 |0, Σ,Ψ) =
exp

(
− 1

2
| |𝑈 −1𝑍𝑉 −⊤ | |2

𝐹

)
(2𝜋)𝑛𝑑/2 |Ψ|𝑑/2 |Σ|𝑛/2

, (2)

where 𝑈 ∈ R𝑛×𝑛 and 𝑉 ∈ R𝑑×𝑑 are invertible with Σ = 𝑈𝑈⊤ and
Ψ = 𝑉𝑉⊤, and | · | denotes the matrix determinant [34].

The definition is equivalent to the conventional form given by

the matrix trace. It generalizes the univariate Gaussian used in GM;

𝑍 becomes i.i.d. when Σ,Ψ are diagonal and equal-valued. Below

recites the main theorem of the MVG mechanism for (𝜖, 𝛿)-DP.

Theorem 4 (The MVG Mechanism with (𝜖, 𝛿)-DP [14]). Let

𝜎 (Σ−1) = [𝜎1 (Σ−1), . . . , 𝜎𝑛 (Σ−1)]⊤,
𝜎 (Ψ−1) = [𝜎1 (Ψ−1), . . . , 𝜎𝑑 (Ψ−1)]⊤

be the vectors of (non-increasingly ordered) singular values of Σ−1 and
Ψ−1, respectively. The MVG mechanism using noise from the matrix
Gaussian distributionMN𝑛,𝑑 (0, Σ,Ψ) satisfies (𝜖, 𝛿)-DP if

| |𝜎 (Σ−1) | |2 · | |𝜎 (Ψ−1) | |2 ≤

(
−𝛽 +

√︁
𝛽2 + 8𝛼𝜖

)
2

4𝛼2
,

where 𝛼 = [𝐻𝑟 +𝐻𝑟,1/2]𝛾2 + 2𝐻𝑟𝛾𝑆2 (𝑓 ), 𝛽 = 2(𝑛𝑑)1/4𝐻𝑟𝑆2 (𝑓 )𝜁 (𝛿),
with 𝐻𝑟 (or 𝐻𝑟,1/2) being the generalized harmonic number of order 𝑟
(of 1/2), 𝛾 being supX | |𝑓 (X)| |𝐹 , and 𝜁 (𝛿) = 2

√
−𝑛𝑑 ln𝛿−2 ln𝛿 +𝑛𝑑 .

To illustrate how the MVG mechanism works, we quote an ex-

ample [14]: performing regression using an identity query on a

liver disorders dataset [49] with 6 features and 248 samples (i.e.,
𝑓 ∈ R248×6). MVG treats ‘ALT’ and a teacher label as the two

most indicative features based on some prior, thus added with less

noise [14]. To report the best empirical results, it tries different
precision budget (or noise variance) allocation strategies so that the

total budget (Theorem 4) is not overspent. For example, it evenly

allocates 𝜏 > 50% (a tunable parameter) of the budget to the two

Algorithm 1: 𝐴(𝜖, 𝛿): Derive the Upper Bound B
Input: Privacy parameters 𝜖, 𝛿

Output: B
1 Let 𝛿0 = Φ(0) − 𝑒𝜖Φ(−

√
2𝜖);

2 if 𝛿 ≥ 𝛿0 then
3 Re-write 𝑔+𝜖 (𝑣) = Φ(

√
𝜖𝑣) − 𝑒𝜖Φ(−

√︁
𝜖 (𝑣 + 2);

4 Compute 𝑣∗ = sup{𝑣 ∈ R≥0 : 𝑔+𝜖 (𝑣) = 𝛿};
5 Let 𝛼 =

√︁
1 + 𝑣∗/2 −

√︁
𝑣∗/2;

6 else
7 𝑔−𝜖 (𝑢) = Φ(−

√
𝜖𝑢) − 𝑒𝜖Φ(−

√︁
𝜖 (𝑢 + 2));

8 Compute 𝑢∗ = inf{𝑢 ∈ R≥0 : 𝑔−𝜖 (𝑢) = 𝛿};
9 Let 𝛼 =

√︁
1 + 𝑢∗/2 +

√︁
𝑢∗/2;

10 end
11 Return B =

√
2𝜖/𝛼

important features and the rest to the other four. Compared to GM

using i.i.d. Gaussian noise, MVG can improve root mean square

error (RMSE) by up to 0.003 at the same privacy level [14].

Sub-optimality of MVG. Theorem 4 presents an upper bound on

the product of 𝐿2-norms of two singular-value vectors 𝜎 (Σ−1) and
𝜎 (Ψ−1), assuming | |𝑓 (X)| |𝐹 is bounded for any X by a constant 𝛾 .

The upper bound monotonically decreases with 𝛽 that depends on

𝑛𝑑 and approaches 0 as 𝑛𝑑 → ∞, making the sums of noise vari-

ances large. A similar situation exists in high privacy regimes 𝜖 → 0.

At least two slacks caused the sub-optimality. The first and fore-

most is due to a sufficient condition for (𝜖, 𝛿)-DP [23]: Pr[LM,X,X′ ≥
𝜖] ≤ 𝛿 , which is also used in the classical GM. With the Laurent-

Massart Theorem [40], MVG further transforms it to Pr[LM,X,X′ ≤
𝜖] = 1 for a subset of all the possible outputs. The second lies in a

loose matrix-trace-based privacy analysis; a follow-up [75] derives

a tighter bound from Definition 5 and a matrix-norm inequality.

4.2 Analytic Matrix Gaussian Mechanism
To enhance MVG while still adding possibly non-i.i.d. noise 𝑍 ∼
MN𝑛,𝑑 (0, Σ,Ψ), we put forth the analytic matrix Gaussian mecha-

nism (aMGM) by exploiting a necessary and sufficient condition for

(𝜖, 𝛿)-DP, which is formulated using two PLRVs by the analytic GM

(aGM) [7]. It is non-trivial
7
since we now need to work with two

covariance matrices Σ and Ψ instead of a single variance 𝜎2 in aGM.

Theorem 5 ([7]). A mechanismM is (𝜖, 𝛿)-DP iff, ∀X ≃ X′,

Pr[LM,X,X′ ≥ 𝜖] − 𝑒𝜖 Pr[LM,X′,X ≤ −𝜖] ≤ 𝛿. (3)

It directly implies the sufficient condition due to Pr[LM,X′,X ≤
−𝜖] ≥ 0. We next show that LM,X,X′ or LM,X′,X of aMGM is also

Gaussian, a similar result has been proven in aGM [7, Lemma 3].

Lemma 1. The PLRVs of our aMGM follow a distributionN(𝜂, 2𝜂)
with 𝜂 =

| |𝑈 −1Δ𝑉 −⊤ | |2
𝐹

2
, where Δ = 𝑓 (X) − 𝑓 (X′).

7
A recent pre-print [74] also studied using matrix Gaussian distribution. The proof of

[74, Lemma 4], pivotal for our Theorem 6, is problematic. We prove it in Appendix C.
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With Lemma 1, we can then specialize the left-hand side of Eq. (3).

Particularly, we use the Gaussian cumulative density function (CDF)

Φ(𝑡) = Pr[N (0, 1) ≤ 𝑡] = 1

√
2𝜋

∫ 𝑡

−∞
𝑒−𝑦

2/2𝑑𝑦

to explicitly express the two probabilities (see Lemma 2) instead of

approximating them by the tail bounds of a Gaussian distribution.

Lemma 2. For any X ≃ X′, let Δ′ = 𝑈 −1Δ𝑉 −⊤ with Δ =

𝑓 (X) − 𝑓 (X′). The following holds for any 𝜖 ≥ 0:

Pr[LM,X,X′ ≥ 𝜖] = Φ

(
| |Δ′ | |𝐹

2

− 𝜖

| |Δ′ | |𝐹

)
,

Pr[LM,X′,X ≤ −𝜖] = Φ

(
− ||Δ′ | |𝐹

2

− 𝜖

| |Δ′ | |𝐹

)
.

We can further re-write the left-hand side of Eq. (3) as 𝑔( | |Δ′ | |𝐹 ):

Φ

(
| |Δ′ | |𝐹

2

− 𝜖

| |Δ′ | |𝐹

)
− 𝑒𝜖Φ

(
− ||Δ′ | |𝐹

2

− 𝜖

| |Δ′ | |𝐹

)
, (4)

a function ofΔ and (Σ,Ψ); it is definedw.r.t.Δ and𝜎2 for aGM [7]. To

satisfy Theorem 5, we require 𝑔( | |Δ′ | |𝐹 ) ≤ 𝛿,∀X ≃ X′
. Since 𝑔(·) is

monotonically increasing [7, Lemma 7], we first find the upper bound

B of | |Δ′ | |𝐹 as the “solution” to 𝑔( | |Δ′ | |𝐹 ) = 𝛿 and then determine

𝑈 ,𝑉 (hence Σ,Ψ) based on B and Δ with 𝑆2 (𝑓 ) = supX≃X′ | |Δ| |𝐹 .

4.2.1 Computing the upper bound B. One could derive an analytic

expression forB using the tail bounds of Φ(𝑡), which is sub-optimal

due to the slack in the tail bounds. Instead, we adapt a “numerical

solver,” as detailed in Alg. 1, forB sinceΦ(𝑡) can also be represented
by (1 + erf (𝑡/

√
2))/2, where erf is the standard error function.
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For the first term of Eq. (4), its input | |Δ′ | |𝐹 /2−𝜖/| |Δ′ | |𝐹 changes

sign at | |Δ′ | |𝐹 =
√
2𝜖 , while the other term’s input −||Δ′ | |𝐹 /2 −

𝜖/| |Δ′ | |𝐹 is always negative. Therefore, we only consider | |Δ′ | |𝐹 =√
2𝜖/𝛼 under two cases 0 < 𝛼 ≤ 1 and 𝛼 > 1 for a variable 𝛼 .

When 𝛼 = 1, 𝛿0 = 𝑔(
√
2𝜖) in line 1. If 𝛿 ≥ 𝛿0 (or 0 < 𝛼 ≤ 1), we

can use 𝑣 = (1/𝛼−𝛼)2/2 to re-write 𝑔(·) as 𝑔+𝜖 (𝑣) (line 3). For 𝛼 > 1,

we can use 𝑢 = (𝛼 − 1/𝛼)2/2 to re-write 𝑔(·) as 𝑔−𝜖 (𝑢) (line 7). In
either case, given the “oracle” computing Φ(𝑡) via erf, we derive 𝑢∗
or 𝑣∗ using Newton’s method, recover 𝛼 , and return B =

√
2𝜖/𝛼 .

4.2.2 Determining the covariance matrices Σ = 𝑈𝑈⊤ and Ψ = 𝑉𝑉⊤.
With Lemma 6, and let 𝜎𝑖 (·) be the 𝑖th singular value; we have

| |𝑈 −1Δ𝑉 −⊤ | |2𝐹 ≤
min{𝑛,𝑑 }∑︁
𝑖=1

𝜎2𝑖 (𝑈
−1)𝜎2𝑖 (Δ)𝜎

2

𝑖 (𝑉
−⊤). (5)

Since 𝜎𝑖 (𝑈 −1) = 1/𝜎𝑛−𝑖+1 (𝑈 ) and 𝜎𝑖 (𝑉 −⊤) = 1/𝜎𝑑−𝑖+1 (𝑉 ) with
𝑖 ∈ [1, 𝑟 ], we transform the right-hand side of Eq. (5) to

𝑟∑︁
𝑖=1

𝜎2
𝑖
(Δ)

𝜎2
𝑛−𝑖+1 (𝑈 )𝜎2

𝑑−𝑖+1 (𝑉 )
≤

∑𝑟
𝑖=1 𝜎

2

𝑖
(Δ)

𝜎2𝑛 (𝑈 )𝜎2
𝑑
(𝑉 )

=
| |Δ| |2

𝐹

𝜎2𝑛 (𝑈 )𝜎2
𝑑
(𝑉 )

,

where the inequality follows from Theorem 8, i.e., 𝜎1 (·) ≥ · · · ≥
𝜎𝑟 (·), and the last equality is directly from Lemma 5.

GivenB ≥ ||𝑈 −1Δ𝑉 −⊤ | |𝐹 , it suffices to let | |Δ| |𝐹 /𝜎𝑛 (𝑈 )𝜎𝑑 (𝑉 ) ≤
B with Δ = 𝑓 (X) − 𝑓 (X′),∀X ≃ X′

. Recall that 𝑆2 (𝑓 ) is the upper
bound on | |Δ| |𝐹 ,∀X ≃ X′

, we now reach the main theorem.
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Its efficient implementation to extremely high accuracy is supported in most statistical

and numerical software packages, e.g., Python math library.

Theorem 6. Our aMGM satisfies (𝜖, 𝛿)-DP, iff
𝑆2 (𝑓 )
B ≤ 𝜎𝑛 (𝑈 )𝜎𝑑 (𝑉 ),

where B = 𝐴(𝜖, 𝛿) as in Alg. 1, 𝑆2 (𝑓 ) is the 𝐿2-sensitivity, 𝜎𝑛 (𝑈 ) and
𝜎𝑑 (𝑉 ) are respectively the smallest singular values of𝑈 and 𝑉 .

Theorem 6 only constrains the lower bound on the product of

𝜎𝑛 (𝑈 ) and 𝜎𝑑 (𝑉 ), the two smallest singular values; it offers infinite
choices for all the others with the design space for (Σ,Ψ) even larger
than that ofMVG (Theorem 4).More importantly, the lower bound is

independent of 𝑛𝑑 , which can lead to orders-of-magnitude variance

reduction than MVG, confirmed by our experiments in Section 5.

For 𝜖 → 0, we can still derive a valid B from 2Φ−1 ((1 + 𝛿)/2).
To determine Σ,Ψ, another implicit constraint is to keep smaller

noise for better utility. Let us first consider Σ = 𝑈𝑈⊤
. Since it is

positive definite, we can also decompose it into𝑊ΣΛΣ𝑊
⊤
Σ ; we then

have𝑈 =𝑊ΣΛ
1/2
Σ , where Λ

1/2
Σ = {𝜎𝑖 (𝑈 )}𝑛

𝑖=1
specifies the row-wise

noise magnitudes. Assuming that the smallest overall noise will

yield the best utility, we let all the singular values be the smallest:

𝜎1 (𝑈 ) = · · · = 𝜎𝑛 (𝑈 ). As𝑊Σ can be any unitary matrix, we simply

use the standard basis, resulting in 𝑈 = 𝜎𝑛 (𝑈 ) · 𝐼𝑛 for an 𝑛 × 𝑛
identity matrix 𝐼𝑛 and hence the final Σ. Similarly, we can pick

Ψ = 𝑉𝑉⊤
with 𝑉 = 𝜎𝑑 (𝑉 ) · 𝐼𝑑 , where 𝐼𝑑 is a 𝑑 × 𝑑 identity matrix.

4.2.3 Drawing the noise 𝑍 . With Σ and Ψ, the last step is to draw 𝑍 .
Pragmatically, we adopt the affine transformation below.

Lemma 3 ([14]). Let 𝑍 ′ ∈ R𝑛×𝑑 be a random variable with
each entry i.i.d. drawn from the standard normal distribution. The
transformed 𝑍 = 𝑈𝑍 ′𝑉⊤ followsMN𝑛,𝑑 (0,𝑈𝑈⊤,𝑉𝑉⊤).

Hence, we can first sample𝑛𝑑 i.i.d. values fromN(0, 1) to form𝑍 ′
,

then employ the transformation𝑈𝑍 ′𝑉⊤
such that

𝑍 ∼ 𝑆2 (𝑓 )
B MN𝑛,𝑑 (0, 𝐼𝑛, 𝐼𝑑 ). (6)

Discussion. When instantiating DP-Forward using aMGM, we set

𝜎1 (𝑈 ) = · · · = 𝜎𝑛 (𝑈 ) and 𝜎1 (𝑉 ) = · · · = 𝜎𝑑 (𝑉 ) such that the row-

and column-wise noises are the smallest, and our pilot experiments

show this yields optimal task utility; aMGM actually “degenerates”

to aGM with i.i.d. noise. Nevertheless, aMGM also allows non-i.i.d.

noise like MVG: By tuning the corresponding singular values larger,

we can add more noise to the rows/columns that negatively impact

the utility. It might be helpful when 𝑓 (·) (e.g., linear regression on

a small liver dataset [14]) is simple or 𝑝 (·) does not “mix up” noisy

rows/columns. In contrast to our empirical approach (like MVG),

one could theoretically formulate the allocation of singular values

as optimization problems that maximize different utility functions

tailored to applications. It might outperform our uniform treatment

but takes more dedicated efforts, which we leave as future work.

5 EXPERIMENTS
5.1 Experimental Setup
We use three typical datasets/tasks that are widely used in NLP/DP

literature [45, 78–80] and GLUE benchmark [69]: i) Stanford senti-

ment treebank (SST-2), ii) Internet movie database (IMDb) [47] for

binary sentiment classification of single- and multi-sentence movie
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Figure 2: SST-2 accuracy when tuning 𝑛 with noise added at different positions (𝜖 = 16 for SeqLDP)
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Figure 3: SST-2 accuracy with noise added to the outputs of different sub-layers in six encoders (𝜖 = 16 for SeqLDP)

Table 2: Statistics of the downstream task datasets

SST-2 [69] IMDb [47] QQP [69]

#train samples 67, 349 25, 000 363, 846

#test samples 872 25, 000 40, 320

reviews, and iii) Quora question pairs (QQP) for semantic equiva-

lence test over question pairs on Quora.com. Their test sets do not

have any labels; we use the original dev sets as the test sets. Table 2

summarizes their characteristics. They all carry privacy risks; e.g.,
stylistic features of posts may leak the author’s identity. We use

task accuracy (w.r.t. the ground truth labels) as the utility metric.

Baselines.We instantiate M in DP-Forward by the classical GM,

MVG [14], and aMGM. If not specified, all the results are based on

aMGM. For MVG, we adopt its unimodal type, applicable to asym-

metric functions like pre-noise layers 𝑓 (·). Specifically, we make

the row-wise noise directional and assign the same precision budget

to each row, assuming that tokens share the same importance.

By default, we report the accuracy of DP-Forward inferences on

tasks fine-tuned using DP-Forward (with ∼2pp gains compared to

the case of “DP-Forward fine-tuning + non-private inference”). We

also realize DP-SGD fine-tuning with the latest Opacus [77] but do

not add any noise to its inference. Another baseline is non-private

(in both fine-tuning and inference).

Implementation.We run experiments on a cluster with Tesla P100

GPUs. We implement all the mechanisms and baselines in Python.

We use a raw BERT checkpoint bert-base-uncased [27], available
in theHuggingface transformers library, for fine-tuning (Section 3.3)

or further pre-train it over WikiCorpus (Section 3.6).

For the hyperparameters used throughout our experiments, we

set the number of training epochs 𝑘 = 3, learning rate 𝜂 = 2e−5,
batch size 𝑏 = 32, and normalization/clipping factor 𝐶 = 1. We

keep others (e.g., no weight decay, no learning rate decay) default

as literature [69]. The privacy parameter 𝛿 is fixed as 1e−5 [78].

Table 3: SST-2 accuracy with different 𝑑 and 𝜖 for SeqLDP

𝑑

𝜖
2 4 8 12 16

16 0.6801 0.7851 0.8833 0.9232 0.9266

64 0.6766 0.7752 0.8727 0.9037 0.9209

128 0.6732 0.7856 0.8807 0.9128 0.9232

256 0.6835 0.7695 0.8965 0.9186 0.9249
512 0.6411 0.7626 0.8831 0.9128 0.9243

768 0.6686 0.7741 0.8739 0.9128 0.9186

5.2 Configuring Matrix Dimensions
The sequence length 𝑛 is variable. While the hidden dimensionality

𝑑 is tied as 768 for BERT-Base, we can resort to two linear maps

for “mediating” it (see Section 3.2). Since we normalize embedding

matrices of size 𝑛 × 𝑑 to have a fixed norm 𝐶 , each entry’s signal

magnitude relies on (𝑛,𝑑). In contrast, the noise variance is the

same given 𝐶 and fixed privacy parameters. The signal-to-noise

ratios (SNRs) affecting accuracy can be configured based on (𝑛,𝑑).
Figure 2 shows the evaluation accuracy of SST-2 fine-tuned using

DP-Forward with 𝑛 tuning from 16 to 256. We study adding aMGM

noise at five hidden layers’ outputs. The results indicate that the best

accuracy is often achieved at 𝑛 = 64 or 128, so we opt for 𝑛 = 128

(which is sufficient for most sequences) in subsequent experiments.

We fine-tuned SST-2 on noisy output embeddings under different

choices of 𝜖 and reduced𝑑 . Table 3 summarizes the results. Reducing

𝑑 leads to larger SNRs (under fixed𝐶 and 𝑛) but may also lose useful

information, degrading accuracy. For the same 𝜖 , most accuracy

variations are within 2pp under different choices of 𝑑 . Balancing

everything, we use the raw 𝑑 = 768 in later experiments such that

no extra changes (including two linear maps) are made to pipelines.

5.3 Fine-tuning with Sequence LDP
Our approach also supports perturbing sub-layer outputs during
fine-tuning. We study six encoders as an example, with the results
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Table 4: Accuracy on output embeddings under SeqLDP

Task Mech. 𝜖 = 0.5 𝜖 = 1 𝜖 = 2 𝜖 = 4 𝜖 = 8

SST-2

GM 0.5424 0.5757 0.6537 0.7466 0.8624

aMGM 0.5516 0.6021 0.6686 0.7741 0.8739
MVG ∼0.5

IMDb

GM 0.5244 0.5498 0.6016 0.6902 0.8002

aMGM 0.5353 0.5676 0.6224 0.7093 0.8109
MVG ∼0.5

QQP

GM 0.6304 0.6321 0.6571 0.7458 0.8638

aMGM 0.6312 0.6348 0.6747 0.7685 0.8653
MVG ∼0.5

shown in Figure 3. Overall, DP-Forward performs better with deeper

encoders since fewer parameters are directly affected by noise

during fine-tuning. Another observation is that perturbing different

sub-layer outputs, even inside the same encoder, may result in huge

accuracy variation; e.g., using noisy outputs of the last sub-layer in

Encoder 1 can bring ∼20pp gains over those of the first sub-layer.

We next evaluate the privacy-accuracy tradeoffs under different 𝜖

and compare the instantiations using the classical GM, MVG [14],

and aMGM. Note that we still compute the GM variance as 𝜎2 =

2 ln(1.25/𝛿)𝑆2
2
(𝑓 )/𝜖2 for empirical evaluation, albeit it cannot ex-

tend to 𝜖 > 1 for a single run to ensure theoretical DP guarantees.

For the GM- and aMGM-based instantiations, Table 4 shows all

three tasks’ accuracy increases with 𝜖 . Ours has better accuracy

than the GM-based one due to the smaller noise produced by aMGM

in all choices of 𝜖 . Although the noise variance gap (between GM

and aMGM) widens as 𝜖 decreases, one cannot fine-tune effective

models in a high privacy regime 𝜖 < 1. TheMVG-based one behaves

like random guessing for all three tasks since its noise variance is

proportional to 𝑛 · 𝑑 , which is even much larger than the classical

GM for high-dimensional settings (see Section 4.1). For instance,

under the same parameter setting (e.g., 𝑛 = 128, 𝑑 = 768, and 𝜖 = 8),

MVG produces noise with the variance orders-of-magnitude larger

than aMGM (e.g., >108 vs. ∼0.6), even assuming sup | |𝑓 (·) | |𝐹 = 1.

We remark that the used local 𝜖 value is not large. Most classi-

cal LDP works that deem such 𝜖 lies in a low privacy regime are

for statistical analytics. In great contrast, we aim at fine-tuning

large LM-based pipelines with high-dimensional signals and lim-

ited training data, which is much more complicated. Many prior

works [28, 29, 58, 80] use a larger 𝜖 to ensure even a weaker token-

level LDP variant, while others [51] categorizes 𝜖 < 10 and 10 ≤ 𝜖 <

20 as strong and moderate privacy respectively
9
for sequence-level

LDP like ours. More importantly, they provide effective protection

against various privacy threats, as detailed in Section 6.

5.4 DP-Forward versus DP-SGD
Fairness of comparisons on privacy-accuracy tradeoffs. As elaborated
in Section 3.4, we can adopt RR [70] to perturb the labels and then

report central 𝜖 values for DP-Forward, amplified by shuffling using

the following parameters, ensuring that comparisons are fair under

9
Such choices can be “reduced” to smaller ones under the shuffling model (Section 5.4),

cf.. U.S. census discloses demographic data at central 𝜖 = 11.14 [3].

(example-level) CDP. For DP-SGD, the subsampling probability is

𝑏/𝑁 , with 𝑏 = 32 and the dataset size 𝑁 ; the number of fine-tuning

steps is 𝑇 = 𝑘 · 𝑁 /𝑏 with 𝑘 = 3. For DP-Forward, the subsampling

and non-flipping probabilities are respectively 1/𝑁 (with𝑇 = 𝑘 ·𝑁 )

and 0.9; we still process 𝑏 noisy embeddings as a batch. For both, we

use aGM [7], the degenerated version of aMGM (Section 4.2), and

the same accountant [32] to report approximated overall 𝜖 values10.

We study eight instances of DP-Forward, including perturbing

the outputs of the input embedding layer, six different encoders, and

BERT. Their accuracies on all three tasks under three privacy levels,

plus those of DP-SGD and the non-private baseline, are shown in

Table 5. About half or more of our instances have better accuracy

than DP-SGD for each task; the largest accuracy gain is ∼7.7pp for

QQP. The noisy output embeddings often lead to the best accuracy

for all tasks, even comparable to the non-private baseline, due to

the dimension reduction at the last encoder output (Section 2.1).

Recent DP-SGD variants [78, 79] improve DP-SGD [1] by perturb-

ing partial gradient entries using additional tricks (e.g., low-rank
adaption). They report the best accuracy of 92.5% and 85.7% on

SST-2 and QQP, respectively, with 2.3pp and 6.2pp drops from the

non-private baselines at central 𝜖 = 6.7 [78, Table 4]. DP-Forward

with label privacy, incurring <1.7pp accuracy drops on the two

tasks at 𝜖 ≈ 3, can still beat them, albeit their fine-tuning is based

on RoBERTa-base, a robustly optimized BERT approach, which by

itself outperforms BERT due to larger training set, longer training

time, and better techniques (e.g., dynamic masking in MLM).

Figure 4 shows the efficiency comparisons on fine-tuning SST-2.

The time and storage overheads of our approach (for all possible

instances) are almost the same as the non-private baseline and ∼3×
smaller than DP-SGD. It is because we allow batch processing as in

the normal fine-tuning – no need to handle per-example gradients.

Meanwhile, our normalization and noise sampling/addition are also

faster since the size of embeddings is smaller than that of gradients.

5.5 Noisy Pre-training
Pre-training BERT using DP-Forward, aligned with the noisy fine-

tuning, does help accuracy. We use SST-2 as an example and perturb

the input embedding matrices. We continue pre-training BERT over

English WikiCorpus, the 2006 dump with about 600Mwords, for an

epoch. Table 6 shows that we can obtain 1−2pp accuracy gains for

most choices of 𝜖 , compared to fine-tuning on the original BERT.

Efficiency-wise, DP-Forward pre-training also consumes much

fewer resources; e.g., an existing work [5] pre-trains BERT-Large

(with 340million parameters) usingDP-SGDonGoogle TPUs, which

requires sufficient memory for handling batch sizes of millions.

6 DEFENSE AGAINST PRIVACY THREATS
Following the recent taxonomy [64], we study MIAs and two new

threats of sequence leakage from their embeddings: embedding

inversion and attribute inference. We moderately adapt them to

suit our context, e.g., upgrading MIAs [64] to sequence-level.

10
They are dominated by composing subsampled Gaussian, e.g., composing subsampled

RR only consumes 0.03 for SST-2, which is even overestimated by AutoDP.
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Table 5: Accuracy of task models fine-tuned using DP-Forward and DP-SGD under (example-level) CDP

Method

Noise

position

SST2 IMDb QQP

𝜖 ≈ 1 𝜖 ≈ 3 𝜖 ≈ 8 𝜖 ≈ 1 𝜖 ≈ 3 𝜖 ≈ 8 𝜖 ≈ 1 𝜖 ≈ 3 𝜖 ≈ 8

DP-Forward

Embedding 0.6055 0.6146 0.6278 0.5 0.5 0.5 0.6534 0.6589 0.6594

Encoder 1 0.7971 0.8096 0.8073 0.5000 0.5016 0.5022 0.7857 0.7885 0.7906

Encoder 3 0.8096 0.8394 0.8463 0.7525 0.7545 0.7549 0.8513 0.8585 0.8607
Encoder 5 0.8544 0.8658 0.8716 0.7642 0.7709 0.7719 0.8698 0.8765 0.8806
Encoder 7 0.8624 0.8819 0.8872 0.7765 0.7883 0.7924 0.8840 0.8887 0.8926
Encoder 9 0.8945 0.8979 0.9002 0.7995 0.8105 0.8181 0.8895 0.8941 0.8955
Encoder 11 0.8819 0.8968 0.8985 0.8042 0.8187 0.8265 0.8952 0.8997 0.9007
Output 0.8865 0.9009 0.9055 0.8096 0.8160 0.8270 0.8987 0.8994 0.9038

DP-SGD Gradient 0.8650 0.8713 0.8759 0.7779 0.7826 0.7903 0.8219 0.8345 0.8433

Non-private baseline 0.9178 0.8378 0.9019
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Figure 4: Efficiency comparison for the case of SST-2

Table 6: SST-2 accuracy gain with pre-training under SeqLDP

𝜖 Raw BERT Noisy BERT Δacc

2 0.5501 0.5665 0.0164

4 0.5950 0.5999 0.0049

8 0.6550 0.6708 0.0158

16 0.7345 0.7450 0.0105

6.1 Threat Models
For MIAs, we follow prior arts [63, 64, 76] to consider an adver-

sary with only black-box access to an entire (DP-SGD/DP-Forward-
trained) pipeline: It can query the prediction results (e.g., each-class
probability) of target sequences but cannot access the pipeline

weights and architecture; the hidden embeddings are not revealed.

Despite “different” objectives of inverting or inferring (Section 6.3

or 6.4) from embeddings, we consider both threats involving a gen-

eral adversary with black-box access to the trained pipeline part 𝑓 ().
It can get the inference-time (clear/noisy) embeddings of target se-
quences [64]. Besides public prior knowledge, it can collect a limited
auxiliary dataset Xaux, sharing similar attributes to the targets [64].

DP-SGD only offers CDP for training data and does not protect

inference-time input.
11

What follows intends to empirically con-

firm a major merit of DP-Forward in protecting against stronger

adversaries and threats to both training- and inference-time inputs.

11
One might add the same noise to it as DP-Forward inference, which indeed mitigates

the new threats. However, perturbing gradients in training, inherently “mismatches”

from perturbing embeddings in inference, deteriorating task performance significantly,

e.g., SST-2 accuracy will be reduced to 0.7786 (with a ∼10pp drop) at central 𝜖 ≈ 8.

6.2 Membership Inference Attacks

Attack Objective.MIAs predict whether a data point is in the train-

ing set [63]. They often exploit the disparity in model behavior be-

tween training data and unseen data, i.e., poor model generalization

due to overfitting [76]. Inferring membership at the token/word

level, e.g., a sliding window of tokens [64], is not interesting. We

consider more realistic MIAs on entire sequences, which can be

extended for more devastating attacks, such as extracting verbatim

pre-training sequences via black-box access to GPT-2 [13].

Prior arts [65, 76] suggest that threshold-based MIAs using only

prediction confidence [76] or entropy [65] with proper assumptions

are comparable to the more sophisticated one [63] based on shadow

training. Adapting the confidence-basedMIA to our context exploits

that a pipeline is fine-tuned by minimizing its prediction loss: The

confidence/probability of predicting a training sequence as its true

label should be close to 1. The adversary can then infer a candidate

sequence 𝑋 ∗
as a member when the confidence for the predicted

label 𝑙 output by pipeline F is larger than a pre-set threshold 𝜏 :

1{Pr[F (𝑋 ∗) = 𝑙] ≥ 𝜏},

where 1{·} is the indicator function. We simply use a fixed 𝜏 for all

possible labels in our evaluation, albeit it can be label-dependent.

The second MIA we use is based on the prediction output (i.e., a
vector of probabilities) of a training sequence tends to be a one-hot

vector, i.e., its entropy should be close to 0. Similarly, the adversary

can infer 𝑋 ∗
as a member when its prediction entropy falls below a

preset threshold 𝜏 ; otherwise, it is not deemed a member:

1{−
∑︁
𝑖

Pr[F (𝑋 ∗) = 𝑙𝑖 ] log(Pr[F (𝑋 ∗) = 𝑙𝑖 ]) ≤ 𝜏},

for all possible labels {𝑙𝑖 }. Note that a totally wrong prediction with

probability ∼1 also leads to entropy approaching 0. We can address

it by encoding the information of the ground-truth label of 𝑋 ∗
[65].

Numerical Results. As in [79], all the test examples and a random

subset of the training examples (as many as the test ones) are evenly

split into two subsets (each has half of the training/test examples),

one for finding the optimal 𝜏 , and the other for reporting the attack

success rates. Given that the training and test examples likely share

the same distribution, we randomly drop/replace tokens in the test

examples to enlarge the prediction difference to make MIAs easier.
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Table 7: Success rates of two MIAs with (translated) central 𝜖

𝜖 Method

Attack Success Rate

Entropy Confidence

∞ Non-private baseline 0.659 0.645

1

DP-SGD 0.567 0.561

DP-Forward (Embedding) 0.586 0.576

DP-Forward (Encoder 1) 0.535 0.537

DP-Forward (Encoder 7) 0.494 0.506
DP-Forward (Encoder 11) 0.506 0.494
DP-Forward (Output) 0.508 0.502

3

DP-SGD 0.584 0.576

DP-Forward (Embedding) 0.584 0.576

DP-Forward (Encoder 1) 0.543 0.530

DP-Forward (Encoder 7) 0.510 0.507
DP-Forward (Encoder 11) 0.512 0.500
DP-Forward (Output) 0.503 0.499

8

DP-SGD 0.580 0.580

DP-Forward (Embedding) 0.597 0.576

DP-Forward (Encoder 1) 0.510 0.536

DP-Forward (Encoder 7) 0.510 0.504
DP-Forward (Encoder 11) 0.520 0.513
DP-Forward (Output) 0.506 0.490

We evaluated the adapted confidence- and entropy-based MIAs

on SST-2 fine-tuned by the non-private baseline, DP-Forward, and

DP-SGD. For DP-Forward, we investigate five instances, perturbing

input embeddings, three encoders’ outputs, and output embeddings.

Table 7 presents the results, where success rates within 0.49–0.51

are shown in bold. Both DP-Forward and DP-SGD can mitigate

MIAs effectively. For all choices of 𝜖 , the two MIAs’ success rates on

DP-Forward are reduced to ∼0.5 (like random guessing) for deeper

layers, outperforming DP-SGD by >6pp at the same privacy level.

6.3 Embedding Inversion Attacks
Attack Objective. These attacks aim at recovering the raw text as

(unordered) tokens {𝑥𝑖 }𝑖∈[𝑛] ⊆ 𝑋 from embeddings, highlighting

the risk of directly sharing (without noise) even only text embed-

dings (for training/inference). They have been employed to recon-

struct specific patterns, e.g., identity codes and gene segments [56].

We first propose a simple token-wise inversion attack to invert

(noisy) token embeddings output by the input embedding layer 𝜙 (·)
that maps every token inV to R𝑑 [73]. It can be formulated as:

∀𝑖 ∈ [𝑛] : min

𝑥∗
𝑖
∈V

| |𝜙 (𝑥∗𝑖 ) − (𝜙 (𝑥𝑖 ) + 𝑧𝑖 ) | |2,

where 𝑧𝑖 is the 𝑖
th

row of noise 𝑍 from M (omitted for DP-SGD or

the non-private baseline). It returns 𝑥∗
𝑖
with its embedding closest

to the observed one of 𝑥𝑖 via a nearest-neighbor search overV .

A token’s hidden embedding from deeper layers encodes more

“abstract” contextual information of the entire sequence it belongs

to; the token-wise inversion may be less accurate. We thus require

a more general attack [64]. It first maps the observed (noisy) embed-

ding back to a lower-layer one using a linear least square model𝑀

and then selects𝑛 tokens as𝑋 ∗
to minimize the 𝐿2-distance between

Table 8: Success rates of two inversion attacks on (the lowest-
layer) input embeddings with (translated) central 𝜖 ≈ 8

Nearest Neighbor Gradient-based

SST-2 IMDb QQP SST-2 IMDb QQP

Non-private 1 1 1 1 1 1

DP-SGD 1 1 1 .9991 .9982 1

DP-Forward .1811 .1420 .2457 .1622 .1241 .2226

Table 9: Success rates of a (neural-network-based) sensitive
attribute inference attack with (translated) central 𝜖 ≈ 8

action comedy drama horror Overall

Non-private 0.727 0.858 0.516 0.439 0.687

DP-SGD 0.664 0.733 0.253 0.324 0.536

DP-Forward (Embedding) 0.998 0 0 0.009 0.276
DP-Forward (Encoder 1) 1.0 0 0 0 0.276
DP-Forward (Encoder 7) 1.0 0 0 0 0.276
DP-Forward (Encoder 11) 1.0 0 0 0 0.276
DP-Forward (Output) 0.998 0 0 0.009 0.276

the lower-layer representation of 𝑋 ∗
and the one from𝑀 :

min

𝑋 ∗∈V𝑛
| |𝜁 (𝑋 ∗) −𝑀 (𝑓 (𝑋 ) + 𝑍 ) | |2,

where 𝜁 (·) is a lower-layer representation function than 𝑓 (·).
The above minimization is over |V|𝑛 , larger than the token-wise

candidate space. To determine 𝑋 ∗
, we first relax the token selection

at each position 𝑖 ∈ [𝑛] using a continuous vector in R |V |
, which

is then input (with another temperature parameter) to a softmax

function to model the probabilities of selecting each token inV . We

further derive the token embedding 𝑥∗
𝑖
by multiplying the relaxed

vector (with each entry as a weight) and the original embedding

matrix. Finally, we solve it by a gradient-based method [64].

Numerical Results. The gradient-based attack reports the highest
recall (or precision) on inverting the lowest-layer (clear) embed-

dings [64, Figure 2]. To show that DP-Forward can mitigate such

“strongest” inversion, we implement both (nearest-neighbor and

gradient-based) attacks to invert input embeddings, with the public

BERT embedding lookup table as prior. We also report their success

rates as recall – the ratios of correct recoveries over the raw targets.

Table 8 shows that DP-Forward can reduce their success rates to

a relatively low level, most are within 0.2. However, DP-SGD fails

in defense. The results corroborate our claim: DP-Forward directly

adds noise to embeddings, thus mitigating embedding inversion,

whereas DP-SGD only perturbs gradients, offering no protection

for the (clear) inference-time embeddings of test sequences.

6.4 Sensitive Attribute Inference Attacks
Attack Objective. Instead of recovering exact tokens, one can try

to infer sensitive attributes about target sequences from their em-

beddings. The attributes are often statistically unrelated to the train-

ing/inference objective but inherent in sequences, e.g., stylometry,

implying the text’s authorship for sentiment analysis [62]. We are

not interested in any global property of an entire corpus [30].
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We assume Xaux has sequences labeled with sensitive attributes.

The adversary can query 𝑓 (·) for the noisy (or clear) embeddings:

Xaux = {(𝑓 (𝑋𝑖 ) + 𝑍𝑖 , 𝑠𝑖 )}, ∀𝑠𝑖 ∈ S,
where S is the set of all possible sensitive attributes of interest, say,

authorship. It does not care about non-sensitive attributes.

To infer sensitive attributes, the adversary first trains a classifier

on Xaux via supervised learning and then uses it for an observed

noisy (or clear) embedding 𝑓 (𝑋 ∗) + 𝑍 to predict 𝑠∗ ∈ S of 𝑋 ∗
.

Numerical Results. We train a three-layer neural network with a

linear head as the classifier to infer the film genre (e.g., ‘horror’) as a
sensitive attribute from a movie review using its output embedding.

We employ IMDb with 20k examples (90% for training and 10% for

validation) asXaux, and SST-2 contributes 3.3k examples for testing

the classifier. The attack success rates are measured using recall.
We investigate five DP-Forward instances. Table 9 shows that

they “reduce” the classifier to majority-class prediction, which re-

turns the majority class (‘action’) on all inputs. In contrast, DP-SGD

only reduces success rates moderately compared to the non-private

baseline. It is because the embeddings from DP-SGD-trained/noisy

models still “lose” some useful information (cf., accuracy drops of

DP-SGD inference on embeddings without noise). The results con-

firm DP-Forward is more effective in thwarting attribute inference.

7 RELATEDWORK
7.1 Privacy Threats on LMs and Embeddings
An active line of research [8, 13, 56, 64] discloses severe privacy risks

in modern LMs (even used as black-box query “oracles”) concerning

their (hidden/output) text embeddings. Song and Raghunathan [64]

build a taxonomy of attacks that covers a broader scope than a par-

allel work [56]. These attacks include embedding inversion (which

can partially recover raw texts), membership inference (establishing

the is-in relation between a target and private training data), and

inferring sensitive attributes like text authorship from embeddings.

A common defense for them is adversarial training, e.g., [24].
Others [8, 13] study the “memorization” of training data in LMs

(a.k.a. membership inference attack). In particular, Carlini et al. [13]
define 𝑘-eidetic memorization, where a string is extractable or mem-

orized if it appears in at most 𝑘 examples. Their black-box attacks

on GPT-2 [59] can extract verbatim training texts even when 𝑘 = 1

(e.g., a name that only appears once is still extractable). A smaller 𝑘

means a higher privacy risk. Beguelin et al. [8] define differen-

tial score and rank as two new metrics for analyzing the update

leakage, enabling the recovery of new text used to update LMs.

Incorporating DP to address memorization is a promising solution.

7.2 Input (Text/Feature) Perturbation for LDP
SynTF [71] synthesizes term-frequency (feature) vectors under LDP,

which have limited applications compared to sentence embeddings

or text itself. Feyisetan et al. [28, 29] resort to metric-LDP [4], a

relaxed variant of LDP with a distance metric (e.g., Euclidean or

Hyperbolic), which allows the indistinguishability of outputs to

grow proportionally to the inputs’ distance. They first add noise

to the outputs of a non-contextualized token embedding model

(e.g., GLoVe [57]), which are then projected back to “sanitized” text

using the nearest neighbor search as post-processing. In contrast,

Yue et al. [80] sanitize text by directly sampling token-wise replace-

ments, avoiding adding noise to high-dimensional embeddings. All

these works only achieve (variants of) token-level metric-LDP.

To offer sequence-level protection, recent studies [46, 51] apply
Laplace or exponential mechanism to perturb (the average of) sen-

tence embeddings extracted by an LM (e.g., BERT [20]). Both ensure

pure LDP (homogeneously protecting any entire sequence), which

may be too stringent and impact utility. In contrast, heterogeneous

protection [28, 80] can strategically manage the privacy demands

across inputs. Du et al. [21] achieve metric-LDP (by Purkayastha

and planar Laplace mechanisms) at the sequence level (unlike token-

level in prior arts [28, 80]). To further boost the utility, they mitigate

the dimensional curse via a random-projection-like approach. They

also perturb sensitive sequence labels for enhanced privacy. Never-

theless, perturbing different hidden (rather than token or sentence)

embeddings inside LM-based NLP pipelines remains unexplored.

7.3 DP-SGD (Variants) in Training LMs
An early attempt [50] uses DP-SGD to train long short-term mem-

ory LMs in the federated learning setting. By configuring hyperpa-

rameters properly (e.g., setting the batch size to millions), one can

even pre-train BERT-Large, an LM with ∼340M parameters, using

DP-SGD/Adam while achieving acceptable (MLM) accuracy [5].

Using the vanilla DP-SGD in pre-training/fine-tuning large LMs

leads to significant efficiency and accuracy drops due to the “curse

of dimensionality.” Yu et al. [79] propose reparametrized gradient

perturbation: It first reparameterizes/decomposes each high-rank

weight matrix into two low-rank (gradient-carrier) ones with a

residual matrix and then only perturbs the two low-rank gradients

to alleviate the dimensional curse. The noisy low-rank gradients

are finally projected back to update the raw high-rank weights.

Applying reparameterization to every weight in each update is

still costly andmay introduce instability (e.g., noises are “zoomed up”

during the projection). Instead, the follow-up [78] builds atop the

recent success of parameter-efficient fine-tuning (e.g., LoRA [36],

Adapter [35], and Compacter [48]): It perturbs the gradients of a

much smaller number of additional “plug-in” parameters. However,

Li et al. [45] empirically show that parameter-efficient fine-tuning is

not necessarily better than the full one; they propose ghost clipping,

a memory-saving technique (“orthogonal” to dimension reduction),

to use DP-SGD in full fine-tuningwithout instantiating per-example

gradients. Despite efficiency/accuracy gains, all these works still

only protect training data by perturbing (smaller) gradients.

7.4 DP Mechanisms for Matrix Functions
Gaussian and Laplace mechanisms are typically for scalar-/vector-

valued functions [23]. Vectorizing the outputs and adding i.i.d. noise

could generalize them for matrix-valued functions, but the struc-

tural information of matrix functions is not exploited. The MVG

mechanism [14] is thus devised, which draws directional or non-

i.i.d. noise from a matrix Gaussian distribution. It injects less noise

into more “informative” output directions for better utility, with

only a constraint on the sum of the singular values (determining

the noise magnitude) of two covariance matrices. Such a constraint

is only a sufficient condition for (𝜖, 𝛿)-DP, which is improved by

the follow-up [75] with a tighter bound on the singular values.
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There also existmechanisms dedicated to restrictedmatrix-valued

functions. The matrix mechanism [43] considers a collection of lin-

ear counting queries represented by𝑊𝑥 for query matrix𝑊 and

input vector 𝑥 . It still resorts to additive Laplace/Gaussian noise

but with an extra transformation solving the min-variance estima-

tion to the noisy𝑊𝑥 . Another very recent study [37] focuses on

matrix-valued queries with only binary (matrix) outputs. It then

devises an exclusive-or (xor) mechanism xor-ing the outputs with

noise attributed to a matrix-valued Bernoulli distribution.

8 CONCLUSION
Pre-trained LMs became pivotal in NLP. Alarmingly, fine-tuning

corpora or inference-time inputs face various privacy attacks. The

popular DP-SGD only provides limited protection for training data

by adding noise to gradients. Raw tokens or sensitive attributes of

training/inference data can be inverted or inferred from embeddings

in forward-pass computation. Vanilla DP-SGD also imposes high

GPU memory and computational burdens but cannot be batched.

We propose DP-Forward, which directly adds noise to embed-

ding matrices derived from the raw training/inference data in the

forward pass. Its core is the analytic matrix Gaussian mechanism,

a general-purpose tool that owns independent interests. It draws

optimal matrix-valued noise from a matrix Gaussian distribution in

a dedicated way using a necessary and sufficient condition for DP.

Perturbing embeddings at various positions across multiple lay-

ers yields at least two benefits. DP-Forward users are only required

to download pipeline parts for deriving noisy embeddings, which

is more storage- and time-efficient than deriving noisy gradients.

Together with our prior attempts [21, 80] at sanitizing input text

tokens and output sentence embeddings, we provide a full suite of

forward-pass signal sanitization options for users only to share their

sanitized data for LM-as-a-Service APIs while protecting privacy.

Beyond the theoretical contribution of two local DP notions

and the experimental comparisons with baselines (e.g., GM, MVG,

and DP-SGD) across three typical NLP tasks, we investigate the

hyperparameter configuration for reproducible validations of DP-

Forward’s potential in terms of efficiency, accuracy, and its ability

to withstand diverse against diverse attacks.

Altogether, our new perspective leads to a better approach to

privacy-aware deep neural network training, challenging the tradi-

tional wisdom focusing on gradients. As a new paradigm for local

DP in fine-tuning and inference, our work paves the way for a myr-

iad of possibilities for new machine-learning privacy research [54],

e.g., generalization to transformer-based computer vision tasks.
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A TOKEN-LEVEL DP-FORWARD
A.1 Definition and Related Notions

Definition 6 (Token-level SeqLDP). For 𝜖 ≥ 0, 0 ≤ 𝛿 ≤ 1,M
fulfills token-level (𝜖, 𝛿)-SeqLDP, if ∀𝑋 ≃ 𝑋 ′ that differ in any single
token but with the same 𝑦, and any possible output subset O,

Pr[M(𝑋,𝑦) ∈ O] ≤ 𝑒𝜖 Pr[M(𝑋 ′, 𝑦) ∈ O] + 𝛿.

http://osc.edu/ark:/19495/f5s1ph73
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Despite a token-level notion, our experiments (Appendix A.3)

show that when 𝑓 (·) is only the input embedding layer, our token-

level SeqLDP designs can also effectively mitigate MIAs on entire
sequences, with up to 20pp accuracy gains at the same choices of 𝜖 .

It is not necessarily weaker than sequence-level CDP (as offered by

DP-SGD). One might doubt its usefulness since two neighboring

sequences may be too similar. Nevertheless, there are cases where

a sentence, e.g., “How’s it going” may not matter in a bigger unit

(paragraph/essay) of the training data either. Moreover, a token (e.g.,
yes/no) can play a crucial role, e.g., in named entity recognition [44].

Our LDP guarantee is for any such two sequences, covering the

wide spectrum between “too similar” and radically different cases.

Note that weakening privacy notions by itself is not our goal
12
.

Protection at the token level has been studied under metric-DP [28,

58], a relaxation of LDP. They require even much larger 𝜖 , say, 175.

Our goal of studying token-level SeqLDP is to narrow the gap be-

tween theory and practice, i.e., provable privacy notions tailored to

the protection targets (the first few layers vs. the whole pipeline).

A.2 Two Token-level SeqLDP Designs
For token-level SeqLDP, we need to bound a “new” 𝑆2 (𝑓 ),∀𝑋 ≃ 𝑋 ′

,

which should be tight and smaller than the one over ∀𝑋,𝑋 ′
, hence

producing smaller noise for better utility at meaningful token-level 𝜖 .
It is still non-trivial since 𝑓 (·), except for being the input embedding

layer, may differ in every entry for even 𝑋 ≃ 𝑋 ′
. One could also

normalize the entire 𝑓 (·) for 𝑆2 (𝑓 ),∀𝑋 ≃ 𝑋 ′
, which “degenerates”

to the token-level SeqLDP. Instead, we tailor two designs to estimate

a tighter 𝑆2 (𝑓 ) than the “general” one for only the input embedding

layer and the first two layers, respectively. Specifically, we employ

row-wise normalization and the Lipschitz continuity [39].

After the Input Embedding Layer.When 𝑓 (·) is only the input

embedding layer, we work on each row 𝑥𝑖 independently: | |𝑥𝑖 | |2 =
𝐶,∀𝑖 ∈ [𝑛], where | | · | |2 is vector 2-norm. As a token only affects one

row, we have 𝑆2 (𝑓 ) = 𝐶 , independent of whether the embedding

layer will be updated. Again with B, we can draw noise 𝑍 ∈ R𝑛×𝑑 .
In the First MHA Sub-layer. The second option could be adding𝑍
right after the first MHA sub-layer:MHA(𝑋 ) +𝑍 , whereMHA(·) is
the concatenation of Att𝑖 (·), 𝑖 ∈ [ℎ]. Yet, it is non-trivial to estimate

𝑆2 (𝑓 ) of MHA(·) as Att𝑖 (·), let alone MHA(·), is not Lipschitz [39].
Definition 7 (Lipschitz Continuity). Given two metric spaces

(X, 𝑑X) and (Y, 𝑑Y ), a function 𝑓 : X → Y is Lipschitz continuous
(𝐾-Lipschitz) if there exists a constant 𝐾 ≥ 0,

𝑑Y (𝑓 (𝑋 ), 𝑓 (𝑋 ′)) ≤ 𝐾𝑑X (𝑋,𝑋 ′),∀𝑋,𝑋 ′ ∈ X.
The smallest 𝐾 is the Lipschitz constant, denoted by Lip(𝑓 ).

We consider that X is the space of row-wise normalized matrices

in R𝑛×𝑑 , Y is the output space R𝑛×𝑑 (/ℎ) of Att𝑖∈[ℎ] (·) orMHA(·),
and 𝑑X = 𝑑Y = | | · | |𝐹 (or 𝑝-norm | | · | |𝑝 ). Lip(𝑓 ) generalizes 𝑆2 (𝑓 )
since it focuses on any two inputs rather than just neighboring ones,
allowing us to estimate an upper bound for 𝑆2 (𝑓 ) given Lip(𝑓 ).

The non-Lipschitz continuity stems from the non-linear Softmax

activation, which takes pairwise dot products as input [39]. Tomake

MHALipschitz, onemight apply pairwise𝐿2-distances (hence called

12
As a related example, in image classification, PixelDP [41] has been proposed for a

DP notion defined upon pixels. Its motivation is robustness to adversarial examples.

𝐿2-MHA) [39] or add a normalization step called LipschitzNorm [19]

in softmax(·). Unfortunately, estimating Lip(𝑓 ) of 𝐿2-MHA needs

to solve an intractable optimization problem, and LipschitzNorm is

ill-suited for the high-dimensional BERT attention.

Instead of adding 𝑍 to the outputs of MHA(·) or Att𝑖 (·), we can
shift 𝑓 (·) inside softmax(·), where estimating Lip(𝑓 ) or 𝑆2 (𝑓 ) is
feasible, e.g., the linear maps used to derive 𝑄,𝐾,𝑉 matrices. Con-

sidering a linear map 𝑓 (𝑥) = 𝑥𝑊 with𝑊 ∈ R𝑑×𝑑/ℎ and 𝑥 ∈ R𝑑 , the
2-norm Lip

2
(𝑓 ) is the largest singular value 𝜎max (𝑊 ) [39]. When

generalizing 𝑓 (·) for any two matrices 𝑋 ≃ 𝑋 ′
, we can estimate

𝑆2 (𝑓 ) = sup | |𝑓 (𝑋 ) − 𝑓 (𝑋 ′) | |𝐹 = | |𝑓 (𝑥) | |2 ≤ 𝐶 · 𝜎max (𝑊 ) .
We can now respectively derive the noisy 𝑄,𝐾,𝑉 matrices for 𝑝 (·).
The first step is to draw noise 𝑍𝑄

∗,𝐾∗,𝑉 ∗ ∈ R𝑛×𝑑 given𝑊𝑄∗,𝐾∗,𝑉 ∗ ∈
R𝑑×𝑑 . It requires us to either estimate 𝜎max (𝑊𝑄∗,𝐾∗,𝑉 ∗ ) on the fly

via power iteration or fix the linear maps in each forward pass of

fine-tuning or inference. We then compute𝑋𝑊𝑄∗,𝐾∗,𝑉 ∗ +𝑍𝑄∗,𝐾∗,𝑉 ∗
,

which are reshaped into 3ℎ matrices of size 𝑛 × 𝑑/ℎ for Att𝑖∈[ℎ] (·).

Theorem 7. The two instances (with row-wise normalization) for
fine-tuning or inference fulfill token-level (𝜖, 𝛿)-(Seq)LDP.

The proof is equivalent to our approach for (Seq)LDP. One just

needs to compute 𝑆2 (𝑓 ),∀𝑋 ≃ 𝑋 ′
properly, and we did.

Discussion. Forminimal changes to the pipeline, we adopt the raw

WordPiece [73], which splits text into sub-words; using word-level

tokenization yields word-level (Seq)LDP. Our notion can also extend

to phrase-level (Seq)LDP by directly using the group privacy [23]

or dedicatedly computing the 𝐿2-sensitivity smaller than 𝑐 · 𝑆2 (𝑓 )
for two sequences differing in (consecutive) 𝑐 tokens. Typically, 𝑐 is

small since a few tokens are enough for most sensitive information.

One could also add noise deeper in a pipeline using 𝑆2 (𝑓1 ◦ 𝑓2) ≤
𝑆2 (𝑓1) · 𝑆2 (𝑓2), where 𝑓1 ◦ 𝑓2 is function composition 𝑓1 (𝑓2 (·)). We

then need to estimate 𝑆2 (𝑓 ) of each (component of) sub-layer. For

example, FFN(·) has two linear maps𝑊1 and𝑊2 with ReLU(·) in
between, where 𝑆2 (𝑓 ) of ReLU(·) is 1. For𝑊1,2, its 𝑆2 (𝑓 ) is bounded
by

√
𝑑𝐶𝜎max (𝑊1,2) since | | · | |𝐹 ≤

√
𝑑 | | · | |2 with 𝑑 as the rank. We

can also estimate 𝑆2 (𝑓 ) of LN(·) from its Lipschitz constant [39].

When 𝑓 (·) is composed of more layers, we can only get a looser

estimation on the final 𝑆2 (𝑓 ). Hence, our general recommendation

is to add noise early when estimating a tight 𝑆2 (𝑓 ) is feasible.

A.3 More Experiment Results
We also study the privacy-accuracy tradeoff on all three tasks for our

two token-level SeqLDP designs when tuning local 𝜖 . The results are

compared with the non-private baseline and fine-tuning usingMVG

noise. Figure 5 shows task accuracy increases with 𝜖 . Perturbing

input embeddings for token-level (vs. sequence-level) SeqLDP can

achieve remarkable accuracy gain, e.g., ∼0.7 vs. 0.5 for IMDb.

We evaluate the two MIAs on SST-2 fine-tuned by our two

token-level SeqLDP instances. Table 10 shows the results, with

success rates within 0.48−0.52 (like random guessing) bolded. Even

if the provable guarantee is at the token level, our instances can

notably reduce the success rates of the confidence-based attack

by ∼14pp and the entropy-based one by ∼11pp, compared to the

non-private baseline.
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Figure 5: Privacy-accuracy tradeoff of token-level SeqLDP instances when tuning local 𝜖

Local

𝜖
Method

Attack Success Rate

Entropy Confidence

∞ Non-private baseline 0.659 0.645

8

DP-Forward (Embedding) 0.536 0.503
DP-Forward (Attention) 0.545 0.516

16

DP-Forward (Embedding) 0.542 0.509
DP-Forward (Attention) 0.552 0.519

24

DP-Forward (Embedding) 0.552 0.516
DP-Forward (Attention) 0.559 0.523

Table 10: Success Rates of the two (sequence-level) MIAs on
our token-level SeqLDP instances

B RELEVANT MATRIX ALGEBRA
Proposition 1. The PDF defined in Eq. (5) and the matrix-trace-

based one used in MVG [14] are equivalent.

Proof. For the numerator part in Eq. (5), we have

| |𝑈 −1 (𝑍 −𝑀)𝑉 −⊤ | |2𝐹
= Tr[𝑉 −1 (𝑍 −𝑀)⊤𝑈 −⊤𝑈 −1 (𝑍 −𝑀)𝑉 −⊤]
= Tr[𝑉 −1 (𝑍 −𝑀)⊤Σ−1 (𝑍 −𝑀)𝑉 −⊤],

where Tr(·) denotes the matrix trace. Denote

𝐴 = 𝑉 −1 (𝑍 −𝑀)⊤Σ−1 (𝑍 −𝑀)𝑉 −⊤ .

We compute

𝐵 = 𝑉 −⊤𝐴𝑉⊤ = Ψ−1 (𝑍 −𝑀)⊤Σ−1 (𝑍 −𝑀),
which is a similar matrix of 𝐴, and hence Tr(𝐴) = Tr(𝐵). So, the
two PDFs are equivalent since

| |𝑈 −1 (𝑍 −𝑀)𝑉 −⊤ | |2𝐹 = Tr(𝐵) . □

Theorem 8 (Singular Value Decomposition or SVD [34]). A
matrix 𝐴 ∈ R𝑛×𝑑 can be decomposed as𝑊1Λ𝑊

⊤
2
, where𝑊1 ∈ R𝑛×𝑛

and𝑊2 ∈ R𝑑×𝑑 are unitary, and Λ is an 𝑛 × 𝑑 diagonal matrix
whose diagonal entries are ordered singular values of 𝐴, denoted by
𝜎1 (𝐴) ≥ . . . ≥ 𝜎𝑟 (𝐴) ≥ 0 (or simply 𝜎 (𝐴)) with 𝑟 = min{𝑛,𝑑}.

Lemma 4. Given amatrix𝐴 ∈ R𝑛×𝑑 and two orthogonal matrices
𝑊1 ∈ R𝑛×𝑛,𝑊2 ∈ R𝑑×𝑑 , we have | |𝐴| |𝐹 = | |𝑊1𝐴| |𝐹 = | |𝐴𝑊2 | |𝐹 ;
| | · | |𝐹 is immune to the pre- and post-orthogonal transformation.

Proof. We first prove that | |𝐴| |𝐹 = | |𝑊1𝐴| |𝐹 by

| |𝑊1𝐴| |2𝐹 = Tr(𝐴⊤𝑊 ⊤
1
𝑊1𝐴) = Tr(𝐴𝑇𝐴) = | |𝐴| |2𝐹 ,

and similarly we can prove that | |𝐴| |𝐹 = | |𝐴𝑊2 | |𝐹 . □

Lemma 5. For 𝐴 ∈ R𝑛×𝑑 , | |𝐴| |2
𝐹
=
∑𝑟
𝑖=1 𝜎

2

𝑖
(𝐴), where 𝜎𝑖 (𝐴) is

the 𝑖th singular value of 𝐴 and 𝑟 = min{𝑛,𝑑}.

Proof. The SVD of 𝐴 is𝑊1Λ𝑊
⊤
2
. By Lemma 4, we have

| |𝐴| |2𝐹 = | |𝑊1Λ𝑊
⊤
2
| |2𝐹 = | |Λ| |2𝐹 =

𝑟∑︁
𝑖=1

𝜎2𝑖 (𝐴) . □

Lemma 6 (Lemma 4 [74]). Given matrices 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈
R𝑛×𝑑 ,𝐶 ∈ R𝑑×𝑑 , we have | |𝐴𝐵𝐶 | |2

𝐹
≤ ∑𝑟

𝑖=1 𝜎
2

𝑖
(𝐴)𝜎2

𝑖
(𝐵)𝜎2

𝑖
(𝐶) where

𝜎𝑖 (·) is the 𝑖th singular value, and 𝑟 = min{𝑛,𝑑}.

Proof. With SVD, 𝐴, 𝐵,𝐶 are decomposed as

𝐴 =𝑊𝐴1
Λ𝐴𝑊

⊤
𝐴2

, 𝐵 =𝑊𝐵1Λ𝐵𝑊
⊤
𝐵2
, 𝐶 =𝑊𝐶1

Λ𝐶𝑊
⊤
𝐶2

.

Based on Lemma 5, we have

| |𝐴𝐵𝐶 | |2𝐹 = | |𝑊𝐴1
Λ𝐴𝑊

⊤
𝐴2

𝑊𝐵1Λ𝐵𝑊
⊤
𝐵2
𝑊𝐶1

Λ𝐶𝑊
⊤
𝐶2

| |2𝐹
= | |Λ𝐴𝑊Λ𝐵𝑊

′Λ𝐶 | |2𝐹 ,
where𝑊 = 𝑊 ⊤

𝐴2

𝑊𝐵1 = (𝑤𝑖 𝑗 )𝑛×𝑛 and𝑊 ′ = 𝑊 ⊤
𝐵2
𝑊𝐶1

= (𝑤 ′
𝑖 𝑗
)𝑑×𝑑

are still two unitary matrices. We further have

| |𝐴𝐵𝐶 | |2𝐹 =

𝑛∑︁
𝑖=1

𝑑∑︁
𝑗=1

𝜎2𝑖 (𝐴)𝜎
2

𝑗 (𝐶) [
𝑟∑︁
𝑘=1

𝜎𝑘 (𝐵)𝑤𝑖𝑘𝑤 ′
𝑘 𝑗
]2

=

𝑛∑︁
𝑖=1

𝑑∑︁
𝑗=1

𝜎2𝑖 (𝐴)𝜎
2

𝑗 (𝐶)𝛽
2

𝑖 𝑗 ,

where 𝛽𝑖 𝑗 =
∑𝑟
𝑘=1

𝜎𝑘 (𝐵)𝑤𝑖𝑘𝑤 ′
𝑘 𝑗
. Hence, we need to show

𝑛∑︁
𝑖=1

𝑑∑︁
𝑗=1

𝜎2𝑖 (𝐴)𝜎
2

𝑗 (𝐶)𝛽
2

𝑖 𝑗 ≤
𝑟∑︁
𝑖=1

𝜎2𝑖 (𝐴)𝜎
2

𝑖 (𝐵)𝜎
2

𝑖 (𝐶). (7)

Following the strategy in [74] (cf. Eq. (29), (30)), we rewrite 𝜎2
𝑖
(𝐴)

and 𝜎2
𝑗
(𝐶) using non-negative values 𝜉𝑡 and 𝜂𝑠 s.t.

𝜎2𝑖 (𝐴) =
𝑛∑︁
𝑡=𝑖

𝜉𝑡 , 𝑡 ∈ [1, 𝑛]; 𝜎2𝑗 (𝐶) =
𝑑∑︁
𝑠=𝑗

𝜂𝑠 , 𝑠 ∈ [1, 𝑑] .
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For 𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1, 𝑑], we denote 𝛾𝑖 𝑗 = 𝜎𝑖 (𝐵), if 𝑖 = 𝑗 ; 𝛾𝑖 𝑗 = 0,

otherwise. Then, we transform the Eq. (7) as

𝑟∑︁
𝑖=1

𝜎2𝑖 (𝐴)𝜎
2

𝑖 (𝐵)𝜎
2

𝑖 (𝐶) −
𝑛∑︁
𝑖=1

𝑑∑︁
𝑗=1

𝜎2𝑖 (𝐴)𝜎
2

𝑗 (𝐶)𝛽
2

𝑖 𝑗

=

𝑛∑︁
𝑖=1

𝑑∑︁
𝑗=1

(𝛾2𝑖 𝑗 − 𝛽
2

𝑖 𝑗 )𝜎
2

𝑖 (𝐴)𝜎
2

𝑗 (𝐶)

=

𝑛∑︁
𝑖=1

𝑑∑︁
𝑗=1

(𝛾2𝑖 𝑗 − 𝛽
2

𝑖 𝑗 )
𝑛∑︁
𝑡=𝑖

𝜉𝑡

𝑑∑︁
𝑠=𝑗

𝜂𝑠

=

𝑛∑︁
𝑡=1

𝑑∑︁
𝑠=1

𝜉𝑡𝜂𝑠

𝑡∑︁
𝑖=1

𝑠∑︁
𝑗=1

(𝛾2𝑖 𝑗 − 𝛽
2

𝑖 𝑗 ).

Since 𝜉𝑡 , 𝜂𝑠 are non-negative, we only need to show

𝑡∑︁
𝑖=1

𝑠∑︁
𝑗=1

(𝛾2𝑖 𝑗 − 𝛽
2

𝑖 𝑗 ) ≥ 0. (8)

However, the original proof [74] has two issues: i) 𝑡 > 𝑠 is not

considered, and ii) the commutative law of matrix multiplication in

Eq. (35) does not hold as 𝐸 (𝑡) in Eq. (34) is not a standard diagonal

matrix. To address them, we have

𝑡∑︁
𝑖=1

𝑠∑︁
𝑗=1

𝛾2𝑖 𝑗 =

min{𝑡,𝑠 }∑︁
𝑘=1

𝜎2
𝑘
(𝐵).

We then denote a sub-matrix 𝐵∗ = (𝛽𝑖 𝑗 ) for 𝑖 ∈ [1, 𝑡], 𝑗 ∈ [1, 𝑠] of
𝑊Λ𝐵𝑊

′
. With SVD of 𝐵∗, we have

𝑡∑︁
𝑖=1

𝑠∑︁
𝑗=1

𝛽2𝑖 𝑗 = | |𝐵∗ | |2𝐹 =

min{𝑡,𝑠 }∑︁
𝑘=1

𝜎2
𝑘
(𝐵∗) ≤

min{𝑡,𝑠 }∑︁
𝑘=1

𝜎2
𝑘
(𝐵) .

The last inequality is due to 𝜎𝑘 (𝐵∗) ≤ 𝜎𝑘 (𝐵) for ∀𝑘 ∈ [1, 𝑟 ] [34].
So, Inequality (8) holds. □

C PROOFS FOR OUR ANALYTIC MATRIX
GAUSSIAN MECHANISM

This section proof Lemma 1, Lemma 2, and Theorem 6 in Section 4.2.

Proof of Lemma 1. Recall thatM(𝑓 (X)) = 𝑓 (X) +𝑍 with 𝑍 ∼
MN𝑛,𝑑 (0, Σ,Ψ), the probability of M(𝑓 (X)) = 𝑂 is

Pr[M(𝑓 (X) = 𝑂] =
exp(− 1

2
| |𝑈 −1 (𝑂 − 𝑓 (X))𝑉 −⊤ | |2

𝐹
)

(2𝜋)𝑛𝑑/2 |Ψ|𝑑/2 |Σ|𝑛/2
.

Similarly, we can compute Pr[M(𝑓 (X′)) = 𝑂]. By plugging them

into LM,X,X′ (𝑂), and let Δ = 𝑓 (X) − 𝑓 (X′),

LM,X,X′ (𝑂) = ln

exp(− 1

2
| |𝑈 −1 (𝑂 − 𝑓 (X))𝑉 −⊤ | |2

𝐹
)

exp(− 1

2
| |𝑈 −1 (𝑂 − 𝑓 (X′))𝑉 −⊤ | |2

𝐹
)

=
1

2

| |𝑈 −1 (𝑍 + Δ)𝑉 −⊤ | |2𝐹 − 1

2

| |𝑈 −1𝑍𝑉 −⊤ | |2𝐹

=
1

2

| |𝑈 −1Δ𝑉 −⊤ | |2𝐹 + ⟨vec(𝑈 −1Δ𝑉 −⊤), vec(𝑈 −1𝑍𝑉 −⊤)⟩,

where vec(·) is the vectorization of a matrix and ⟨·, ·⟩ denotes the
inner product. For easy presentation, we denote 𝑍 ′ = 𝑈 −1𝑍𝑉 −⊤
and Δ′ = 𝑈 −1Δ𝑉 −⊤

, and then we re-write

LM,X,X′ (𝑂) = 1

2

| |Δ′ | |2𝐹 + ⟨vec(Δ′), vec(𝑍 ′)⟩.

Given Lemma 3, 𝑍 ′ ∼ MN𝑛,𝑑 (0, 𝐼𝑛, 𝐼𝑑 ) with each entry i.i.d. drawn
fromN(0, 1). ⟨vec(Δ′), vec(𝑍 ′)⟩ is thus the Δ′

-weighted sum of 𝑛𝑑

i.i.d. Gaussian random variables, which is a Gaussian variable
13

N(0, | |Δ′ | |2
𝐹
) too. So LM,X,X′ ∼ N(𝜂, 2𝜂), 𝜂 = 1

2
| |Δ′ | |2

𝐹
. □

Proof of Lemma 2. With Lemma 1 and the CDF, we have

Pr[LM,X,X′ ≥ 𝜖] = Pr[N (𝜂, 2𝜂) ≥ 𝜖]

= Pr[N (0, 1) ≥ 𝜖 − 𝜂
√
2𝜂

] = Pr[N (0, 1) ≤ 𝜂 − 𝜖
√
2𝜂

]

= Φ( | |Δ
′ | |𝐹
2

− 𝜖

| |Δ′ | |𝐹
),

where we usedN(𝜂, 2𝜂) = 𝜂+N(0, 1)/√2𝜂 and the symmetry of the

standard normal distribution Pr[N (0, 1) ≥ 𝑡] = Pr[N (0, 1) ≤ −𝑡].
A similar argument applied to LM,X′,X yields

Pr[LM,X′,X ≤ −𝜖] = Φ(− ||Δ′ | |𝐹
2

− 𝜖

| |Δ′ | |𝐹
). □

Proof of Theorem 6. The proof boils down to two directions.

From (𝜖, 𝛿)-DP (Theorem 5) to Theorem 6, the proof directly follows

from all the derivations in Section 4.2. For the inverse direction,

it is sufficient to show that | |Δ′ | |𝐹 ≤ B holds for ∀X ≃ X′
given

Theorem 6. In particular, for | |Δ′ | |𝐹 = | |𝑈 −1Δ𝑉 −⊤ | |𝐹 , we have

| |𝑈 −1Δ𝑉 −⊤ | |2𝐹 ≤
𝑟∑︁
𝑖=1

𝜎2
𝑖
(Δ)

𝜎2
𝑛−𝑖+1 (𝑈 )𝜎2

𝑑−𝑖+1 (𝑉 )

≤
∑𝑟
𝑖=1 𝜎

2

𝑖
(Δ)

𝜎2𝑛 (𝑈 )𝜎2
𝑑
(𝑉 )

≤
||Δ| |2

𝐹

𝑆2
2
(𝑓 )/B2

≤ B2,

where the first inequality is due to Lemma 6, the second one holds

since 𝜎𝑛 (𝑈 ) and 𝜎𝑑 (𝑉 ) are the smallest singular values among the

others, and the third one is from Theorem 6. □

13
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