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Abstract

Differential privacy (DP), as a rigorous mathematical def-
inition quantifying privacy leakage, has become a well-
accepted standard for privacy protection. Combined with
powerful machine learning techniques, differentially private
machine learning (DPML) is increasingly important. As the
most classic DPML algorithm, DP-SGD incurs a significant
loss of utility, which hinders DPML’s deployment in practice.
Many studies have recently proposed improved algorithms
based on DP-SGD to mitigate utility loss. However, these
studies are isolated and cannot comprehensively measure the
performance of improvements proposed in algorithms. More
importantly, there is a lack of comprehensive research to
compare improvements in these DPML algorithms across
utility, defensive capabilities, and generalizability.

We fill this gap by performing a holistic measurement of
improved DPML algorithms on utility and defense capabil-
ity against membership inference attacks (MIAs) on image
classification tasks. We first present a taxonomy of where
improvements are located in the machine learning life cy-
cle. Based on our taxonomy, we jointly perform an extensive
measurement study of the improved DPML algorithms, over
twelve algorithms, four model architectures, four datasets,
two attacks, and various privacy budget configurations. We
also cover state-of-the-art label differential privacy (Label
DP) algorithms in the evaluation. According to our empir-
ical results, DP can effectively defend against MIAs, and
sensitivity-bounding techniques such as per-sample gradient
clipping play an important role in defense. We also explore
some improvements that can maintain model utility and de-
fend against MIAs more effectively. Experiments show that
Label DP algorithms achieve less utility loss but are fragile
to MIAs. Machine learning practitioners may benefit from
these evaluations to select appropriate algorithms. To sup-
port our evaluation, we implement a modular re-usable soft-
ware, DPMLBench,1 which enables sensitive data owners to
deploy DPML algorithms and serves as a benchmark tool for
researchers and practitioners.

*Chengkun and Minghu contributed equally to this work.
†Corresponding authors.
1The implementation can be found at https://github.com/

DmsKinson/DPMLBench

1 Introduction
As machine learning (ML) continues to evolve, numerous
fields are leveraging its power to advance their develop-
ment [1, 2]; however, this often involves the use of private
data, such as medical records. Previous studies have re-
vealed that the models trained on private data can leak in-
formation through a bunch of attacks, such as membership
inference [3], model inversion [4], and attribute inference [5],
which raises critical privacy and security concerns.

Differential privacy (DP) is a widely used notion to rig-
orously formalize and measure the privacy guarantee based
on a parameter called privacy budget. Abadi et al. [6] pro-
posed a general DPML algorithm called differentially pri-
vate stochastic gradient descent (DP-SGD) by integrating
per-sample clipping and noise perturbation to the aggregated
gradient in the training process. However, models trained
by DP-SGD normally perform badly with respect to model
utility. Recently, researchers proposed many improved algo-
rithms with better privacy-utility trade-off [7, 8, 9, 10, 11,
12, 13, 14, 15]. In the rest of this paper, we refer to DP-SGD
as vanilla DP-SGD to distinguish between DP-SGD and the
improved algorithms.

The improved algorithms modify the vanilla DP-SGD
from different aspects but are evaluated in isolation with var-
ious settings, which cannot reveal the differences between
each other. Furthermore, existing studies [16, 17, 18, 19] fail
to report a complete and practical analysis of general DPML
algorithms in practical scenarios. This motivates us to per-
form a holistic evaluation and analysis of these improved
DPML algorithms.

1.1 Our Contributions

Algorithm Taxonomy. We first propose a new taxonomy
for the state-of-the-art DPML algorithms based on their im-
proved component in the ML pipeline. Concretely, we divide
the ML pipeline into four phases: Data preparation, model
design, model training, and model ensemble (see Section 2.1
for details), and categorize the DPML algorithms into each
phase. We then perform a theoretical and empirical analy-
sis to obtain an extensive view of the impact of differential
privacy on machine learning.
Experimental Evaluation. In this paper, we concen-
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trate on twelve state-of-the-art DPML algorithms for image
classification tasks. We then conduct comprehensive ex-
periments for these algorithms on four model architectures
(ResNet20 [20], VGG16 [21], InceptionNet [22], and Sim-
pleCNN) and four benchmark image datasets (MNIST [23],
FashionMNIST [24], CIFAR-10 [25], and SVHN [26]) to
jointly evaluate the tradeoff between privacy protection,
model utility, and defense effectiveness. Furthermore, we
evaluate the defensive capabilities of the DPML algorithms
on both white-box and black-box membership inference at-
tacks (MIAs). Our measurement aims to answer the follow-
ing three research questions:

RQ1. What improvements in DPML algorithms are most
effective in maintaining model utility?

RQ2. What improvements in DPML algorithms are most
robust in defending membership inference attacks?

RQ3. What is the impact of dataset and model architecture
on algorithms focusing on different stages?

In addition, our measurement covers two state-of-the-art
label differential privacy (Label DP) algorithms, which is a
variant DPML notion by relaxing the protection of the whole
data sample to only protect the label. To the best of our
knowledge, we are the first to analyze the Label DP algo-
rithms on utility and defense empirically.
DPMLBench. We implement a toolkit called DPML-
Bench to support the comprehensive evaluation of DPML
algorithms with respect to model utility and MIA defense.
With a modular design, DPMLBench can easily integrate ad-
ditional DPML algorithms, attacks, datasets, and model ar-
chitectures by implementing new functional codes to the rel-
evant modules. Our code will be publicly available, facili-
tating researchers to leverage existing DPML algorithms to
provide DP guarantee or benchmark new algorithms.
Main Findings. Our work reveals several interesting find-
ings:

• Different improvement techniques can affect the privacy-
utility trade-offs of the algorithm from different perspec-
tives. For example, we find that reducing the dimension of
the parameter improves the performance of DPML on large
models but may impair utility when the privacy budget is
large. In addition, DP synthetic algorithms and algorithms
in the model ensemble category are the most robust in de-
fending against MIAs.

• DP can effectively defend against MIAs. Also, sensitivity-
bounding techniques such as per-sample gradient clipping
play an important role in defense.

• Some model architecture design choices for non-private
ML models are ineffective for private ML models. For
instance, using Tanh as the activation function and Group-
Norm can reduce the utility loss on vanilla DP-SGD. How-
ever, we also find that using Tanh and GroupNorm together
would have a negative effect.

• Compared to standard DP, Label DP has less utility loss
but is more fragile to MIAs.

2 Preliminaries

2.1 Machine Learning Pipeline
Figure 1 illustrates a typical machine learning pipeline,
which consists of four phases: Data preparation, model de-
sign, model training, and model ensemble.

The data preparation phase aims to explore the underly-
ing distribution of data for learning algorithms. Commonly
used techniques in this phase include data cleaning [27], data
labeling [28], and feature extraction [29]. Feature extraction
transforms the input data into a low-dimensional subspace
that reveals the most relevant information [30]. Low dimen-
sional information can downgrade the difficulty of the fol-
lowing training procedures [31, 7, 32].

In the model design phase, we aim to select components
such as the model architectures, loss functions, and optimiza-
tion algorithms that are appropriate for the task. There are
plenty of studies on this topic [20, 21].

The model training phase is the process of computing the
following optimization objective:

argmin
θ

1
|Dtrain| ∑

(x,y)∈Dtrain

L(y,M(x;θ)),

where (x,y) is the data sample in the training dataset Dtrain;
L and M represent loss function and model architecture, re-
spectively. The parameters θ in model M are optimized to
minimize the objective function L on training data during the
model training phase.

The model ensemble phase combines multiple models
while deploying the model. Previous studies show that ag-
gregating multiple models’ predictions can obtain better gen-
eralization performance than a single model [33].

2.2 Differential Privacy
Differential privacy (DP) [34] is a rigorous mathematical def-
inition quantifying how much privacy preservation a mech-
anism can provide. DP provides a privacy guarantee by
bounding the impact of a single input on the mechanism’s
output.

Definition 2.1 ((ε , δ )-Differential Privacy). Given two
neighboring datasets D and D′ differing by one record, a
mechanism M satisfies (ε , δ )-differential privacy if

Pr[M(D) ∈ S]≤ eε ·Pr[M(D′) ∈ S]+δ ,

where ε is the privacy budget, and δ is the failure probability.

The privacy budget quantifies the maximum information
a mechanism M can expose. A smaller privacy budget indi-
cates better privacy preservation. δ indicates the probability
that M fails to satisfy ε-DP. When δ = 0, we achieve pure
ε-DP, a stronger notion, and a more rigorous privacy guaran-
tee.
Bounded DP and Unbounded DP. How to interpret neigh-
boring datasets distinguishes between bounded DP and un-
bounded DP [35]. In unbounded DP, D and D′ are neigh-
bors if D can be obtained from D′ by adding or removing
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Figure 1: Machine learning pipeline.

one element. In bounded DP, D and D′ are neighbors if D
can be obtained from D′ by replacing one element. When
using bounded DP, two datasets should have the same num-
ber of elements. Furthermore, any algorithms that satisfy ε-
unbounded DP also satisfy 2ε-bounded DP because replac-
ing one element can be achieved by removing then adding
one element. All algorithms in Table 1 satisfy the unbounded
DP.
Gaussian Mechanism. Adding noise sampled from Gaus-
sian distribution is a commonly used approach to achieve (ε ,
δ )-DP, known as Gaussian mechanism [36]. Formally, ap-
plying the Gaussian mechanism to a function f can be defined
as:

M(d) = f (d)+N(0,S2
f ·σ2),

where N(0,S2
f ·σ2) is the Gaussian distribution with mean 0

and standard deviation S2
f ·σ2, where σ is called noise mul-

tiplier and Sf is the sensitivity of function f .

Definition 2.2. (Sensitivity). Given two neighboring
datasets D and D′, the global sensitivity of a mechanism M,
denoted by SM , is given below

SM = max
D,D′

|M(D)−M(D′)|.

Composition. The composition theorems calculate the to-
tal privacy budget when we apply DP on the private dataset
multiple times. The most straightforward composition strat-
egy is summing up the privacy budget of each individual
DP algorithm. Formally, for k DP algorithms with pri-
vacy budget ε1,ε2,ε3, · · · ,εk, the total privacy budget is ε =
ε1 + ε2 + ε3 + · · ·+ εk. Mironov [37] et al. propose Rényi
differential privacy to achieve a tighter analysis of cumula-
tive privacy budgets.

Definition 2.3 ((α,δ )-Rényi Differential Privacy
(RDP) [37]). A randomized mechanism M is said to
satisfy ε-Rényi differential privacy of order α (which can be
abbreviated as (α,δ )-RDP), if for any adjacent datasets D,
D′, it holds that

Dα(M(D)||M(D′))≤ ε,

where Dα(M(D)||M(D′)) is the α-Rényi divergence between
the distribution of M(D) and the distribution of M(D′). Pa-
rameter α controls the momentum of the privacy loss random
variable.

Note that larger α leads to more weight being assigned
to worst-case events, e.g., (∞,ε)-RDP is equivalent to ε-DP.

If M satisfies (α,ε)-RDP, it also satisfies (ε +
log 1

δ

α−1 ,δ )-DP.
Applying k algorithms with (α,ε1)-RDP, (α,ε2)-RDP, · · ·
,(α,εk)-RDP on same dataset sequentially leads to an algo-
rithm with (α,ε1 + ε2 + · · ·+ εk)-RDP. By selecting α deli-
cately, accumulating privacy loss in RDP and then convert-
ing to DP can derive a tighter upper bound than composite
(ε,δ )-DP directly.
Post-processing. The post-processing property guarantees
that no matter what additional processing one performs on
the output of an algorithm that satisfies (ε ,δ )-DP, the com-
position of the algorithm and the post-processing operations
still satisfy (ε ,δ )-DP.

2.3 Differentially Private Machine Learning

Abadi et al. [6] integrated differential privacy with stochas-
tic gradient descent (SGD) and proposed a general learning
algorithm named differential privacy stochastic gradient de-
scent (DP-SGD). Compared to SGD, DP-SGD introduced a
few modifications to make the algorithm satisfy differential
privacy. Firstly, the sensitivity of each gradient is bounded
by clipping each gradient in the l2 norm.

clip(g,C) = g/max(1,
||g||2

C
). (1)

Per-sample clipping bounds the contribution of each sam-
ple to model parameters to C. Moreover, DP-SGD applies
a Gaussian mechanism to the aggregated clipped gradient.
Formally,

g̃ = g+N(0,C2
σ

2), (2)

where g̃ is the noisy gradient used to update parameters and
σ controls privacy level. After the above two steps, the gra-
dients used to update the parameters satisfy DP.

Nevertheless, gradient clipping and noise perturbation in-
troduce deviation in the training process, which impairs the
model’s utility. Recently, researchers proposed a number
of improved DPML algorithms to reduce the utility loss
incurred by vanilla DP-SGD [38, 11, 31, 12]. However,
these improved DPML algorithms were evaluated on differ-
ent models and datasets with different assumptions. There-
fore, it is a pressing need to design a holistic benchmark to
comprehensively evaluate these DPML algorithms to gain a
deeper insight.
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Table 1: Overview and comparison of DPML algorithms. *: Evaluation is based on subsequent private model training on generated
data. : same as non-private training. : with modification but no noise adding. : with modification and noise adding.

Algorithms Auxiliary Data Private Data Model Architecture Gradient Loss Function Perturbation

Data Preparation
Hand-DP Gradient

PrivSet * Input

DPGEN * Input

Model Design
TanhAct Gradient

FocalLoss Gradient

Model Training

Vanilla DP-SGD Gradient

RGP Gradient

GEP Gradient

AdpAlloc Gradient

AdpClip Gradient

Model Ensemble
PATE Input

Priv-kNN Input

2.4 Membership Inference in Machine Learn-
ing Models

The MIAs have become one of the most widely studied [39,
40] attacks against ML models after Shokri et al. proposed
in [3]. The MIA aims to infer whether a data sample is used
to train the target ML model. Formally, MIA A can be de-
fined as:

A : I,M,x −→ {0,1},

where I is the auxiliary knowledge of adversary, M is the
model to be attacked, and x is a data sample. A can be seen
as a binary classifier, where 1 means the data sample x is used
for training model M, namely a member, and 0 otherwise. It
is natural to use MIAs to evaluate the defensive capabilities
of DPML algorithms, as in many previous studies [16, 19,
41].

Based on the information an attacker can obtain, MIAs can
be classified into two categories: White-box and black-box.
The white-box attacks have full access to the target model,
while black-box attacks only have query access to the target
model and obtain the prediction confidence vector. We adopt
both types of MIAs to comprehensively evaluate the defen-
sive capabilities of the DPML algorithms (in Section 5.3).

3 Taxonomy
In this section, we provide an overview of our taxonomy and
give survey-style descriptions of the DPML algorithms.

3.1 Overview
We first propose a new taxonomy for the DPML algorithms
based on the component they improve in the ML pipeline
discussed in Section 2.1. We introduce this taxonomy due
to the following reasons: (1) The training phases of ML are
independent, meaning the improvements in different phases
might be combined to achieve better model utility. (2) It pro-
vides future researchers with a clear roadmap to improve the
DPML algorithms, which we hope can benefit the commu-
nity. (3) It is domain-agnostic and can be easily extended

to evaluate the DPML algorithms in other domains, such as
graph and NLP data.

Table 1 summarizes all the improved DPML algorithms
and their corresponding categories. We also discuss the prop-
erties of all the DPML algorithms. For instance, vanilla DP-
SGD falls in the model training category and modifies the
gradient to provide the DP guarantee, whereas PATE be-
longs to the model ensemble category and leverages auxil-
iary data to provide a DP guarantee. Auxiliary data gener-
ally refers to data with the same distribution as sensitive data
but is publicly available, which is a common assumption in
DPML [31, 9, 32].
Data Preparation. The algorithms in this category pre-
process the original training data. Feature extraction and
DP synthetic data are two typical approaches in this cat-
egory. Feature extraction aims to reduce the difficulty of
private training. Using a pre-trained network before classi-
fier [6, 13, 42] can be seen as a variant of feature extraction.
DP synthetic data aims to provide a DP guarantee for training
data. Applying DP mechanisms to data directly, such as the
Gaussian mechanism, downgrades the utility of data, espe-
cially when data is in high dimension (e.g., image). DP syn-
thetic data is an alternative that aims to generate data in a DP
manner with a similar distribution as sensitive data. Training
models on synthetic data with traditional machine learning
algorithms can derive a model with DP guaranteed accord-
ing to post-processing property [43, 15, 44]. In this category,
we pick three algorithms, of which Hand-DP [12] leverages
a feature extractor, and the other two (PrivSet [45] and DP-
GEN [15]) belong to DP synthetic data algorithms.
Model Design. Algorithms in this category focus on design-
ing more adapted model designs to DPML. Deep learning
in non-private settings has been widely studied, and many
rules have been summarized to train a standard neural net-
work. However, these design guidelines do not perform well
in vanilla DP-SGD [42] due to gradient clipping and noise
perturbation. For instance, larger models often mean better
performance in non-private settings. However, smaller mod-
els tend to get better performance on vanilla DP-SGD. Some
existing studies focus on exploring more adapted model de-
sign rules to DPML [11, 46]. We select two algorithms in this
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category, and they propose improvements from the activation
function (TanhAct [11]) and loss function (FocalLoss [8]),
respectively.

Model Training. Algorithms in this category explore DP
mechanisms with less impact on model utility in the DP-SGD
training phase. The vanilla DP-SGD [6] bounds the l2-norm
of gradient g by clipping the gradient to the threshold C; thus,
a straightforward improvement strategy is to find an optimal
clipping strategy [47, 48]. On the other hand, the noise per-
turbation leads to bias during model updating, which impairs
the model’s utility. Therefore, designing a better noise per-
turbation mechanism to alleviate the noise effect is another
optimization option [31, 32, 13]. In this category, we select
four algorithms, excluding vanilla DP-SGD. AdpClip [48]
proposes an improved clipping strategy, and the rest of them
(RGP [7], GEP [31], and AdpAlloc [13]) explore better noise
perturbation mechanisms.

Model Ensemble. This category contains algorithms pro-
viding DP guarantee through the model ensemble. The
vanilla DP-SGD has poor scalability because it requires mod-
ifications to the training process. Papernot et al. [9] propose
Private Aggregation of Teacher Ensemble (PATE) by lever-
aging model ensemble. PATE treats the training phase of the
model as a black box so that it has better scalability than
vanilla DP-SGD for less modification to the training process.
DP mechanism is applied while aggregating the prediction of
multiple models. Since then, many DPML algorithms based
on the model ensemble have emerged [38, 10]. We select
PATE and Priv-kNN in our measurement.

3.2 Data Preparation

Hand-DP [12]. Tramer et al. leverage Scattering Network
(ScatterNet) [49], a feature extractor that encodes images us-
ing a cascade of wavelet transforms to extract the features.
To achieve the DP guarantee, they fine-tuned a model on top
of extracted features through DP-SGD.

DPGEN [15]. It is an instantiation of the DP variant of the
Energy-based Model (EBM) [50, 51], which aims to privatize
Langevin Markov Chain Monte Carlo (MCMC) sampling
method [52] to synthesize images, of which an energy-based
network guides the movement directions. DPGEN achieves
DP by using Randomized Response (RR) in movement di-
rection selection. Compared to other DP-SGD based synthe-
sis methods [53, 44], DPGEN can generate higher-resolution
images.

PrivSet [45]. It leverages dataset condensation to generate
data in a differentially private manner. It directly optimizes
for a small set of samples promising to derive approximate
results under downstream tasks instead of imitating the com-
plete data distribution. Specifically, they use DP-SGD to op-
timize a gradient-matching objective for the downstream task
that minimizes the difference between the gradient on the real
data and the generated data.

3.3 Model Design

TanhAct [11]. Considering the need for DP to bound sen-
sitivity, Papernot et al. [11] replace ReLU with tempered sig-
moid as the activation function. The authors found that the
bounded property of tempered sigmoid functions, especially
Tanh, can effectively limit the l2-norm of the gradient while
training models with DP-SGD. Thus, less information can be
lost in gradient clipping.
FocalLoss [8]. It introduces a loss function adapted to
vanilla DP-SGD, which combines three terms: The summed
squared error LFocal , the focal loss LSSE [54], and a regu-
larization penalty on the intermediate pre-activations LReg .
Finally, they proposed loss function L:

L = αLFocal +(1−α)LSSE +
(1−α)

β
LReg , (3)

where α = Sigmoid(ec −et) (current epoch ec, and threshold
epoch et ), β is the hyperparameter controlling the strength of
the regularization. These terms consider convergence speed,
emphasis on complex samples, and sensitivity during train-
ing. The new loss function can better control the gradient
sensitivity in the training procedure.

3.4 Model Training

RGP [7]. It adopts a reparametrization scheme to replace
the model weight in each layer with two low-dimensional
weight matrices and a residual weight matrix:

W → LR+W̃.stop gradient() . (4)

By making the gradient carriers {L,R} consist of orthonor-
mal vectors, a projection of the gradient of W can be con-
structed from the noisy gradients of L̃ and R̃. {L,R} are
trained by DP-SGD separately to achieve the DP guarantee
and finally combined to obtain the gradient for updating the
model. Note that the dimensionality of L and R is much
smaller than that of W. Thus RGP can reduce the storage
consumption and the noise added to the model.
GEP [31]. Yu et al. observe that the number of noise in-
creases with the growth of model size in vanilla DP-SGD and
figure out a solution, GEP [31], to reduce the dimension of
the gradient before adding noise. GEP first computes an an-
chor subspace that contains some gradients of public data via
the power method. Then, it projects the gradient of private
data into the anchor subspace to produce a low-dimensional
gradient embedding and a small-norm residual gradient. The
two parts are applied with the DP mechanism separately and
combined to update the original weight. Compared to RGP,
GEP leverages public data to decompose the original model
parameters for dimensionality reduction.
AdpAlloc [13]. It proposes a dynamic noise-adding mech-
anism instead of keeping noise multiplier σ constant every
training epoch in vanilla DP-SGD. It replaces the variance in
the Gaussian mechanism with a function of the epoch:

M(d) = f (d)+N(0,S2
f ·σ2

t ), (5)
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the value of σt depends on the final privacy budget, epoch,
and schedule function. The schedule function defines how
the noise scale is adjusted during training. Yu et al. proposed
several pre-defined schedules. We select Exponential Decay
in our evaluation, which has the best average performance in
[13]. The mathematical form of Exponential Decay is σt =
σ0e−kt , where k(k > 0) is decay rate and σ0 is the initial noise
scale.
AdpClip [48]. It uses an adaptive clipping threshold mech-
anism, which sets the clip threshold to a specified quan-
tile of the update norm distribution every epoch. Formally,
clipping threshold Ct in epoch t can be computed as Ct =
Ct−1 · exp(−ηC(b− γ)) , where γ ∈ [0,1] is a quantile to be
matched, b ≜ 1

m ∑i∈[m] Ixi≤C is the empirical fraction of sam-
ples with value at most C , and ηC is the learning rate with
default value of 0.2 in [48]. To address the issue that b re-
veals private information, Gaussian mechanism is applied to
b: b̃t = 1

m

(
∑i∈Qt bt

i +N
(
O,σ2

b

))
. The method consumes a

negligible privacy budget to track the quantile closely. Adp-
Clip was originally designed for federated learning (FL) but
can be extended to traditional centralized learning scenarios.

3.5 Model Ensemble
PATE [9]. It first trains multiple teacher models with dis-
joint private data. The teacher ensemble is later used to label
the public data, and the noise perturbation is applied to the
voting aggregation before generating a prediction. The stu-
dent model, which gives the final output, is trained from la-
beled public data and cannot directly access private data. The
privacy budget is determined by the noise added to the votes
and the number of queries to the teacher ensemble. Addi-
tionally, PATE leverages a semi-supervised learning method
to reduce the queries to the teacher ensemble.
Priv-kNN [10]. In PATE, a larger number of teacher mod-
els lead to a larger absolute lead gap while aggregating votes,
potentially allowing for a larger noise level. At the same
time, splitting data makes each teacher model hold only par-
tial original training data, which causes a model utility drop.
Thus, Zhu et al. [10] propose a data-efficient scheme based
on the private release of k-nearest neighbor (kNN) queries to
replace teacher ensemble, which avoids splitting the training
dataset. For every given data sample from the public domain,
Priv-kNN subsamples a random subset from the entire pri-
vate dataset. Then it picks the k nearest neighbors from the
subset in feature space, equivalent to k teachers’ prediction
in vanilla PATE.

4 DPMLBench
This section introduces DPMLBench, a modular toolkit de-
signed to evaluate DPML algorithms’ performance on utility
and privacy. Figure 2 illustrates the four modules of DPML-
Bench.

1. Input. This module prepares the dataset and model for
the following modules. For dataset, it involves dataset
partition and preprocessing e.g., normalization. For the

Figure 2: Overview of DPMLBench.

model, it constructs model architectures and does neces-
sary modifications for private training (see Section 5.1).

2. Training. This module performs the DPML algorithms
to train DPML models. It currently supports twelve dif-
ferent DPML algorithms into four categories (see Sec-
tion 3).

3. Attack. This module performs two MIAs on models
trained from the training module.

4. Analysis. This module evaluates the performance of
DPML algorithms on utility and privacy.

DPMLBench follows a modular design that makes it flex-
ible to integrate new algorithms, attacks, datasets, and mod-
els. We envisage that DPMLBench can be used for the fol-
lowing purposes:

• As we have implemented twelve representative DPML al-
gorithms, DPMLBench enables data owners to train their
privacy-preserving models with these DPML algorithms
efficiently.

• DPMLBench comprehensively assesses different DPML
algorithms in utility and privacy. Researchers can re-use
DPMLBench as a benchmark tool to evaluate other DPML
algorithms and attacks in the future.

• Since DPMLBench follows a modular design, modules
are connected through abstract interfaces. To integrate a
new DPML algorithm and attack or to extend DPMLBench
into different domains, users can re-implement processing
functions in the corresponding modules and reuse other
modules directly.

5 Experiments
Based on the proposed taxonomy, we present a series of com-
prehensive experiments to answer the following questions:

RQ1. What improvements in DPML algorithms are most
effective in maintaining model utility?

RQ2. What improvements in DPML algorithms are most
robust in defending MIAs?

RQ3. What is the impact of dataset and model architecture
on algorithms focusing on different stages?
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Table 2: The testing accuracy, tailored AUC of MIAs in black-
box/white-box of baseline models. The number of parameters
follows each model name. (Accuracy(%)/black-box/white-box)

Target Model MNIST FMNIST SVHN CIFAR-10

SimpleNet (0.17M) 98.42/0.50/0.50 88.04/0.54/0.54 87.69/0.64/0.53 69.50/0.78/0.72
ResNet (0.26M) 99.12/0.50/0.50 89.16/0.52/0.54 92.88/0.57/0.59 66.56/0.77/0.63

InceptionNet (1.97M) 99.18/0.51/0.50 90.92/0.56/0.53 95.08/0.55/0.57 83.52/0.71/0.68
VGG (128.8M) 98.70/0.50/0.52 90.74/0.59/0.56 91.91/0.62/0.56 72.96/0.78/0.73

5.1 Experimental Setup

DPML Algorithms. We implement twelve DPML algo-
rithms; their details can be found in Section 3. For GEP,
RGP, Priv-kNN, DPGEN, and PrivSet, we use implementa-
tions of authors and modify codes to adapt for our evaluation.
The rest of the algorithms are implemented by PyTorch [55]
and Opacus [56].
Datasets. We conduct experiments on four datasets:
MNIST [23], FashionMNIST [24], CIFAR-10 [25], and
SVHN [26], which are widely used in evaluating privacy-
preserving machine learning [6, 31, 9, 10]. We resize all im-
ages to 32x32 in our evaluation.

Since our attacks are all under the assumption that the at-
tacker has an auxiliary dataset that shares similar distribution
with the training data, we split each dataset into four disjoint
parts: shadow training set, shadow testing set, target train-
ing set, and target testing set. Additionally, we allocate 90%
of the data originally used for testing as public data for the
algorithms in the ensemble category.
Model Architectures. We focus on four model archi-
tectures, including ResNet20 [20], VGG16 [21], Inception-
Net [22], and a simple three convolution layer network as
SimpleCNN. Batch normalization makes each sample’s nor-
malized value depend on its peers in a batch, making it hard
to restrict a single data contribution to the output. To adapt
differential privacy, we replace all batch normalization [57]
with group normalization [58]. We regard the models trained
with the same hyperparameters without DP as the baseline
to evaluate utility loss. Table 2 shows the performance of
the baseline model across datasets, including testing accu-
racy and tailored AUC against black-box/white-box MIAs.

We use MLPs for black-box and white-box model archi-
tecture for the attack implementation as in [59, 40]. A de-
tailed description of the model architecture can be found in
Appendix E.
Hyperparameters. We use Rényi DP to accumu-
late the overall privacy budget and precompute the re-
quired noise scale (σ in DP-SGD) numerically [6, 60]. We
keep δ = 10−5 and use different privacy budgets: ε =
{0.2,0.3,0.4,0.5,1,2,4,8,100,1000}. All algorithms’ clip-
ping threshold C are fixed to 4 unless the algorithm has spe-
cial clipping strategies.

We use the hyperparameters obtained by grid search on
DP-SGD if the original paper does not mention the setting.
While searching hyperparameters, we refer to the guides of
recent studies on hyperparameter settings for private train-
ing [61, 42]. For simplicity, we ignore the privacy leakage
caused by hyperparameter tuning in our experiment [62]. For
the attack models, we follow the settings in [59], where the

batch size is 64, the epoch is 50, the optimizer is Adam, and
the learning rate is 10−5. Appendix A shows the detailed
hyperparameter settings.
Metrics. Following previous studies [16, 59, 19, 18], we
use accuracy ACC to evaluate the models’ utility and the
area under ROC curve (AUC) to evaluate the defense abil-
ity of the model. In MIAs, AUC lower than 0.5 indicates that
the inference attack performs worse than a random guess and
tends to infer non-members as members. Thus we set the
lower bound of AUC to 0.5 for analysis convenience, indi-
cating that AUC=0.5 implies no privacy leakage. We process
the AUC metric as follows:

ÃUC = max(AUC,0.5),

We name ÃUC as tailored AUC, which is always between
0.5 and 1.

To compare the performance of DPML algorithms and
non-private algorithms more directly, we define proportional
metric utility loss and privacy leakage, respectively:

Utility Loss = 1−
ACCMpri

ACCMbase

, (6)

Privacy Leakage =
ÃUCMpri −0.5

ÃUCMbase −0.5
, (7)

where Mpri presents a private model trained by a DPML al-
gorithm and Mbase presents a non-private model trained by
vanilla SGD with the same settings as Mpri. The utility loss
denotes the percentage loss in accuracy of the DP model on
the same test set relative to the normal model. The private
leakage denotes the proportion of privacy models’ privacy
leakage compared to the normal model.

5.2 Evaluation on Utility Loss
Overview. Table 3 reports an overview of algorithms’ utility
loss across model architectures, datasets, and privacy bud-
gets. Due to space limitations, we only show part of the
experimental results. The rest results can be found in Ap-
pendix D (Table 9, which shows the similar trend as Ta-
ble 3.). The experimental results for GEP on InceptionNet
and VGG are unavailable due to memory limit. For brevity,
we use a ⟨Alg,Model,Dataset,ε⟩ tuple to denote the Model
trained with Alg on Dataset in the case of privacy budget
ε . For instance, ⟨RGP,ResNet,MNIST,0.2⟩ indicates the
ResNet model trained by RGP with a privacy budget of 0.2
on MNIST.

We observe that the utility loss decreases with increasing
privacy budget for all algorithms, which intuitively shows
that the noise scale hurts the model’s utility. However, the
utility loss varies widely across algorithms for the same pri-
vacy budget. We analyze improved DPML algorithms’ util-
ity loss across four categories in the following. NonPrivate
in figures denotes the model trained by normal SGD without
DP.
Data Preparation. Initially, in [15], the classifier was
trained on private data in order to label the synthetic data, and
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Table 3: Overview of algorithms’ utility loss on different model architectures, datasets, and privacy budgets. For each privacy budget,
we bold the value with the best performance (with the smallest value of utility loss). The experimental results of GEP on VGG are
unavailable due to memory limits.

SimpleCNN ResNet VGG
0.2 1 4 100 1000 0.2 1 4 100 1000 0.2 1 4 100 1000

M
N

IS
T

Hand-DP 89.19±1.04 18.98±1.67 8.46±0.35 4.19±0.17 3.73±0.14 24.38±1.93 11.58±0.76 5.73±0.46 2.88±0.50 2.01±0.68 88.63±1.25 88.89±1.23 90.46±0.16 7.98±0.15 3.80±0.78
PrivSet 77.26±5.89 47.54±9.23 30.86±2.26 19.72±2.28 17.58±2.60 89.70±0.20 82.24±2.70 57.01±6.11 20.83±3.60 17.86±2.67 81.36±11.11 58.61±5.03 51.32±22.10 52.40±27.64 66.52±18.65
DPGEN 60.99±8.05 88.26±0.83 14.95±0.58 2.48±0.43 2.70±0.26 70.75±4.84 84.07±3.96 73.73±3.77 3.64±0.36 3.79±0.25 90.08±0.04 90.08±0.04 58.28±30.47 1.76±0.14 2.20±0.28
TanhAct 85.19±2.58 18.30±1.29 3.13±0.39 1.74±0.14 1.74±0.16 38.16±3.27 18.61±3.42 7.05±0.54 3.89±0.44 3.12±0.19 90.21±0.04 89.59±0.12 90.15±0.31 6.14±0.08 1.91±0.03
FocalLoss 87.99±1.97 29.11±2.59 7.44±0.40 3.32±0.07 2.40±0.01 43.09±4.17 10.99±1.70 6.32±0.85 2.72±0.12 1.78±0.12 82.10±1.77 88.16±0.01 88.91±0.39 11.46±11.64 3.66±0.52
DP-SGD 89.61±1.12 21.98±0.19 7.50±0.42 3.58±0.21 3.04±0.23 28.17±3.48 11.33±1.17 5.38±0.85 2.88±0.35 2.24±0.36 88.79±1.02 88.74±0.47 90.56±0.77 13.23±4.42 3.55±0.06
RGP 36.65±1.04 13.23±0.78 10.17±1.02 6.72±0.09 6.37±0.23 31.87±2.62 21.24±3.90 33.03±7.12 34.06±5.62 37.66±8.97 90.30±0.29 6.59±0.95 3.86±0.27 6.33±2.24 4.78±0.14
GEP 90.30±0.29 90.25±0.34 14.37±1.83 2.67±0.52 1.52±0.02 86.22±2.16 17.61±1.35 4.36±0.22 1.00±0.04 0.46±0.26 - - - - -
AdpAlloc 89.23±0.81 18.79±1.24 6.57±0.20 3.59±0.45 3.14±0.29 24.26±3.70 10.04±2.13 4.91±0.59 3.25±0.57 2.48±0.37 90.24±0.22 89.00±0.58 89.85±1.04 6.44±0.26 3.12±0.04
AdpClip 88.17±4.04 75.55±11.05 7.79±0.37 8.00±0.30 8.10±0.28 59.66±2.95 7.46±0.53 4.85±0.40 4.17±0.35 4.21±0.41 88.92±0.22 88.13±0.24 89.06±0.75 14.00±2.44 4.78±0.15
PATE 82.83±3.94 71.81±4.09 33.36±12.33 11.89±4.04 10.98±2.78 90.86±0.09 85.89±6.08 30.74±15.79 7.12±3.66 10.38±1.16 84.94±3.47 76.17±3.78 44.08±23.93 32.15±40.09 32.66±39.74
Priv-kNN 61.22±2.13 34.97±3.37 33.13±0.62 34.77±0.94 33.80±1.56 25.03±5.76 9.70±0.87 8.43±0.63 9.30±0.74 9.91±1.25 49.05±1.62 17.80±2.17 17.16±0.94 16.29±0.39 14.74±1.43

C
IF

A
R

-1
0

Hand-DP 90.06±0.16 86.88±4.04 48.67±0.96 43.28±0.74 44.14±0.18 84.29±2.26 58.34±0.50 50.74±0.58 41.95±2.33 39.29±3.11 90.03±0.18 89.67±0.07 89.86±0.12 79.74±7.71 37.58±0.82
PrivSet 88.85±0.65 87.78±1.28 86.78±0.71 88.83±0.94 89.43±0.78 89.56±0.83 89.28±0.37 89.45±1.18 87.91±2.03 85.43±2.43 89.77±0.29 88.14±0.78 89.07±0.38 90.04±0.26 87.64±2.81
DPGEN 90.16±0.11 89.86±0.09 89.66±0.70 69.98±2.28 76.98±2.26 90.00±0.35 90.00±0.16 90.59±1.39 79.51±1.01 83.38±4.20 90.52±0.30 89.72±0.21 89.47±0.29 87.24±3.07 88.86±1.43
TanhAct 89.74±0.64 69.95±1.13 45.39±0.92 32.93±0.55 32.21±0.21 82.55±1.17 62.11±0.33 55.52±0.32 48.95±1.17 49.28±2.73 90.22±0.00 90.07±0.25 90.13±0.10 64.46±1.43 34.26±0.28
FocalLoss 89.88±0.08 88.17±2.46 52.42±0.47 38.55±0.79 38.47±0.90 84.36±2.43 62.12±0.53 52.06±0.43 40.65±2.12 39.00±2.98 90.17±0.26 89.75±0.15 89.85±0.23 66.36±6.19 36.60±0.33
DP-SGD 89.80±0.30 89.13±1.30 48.79±0.24 40.03±0.93 40.48±0.86 81.92±2.61 58.32±0.44 49.57±1.76 41.17±2.67 38.66±3.80 90.20±0.56 89.38±0.49 89.73±0.09 89.81±0.12 35.15±0.35
RGP 90.15±0.02 61.91±1.32 58.52±1.34 54.28±0.68 54.41±0.92 74.48±0.54 65.24±0.88 67.27±2.00 66.38±0.93 66.56±0.82 90.16±0.01 81.87±4.19 53.66±1.25 53.49±0.09 54.37±0.49
GEP 90.16±0.00 90.16±0.01 90.16±0.00 35.11±0.20 31.90±0.24 88.68±2.19 85.19±0.20 46.72±0.73 30.45±0.36 26.64±0.93 - - - - -
AdpAlloc 90.04±0.30 89.89±0.18 47.97±0.57 38.49±0.47 39.16±0.88 80.04±2.19 57.88±0.86 48.86±1.03 43.83±1.52 42.22±2.19 90.06±0.05 89.57±0.05 89.99±0.08 51.42±0.58 35.46±0.42
AdpClip 89.71±0.23 89.79±0.26 64.50±2.33 35.64±0.82 34.12±0.42 86.57±1.43 64.08±0.77 48.05±1.15 37.17±1.27 33.55±1.98 89.70±0.34 89.86±0.68 90.21±0.19 89.69±0.01 44.47±0.07
PATE 90.19±1.30 91.70±1.44 89.25±0.53 83.30±2.42 83.06±0.54 88.34±0.41 87.60±1.13 85.99±2.08 82.05±1.18 83.50±1.43 90.05±1.23 91.60±0.49 91.06±1.11 89.92±1.56 90.02±2.79
Priv-kNN 89.52±0.45 89.38±0.12 88.94±0.17 90.19±0.05 90.29±0.40 87.77±1.70 81.35±1.56 77.38±1.27 74.96±0.34 74.43±1.27 89.85±1.27 87.26±2.55 85.42±2.04 84.81±1.32 84.41±1.56

then the labeled dataset was used to train the target model.
This is similar to labeling public data through teacher ensem-
ble in [9], which will consume additional privacy budgets.
However, [15] does not count this part. In our implementa-
tion, we use data that does not overlap with private data to
train the labeling model.

Figure 3a illustrates the accuracy comparison between al-
gorithms in the data preparation category and vanilla DP-
SGD. The plot shows that Hand-DP outperforms DPGEN
and PrivSet in low privacy budget generally. Hand-DP’s ac-
curacy is equivalent to vanilla DP-SGD and has a slight ad-
vantage on VGG. The performance of DPGEN and PrivSet
is highly relative to the quality of synthetic data. When man-
ually inspecting the generated data, we observe that there ex-
ist images with wrong labels and many similar, even identical
images (e.g., mode collapse). More effort on hyperparameter
tuning and manual data filtering for DP synthetic algorithms
can improve the performance.

Moreover, Tramer et al. propose using the non-learned
handcrafted feature to train a linear model with DP-
SGD [12]. Thus, we perform the same experiment for Hand-
DP on simple MLP. The experiment results on CIFAR-10 are
shown as Table 7 in Appendix D. Comparing other model
architectures, we observe that the simple MLP only has an
advantage when the privacy budget is relatively small (e.g.,
ε < 0.5 ). Thus, we exclude the MLP in subsequent experi-
ments to maintain uniformity with other algorithms.
Model Design. Figure 3b illustrates the performance of al-
gorithms in the model design category and vanilla DP-SGD.

In general, TanhAct outperforms vanilla DP-SGD and Fo-
calLoss on SimpleCNN and VGG. However, neither Tan-
hAct nor FocalLoss performs better than vanilla DP-SGD
on ResNet and InceptionNet, TanhAct’s performance is even
much worse than vanilla DP-SGD on ResNet. [11] shows
that TanhAct has a better utility-privacy trade-off on their
models, whose architecture is similar to SimpleCNN. The
difference among the architectures is that ResNet and Incep-
tionNet both have GroupNorm layers while the others do not.

To figure out the impact of the GroupNorm layer and ac-

tivation function, we add the GroupNorm layer before the
activation function of the SimpleCNN and evaluate the per-
formance of the vanilla DP-SGD (DP-SGD with ReLU) and
TanhAct (DP-SGD with Tanh) respectively (in Figure 4). We
observe that the GroupNorm layer improves the accuracy of
the model overall. However, the improvement gap shrinks as
the privacy budget increases when using Tanh as an activa-
tion function, e.g. DP-SGD (Tanh) w/o GroupNorm outper-
forms DP-SGD (Tanh) with GroupNorm when the privacy
budget is greater than 10. The connection between the ac-
tivation function and the normalization layer needs further
exploration.

Model Training. Figure 3c illustrates the accuracy com-
parison of algorithms in the model training category and
vanilla DP-SGD. When the privacy budget is large, the ac-
curacy of GEP exceeds the baseline in some settings (e.g.
⟨GEP,ResNet,CIFAR-10,1000⟩) because of leveraging pub-
lic data.

When the privacy budget is small, RGP is the only algo-
rithm in this category to achieve acceptable performance on
VGG. Model parameter dimensionality reduction is an effec-
tive technique to solve large models’ inability to adapt to DP.
Nevertheless, there is a significant performance degradation
when the privacy budget is large for RGP. We suspect the
reason is that reparameterization not only reduces the noise
scale in private training but also leads to information loss in
the gradient. When the noise scale is small, the information
loss caused by reparametrization is higher than the mitigation
effect on noise perturbation.

Table 8 in Appendix D reports the accuracy of RGP (w/o
DP) and vanilla SGD, and the difference between them is
whether using reparametrization. We train models by us-
ing RGP (w/o DP) and vanilla SGD, respectively, , and the
difference between them is whether using reparametrization.
Overall, the accuracy of RGP (w/o DP) is lower than that of
SGD under the same settings across all datasets and model
architectures. The results can be found in Table 8 in Ap-
pendix D. The results echo our previous speculation that
reparametrization reduces noise scale in private training but
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(b) Model Design
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(c) Model Training
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(d) Model Ensemble
Figure 3: Accuracy comparison of the DPML algorithms in four categories, where the x-axis represents privacy budgets.
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Figure 4: Accuracy of SimpleCNN models with/without Group-
Norm layer trained by DP-SGD with ReLU and Tanh activation
function across varies privacy budget.

impairs performance in non-private settings.
Model Ensemble. Figure 3d illustrates the accuracy of the
algorithms in the model ensemble category and vanilla DP-

SGD.
Note that Priv-kNN and PATE use noise screening tech-

nique [10, 38], which ignores the data with low confidence
in teacher ensembles to improve the utility-privacy tradeoff.
We do not use this technique in our implementation because
the privacy budget is given in our settings and the noise scale
is precomputed, which requires a fixed number of queries.

When implemented on VGG, Priv-kNN can preserve an
equivalent performance as other models, whereas PATE’s
performance plunges to random guesses. A large number of
teachers can impair the noise effect, while the amount of data
allocated to each teacher model is too small for a large model
such as VGG to converge. The results echo the introduction
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Table 4: Overview of algorithms’ tailored AUC in black-box MIA on different model architectures and privacy budgets. In every
setting, we bold the value with the best performance (with the smallest value). The experimental results for GEP on InceptionNet and
VGG are unavailable due to memory limits.

SimpleCNN ResNet VGG
0.2 1 4 100 1000 0.2 1 4 100 1000 0.2 1 4 100 1000

C
IF

A
R

-1
0

Hand-DP 0.50±0.00 0.50±0.00 0.51±0.01 0.53±0.00 0.53±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.52±0.00 0.53±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.53±0.01
PrivSet 0.50±0.00 0.51±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.01 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.50±0.00
DPGEN 0.51±0.00 0.50±0.00 0.51±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.50±0.00 0.50±0.01
TanhAct 0.50±0.00 0.50±0.00 0.51±0.00 0.53±0.00 0.53±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.52±0.00 0.55±0.01 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.54±0.00
FocalLoss 0.50±0.00 0.51±0.00 0.51±0.00 0.52±0.00 0.53±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.52±0.00 0.52±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.53±0.00
DP-SGD 0.51±0.00 0.50±0.00 0.51±0.01 0.53±0.00 0.53±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.52±0.00 0.53±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.53±0.01
RGP 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.50±0.00 0.50±0.00
GEP 0.50±0.00 0.50±0.00 0.50±0.00 0.52±0.00 0.57±0.00 0.51±0.00 0.50±0.00 0.50±0.00 0.53±0.00 0.54±0.00 - - - - -
AdpAlloc 0.50±0.00 0.50±0.00 0.51±0.00 0.53±0.00 0.53±0.01 0.50±0.00 0.50±0.00 0.51±0.00 0.52±0.00 0.53±0.01 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.54±0.00
AdpClip 0.50±0.00 0.50±0.00 0.50±0.00 0.53±0.00 0.56±0.00 0.51±0.01 0.50±0.00 0.51±0.00 0.52±0.00 0.54±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.53±0.00
PATE 0.50±0.00 0.52±0.01 0.51±0.01 0.50±0.00 0.51±0.00 0.51±0.01 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.01 0.51±0.01 0.51±0.01 0.50±0.01 0.50±0.00 0.50±0.00
Priv-kNN 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.01 0.50±0.00 0.50±0.00 0.50±0.01 0.50±0.00 0.51±0.01 0.50±0.00 0.50±0.00 0.51±0.01 0.50±0.00 0.50±0.00

in Section 3.5, PATE is hard to get a good trade-off on the
number of teacher models.

When implemented on other model architectures, Priv-
kNN outperforms PATE with a low privacy budget and vice
versa with a high privacy budget. PATE and Priv-kNN both
show higher accuracy at some specific settings [9, 10]. How-
ever, they both fail to obtain a better utility-privacy trade-
off than vanilla DP-SGD at most settings in our measure-
ments. We suspect that semi-supervised training techniques
introduce more randomness and require fine-grained hyper-
parameter tunning, which leads to a high standard deviation
as our experimental results show.

5.3 Evaluation on Defensive Capabilities

We report the tailored AUC of the black-box MIAs on
CIFAR-10 in Table 4, and put the results of other datasets
and more settings into Appendix D for having the similar
trends (Table 10 for more datasets under black-box MIAs,
Table 11 for white-box MIAs). Note that the tailored AUC
of attacking the non-private model on the MNIST dataset is
already very close to 0.5, so we omit the results on MNIST
in this section. Generally, all algorithms’ tailored AUC is
around 0.5, which means a strong defense against the MIA
compared to the baseline results Table 2.

Figure 5 illustrates the privacy leakage of models trained
by algorithms in a per-category manner. Compared to vanilla
DP-SGD, the modification of RGP and FocalLoss change the
feature of confidence vectors, resulting in training and test-
ing data having a different distribution for the attack model.
Thus, RGP and FocalLoss have a remarkable advantage over
black-box and white-box attacks in general. Refer to Fig-
ure 5d and Figure 5a. We observe that PATE, Priv-kNN, DP-
GEN, and PrivSet remain nearly free of privacy leakage. It is
because the target models do not access private data. PATE
and Priv-kNN use the knowledge transferred from teacher
ensemble, and DPGEN and PrivSet only access generated
data.
Role of Sensitivity-bounding Techniques. To explore the
role of sensitivity-bounding techniques in defending MIAs,
we conduct attacks on a model trained with normal SGD and
per-sample clipping to explore the impact of per-sample clip-
ping on the defense. The results are shown in Table 5.

We observe that the per-sample clipping has a strong de-
fense ability against MIAs with acceptable accuracy degra-
dation compared to the non-private model. Moreover, the

Table 5: Impact of per-sample clipping on model utility and
defense to attacks. The table reports the accuracy and the AUC
of models on CIFAR-10 with different privacy guarantees. Inf
indicates normal SGD; Inf (Clip) denotes normal SGD with per-
sample clipping.

8 100 1000 Inf(clip) Inf

SimpleCNN ACC (%) 58.20 60.66 60.44 57.96 69.22
AUC 0.52 0.52 0.53 0.52 0.78

ResNet ACC (%) 53.80 61.50 65.90 57.42 69.70
AUC 0.51 0.52 0.53 0.54 0.65

InceptionNet ACC (%) 58.00 64.60 69.40 72.80 83.68
AUC 0.51 0.51 0.52 0.58 0.71

VGG ACC (%) 10.36 10.02 64.66 67.72 71.36
AUC 0.50 0.50 0.52 0.59 0.78

defensive effects and accuracy degradation are model depen-
dent. For example, Inf(clip) performs comparably to ε = 8
on SimpleCNN, but when applied to other models, the per-
formance is worse than when ε = 1000.

We suspect the reason why the per-sample clipping tech-
nique can defend against MIAs is that it reduces the over-
fitting of the model. During the training process, applying
gradient descent without clipping guides the model to the
direction that overfits the training samples; while clipping
the gradient makes the model move more conservatively and
less overfit to the training samples. Note that the models
trained by SGD with per-sample clipping have a defense abil-
ity against MIAs but do not satisfy the DP guarantee.

5.4 The Role of the Architecture
Architecture Complexity. According to baseline accuracy
in Table 2, the model’s performance can be ordered as Incep-
tionNet > VGG ≈ ResNet > SimpleCNN.
Architecture versus Utility Loss. To figure out the im-
pact of model architecture on algorithm performance, we
illustrate the boxplot for the utility loss overall algorithms,
network, and dataset jointly vary with the privacy budget as
Figure 6a.

We observe that the utility loss is similar for ResNet and
InceptionNet across different privacy budgets. When the pri-
vacy budget is small (ε ≤ 1), the performance of SimpleCNN
and VGG is worse than that of ResNet and InceptionNet.
As the noise amount becomes smaller (ε > 1), the perfor-
mance gap between SimpleCNN, ResNet, and InceptionNet
narrows. The performance of VGG, the largest model in our
assessment, is still poor unless perturbed noise is negligible
(ε ≥ 100), while the privacy protection provided by DP is
also meaningless. Further, we explored the test accuracy of
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(b) Model Design
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(c) Model Training
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(d) Model Ensemble
Figure 5: Privacy leakage (under MIA) of DPML algorithms in four categories when given different privacy budgets.
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(b) Privacy Leakage
Figure 6: Boxplot of utility loss and privacy leakage on all DPML algorithms with various privacy budgets and four network architec-
tures .

ResNet with different numbers of parameters under different
privacy budgets. Due to space limitaions, detailed results can
be viewed at Figure 9 in Appendix D. Generally, the smaller
the privacy budget and the more model parameters, the worse

the model accuracy when training with vanilla DP-SGD.

Architecture versus Privacy Leakage. We also present a
boxplot for the privacy leakage of all algorithms on different
network architectures across privacy budgets as Figure 6b.
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(b) Privacy Leakage. The tailored AUCs of MIAs on MNIST is around 0.5, whether with or without DP, which leads to privacy leakage
close to 100%.

Figure 7: Boxplot of utility loss and privacy leakage on all DPML algorithms with various privacy budgets for different datasets.

We observe no strong correlation between privacy leakage
and model architecture. VGG has the lowest privacy leakage
because many algorithms fail to converge on VGG, leading
to the following attack failure.

5.5 The Role of the Datasets
Dataset Complexity. As mentioned before, we resize all
the samples in each dataset to 32× 32 pixels. MNIST and
FMNIST are simpler than SVHN and CIFAR10 as they only
contain gray-scale images. When the number of channels is
the same, MNIST and SVHN are easier than FMNIST and
CIFAR10, respectively, because the contents of MNIST and
FMNIST are digital numbers. The accuracy of baseline mod-
els in Table 2 shows the same conclusion.
Dataset versus Utility Loss. To explore the impact of the
dataset on the DPML algorithm, we plot the relationship be-
tween dataset complexity and model utility loss in Figure 7a.

As shown in the plots, the algorithm’s performance on
these datasets is correlated with the dataset complexity, with
worse performance on the harder dataset. Even with a very
large privacy budget (ε = 100), nearly half of the private
models had a utility loss of more than 30% on CIFAR10 com-
pared to the non-private setting.
Dataset versus Privacy Leakage. We plot the relation-
ship between dataset complexity and model privacy leakage
in Figure 7b. We observe that more complex datasets lead to
less privacy leakage. One reason is that a complex dataset is
harder to converge under private settings, and attackers can-
not obtain enough information to infer. Additionally, more
complex datasets lead to better MIA performance [59] un-
der non-private settings, leading to a smaller privacy leakage
value. The tailored AUCs of MIAs on MNIST is around 0.5,
whether with or without DP, which leads to privacy leakage
close to 100%.

5.6 Comparison with Label DP
Label Differential Privacy (Label DP) is a variant of DP
where the data labels are considered sensitive and must be
protected. The definition of label differential privacy is:

Definition 5.1. (Label Differential Privacy). A randomized

training algorithm M taking a dataset as input is said to
be (ε,δ )-label differentially private, if for any two training
datasets D and D′ that differ in the label of a single example,

Pr[M(D) ∈ S]≤ eε Pr[M(D′) ∈ S]+δ .

If δ = 0, then M is said to be ε-label differentially pri-
vate (ε-LabelDP). Label DP and DP synthetic algorithms
share similar paradigms but differ in generating synthetic
datasets by satisfying Label DP instead of standard DP. Our
evaluation covers two state-of-the-art Label DP algorithms:
LP-MST [14] and ALIBI [63], to explore the difference be-
tween Label DP and standard DP algorithms. It is worth
noting that the Label-DP satisfies bounded DP. We con-
vert the privacy budget for equivalence while comparing it
with other algorithms, and the figure shows the privacy bud-
get in unbounded DP (e.g. ⟨RGP,ResNet,CIFAR-10,1000⟩
and ⟨LP-MST,ResNet,CIFAR-10,2000⟩ share the same hor-
izontal coordinate, 1000). The concrete algorithm descrip-
tion can be found in Appendix C

Figure 8a illustrates the comparison of accuracy between
Label DP algorithms and vanilla DP-SGD, TanhAct, RGP,
Priv-kNN, and DPGEN. We notice that the accuracy of LP-
MST and ALIBI can approach or even exceed baseline when
the privacy budget is not very large, e.g. the accuracy
of ⟨LP-MST,ResNet,CIFAR-10,4⟩ is 71.82 larger than the
baseline of 66.56. There are two reasons behind this. One is
that noise only affects labels. The training process gradually
becomes the same as non-private training as the private bud-
get increase. The other is that the techniques used to mitigate
the effects of wrong labels usually also improve the model’s
generalization, such as mixup [64] used in LP-MST [14].

Figure 8b illustrates the comparison of black-box MIA on
Label DP algorithms and vanilla DP-SGD, TanhAct, RGP,
Priv-kNN, and DPGEN with the metric of privacy leakage.
We observe that Label DP algorithms have higher privacy
leakage than standard DP algorithms, which is natural for
Label DP because of no protection provided to data.

5.7 Takeaways
In the following, we summarize important insights obtained
from our measurements and provide some actionable advice
to future DPML practitioners.
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Figure 8: Comparison of Label DP algorithms (LP-MST, ALIBI) and vanilla DP-SGD, TanhAct, RGP, Priv-kNN, and DPGEN under
different privacy budgets.

• Different improvement techniques can affect the privacy-
utility trade-offs of the algorithm from different perspec-
tives. Concretely, parameter dimension reduction in the
model training category improves the performance of
DPML on large models but impairs utility when the pri-
vacy budget is large. Thus, RGP is a good choice for those
who want to provide a DP guarantee for large models. On
the other hand, algorithms in the model ensemble category
and DP synthetic algorithms can be used when stronger
defense against MIAs is desired. However, more effort on
manual data filtering for DP synthetic algorithms is needed
for better utility.

• In general, the DPML algorithms provide an effective de-
fense against practical MIAs in both black-box and white-
box manner. The defense performance hardly decreases
when the privacy budget increases. The reason is that
sensitivity-bounding techniques such as gradient clipping
play an important role in defense. More specifically, im-
proved algorithms that do not directly access private data
are better at defending against attacks, such as algorithms
in the model ensemble category and DP synthetic algo-
rithms. In addition, improved algorithms that affect the
attack features of MIAs can achieve additional defensive
capabilities. For instance, the confidence vector distribu-
tion of FocalLoss is different from that of shadow models,
which causes FocalLoss to be more robust to attacks. All
algorithms that provide the standard DP guarantee can de-
fend MIAs effectively.

• Some model architecture design choices for non-private
ML models are ineffective for private ML models. More
specifically, a large model scale degrades utility for most
DPML algorithms. In addition, using Tanh and Group-
Norm can reduce the utility loss on vanilla DP-SGD. How-
ever, we also find that using both Tanh and GroupNorm has
a negative effect. What model architectures are suitable for
DPML is still a research question to be explored. When

applying DP to ML models, ResNet and InceptionNet are
preferred architectures to attempt.

• In general, learning data distribution from more complex
datasets is more difficult than that from easier datasets for
all DP algorithms. Compared with the non-private setting,
applying DP makes it even more difficult to learn from
complex datasets. Leveraging external datasets (e.g., pre-
train on public dataset [6] and public data embedding [31])
can be helpful to improve the utility of the model on com-
plex datasets. Therefore, designing DPML algorithms to
better learn from complex datasets is an interesting future
research direction.

• Label DP algorithms achieve better model utility than stan-
dard DP algorithms, which is expected since label DP al-
gorithms loosen the constraint on adjacent datasets. How-
ever, the defense effectiveness of label DP algorithms is
worse than that of standard DP algorithms since they only
protect the privacy of the label instead of the privacy of the
training sample. Label DP should only be used when the
label is sensitive, not the data itself, and there is no need to
defend against MIAs.

6 Discussion

In this section, we discuss several potential research direc-
tions to inspire interested readers to explore relavent do-
mains.
Emsembled DPML Algorithms. As discussed in Sec-
tion 3.1, the improved DPML algorithms in different phases
of our taxonomy are independent of each other; thus, one in-
teresting future work is to combine the improvements in dif-
ferent phases to achieve better performance. Shamsabadi et
al. [8] take the first step and show that combining a hand-
crafted feature extractor[12] in the data preparation phase
and optimal loss function in the model design phase can
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effectively improve the model utility. It would be exciting
to follow our taxonomy and combine algorithms at different
phases to achieve even better performance.
Extension to Other Domains. Our current measurement
primarily focuses on image classification tasks, it would be
interesting to leverage DPMLBench to measure the perfor-
mance of DPML algorithms in other domains, such as nat-
ural language processing (NLP) and graph neural networks
(GNN).
DPML Algorithms for Large Models. With the devel-
opment of deep learning, the model scale increases rapidly,
especially in the NLP field. For instance, the famous GPT-3
model contains 175B parameters [65]. However, our mea-
surements show that most of the current DPML algorithms
suffer from low model utilities. Furthermore, DP-SGD-
based algorithms require calculating per-sample clipping of
the gradients, which significantly increases the training time
and memory consumption. Therefore, designing high-utility
and efficient DPML algorithms for large models is of signif-
icant importance in the future.

7 Related Work
Differential Privacy. Differential privacy (DP) [34, 36]
is a widely used rigorous mathematical definition to for-
malize and measure privacy guarantees based on a param-
eter called privacy budget. It has been adopted for a num-
ber of data analysis tasks, such as synthetic dataset genera-
tion [66, 67, 68, 69], marginal release [70], range query [71],
and stream data analysis [72]. Some studies propose in-
tegrating DP with traditional machine learning algorithms,
such as naive Bayes and Linear Support Vector Machine
(SVM) [73, 74, 75]. Abadi et al. propose vanilla DP-SGD [6]
as the first general DPML algorithm. Recent studies try to
mitigate DP’s impairment on utility by proposing new algo-
rithms [9, 12, 31, 10] or relax DP definition for specific sce-
narios [76, 14, 77].
Membership Inference Attacks. The adversary in MIAs
aims to infer whether a given data sample is used to train the
target model. Currently, the MIA is one of the critical meth-
ods to assess the privacy risk of ML models [3, 39, 40, 78,
79, 80]. According to the accessibility to the target model,
the MIA can be categorized into black-box and white-box
attacks. Shokri et al. [3] propose the first black-box MIA
against ML models. They propose to train multiple shadow
models to simulate the behavior of the target model and use
shadow models to generate the data used to train the attack
model. Salem et al. [39] simplify their method by using one
shadow dataset and one shadow model. Nasr et al. [40] first
propose white-box MIAs, where the adversary knows the in-
ternal parameters of the target model.
DPML Measurement. Several DPML measurement stud-
ies concentrate on different perspectives [16, 17, 18, 19]. Ja-
yaraman et al. [16] analyzed the difference of privacy leak-
age of relaxed variants of differential privacy. They explore
the difference in privacy leakage when using the same algo-
rithm with different DP definitions. Iyengar et al. [17] eval-
uate several differentially private convex optimization algo-

rithms. The work of Zhao et al. [18] and Jarin et al. [19]
analyze the performance of naive noise perturbation in dif-
ferent stages of the training pipeline.

ML-Doctor [59] also investigates the defenses and attacks
against ML models. However, we have different objectives.
ML-Doctor aims to evaluate the effectiveness of different
types of defenses against attacks. For DPML, they only eval-
uate the vanilla DP-SGD, and their only conclusion is that
DP-SGD can defend against MIAs while failing for other at-
tacks without considering the impact on model utility. On the
other hand, DPMLBench conducts more fine-grained taxon-
omy and evaluation on different DPML algorithms and aims
to evaluate the trade-off between model utility, privacy guar-
antee, and defense effectiveness. This can better facilitate fu-
ture research on DPML. As such, we obtained more insights
on how to design proper DPML algorithms to trade off the
above triangle, as stated in Section 5.7.

8 Conclusion
This paper establishes a taxonomy of improved DPML algo-
rithms along the ML life cycle for four types: data prepa-
ration, model design, model training, and model ensemble.
Based on taxonomy, we propose the first holistic measure-
ment of improved DPML algorithms’ performance on util-
ity and defense capability against MIAs on image classifica-
tion tasks. Our extensive measurement study covers twelve
DPML algorithms, two attacks, four model architectures,
four datasets, and various privacy budget configurations. We
also cover state-of-the-art label DP in the evaluation.

Among other things, we found that different improvement
techniques can affect the privacy-utility trade-off of the algo-
rithm from different perspectives. We also show that DP can
effectively defend against MIAs and sensitivity-bounding
techniques such as per-sample gradient clipping play an im-
portant role in defense. Moreover, some model architecture
design choices for non-private ML models are ineffective for
private ML models. In addition, label DP has less utility loss
but is fragile to MIAs.

We implement a modular re-usable software, DPML-
Bench, which contains all algorithms and attacks. DPML-
Bench enables sensitive data owners to deploy DPML algo-
rithms and serves as a benchmark tool for researchers and
practitioners. Currently, while DPMLBench focuses on im-
age classification models, we plan to extend other types of
DP models, such as language models [81, 82], graph neural
networks [83, 84, 85], and generative models [86, 44].
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A Hyperparameter Settings
Table 6 reports the detailed hyperparameter settings. Settings
of DPGEN and PrivSet are for classifier training. We follow
the author’s setting for generated algorithms.

Table 6: Detailed hyperparameter settings. Settings of DPGEN
and PrivSet are for classifier training. We follow the author’s
setting for generated algorithms.

Learning Rate Batch Size Epoch Additional

vanilla DP-SGD 0.01 256
MNIST,FMNIST:60
SVHN,CIFAR-10:90

TanhAct 0.01 256
MNIST,FMNIST:60
SVHN,CIFAR-10:90

AdpAlloc 0.01 256
MNIST,FMNIST:60 ExpDecay
SVHN,CIFAR-10:90 k=0.01

AdpClip 0.01 256
MNIST,FMNIST:60

target unclipped quantile=0.7
clipbound learning rate=0.1

SVHN,CIFAR-10:90
max clipbound=10

min clipbound=0.05

FocalLoss 0.01 256
MNIST,FMNIST:60

weight decay=1e-4SVHN,CIFAR-10:90

Handcrafted 0.01 256
MNIST,FMNIST:60
SVHN,CIFAR-10:90

GEP 0.1 256
MNIST,FMNIST:60

num groups=3
num bases=1000

SVHN,CIFAR-10:90
weight decay=2e-4
aux data size=2000

RGP 0.1 256
MNIST,FMNIST:60

width=1
rank=16

SVHN,CIFAR-10:90 weight decay=1e-4
PATE 0.001 200 500 n teacher=100

Priv-kNN 0.01 512 500
iteration=2

sample prob=0.15
DPGEN 0.01 1024 100
PrivSet 0.01 10 300 samples per class=10
LP-MST 0.01 256 200 stage=2

ALIBI 0.01 256
MNIST,FMNIST:60

post process=mapwithpriorSVHN,CIFAR-10:90

B Dataset Description
• MNIST comprises 60000 training samples and 10000 test

samples. Each sample is a 28x28 pixel gray handwritten
numeral picture.

• Fashion-MNIST (FMNIST) has the same size, format,
and train
/test set division as the MNIST. It covers front images
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Table 7: Test accuracy of 5 model architectures on CIFAR-10
when given various privacy budgets.

0.2 0.4 1 4 100 1000 Inf

MLP 27.30 32.50 38.98 46.70 54.02 57.48 57.32
SimpleCNN 9.66 9.98 10.24 51.12 57.06 55.66 65.18

ResNet 14.78 28.04 42.02 49.36 60.80 64.58 72.16
InceptionNet 15.08 22.14 39.54 52.22 60.78 66.42 81.58

VGG 9.70 10.16 10.32 10.22 30.08 60.90 72.26

of products from 10 different clothing categories. It has
60000 training samples and 10000 test samples.

• CIFAR-10 consists of 10 categories of real-world objects
of color images, and the size of each picture is 32×32.
There are 50000 training images and 10000 test images in
the dataset.

• Street View House Number (SVHN) is the house num-
ber extracted from the Google Street view image. It can be
seen as a colorful and more realistic version of MNIST. It
comprises 73257 training samples and 26032 test samples,
which are 32×32 RGB images. We trim the testset size to
10000 while keeping distribution consistent with the orig-
inal testset.

1. Target Training Dataset is regarded as private data and
member samples while evaluating the performance of
MIAs.

2. Target Testing Dataset is used to evaluate the utility
performance of the model. It is also used to evaluate the
performance of MIAs as non-member samples.

3. Shadow Training Dataset is used to train shadow mod-
els as auxiliary datasets of adversaries and then generate
training data as members for attack models.

4. Shadow Testing Dataset is used to generate training
data as non-members for attack models.

C Details of Label DP Algorithms
• LP-MST Ghazi et al. [14] introduced RRWithPrior, a Ran-

domized Response (RR) [87] based algorithm, to perform
label perturbation, to determine whether the label of each
data sample is obtained by the RR mechanism or randomly
generated. To mitigate the effects of mislabeling, LP-MST
leverages a multi-stage training strategy.

• ALIBI Malek et al. [63] provide label DP guarantee by
applying additive Laplace noise to a one-hot encoded la-
bel. To mitigate the effects of the perturbed label, they ap-
ply Bayesian post-processing to the output of the Laplace
mechanism to mitigate the effect of mislabeling.

D Additional Results
Results of Hand-DP on MLP. Table 7 shows the results
comparison of Hand-DP among 5 model architectures on
CIFAR-10.
Impact of Model Parameter Amounts on Accuracy. Fig-
ure 9 shows the test accuracy of ResNet with the different

numbers of parameters trained by vanilla DP-SGD under dif-
ferent privacy budgets.
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Figure 9: Accuracy of ResNet with the different number of pa-
rameters trained by vanilla DP-SGD under different ε levels.
Accuracy of RGP without DP. To figure out the effect of
reparametrization in a non-private setting, Table 8 reports the
accuracy comparison between RGP without DP and vanilla
DP-SGD.

Table 8: Accuracy of RGP (w/o DP) and vanilla SGD. Other
settings keep the same as Table 3.

SimpleCNN ResNet InceptionNet VGG
RGP(w/o DP) SGD RGP(w/o DP) SGD RGP(w/o DP) SGD RGP(w/o DP) SGD

MNIST 95.50 98.42 97.78 99.24 99.04 99.18 98.56 98.68
FMNIST 85.70 88.04 86.62 88.60 90.76 91.70 88.72 90.48
SVHN 73.70 87.69 90.58 93.84 93.09 94.90 88.14 89.77

CIFAR-10 50.40 69.22 59.94 68.16 75.74 83.68 68.32 71.36

Accuracy on FMNIST and SVHN. Figure 10 shows the
accuracy of DPML algorithms on FMNIST and SVHN in
terms of categories. As a supplementary to Figure 3.
Utility loss on FMNIST and SVHN. Table 9 shows the re-
sults of utility loss on FMNIST and SVHN as the supplement
of Table 3.
Extra Results of MIAs. Table 11 reports the tailored AUC
in white-box style on all model architectures, datasets, and
privacy budget. Table 10 reports the tailored AUC in black-
box on FMNIST and SVHN.

E Model Architectures
Target Model. Table 12, Table 13, Table 15 and Table 16
show target model architecture, respectively. For simplicity,
the details of the block used in the network are shown in
Table 14 and Table 17.
Attack Model. We present implementation details of attack
models as follows:

• Black-Box. We refer to the model architecture of Liu et
al. [59]. The attack model receives two inputs: the tar-
get sample’s sorted posteriors and a binary indicator on
whether the target sample is predicted correctly. The at-
tack model consists of three MLPs (Multi-layer Percep-
tron). Two processes the input to extract features and con-
catenated output features are fed into the third MLP to ob-
tain the final prediction.

• White-Box. We use a similar model architecture as the
one used by Nasr et al. [40]. There are four inputs for
this attack model, including the target model’s posteriors,
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(a) Data Preparation
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(b) Model Design
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(c) Model Training
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(d) Model Ensemble
Figure 10: Accuracy comparison on FMNIST and SVHN. As a supplementary to Figure 3.

classification loss, gradients of the parameters of the tar-
get model’s last layer, and true labels in one-hot encoding.
Each input is fed into a different neural network to extract
the features respectively, and then the features are passed
to the classifier after concatenation.
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Table 9: Overview of algorithms’ utility loss on different model architectures, datasets, and privacy budget. For each privacy budget,
we bold the value with the best performance (with the smallest value of utility loss). Supplement to Table 3.

SimpleCNN ResNet InceptionNet VGG
0.2 1 4 100 1000 0.2 1 4 100 1000 0.2 1 4 100 1000 0.2 1 4 100 1000

FM
N

IS
T

DPGEN 66.83±1.90 67.80±0.84 72.94±0.77 43.30±2.60 46.79±2.73 75.84±1.15 76.69±2.18 73.98±0.31 45.47±3.09 47.87±6.09 77.64±2.13 77.92±2.63 76.09±1.60 44.21±1.41 43.57±0.23 74.17±0.26 76.04±1.32 71.35±0.31 55.22±6.61 48.50±4.07
PrivSet 68.35±3.18 62.69±0.28 59.71±4.98 49.09±3.80 53.22±6.59 86.93±2.07 73.35±8.89 52.70±7.45 73.66±11.15 49.31±7.46 74.68±15.51 60.46±9.81 58.60±2.53 67.81±5.72 62.05±7.41 73.91±2.25 63.89±4.96 85.38±5.99 82.40±9.16 75.13±20.65
Hand-DP 71.89±12.70 32.68±1.89 17.55±0.24 17.50±0.25 17.12±0.50 34.50±1.06 25.48±1.10 19.12±0.31 15.24±0.51 14.09±0.36 49.09±2.86 26.15±1.12 19.99±1.00 14.44±0.73 11.53±0.75 89.30±0.07 89.65±0.33 91.13±0.40 17.91±1.62 14.67±1.31
TanhAct 84.79±1.74 26.01±1.07 12.85±0.29 10.99±0.32 11.00±0.08 33.38±0.99 25.50±0.71 18.79±0.76 14.00±0.90 13.14±0.85 64.14±1.88 24.70±0.67 20.01±0.73 14.52±0.48 12.42±0.79 90.08±0.09 89.81±0.06 89.31±0.19 19.38±0.20 11.11±0.04
FocalLoss 89.94±0.47 38.54±1.12 18.85±0.04 14.44±0.65 13.95±0.43 43.65±3.44 25.48±0.61 19.46±0.65 14.37±0.20 12.88±0.35 59.75±6.38 26.32±1.17 20.31±1.31 14.48±0.95 11.72±0.30 79.11±0.91 89.53±0.47 87.89±2.39 28.78±9.79 14.35±0.71
DP-SGD 77.79±17.00 31.26±1.65 17.24±0.62 15.72±0.56 15.83±0.58 35.65±2.99 24.92±1.21 20.21±0.77 15.76±0.28 13.83±0.82 53.24±1.26 25.75±0.84 20.15±0.87 14.51±1.33 12.40±0.15 88.56±0.19 89.34±0.25 90.15±0.14 29.09±8.31 13.02±1.54
AdpAlloc 54.58±3.02 28.31±1.91 16.03±0.59 15.23±0.67 15.45±0.61 31.21±0.90 23.88±1.02 20.28±0.19 15.63±0.25 14.38±0.05 41.08±6.55 23.67±0.35 19.88±0.48 14.29±0.24 12.68±0.21 86.30±1.76 90.32±0.00 89.82±0.24 17.14±0.34 12.48±0.06
AdpClip 78.18±15.67 73.69±11.55 20.30±1.37 13.00±0.31 13.26±0.33 50.48±3.76 24.08±0.61 18.71±0.49 12.65±0.15 12.46±0.53 70.79±5.57 25.55±0.19 19.02±0.82 11.97±0.58 11.81±0.78 90.34±0.37 90.13±0.15 89.43±0.03 62.83±22.77 14.81±0.57
GEP 89.85±0.05 89.85±0.05 68.11±30.47 11.69±0.46 10.35±0.54 85.69±2.27 33.40±1.20 17.09±0.99 10.60±0.31 10.33±0.20 - - - - - - - - - -
RGP 44.80±4.49 23.10±0.76 23.04±1.88 21.12±1.65 20.67±1.66 33.95±1.86 30.97±2.00 36.36±2.44 37.00±1.28 37.32±1.08 28.00±0.73 21.33±0.33 21.42±1.10 21.98±0.65 23.52±2.67 89.82±0.05 23.08±0.45 18.28±0.46 20.10±0.85 20.70±0.42
PATE 81.62±6.09 85.35±4.39 51.37±3.09 36.89±1.88 38.07±1.62 88.71±3.48 81.72±4.08 63.40±8.27 42.57±7.48 40.15±5.16 84.24±2.54 79.90±3.35 62.70±0.67 36.52±1.90 37.80±1.75 92.41±1.76 86.05±5.23 76.88±15.73 65.12±22.83 65.02±21.25
Priv-kNN 72.31±2.36 55.44±2.34 51.94±1.77 52.08±0.75 50.97±0.83 57.59±3.89 46.23±0.81 44.69±0.54 44.55±1.04 44.55±1.20 55.54±1.59 41.12±1.26 39.95±1.36 40.52±0.86 40.12±0.86 68.04±1.31 47.17±1.93 46.16±0.65 45.90±0.38 45.09±0.49

SV
H

N

DPGEN 89.23±0.13 92.20±0.39 91.60±1.03 51.49±9.52 49.05±4.32 88.80±0.10 89.02±0.77 85.70±4.31 85.75±5.11 84.56±1.80 81.12±3.22 86.86±1.87 81.70±1.76 65.34±2.70 58.32±3.10 90.93±0.90 90.63±0.84 89.91±1.43 63.70±19.35 56.55±13.36
PrivSet 88.96±4.87 88.36±2.55 81.66±1.12 79.83±0.29 80.94±1.15 91.14±0.62 88.50±0.74 87.49±3.02 84.20±2.91 85.08±2.90 89.60±1.67 88.21±1.45 77.93±1.06 78.17±1.98 74.50±2.11 90.23±1.85 89.34±3.79 92.26±1.48 90.11±3.31 87.44±2.08
Hand-DP 83.78±4.33 56.72±2.80 23.46±0.46 17.85±0.20 16.77±0.75 82.99±0.76 36.15±0.51 21.09±1.58 11.23±0.75 9.56±1.07 80.24±0.11 33.78±0.96 16.57±0.83 10.44±0.28 7.71±0.51 87.61±3.42 83.85±0.70 80.64±0.18 80.24±0.14 16.50±0.56
TanhAct 88.96±0.38 49.05±1.51 22.64±0.24 12.76±0.16 12.11±0.22 86.90±0.30 80.12±0.51 56.90±0.35 40.32±3.74 40.07±5.48 80.82±1.03 46.88±0.32 20.66±0.61 12.46±0.66 9.35±0.22 89.75±0.13 90.83±0.39 88.21±1.12 61.78±3.59 16.02±0.68
FocalLoss 85.07±3.75 74.53±4.55 27.98±0.45 17.12±0.36 15.11±0.27 81.79±0.68 36.78±3.60 22.59±0.74 12.54±0.97 9.80±0.25 81.85±0.41 38.60±1.63 18.12±0.52 10.53±0.18 7.67±0.33 90.38±4.59 82.58±1.02 80.60±0.01 80.34±0.14 17.56±0.52
DP-SGD 85.22±3.90 71.58±4.43 23.23±0.10 16.93±0.80 15.46±0.95 83.27±1.93 34.64±5.15 18.68±1.01 11.47±1.08 10.43±1.56 80.25±0.16 32.68±2.33 15.40±0.84 9.75±0.16 8.58±0.20 89.94±0.77 83.92±1.92 80.42±0.28 80.38±0.07 17.19±0.13
AdpAlloc 84.76±3.26 80.19±0.13 23.95±0.48 16.51±0.46 15.83±0.65 82.66±0.68 33.80±2.21 20.45±0.81 12.23±0.73 11.25±0.73 80.19±0.12 35.80±1.66 16.02±0.91 10.22±0.38 8.31±0.23 83.74±6.73 80.77±0.26 80.40±0.05 27.93±3.34 20.09±1.53
AdpClip 89.67±3.85 83.11±1.84 44.26±3.69 14.78±0.27 14.86±0.65 88.90±0.57 38.17±3.19 17.06±0.66 9.27±0.61 9.31±0.81 82.00±1.83 42.49±2.77 15.79±0.45 8.83±0.83 8.38±0.13 87.13±4.53 90.06±0.05 80.42±0.11 80.20±0.14 22.33±0.73
GEP 89.25±5.81 93.17±0.01 55.13±7.38 14.25±0.83 11.93±0.66 87.56±1.05 89.73±1.65 15.02±0.24 7.77±0.38 7.44±0.57 - - - - - - - - - -
RGP 93.17±0.04 45.96±2.54 37.55±1.08 29.87±1.53 28.75±1.73 69.61±1.38 49.92±3.67 54.89±2.85 57.00±4.73 57.07±5.13 78.54±1.42 19.12±0.88 17.20±1.51 24.74±3.14 26.37±1.83 93.24±0.04 81.11±0.77 22.03±0.26 27.76±0.91 27.16±1.08
PATE 90.64±1.66 89.54±1.08 82.13±3.54 73.59±4.85 70.62±2.16 90.10±0.98 87.74±3.17 85.94±3.54 73.20±2.04 74.73±0.54 88.11±3.20 90.13±1.10 79.08±1.78 58.29±6.01 63.46±2.76 89.05±4.66 88.61±2.47 79.95±0.94 74.80±7.42 76.07±5.64
Priv-kNN 87.78±0.71 77.79±1.02 70.58±0.65 70.21±1.42 69.29±0.55 81.30±1.82 44.26±0.67 40.86±1.87 39.84±1.14 41.74±2.01 68.28±5.75 48.09±0.69 45.75±2.42 44.43±1.83 44.55±1.06 81.14±1.03 46.04±0.37 41.76±3.15 42.19±1.55 40.58±0.65

Table 10: Overview of algorithms’ tailored AUC in black-box on on FMNIST and SVHN.
.

SimpleCNN ResNet InceptionNet VGG
0.2 1 4 100 1000 0.2 1 4 100 1000 0.2 1 4 100 1000 0.2 1 4 100 1000

FMNIST

Hand-DP 0.50±0.00 0.51±0.01 0.51±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.50±0.01 0.51±0.00 0.51±0.00 0.50±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.51±0.01 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.01 0.51±0.00
PrivSet 0.51±0.00 0.51±0.00 0.50±0.01 0.51±0.00 0.51±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.50±0.00 0.51±0.00 0.50±0.00 0.51±0.00 0.51±0.01 0.51±0.00 0.51±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.51±0.00
DPGEN 0.50±0.00 0.50±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.52±0.00 0.52±0.00 0.52±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.52±0.00 0.52±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.52±0.01 0.51±0.00
TanhAct 0.50±0.00 0.51±0.01 0.51±0.00 0.51±0.01 0.51±0.00 0.51±0.00 0.51±0.01 0.51±0.00 0.51±0.00 0.52±0.00 0.51±0.01 0.51±0.01 0.51±0.01 0.51±0.00 0.51±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.01 0.52±0.00
FocalLoss 0.50±0.01 0.50±0.00 0.51±0.00 0.51±0.00 0.52±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.51±0.01 0.51±0.00 0.51±0.00 0.51±0.00 0.50±0.00 0.50±0.00 0.51±0.01 0.51±0.00 0.52±0.00
DP-SGD 0.50±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.50±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.51±0.01 0.51±0.00 0.51±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.52±0.00
RGP 0.50±0.00 0.51±0.00 0.51±0.01 0.51±0.00 0.51±0.00 0.51±0.01 0.51±0.00 0.51±0.01 0.51±0.00 0.51±0.00 0.52±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.51±0.01 0.50±0.00 0.51±0.00 0.52±0.00 0.52±0.00 0.52±0.00
GEP 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.53±0.01 0.50±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.51±0.00 - - - - - - - - - -
AdpAlloc 0.50±0.00 0.51±0.00 0.51±0.01 0.51±0.00 0.51±0.00 0.51±0.01 0.51±0.00 0.51±0.01 0.51±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.51±0.01 0.51±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.51±0.00
AdpClip 0.50±0.00 0.50±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.50±0.00 0.51±0.00 0.51±0.00 0.51±0.01 0.51±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.52±0.00
PATE 0.50±0.00 0.50±0.01 0.50±0.00 0.52±0.01 0.51±0.01 0.51±0.01 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.01 0.50±0.00 0.50±0.00 0.52±0.01 0.51±0.01 0.50±0.00 0.50±0.00 0.50±0.01
Priv-kNN 0.50±0.00 0.51±0.01 0.51±0.01 0.50±0.01 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.51±0.01 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.01

SVHN

Hand-DP 0.50±0.00 0.51±0.01 0.51±0.00 0.53±0.01 0.53±0.01 0.50±0.00 0.50±0.00 0.51±0.00 0.52±0.01 0.53±0.01 0.51±0.01 0.50±0.00 0.51±0.01 0.51±0.00 0.52±0.01 0.50±0.00 0.50±0.00 0.52±0.00 0.50±0.00 0.53±0.01
PrivSet 0.51±0.01 0.53±0.03 0.52±0.01 0.53±0.01 0.52±0.01 0.50±0.00 0.51±0.01 0.50±0.00 0.51±0.01 0.51±0.01 0.50±0.00 0.51±0.01 0.51±0.00 0.50±0.00 0.51±0.00 0.54±0.02 0.53±0.02 0.52±0.01 0.54±0.01 0.54±0.01
DPGEN 0.50±0.00 0.50±0.01 0.52±0.01 0.50±0.01 0.50±0.00 0.54±0.01 0.50±0.00 0.51±0.01 0.51±0.00 0.52±0.01 0.50±0.00 0.51±0.01 0.52±0.01 0.52±0.02 0.52±0.01 0.50±0.00 0.50±0.00 0.52±0.01 0.53±0.00 0.51±0.01
TanhAct 0.50±0.00 0.51±0.01 0.53±0.00 0.54±0.01 0.53±0.01 0.50±0.00 0.52±0.01 0.53±0.00 0.56±0.00 0.57±0.01 0.51±0.02 0.50±0.00 0.51±0.01 0.52±0.00 0.53±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.53±0.00
FocalLoss 0.50±0.00 0.51±0.01 0.52±0.01 0.53±0.00 0.52±0.00 0.51±0.01 0.50±0.00 0.50±0.00 0.51±0.00 0.52±0.00 0.51±0.02 0.50±0.00 0.50±0.00 0.52±0.01 0.52±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.50±0.00 0.53±0.00
DP-SGD 0.50±0.00 0.52±0.00 0.51±0.00 0.53±0.01 0.53±0.01 0.51±0.00 0.50±0.00 0.50±0.00 0.52±0.00 0.53±0.01 0.51±0.02 0.50±0.00 0.50±0.00 0.52±0.01 0.53±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.50±0.00 0.52±0.00
RGP 0.50±0.00 0.51±0.01 0.51±0.00 0.50±0.00 0.51±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.02 0.51±0.02 0.51±0.01 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.01 0.51±0.00 0.51±0.00 0.51±0.00
GEP 0.50±0.00 0.50±0.00 0.51±0.01 0.51±0.00 0.52±0.00 0.51±0.00 0.50±0.00 0.51±0.01 0.52±0.01 0.51±0.01 - - - - - - - - - -
AdpAlloc 0.50±0.00 0.50±0.00 0.52±0.01 0.52±0.01 0.53±0.01 0.50±0.00 0.50±0.00 0.50±0.01 0.52±0.00 0.53±0.01 0.51±0.01 0.50±0.00 0.50±0.00 0.52±0.00 0.52±0.01 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.01 0.53±0.00
AdpClip 0.50±0.00 0.50±0.00 0.51±0.01 0.53±0.01 0.53±0.01 0.51±0.00 0.50±0.00 0.51±0.00 0.53±0.01 0.53±0.01 0.51±0.01 0.50±0.00 0.51±0.01 0.51±0.00 0.51±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.52±0.00
PATE 0.52±0.01 0.52±0.01 0.51±0.01 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.01 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.01 0.50±0.00 0.50±0.00 0.50±0.00 0.52±0.01 0.51±0.01 0.51±0.01 0.53±0.01 0.53±0.01
Priv-kNN 0.52±0.01 0.51±0.01 0.51±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.01 0.51±0.00 0.51±0.01 0.51±0.02 0.51±0.00 0.52±0.01 0.52±0.01 0.51±0.01 0.50±0.00

Table 11: Overview of algorithms’ tailored AUC in white-box style on all model architectures, datasets, and privacy budget
.SimpleCNN ResNet InceptionNet VGG

0.2 1 4 100 1000 0.2 1 4 100 1000 0.2 1 4 100 1000 0.2 1 4 100 1000

FM
N

IS
T

Hand-DP 0.50±0.00 0.50±0.00 0.51±0.00 0.51±0.00 0.51±0.01 0.51±0.00 0.51±0.00 0.51±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.01
PrivSet 0.51±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.50±0.00 0.51±0.01 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00
DPGEN 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.51±0.01 0.51±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.01
TanhAct 0.50±0.00 0.51±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.51±0.01 0.51±0.00 0.51±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.51±0.00
FocalLoss 0.50±0.00 0.50±0.01 0.51±0.01 0.51±0.00 0.51±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.51±0.00 0.50±0.01 0.50±0.01 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.51±0.00
DP-SGD 0.50±0.00 0.50±0.01 0.51±0.00 0.51±0.00 0.51±0.00 0.50±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.01 0.51±0.01
RGP 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.01 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00
GEP 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.52±0.00 0.50±0.00 0.51±0.00 0.51±0.00 0.50±0.00 0.50±0.00 - - - - - - - - - -
AdpAlloc 0.50±0.00 0.50±0.00 0.51±0.00 0.51±0.01 0.51±0.00 0.50±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.01 0.51±0.01
AdpClip 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.51±0.00 0.50±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.01
PATE 0.50±0.00 0.51±0.01 0.50±0.00 0.51±0.00 0.51±0.01 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.01 0.51±0.00 0.50±0.00 0.50±0.00 0.50±0.01 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00
Priv-kNN 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.51±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.51±0.01 0.51±0.01 0.50±0.00 0.51±0.00 0.50±0.01 0.50±0.00 0.50±0.00 0.50±0.00

SV
H

N

Hand-DP 0.50±0.00 0.50±0.00 0.51±0.01 0.52±0.01 0.52±0.01 0.50±0.00 0.50±0.00 0.51±0.01 0.53±0.01 0.53±0.00 0.50±0.00 0.50±0.00 0.52±0.00 0.53±0.00 0.53±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.52±0.00
PrivSet 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.01 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.02 0.50±0.00 0.51±0.01 0.50±0.00
DPGEN 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.02 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.01 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00
TanhAct 0.50±0.00 0.51±0.01 0.53±0.02 0.55±0.03 0.55±0.03 0.50±0.00 0.50±0.00 0.51±0.02 0.54±0.01 0.56±0.01 0.50±0.00 0.50±0.00 0.53±0.02 0.52±0.01 0.53±0.02 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.01
FocalLoss 0.50±0.00 0.50±0.00 0.51±0.01 0.51±0.01 0.51±0.01 0.52±0.02 0.51±0.01 0.51±0.01 0.50±0.00 0.51±0.01 0.50±0.00 0.51±0.00 0.50±0.01 0.51±0.01 0.51±0.01 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.52±0.01
DP-SGD 0.50±0.00 0.50±0.00 0.51±0.00 0.53±0.02 0.53±0.02 0.51±0.01 0.50±0.00 0.50±0.00 0.52±0.01 0.53±0.01 0.50±0.00 0.50±0.00 0.51±0.00 0.52±0.01 0.52±0.01 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.01
RGP 0.50±0.00 0.50±0.01 0.51±0.01 0.51±0.01 0.51±0.01 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00
GEP 0.50±0.00 0.50±0.00 0.50±0.00 0.52±0.01 0.54±0.02 0.51±0.02 0.50±0.00 0.52±0.01 0.53±0.01 0.52±0.01 - - - - - - - - - -
AdpAlloc 0.50±0.00 0.50±0.00 0.52±0.01 0.53±0.01 0.53±0.01 0.50±0.01 0.50±0.00 0.50±0.00 0.52±0.01 0.52±0.00 0.50±0.00 0.51±0.01 0.52±0.01 0.52±0.01 0.52±0.01 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.53±0.01
AdpClip 0.50±0.00 0.50±0.00 0.51±0.01 0.53±0.02 0.53±0.02 0.51±0.01 0.50±0.00 0.51±0.00 0.52±0.00 0.53±0.01 0.50±0.00 0.50±0.01 0.51±0.00 0.52±0.01 0.52±0.01 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.52±0.01
PATE 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00
Priv-kNN 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00

C
IF

A
R

-1
0

Hand-DP 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.52±0.00 0.53±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.52±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.01 0.51±0.00
PrivSet 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.51±0.00 0.51±0.01 0.51±0.00 0.51±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00
DPGEN 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00
TanhAct 0.50±0.00 0.50±0.00 0.51±0.00 0.53±0.01 0.53±0.01 0.51±0.01 0.50±0.00 0.51±0.00 0.52±0.00 0.55±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.53±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.52±0.01
FocalLoss 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.51±0.01 0.51±0.00 0.51±0.00 0.52±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.01 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00
DP-SGD 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.51±0.00 0.52±0.00 0.53±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.52±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00
RGP 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.01 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00
GEP 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.54±0.01 0.51±0.00 0.51±0.00 0.50±0.00 0.53±0.00 0.54±0.00 - - - - - - - - - -
AdpAlloc 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.51±0.00 0.51±0.01 0.51±0.01 0.52±0.00 0.53±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.52±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.52±0.00
AdpClip 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.52±0.01 0.51±0.00 0.51±0.00 0.51±0.00 0.52±0.00 0.54±0.01 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.52±0.01 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.52±0.00
PATE 0.50±0.00 0.50±0.00 0.51±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.01 0.50±0.00 0.51±0.00 0.51±0.01 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00
Priv-kNN 0.50±0.00 0.51±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.51±0.00 0.50±0.00

Table 12: SimpleNet architecture and details of BasicBlock.
Layer Type Architecture
BasicBlock filters=16
BasicBlock filters=32
BasicBlock filters=64

Flatten
Relu FC 500 units

FC 10 units

BasicBlock filters
Conv2D filters, kernel size=3, padding=1

Activation ReLU
MaxPooling kernel size=2, stride=2

Table 13: ResNet architecture.

Layer Type Architecture
Input Layer filters=16
ResBlock 1 filters=16
ResBlock 1 filters=16
ResBlock 1 filters=16
ResBlock 2 filters=32, stride=2
ResBlock 2 filters=32, stride=2
ResBlock 2 filters=32, stride=2
ResBlock 2 filters=64, stride=2
ResBlock 2 filters=64, stride=2
ResBlock 2 filters=64, stride=2

AdaptiveAvgPool2D output size=(1,1)
FC 10 units
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Table 14: Details of ResBlock for ResNet. (Shortcut perform
identity mapping, and their outputs are added to the outputs of
the stacked layers [20])

Input Layer filters
Conv2D filters, kernel size=3

GroupNorm num groups=4, num channels=filters, affine=False
Activation ReLU

ResBlock 1 filters
Conv2D filters, kernel size=3, stride=1

GroupNorm num groups=4, num channels=filters
Activation ReLU
Conv2D filters, kernel size=3, stride=1

GroupNorm num groups=4, num channels=filters
Shortcut

Activation ReLU
ResBlock 2 filters, stride

Conv2D filters, kernel size=3, stride
GroupNorm num groups=4, num channels=filters
Activation ReLU
Conv2D filters, kernel size=3, stride=1

GroupNorm num groups=4, num channels=filters
AvgPool2D kernel size=1, stride
GroupNorm num groups=4, num channels=filters

Shortcut
Activation ReLU

Table 15: InceptionNet architecture.

Layer Type Architecture
InceptionBlock filters=32, kernel size=3, stride=1
InceptionBlock filters=32, kernel size=3, stride=1

MaxPool2D kernel size=2, stride=1
InceptionA
InceptionB
InceptionC
InceptionD
InceptionE

AdaptiveAvgPool2d output size=(1,1)
Dropout p=0.5

FC 10 units

Table 16: VGG architecture and the details of the VGGBlock.

Layer Type Architecture
VGGBlock filters=64
MaxPool2D kernel size=2, stride=2
VGGBlock filters=128
MaxPool2D kernel size=2, stride=2
VGGBlock filters=256
VGGBlock filters=256
MaxPool2D kernel size=2, stride=2
VGGBlock filters=512
VGGBlock filters=512
MaxPool2D kernel size=2, stride=2
VGGBlock filters=512
VGGBlock filters=512
MaxPool2D kernel size=2, stride=2

Flatten
FC 4096 units

Activation ReLU
Dropout p=0.5

FC 4096 units
Activation ReLU
Dropout p=0.5

FC 10 units

VGGBlock filters
Conv2D filters, kernel size=3, padding=1

Activation ReLU
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Table 17: Details of InceptionBlock for InceptionNet.

InceptionBlock filters, kernel size, padding
Conv2D filters, kernel size, padding

GroupNorm num groups=4, num channels=filters
Activation ReLU

InceptionA
InceptionBlock filters=32, kernel size=1 InceptionBlock filters=24, kernel size=1 InceptionBlock filters=32, kernel size=1 AvgPool2D kernel size=3,stride=1,padding=1

InceptionBlock filters=32, kernel size=5, padding=2 InceptionBlock filters=48, kernel size=3, padding=1 InceptionBlock filters=16, kernel size=1
InceptionBlock filters=48, kernel size=3, padding=1

Concat
InceptionB

InceptionBlock filters=96, kernel size=3, stride=2 InceptionBlock filters=32, kernel size=1 MaxPool2D kernel size=3, stride=2
InceptionBlock filters=48, kernel size=3, padding=1
InceptionBlock filters=48, kernel size=3, stride=2

Concat
InceptionC

InceptionBlock filters=48, kernel size=1 InceptionBlock filters=48, kernel size=1 AvgPool2D kernel size=3, stride=1, padding=1
InceptionBlock filters=48, kernel size=7, padding=3 InceptionBlock filters=48, kernel size=1
InceptionBlock filters=48, kernel size=7, padding=3

Concat
InceptionD

InceptionBlock filters=48, kernel size=1 InceptionBlock filters=96, kernel size=1 MaxPool2D kernal size=3, stride=2
InceptionBlock filters=96, kernel size=3, stride=2 InceptionBlock filters=96, kernel size=7, padding=3

InceptionBlock filters=96, kernel size=3, stride=2
Concat

InceptionE
InceptionBlock filters=80, kernel size=1 InceptionBlock filters=96, kernel size=1 InceptionBlock filters=112, kernel size=1 AvgPool2D kernel size=3,stride=1,padding=1

InceptionBlock filters=96, kernel size=3, padding=1 InceptionBlock filters=96, kernel size=3, padding=1 InceptionBlock filters=48, kernel size=1
InceptionBlock filters=96, kernel size=3, padding=1

Concat
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