y
Py Gotcha! | Know What You Are Doing on the FPGA Cloud:

Fingerprinting Co-Located Cloud FPGA Accelerators via
Measuring Communication Links

Chongzhou Fang
University of California, Davis
Davis, CA, USA
czfang@ucdavis.edu

Ning Miao
University of California, Davis
Davis, CA, USA
nmiao@ucdavis.edu

Han Wang
Temple University
Philadelphia, PA, USA
han wang.hw@temple.edu

John M. Emmert
University of Cincinnati
Cincinnati, OH, USA
john.emmert@uc.edu

Jiacheng Zhou
University of California, Davis
Davis, CA, USA
jczhou@ucdavis.edu

Tyler Sheaves
University of California, Davis
Davis, CA, USA
tsheaves@ucdavis.edu

Avesta Sasan
University of California, Davis
Davis, CA, USA
asasan@ucdavis.edu

ABSTRACT

In recent decades, due to the emerging requirements of computation
acceleration, cloud FPGAs have become popular in public clouds.
Major cloud service providers, e.g. AWS and Microsoft Azure have
provided FPGA computing resources in their infrastructure and
have enabled users to design and deploy their own accelerators on
these FPGAs. Multi-tenancy FPGAs, where multiple users can share
the same FPGA fabric with certain types of isolation to improve
resource efficiency, have already been proved feasible. However,
this also raises security concerns. Various types of side-channel
attacks targeting multi-tenancy FPGAs have been proposed and
validated. The awareness of security vulnerabilities in the cloud has
motivated cloud providers to take action to enhance the security of
their cloud environments.

In FPGA security research papers, researchers always perform
attacks under the assumption that attackers successfully co-locate
with victims and are aware of the existence of victims on the same
FPGA board. However, the way to reach this point, i.e., how attack-
ers secretly obtain information regarding accelerators on the same
fabric, is constantly ignored despite the fact that it is non-trivial
and important for attackers. In this paper, we present a novel finger-
printing attack to gain the types of co-located FPGA accelerators.
We utilize a seemingly non-malicious benchmark accelerator to
sniff the communication link and collect performance traces of
the FPGA-host communication link. By analyzing these traces, we
are able to achieve high classification accuracy for fingerprinting
co-located accelerators, which proves that attackers can use our
method to perform cloud FPGA accelerator fingerprinting with a
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high success rate. As far as we know;, this is the first paper targeting
multi-tenant FPGA accelerator fingerprinting with the communica-
tion side-channel.
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1 INTRODUCTION

In recent decades, cloud computing has gained great popularity due
to its considerable computation power, storage capacity, and pay-
as-you-go features. With public cloud services being used, cloud
users do not need to set up and maintain their own infrastructure,
which greatly reduces their costs. Also, infrastructure-as-a-service
(IaaS) public cloud services that are open to public users enable lots
of newly emerging applications that require massive computation
power, e.g., simulation [32], deep learning [9], etc. The increas-
ing computation demands incurred by artificial neural networks
further motivate the inclusion of hardware accelerators including
GPUs [49], FPGAs[35], ASICs [11]. Among the various hardware
accelerators, CPU-FPGAs have become a prevalent heterogeneous
architecture to perform computation-intensive workloads due to
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their programming flexibility, energy efficiency, and high perfor-
mance. An increasing number of cloud providers have launched
commercialized FPGA-based products in the past five years, like
AWS [7], Microsoft Azure [39], Alibaba Cloud [6]. To further maxi-
mize the utilization of FPGAs, multi-tenancy FPGA infrastructure
in the cloud is potentially preferred by the commercial world, which
can improve FPGA utilization efficiency by fitting multiple users’
designs onto a single FPGA at the same time. It is widely investi-
gated in academia and a promising infrastructure.

However, with notable benefits comes new security threats.
There have been research works regarding security attacks on
FPGAs, such as bitstream fault injection [50], hardware trojan [37],
rowhammer attacks [55], etc. In recent years, remote attacks on
cloud FPGAs have also emerged. Security problems are especially
severe on multi-tenant FPGA clouds, where circuits from multiple
users can be placed on the same FPGA. There are attacks such
as power side-channel attacks on remote FPGAs [40, 47], fault
attacks [5], etc. There are also other attacks targeting revealing
information about cloud infrastructures [52, 53]. These attacks
compromise the security of FPGA cloud users and cloud service
providers, causing trust issues about FPGA clouds.

As far as we know;, all of the existing attacks targeting cloud
FPGA user applications demand the knowledge of the co-located
victim FPGA circuits, which is non-trivial. Taking the fault attack
proposed in [36] as an example, as a prototype of a remote fault
injection attack, it is based on the assumption that the co-located
victim FPGA circuit is an AES circuit. Similarly, Moini et.al [40]
leverages the power side-channel traces to recover the MNIST
inputs [38] based on the knowledge that the victim FPGA circuit is
a binarized neural network (BNN) accelerator. Hence, such prior
attacks do not fully present the vulnerabilities and risks in FPGAs
cloud, which can lead to the negligence of security challenges and
limit corresponding defence solutions.

In response, this research aims to explore the possibility of fin-
gerprinting victim circuits with passive side-channel information
from the communication link, i.e., Peripheral Component Intercon-
nect Express (PCle) in shared FPGAs. PCle [43] is used to connect
peripheral devices including FPGAs with host machines, and is
open for user interaction. We present that stressing the shared com-
munication link can help reveal the I/O patterns of victim circuits
co-locating in the same FPGA board. The deduced knowledge of
victim circuits can further enable prior proposed attacks [36].

To achieve this, we design a measurement accelerator (in the
remainder of this paper, we refer to FPGA circuits deployed by a
users as ‘accelerators’) to stress the PCle and conduct read/write to
host memory blocks in the FPGA cloud (Intel DevCloud [30] in this
work). Then we measure the PCle bandwidth of our measurement
accelerator when different victim accelerators are running on the
same FPGA. Once we collect the side-channel traces from PCle, we
leverage machine learning techniques to train a model to classify the
victim accelerators. Furthermore, this work looks into the impact
of the contention level from benchmarks on fingerprinting success
rate. Lastly, we implement a prototype of the fingerprinting attack
to infer the co-located victim FPGA circuit in cloud infrastructures
for future research.

In summary, the contributions of this work are listed below:
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e We present a new attack targeting multi-tenancy FPGA
clouds, which can help attackers gain additional knowledge
about applications in the FPGA cloud and aid further attack
attempts.

e We implement a proof of concept attack accelerator as well

as its host program, which is able to capture the unique

communication fingerprints of co-located accelerators.

Four classification algorithms are included to obtain compre-

hensively assessment of closed-world fingerprinting success

rate, reaching as high as around 90% by random forest. We
also evaluate our method in an open-world setting, where

the success rate reaches around 80%.

By validating the proposed attack method, we reveal a novel

security vulnerability in communication links of heteroge-

neous computing systems and provide insights into possible
enhancements of such basic hardware and software compo-
nents.

The remainder of this paper is organized as follows. Basic back-
ground knowledge such as cloud FPGA and FPGA security is intro-
duced in Section 2. The threat model containing our assumptions
is provided in Section 3. Our attack method and its implementation
details are shown in Section 4. Section 5 offers evaluation results.
We provide discussion about several defense approaches and future
works. in Section 6. Related works are reviewed in Section 7. Finally,
we provide a conclusion in Section 8.

2 BACKGROUND
2.1 Cloud FPGA

Field programmable gate arrays (FPGAs) are integrated circuits
that can be programmed after being manufactured. With its great
computation power and reprogrammable feature, it is often used
to host hardware circuits for custom applications, such as machine
learning accelerators. Recently, FPGA resources are starting to
be provisioned by cloud service providers. Cloud FPGAs usually
operate in two modes: acceleration-as-a-service (AaaS) and FPGA-
as-a-service (FaaS) [14]. In AaaS mode, FPGAs are pre-configured
by the service provider and are offered to users to only accelerate
specific computations. On the other hand, the FaaS mode provides
users access to the whole FPGA fabric and enables users to pro-
gram it remotely with greater flexibility. Recently, the concept of
multi-tenancy FPGA clouds start to appear [14], which presents a
utilization model where a single FPGA in the cloud can be shared
by multiple users and can be accessed by these users at the same
time.

Cloud FPGAs provide a convenient way for customers to ac-
cess high-end FPGA resources remotely. Different cloud FPGA
providers are offering different types of FPGA resources, e.g. Intel
provides users access to Arria 10 FPGAs and Stratix 10 FPGAs on
DevCloud [1], AWS provides access to Xilinx Virtex UltraScale+
FPGAs with their F1 instances [8], Alibaba Cloud provides access
to Xilinx Kintex UltraScale FPGAs and Arria 10 FPGAs [6], etc.

2.2 Security Problems of Cloud FPGA

In multi-tenant FPGA clouds, it has been proposed that circuits from
multiple users can be placed on the same FPGA, which makes FPGA
resource utilization on the cloud more efficient. However, recent
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research works have shown that cloud FPGAs are vulnerable to
various types of side-channel attacks in a multi-tenant setting. Once
the security of these FPGA accelerators is compromised, sensitive
data or secret keys they are processing can be revealed, which may
lead to unwanted data leakage and potentially harm the profits of
cloud providers. The following types of attacks are studied most
extensively in literature:

2.2.1 Long-wire Side-Channel Attack. Long wires, one type of FPGA
routing resources that are used to connect configurable logic blocks
(CLBs), have been proved to be a source of side-channel information
leakage. In [19], the authors find that when a long wire on FPGA
is transmitting a logical 1, the delay of the nearby long wires is
shorter than when it is transmitting a logical 0. Based on this phe-
nomenon, the authors propose to measure the delay of long wires
by connecting ring oscillators (ROs) to them. When the target long
wire is transmitting a logical 1, the delay of the nearby long wires
will decrease, which causes the frequency of the ROs to increase.
By monitoring the frequency change of the ROs in a fixed time
interval, the authors successfully recovered 99% of the bits that
are being transmitted in the target long wire. Similarly, in [48] the
authors recovered the secret key of an AES implementation using
the long-wire side-channel attack.

2.2.2  Power Side-Channel Attack. In certain FPGA circuits (e.g.
cryptographic circuits), power consumption may be influenced by
data being processed in the circuits hence this information may
be monitored and used to recover secrets, e.g. cryptographic keys.
Normally, deploying power side-channel attacks requires physical
access to the FPGA boards in order to assess the system’s power
usage. Although direct access to cloud FPGAs is not achievable,
Zhao et.al [57] propose a power side-channel attack using FPGA as
a power monitor. The authors created an RO-based on-chip power
monitor and prove that the RO-based FPGA power monitor may
be utilized for a power analysis attack on an RSA crypto module
on the same FPGA. Furthermore, in [27], the authors propose a
new design for the RO-based power sensor, which can measure the
internal voltage in nanosecond scale. They are able to successfully
retrieve the secret key of an AES encryption circuit using the power
side-channel.

Power side-channel can also be used for accelerator fingerprint-
ing, as shown in [25]. However, in this paper we will show that
communication side-channel can be a better option, which has
less stringent requirements for attackers and can achieve better
performance.

2.2.3 PCle Side-Channel Attack. PCle contention side-channel has
been utilized before to retrieve secret information from CPU-GPU
systems [51]. In [52], the authors used PCle contention to perform
an attack on the AWS server. The authors observe that the differ-
ence in locations of PCle slots in the PCle topology can result in
disparate latency and bandwidth. Based on this, they are able to
detect the bandwidth change when different FPGAs in the same
sever attempt simultaneous memory accesses to generate PCle con-
tention and successfully reverse-engineer the locality of different
FPGAs in the same AWS server. However, unlike our work, [52]
focuses on revealing infrastructure information instead of revealing
information about applications on the same FPGA.
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The existing attacks targeting the FPGA cloud presume the
knowledge of co-located victim circuit is provided. While in fact this
information is nearly impossible to be obtained directly. In response,
our work focuses on inferring co-located FPGA-accelerated work-
loads using PCle contention side-channel information. Previously
proposed attacks will benefit from our attack method.

2.3 Intel FPGA Cloud Environment

DevCloud is a cloud platform managed by Intel [1] to support
research and education about FPGAs, GPUs, Al acceleration, etc.
In this paper, all the development is done on DevCloud. We choose
DevCloud because it provides us access to high-end commercial
FPGA devices including Arria 10 and Stratix 10 FPGAs on the cloud,
and we can utilize various off-the-shelf toolchains, including high-
level-synthesis (HLS) [13], OpenCL [3] and OneAPI [31].

Accelerators in Intel FPGAs are usually called accelerator func-
tional units (AFUs), which are connected to an interface layer called
FPGA interface unit (FIU). In Intel’s host-FPGA systems, PCle serves
as the low-level hardware component, and communication is orches-
trated by their core cache interface protocol (CCI-P) [2]. All these
low-level protocol details can be agnostic to developers, enabling
them to focus on the development of AFUs. Our attack method also
does not rely on features of their low-level implementation, and
we don’t need to hack into these systems managed by FPGA cloud
providers.

3 THREAT MODEL

In this paper, we investigate the potential of fingerprinting vic-
tim circuits in a multi-user FPGA cloud environment [47]. We fol-
low certain assumptions that are used in previous works [5, 47].
Specifically, multiple circuits implemented by different users are
placed together on the same FPGA that connects to the same host.
How this can be achieved is similar to cloud instance co-location
attacks [16, 17, 42]. There are no direct connections or communi-
cations between circuits placed by different users. However, the
communication links between hosts and connected FPGAs (i.e.,
PCle) are shared and communication modules and protocols on
top of physical layer are the same. Our work aims to capture the
security issue caused by the sharing of the communication link
among multiple users.

The service providers are assumed to be benign and neutral, i.e.,
they will not attempt to modify user-uploaded circuits. All applica-
tions as well as their host programs are executed as provided. Since
our attack accelerator will not perform any sensitive operations,
it may require special detection mechanisms to defend. We also
assume cloud service providers will not terminate our accelerators
and host programs. Since the operations proposed in this paper
only involve I/O operations that are seemingly normal and no sen-
sitive operations on other users will be triggered, this can be a valid
assumption.

We assume attackers and victims have the same privileges in the
cloud, i.e., attackers do not have access to more features than victims
do. In our settings, the attackers’ goal is to obtain information about
co-located user applications, which is an important but missing
task in existing cloud FPGA side-channel attack works. We consider
two different settings: (1) closed-world setting, where attackers can
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limit the range of accelerators running in the cloud; (2) open-world
setting, where accelerators unknown to the attacker are involved.
In both cases, the attacker has access to a server and an FPGA
connected in the same way as in a cloud FPGA server.

Benign users are not supposed to be aware of the existence of
malicious attackers in the system and hence will not terminate their
own accelerators after our attack accelerators are launched. We as-
sume these victim accelerators are constantly running on the FPGA
and processing continuous streams of inputs. This assumption is
made solely for convenience, since our attack does not require
any timing information regarding victim execution life time. These
victim accelerators can be either operating on encrypted data or
plain original data, but victims will interact with the host through
I/O operations. We aim to show that the difference in I/O access
patterns can be captured by our proposed attacker accelerator.

In summary, attacks in our target system can be concluded as
follows:

(1) Non-malicious users submit and deploy their accelerators
on the cloud, which will keep running for a relatively long
period of time;

(2) Attackers submit their malicious accelerators whose goal is
to collect performance trace information of communication
links and perform classification tasks to determine the exact
type of co-located accelerators.

4 METHOD AND IMPLEMENTATION

In this section, we introduce the design of the proposed fingerprint-
ing attack in FPGA cloud, which consists of attack preparation and
online fingerprinting as shown in Figure 1. The key idea of this
work is to capture the execution fingerprints of FPGA circuits by
launching a measurement accelerator to measure the bandwidth
of communication links and deducing the running victim circuits
with machine learning techniques. The whole workflow of our
fingerprinting attack consists of several steps:

(1) Run victim accelerators locally with our proposed measure-
ment circuit to collect data;

(2) Pre-process the collected I/O measurement of possible victim
accelerators and train a machine learning-based classifier
with the offline collected data set;

(3) Launch the previously used benchmark to the cloud as ac-
celerators and collect I/O measurements;

(4) Pass online I/O traces to the trained classifier to obtain fin-
gerprinting results.

4.1 Measuring Communication Performance

In this section, we will introduce the implementation details of
the benchmark used to stress the shared communication link and
monitor I/O bandwidth. The observation of the benchmark reflects
the I/O patterns of co-located victim circuits, which can be further
leveraged to reveal the type of victim and used for our proof-of-
concept (PoC) fingerprinting attack in the FPGA cloud. We will
implement our PoC benchmark accelerator as well as the master
host program under OpenCL [41] framework. The benchmark con-
sists of two parts: the master host program located in CPU which
orchestrates the execution of accelerators, and accelerator circuits
in FPGA which stress PCle communication link.
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4.1.1  Host Program Design. In our PoC benchmark, the host pro-
gram is responsible for:

(1) Assign appropriate resources for the operation of accelerator
kernels;

(2) Invoke and orchestrate accelerator kernels;

(3) Measure kernel performance using low-level function calls.

There are 3 design parameters in our host program: BUFFER_NUM,
BUFFER_SIZE and REPEAT_NUM. The workflow of our host program
is defined as follows. First, the host program will allocate BUFFER_NUM
memory trunks of size BUFFER_SIZE. Then, these BUFFER_NUM mem-
ory trunks will be accessed by the FPGA accelerator in a pre-defined
order. Each of the BUFFER_NUM memory trunks will be read and
written by the accelerator, with traffic passing through the commu-
nication link. During the operation to a memory trunk, the time it
takes to execute the kernel will be recorded using profiling APIs
provided by OpenCL. This information will be further used for
calculating the bandwidth of the communication link when all op-
erations to a memory trunk are finished. The operations to a single
memory trunk may be repeated for REPEAT_NUM times and averaged
to cancel the effect of noise. Finally, the BUFFER_NUM measurement
of bandwidth will be combined together to form a trace with length
BUFFER_NUM. The pseudo-code for the host program is shown in
Figure 2.

4.1.2  Measurement Accelerator Design. The measurement acceler-
ator we use in this paper focuses on measuring the I/O bandwidth
performance. Similar to previous works that target measuring PCle
performance [43] or stressing the PCle connection [52], our mea-
surement accelerator implementation follows a similar method and
stresses the PCle communication link via massive read and write
communication. There is one design parameter called ACCESS_NUM
that controls how much data is written to the host. The code of
our benchmark accelerator implemented as an OpenCL kernel is
shown in Figure 3.

First, our benchmark accelerator takes in an address pointer
(dst). dst is defined as a pointer pointing to pre-allocated host
memory. By doing so, we guarantee that our FPGA accelerator will
be able to access legally allocated host memory and the generated
traffic will pass the FPGA-host communication link. Our kernel then
obtains an arbitrarily assigned index to access the host memory
space. The exact index is not important in our implementation, and
we only use the OpenCL API get_global_id() for convenience.

Second, our accelerator enters an execution loop where host
memory is accessed multiple times via an array update opera-
tion. The same location (dst[id]) in host memory will be updated
ACCESS_NUM times, where ACCESS_NUM is a design parameter of our
benchmark accelerator. The operation listed in Figure 3 ensures
that a certain amount of data is transferred and the compiler will
not optimize out the operation since every time there will be a new
value written to the host memory.

4.2 Data Processing

In the offline data collection phase (Step 1 of Figure 1), the attacker
will create a co-location environment and run benchmarks together
with potential victim accelerators to collect a performance trace
data set. The collected data traces will be normalized and organized
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Figure 1: Diagram of our FPGA fingerprinting attack.

Allocate buffer[BUFFER_SIZE][1..BUFFER_NUMI;

trace = [1;

for(i = 1..BUFFER_NUM) {
t_i=0;
for(j = 1..REPEAT_NUM) {

call accelerator and operate on buffer[il;
t_i += time of kernel execution;
}
t_i /= REPEAT_NUM;
trace.append(1 / t_i);
3

return trace;

Figure 2: The pseudo code of our host program.

__kernel void mem_kernel(__global int4 *dst) {
int id = get_global_id(0);
for(long i = @; i < ACCESS_NUM; i ++) {
dst[id] = (int)dst * dst[id];
}

Figure 3: The OpenCL code of our benchmark kernel.

in the same data set. Each trace will be labelled according to the
types of corresponding victim accelerators.

The diagram of our data processing flow is shown in Figure 4.

We can see that each data point within a trace corresponds to the
measurement result of kernel execution on an assigned buffer. All
the data points will be combined as a feature vector and be fed to
machine learning models for further processing.

The resulting data set will consist of all the collected traces,

where each row represents one trace. There will be BUFFER_NUM
+1 columns in each row, with BUFFER_NUM entries for collected
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bandwidth data and 1 entry for label. The data set will be fed to the
machine learning models for training.
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Figure 4: The diagram of our data processing flow.

4.3 Classifiers

The collected traces are 1-D vectors with a fixed dimension, since
the number of data points are automatically defined by BUFFER_NUM
in the implementation of benchmark circuit. We explore multiple
types of machine learning models to assess the potential leakage of
the side-channel incurred by the shared communication link. Since
we are performing classification tasks and we aim to reduce the
costs of attackers by collecting as little data as possible, we select
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small models that tend to perform well under these scenarios, e.g.
Random Forest [28] which has been used in fingerprinting tasks [45]
and also compare the performance of more complex models, e.g.
Convolutional Neural Networks. The models we examine in this
paper include:

(1) 1D-Convolution [34]: 1 convolution layer, followed by a
batch normalization layer, a ReLU layer, 3 layers of fully
connected perceptrons [18] and a Softmax layer [26].

(2) Multi-layer Perceptron (MLP): 3 layers of fully-conected per-
ceptrons [18].

(3) Support Vector Machine (SVM) [12]: classic model that is
implemented in popular machine learning libraries [4, 46].

(4) Random Forest [28]: classic model that is implemented in
popular machine learning libraries [4, 46].

For more practical usage in real world, i.e., the open-world sce-
nario, we find that Random Forest can still achieve relatively high
accuracy rates even with the existence of unseen accelerator traces.
We will demonstrate this in our later evaluation.

4.4 Implementation of PoC

The PoC system is built on Devcloud [1], using Intel FPGA SDK
for OpenCL [30]. In the OpenCL toolchain, every OpenCL ker-
nel will be synthesized into customized FPGA circuits. We choose
OpenCL because: (1) compared to traditional Verilog RTL design
flow, C/C++-based development is faster and sufficient since we
don’t need to optimize for performance; (2) according to Intel’s
documentation [3], as long as different kernels are executed in
different OpenCL command queues, they can be executed con-
currently which conveniently creates an application co-locating
environment that satisfies our need. Besides, we chose to perform
our experiments on Devcloud because commercial cloud providers
have yet to deploy multi-tenancy FPGAs, despite the possibility of
their availability in the future. Nonetheless, our research demon-
strates the serious danger posed by the PCle side-channel when
multi-tenancy FPGAs become accessible to users.

In our PoC implementation, victim kernels and accelerator ker-
nels will be defined as two unrelated OpenCL kernels running
concurrently on the same FPGA. Victim kernels are configured to
run continuously to model victim accelerators that process data
streams. They operate on host memory spaces different from those
allocated for our benchmark accelerator.

Since the execution environment for offline data collection and
online attack is the same, in our PoC implementation the collected
data set will be divided to training set and test set, where training
set will be used to train the classifier models and the classification
results on the test set can emulate the classification accuracy of
online attack.

5 EVALUATION
5.1 Experiment Settings

5.1.1 Hardware Environment. All our FPGA-related experiments
are conducted on Intel DevCloud [1]. DevCloud allows free SSH
access to their servers and FPGA resources from academic users. In
our experiments, we select to use nodes with Xeon CPUs and Intel
Arria 10 series FPGAs. The environment version is development
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stack release 1.2.1. To compile our OpenCL kernels, we utilize the
tool-chain provided by Intel, which is available on these nodes.
Results are all obtained from node named s005-n0@7.

5.1.2  1/O Measurement Collection. The experiment process is con-
trolled by our host program. After the initial setup of OpenCL
environments (getting platform information, setting up context,
command queues, etc.), we launch a victim kernel which will run
continuously during the experiment. Meanwhile we also launch
the proposed benchmark to perform multiple measurements on the
PCle communication link and gather data. In each measurement,
we initialize a new memory buffer item in host memory and execute
benchmark kernel for BUFFER_NUM times, aggregate acquired data
and calculate the average bandwidth as the result of this measure-
ment. For each accelerator, we collect 50 traces, with BUFFER_NUM
points in each trace (default value 100). Since victim FPGA circuits
and our benchmark circuits (both are synthesized from OpenCL
kernel implementation) run concurrently and there is no synchro-
nization step between the two kernels, our experimental setting
resembles a multi-tenant FPGA cloud setting.

5.1.3  Victim Accelerators. In our experiments, we select 8 different
FPGA-accelerated workloads provided by Xilinx Vitis Accelerator
Example repository [56] and FPGA-synthesized GPU workloads
from Rodinia benchmark [10]. We make necessary modifications to
deploy them on DevCloud. Detailed description and abbreviation
codes are listed in Table 1. These accelerators cover different critical
areas for FPGA accelerators, including image processing, signal
processing, numerical simulation and neural network acceleration
thus can serve as representative workloads.

5.1.4 Classifier Settings. The collected data will be further ana-
lyzed by our learning models. In our experiment, we build several
different models based on Python machine learning libraries like Py-
torch [44] and Scikit-learn [46]. The configurations of these models
are listed as follows:

e Random-forest: RandomForestClassifier() from Scikit-
learn library [46] is used.

® SVM: SVC() classifier from Scikit-learn library [46] is used.

e MLP: built in Pytorch [44], using learning rate 0.001, cross-
entropy loss and stochastic gradient descent (SGD) optimizer,
being trained for 1500 epochs.

¢ 1D-Convolution: built in Pytorch [44], using learning rate
0.001, cross entropy loss and Adam optimizer [33], being
trained for 1500 epochs.

5.1.5 Attacking Scenarios. In this paper, we consider two attacking
scenarios, i.e., closed-world and open world scenario. For closed-
world testing, we assume all accelerators are known to the attacker,
and we consider the fingerprinting problem as an n-way classifi-
cation problem, with n being the number of accelerators in this
closed-world. For the more realistic open-world scenario, we con-
sider it as a binary classification problem (since most attackers will
have only one specific target for side-channel attacks) and each
classifier will be trained to recognize a single accelerator.

Under both attacking scenarios, we split all collected traces into
7 : 3 for training and testing respectively to obtain accuracy data.
Additionally, for open-world scenario, we manually remove traces
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Table 1: Descriptions of our victim accelerators.

Name Code Function
adder A Adder implemented using FPGA. It reads inputs from input buffer, computes results and writes back to a output buffer.
apply_watermark AW Image processing circuit. It reads an image from input buffer, adds a watermark andhiheh hack to a output buffer.
- S Signal processing circuit. It reads input and coefficient data from input buffer
ir
and performs finite impulse response (FIR) filtering, then writes output back to output buffer.
matmul M Matrix multiplication circuit. It reads two matrice A and B from input buffer, calculates AB and writes back to output buffer.
Convolution accelerator. It reads an image and filter weights from input buffer,
convolute C
performs convolution and writes the results back to output buffer.
. This accelerator reads two arrays from input buffer, performs parallel vector addition
vector_addition \
on the two buffers and writes the results back to output buffer.
noisegen NG An accelerator that generates random traffic between host and FPGA.
An accelerator employed from Rodinia benchmark [10]
hotspot HS

that performs thermal simulation by iteratively solving differential equations.

from certain classes in the training set, making these accelerators
agnostic to the classifier. The test set will still include traces from
these classes to simulate the real-world scenario, where traces from
unknown accelerators are collected.

In our experiments, we aim to answer 2 research questions (RQs):

(1) RQ1: Does our measurement circuit capture the communica-
tion patterns, and what is the accuracy of fingerprinting?

(2) RQ2: How do the parameter settings of benchmark impact
the attacking results?

5.2 Results

5.2.1 RQ1: To answer RQ 1, we first present the visualization of
measured PCle side-channel traces and fingerprinting accuracy in
Figure 5 and Table 2, respectively. All data are obtained from the 8
FPGA-accelerated workloads mentioned above.

adder
apply_watermark

BW

10 30 S50 70 9 110 130 150 170 190
Time

(a) Data collected. (b) Corresponding t-SNE visu-

alization.

Figure 5: Plain data visualization and t-SNE visualization of
performance traces collected by our benchmark.

We first present the collected traces with using t-Distributed
stochastic neighbour embedding (t-SNE) [54], which is a widely
used data visualization method. It projects high-dimensional data
to a 2-D plane and can show how the data points can be clustered.
In Figure 5, we collect and visualize the bandwidth traces of our
benchmark accelerator when it is running concurrently with one
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of the 8 victim circuits. In Figure 5 (a), bandwidth data are normal-
ized with minimum and maximum bandwidth values in the data
set and range between 0 and 1. We can see that traces belonging
to different accelerators are separable, which indicates that our
benchmark circuit is able to capture the unique communication
patterns existing in the execution of the victim accelerators and
generate fingerprints for each of them. The bandwidth difference
exposes a vulnerability of inferring the co-located victim circuit.
T-SNE results in Figure 5 (b) also prove that the data traces are
separable.

Based on findings in Figure 5, which indicates that these traces
contain information that can help differentiate different accelera-
tors, we further consider two fingerprinting attacking scenarios,
i.e. closed-world and open-world scenarios. Closed-world finger-
printing aims to classify the types of accelerators within a known
accelerator set, while open-world fingerprinting only interests in
one sensitive accelerator and classify others as "unrelated".

Closed-world.

Model Test Acc. o % i % %
Random Forest 88% el o . .
SVM 69%
MLP 55% o7
1D-Convolution 26% 06
Table 2: Accuracy

05

prec

results.

Figure 6: Cross-validation results
of Random Forest model.

Table 2 shows the closed-world classification accuracy perfor-
mance of our selected models. Among our models, Random Forest
achieves the highest classification accuracy, reaching 88% accuracy
in this task. The 10-fold cross-validation results of our Random
Forest model is provided in Figure 6. From the distribution of model
metrics like accuracy, precision, recall and F1-score we can see that
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the model, we can see that the model performance is relatively sta-
ble. There are similar but different FPGA workload fingerprinting
works [15, 25], where the authors utilize power side-channel to per-
form classification of different cryptographic cores. Compared to
their works, we focus on fingerprinting general computing circuits
and utilize a different side-channel. Also, our implementation stays
at HLS level.

We select the two models with the best accuracy performance, i.e.
SVM and random forest, and provide further details to show how
well our model performs in this specific task. Confusion matrices
are provided in Figure 7. It shows how accurate the selected models
are able to classify each of the victim accelerators. Values in each
cell of the confusion matrix represent the number of samples of
each (Predicted Label, True Label) pair. We can see from the figure
that both models have acceptable accuracy performance (69.2%
and 88.3%) and are able to differentiate the 8 accelerator classes,
although random forest works better with fewer misclassified sam-
ples and outperforms with a great margin. This could be due to
the intrinsic features of the data traces, which are potentially more
suitable for the algorithm of random forest and decision trees [26].

Open-world. Then we also consider open-world fingerprint-
ing scenario, where the attacker only has one specific target to
recognize, and there are traces belonging to unseen accelerators
during training process. During the experiments, we randomly se-
lect labels to remove and repeat the experiments multiple times to
obtain the average accuracy performance data regarding classifiers
corresponding to each class of victim accelerators. The accuracy
results are shown in Figure 8. We increment the number of unseen
accelerators during training process and collect accuracy results
for classifiers targeting different accelerators. We can see that the
accuracy drops as the number of unknown accelerators increases.
However, as long as the attacker has partial knowledge about ac-
celerators in the system, when half of the traces are from unseen
accelerators the fingerprinting accuracy can still maintain at around
80% or higher. From Figure 8, we can also see that (1) some accel-
erators are more vulnerable than others (e.g., our model on fir
consistently achieves high fingerprinting success rate), highlight-
ing the importance of providing protection when victim is fir; (2)
when there are less types of accelerators, the fingerprinting success
rate is higher and it is more important to provide defence.

In the experiments above, we only use standard min-max scaling
pre-processing and standard models. With further customization
(filtering data, modifying predictive models), the accuracy can be
potentially higher, resulting in a higher success rate and lower costs
for continuing side-channel attacks.

Summary. Our benchmark accelerator is able to capture commu-
nication patterns of co-located accelerators on FPGA and use these
generated fingerprints to classify at a higher accuracy. This accu-
racy performance is sufficient for use in a real-world scenario. From
the classifier side, we find that Random forest model achieves the
highest classification accuracy and can reach 88% classification ac-
curacy. Surprisingly, the most complicated model, 1D-Convolution,
achieves the worst classification accuracy performance. In our ex-
periments, simpler models like random forest and SVM achieve
significantly better accuracy performance. This could be potentially
attributed to the limited number of traces in our data set.
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5.2.2 RQ2: As mentioned in Section 4, our benchmark has 4 dif-
ferent design parameter:

o ACCESS_NUM, which corresponds to how much traffic is gen-
erated by benchmark accelerator.

e REPEAT_NUM, which is the number of times the kernel is
executed and it relates to our measuring granularity and
data stability.

e BUFFER_SIZE, which determines how large each buffer is.

e BUFFER_NUM, which relates to how many data points are
collected within one performance trace.

The following parameter settings:

e ACCESS_NUM= 1000,

e REPEAT_NUM= 10,

e BUFFER_SIZE= 4 Bytes,
e BUFFER_NUM= 100.

will be later referred to as our default setting.

In this experiment, we screen all parameters and provide t-SNE
visualization and compare their classification accuracy with the
one under the default setting. To make visualization results clearer,
we drop the simplest accelerator (noisegen) and the most complex
accelerator (hotspot) and only perform attacks on the remaining
6 accelerators. To explore the effects of each of the 4 parameters,
we fix the other 3 parameters to the default settings and vary the
value of the target parameter, then collect data on the 6 victim
accelerators. The t-SNE visualization of the collected data traces as
well as classification accuracy traces of our 4 models regarding the
4 parameters are shown in Figure 9 - 12. Corresponding accuracy
performance of the 4 models are provided in Figure 13. Figures
corresponding to configurations that are identical with default
settings are omitted to avoid repetition, the results are the same
as in Figure 5 (b). In these figures, we obtain t-SNE results from
normalized communication bandwidth data. Overall, the use of
different parameter values results in varying trace patterns and can
hence affect the accuracy of different models. The analysis of the
results we obtain in this experiment is shown as follows.

ACCESS_NUM. In Figure 9, the influence of the parameter ACCESS
_NUM is shown. From Figure 9 (a) - (d), we can observe a change
in the visualization results, i.e. the traces collected from different
victim accelerators show different separability. This indicates that
the ability of our accelerator benchmark to capture the differentiable
patterns in I/O operations existing in our victim accelerators can
vary according to ACCESS_NUM. We can see that after ACCESS_NUM
> 2000, data points from several accelerator classes tend to be
mixed together. By looking at Figure 13 (a), we can see that the
random forest model achieves the highest accuracy result, reaching
an accuracy over 90% at ACCESS_NUM= 1000. SVM achieves over
85% accuracy and MLP achieves over 70% classification accuracy,
both at the same point. However, the 1D-Convolution model is only
able to achieve 60% accuracy at its highest. We can also see that as
ACCESS_NUM increases, except 1D-Convolution model, the accuracy
generally increases first (though the accuracy of our random forest
model stays over 90% relatively stably). After reaching the highest
accuracy at ACCESS_NUM= 1000, the accuracy starts to drop.

We speculate that the reason behind the fingerprinting accu-
racy difference is due to the measurement granularity differences
when ACCESS_NUM ranges from 250 to 4000. Initially, the growth
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Figure 7: Confusion matrices of the two classifiers.
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Figure 8: Open-world accuracy results.

of ACCESS_NUM introduces more data to be read and written hence
the effects of noise can be better cancelled and communication
patterns can be better captured until ACCESS_NUM reaches 1000.
However, since the execution time of our benchmark accelerator
also increases as ACCESS_NUM grows, the measurement will become
more coarse-grained since the change in I/O performance variance
of victim accelerators within this execution time period will be
amortized. After a certain point (in our experiment, between 1000
and 2000), the extended execution time of benchmark accelerator
causes the benchmark circuit to lose the ability to accurately cap-
ture victim communication patterns, thereby inducing a drop in
classification accuracy.

REPEAT_NUM. For parameter REPEAT_NUM, the t-SNE visualiza-
tion results are shown in Figure 10. Same as in Figure 9, data
points belonging to different accelerator classes in Figure 10 (a)
- (d) are separable, where the clearest clustering results appear at
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REPEAT_NUM= 5 and REPEAT_NUM= 10 (see Figure 5). The classi-
fication results for the machine learning models in Figure 13 (b)
also match this observation, with the highest classification results
achieved at REPEAT_NUM= 5 and REPEAT_NUM= 10, where the accu-
racy of random forest is again over 90% and the highest accuracy
results of SVM and MLP are around 85% and 70%, respectively. In
Figure 13 (b) we can observe a similar trend as in Figure 13 (a),
where the accuracy first increases to an optimal point and starts to
drop as REPEAT_NUM grows.

The explanation for the accuracy trend is similar. As REPEAT_NUM
determines how many times our benchmark is executed when op-
erating on a memory buffer, increasing REPEAT_NUM will: (1) cancel
the effects of noise and obtain a more precise measurement of the
performance; (2) extend the time it takes to operate on a single
buffer, i.e. the time it takes to generate a data point in the perfor-
mance trace. As the execution time of the accelerator kernel task is
relatively short, when REPEAT_NUM is low, the measurement will be
finished within a short period of time and the dynamic communi-
cation patterns cannot be captured by our benchmark accelerator.
This, combining the influence of noise, is the reason why all mod-
els achieve poor classification accuracy results at REPEAT_NUM= 1.
When REPEAT_NUM increases, the communication patterns start to
be captured. However, if REPEAT_NUM is too large, same as the sit-
uation in ACCESS_NUM the whole measurement process becomes
too coarse-grained. Changes in the I/O communication traffic may
be amortized, thus classification models cannot extract detailed
information from the collected traces.

BUFFER_SIZE. The experimental results of trace visualization
and classification results under different BUFFER_SIZE settings are
shown in Figure 11. We can see that all the BUFFER_SIZE settings
we use are able to preserve the layering information in the victim
accelerators. From Figure 13 (c), we also observe that the influ-
ence of parameter BUFFER_SIZE is not as much as ACCESS_NUM and
REPEAT_NUM. However, there is an optimal point for the random
forest and SVM to work on (BUFFER_SIZE= 4 Bytes). We will keep
using this empirical value since it is the best work point for our
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Figure 9: Traces and corresponding accuracy results under different ACCESS_NUM settings.
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Figure 10: Traces and corresponding accuracy results under different REPEAT_NUM settings.
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Figure 11: Traces and corresponding accuracy results under different BUFFER_SIZE settings.

most accurate model. However, as BUFFER_SIZE increases beyond
the optimal point, there is a slight drop in classification accuracy.
This can be due to certain details of the implementation of low-level
runtime drivers.

BUFFER_NUM. Results of varying the parameter BUFFER_NUM is
shown in Figure 12. By increasing BUFFER_NUM, a longer period of
execution of the victim accelerators will be probed and the trace
can include more information. However, surprisingly, from Fig-
ure 13 (d), the classification accuracy does not change much. With
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BUFFER_NUM= 50, our random forest classifier is able to reach over
90%. Other models have a similar trend of accuracy.

Summary. In our experimental results, we show that for a rela-
tively wide range of parameter choices, random forest model is able
to achieve satisfying classification accuracy. This helps loose the
constraints on attackers’ benchmark accelerator implementation.
Under ACCESS_NUM= 1000, REPEAT_NUM= 5, BUFFER_NUM= 100, and
BUFFER_SIZE= 4Bytes our model is able to achieve the highest
accuracy. However, in real world, under some other hardware or
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Figure 12: Traces and corresponding accuracy results under different BUFFER_NUM settings.

software settings (different FPGA models, communication link hard-
ware, or a different heterogeneous computing software stack) these
values may vary. To maximize attack performance, attackers are
recommended to conduct some offline screening prior to launch-
ing the attack to obtain near-optimal parameters. This parameter
search does not need to be accurate, since our most powerful model
can achieve over 92% accuracy performance under a relatively wide
range of attack accelerator parameter choices in the selected ac-
celerator set, which is sufficient for fingerprinting tasks. From the
benchmark accelerator side, we conclude that:

(1) Our benchmark accelerator is able to capture the I/O patterns
of each of the victim accelerators.

(2) Both ACCESS_NUM and REPEAT_NUM affect the granularity
of measurement and can significantly influence the perfor-
mance of classification models. There are optimal values for
these two values, as shown in Figure 13 (a) and Figure 13 (b).

(3) Buffer related parameters BUFFER_SIZE and BUFFER_NUM
have less influence on classification accuracy. However, the
optimal parameter values still exist.

6 DISCUSSION
6.1 Mitigation

The intrinsic cause of the security vulnerability revealed in this
paper is the different communication or I/O patterns of acceler-
ators. The different access patterns of accelerators can serve as
unique fingerprints of these accelerators. What our benchmark
accelerator and host program do is to stress the communication
link (i.e. PCle) and obtain performance measurement trace results
that contain information about these fingerprints. This information
is further extracted by machine learning models and helps achieve
high classification accuracy.

The mitigation to our proposed fingerprint attack can be done
by enhancing the FPGA-host interface [e.g. FPGA interface man-
ager (FIM) in Intel cloud FPGAs [1]]. Instead of transmitting raw
data, messages travelling through the communication link should
pass another security layer for obfuscation. In this obfuscation
layer, the communication pattern will be distorted, where random
latency/burst will be inserted to make communication patterns un-
recognizable. Policies targeting introducing such distortions with
minimum performance overhead will be our future work.
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From the host side, we can also modify the underlying platforms
(OPAE [29], OpenCL [3], etc.). By changing how the driver handles
data movement between host server and FPGA, communication
pattern obfuscation can also be achieved.

6.2 Attack and Defence Suggestions

6.2.1 For Attackers. In our proposed attack, one prerequisite for
attackers is to obtain servers and FPGAs that are identical to the
servers and FPGAs used in FPGA clouds. In reality, instead of pur-
chasing hardware and building up the system locally, it’s better
for attackers to use the cloud itself for data collection. By running
data collection steps in the cloud multiple times and recording the
underlying hardware and software platform, the attackers can even-
tually have a set of models that are able to cover heterogeneous
hardware and software platforms in the cloud. Doing this step on
the victim cloud is more realistic and economic, considering the
high cost to set up required hardware and software environments
locally.

6.2.2  For Regular FPGA Cloud Users. The fingerprinting attack we
propose relies on the intrinsic features of victim accelerators, and
we make an assumption that attackers are aware of the target accel-
erator and can limit the range of accelerators running on the cloud.
Therefore, to defend against the proposed fingerprinting attack,
FPGA cloud users should be careful about using existing public
intellectual property cores (IPs) since these IPs are possibly already
in the attackers’ database. To achieve this, these users can modify
their accelerators and insert noisy I/O or computation operations
(additional writes to an unimportant memory location, inserting
additional computation between two I/O operations, etc.) to distort
the performance traces the attacker may obtain.

In the meantime, it is worth noting that exploiting this security
vulnerability also relies on physically residing on the same FPGA
where victim accelerator is running. The simplest way for users
to avoid being attacked is to obtain ownership of the whole FPGA
board as well as the hosting server. This may result in higher costs
in deploying FPGA accelerators (since it requires users to pay more
to cloud service providers), but it completely eliminates the threat
of side-channel-related attacks induced by sharing FPGA resources
with unknown users.
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Figure 13: Traces and corresponding accuracy results under different BUFFER_NUM settings.

6.2.3  For Cloud Service Providers. We suggest cloud service providers
enhance their infrastructure interface as mentioned in Section 6.1.
Though this may add additional performance overhead, it can effi-
ciently prevent the proposed attack.

Also, FPGA cloud service providers can consider improving their
scheduling policy to scatter users’ FPGA accelerators on the cloud.
It can dramatically reduce the chance of victims’ malicious acceler-
ators co-locating with victims’ accelerators and hence mitigating
side-channel attacks or fingerprinting attacks that require attackers
and victims to be placed together.

6.3 Future Work

Future work will be dedicated to developing mitigation technologies
against this side-channel. We will come up with both hardware
and software-based mitigation strategies. For hardware defence, we
will consider deploying low-overhead noise injection circuits. For
software defence, we will modify the underlying heterogeneous
computing frameworks like OpenCL [41] or OPAE [29] to obfuscate
the communication patterns of computation accelerators on board.
Besides, cloud scheduler-level defence can be employed to securely
schedule/migrate instances.

7 RELATED WORK

FPGA side-channel attacks. Several kinds of remote attacks tar-
geting cloud FPGAs have been proposed recently. One major type
is long-wire attack, where attackers utilize leakage in long wires to
probe information transmitted inside the circuit. [19] uses the delay
difference of nearby wires to probe the signal being transmitted
on the long wire, since logical 1 and logical 0 on long wires can
lead to different delays of nearby wires. The authors use ROs to
capture this difference and use collected information to recover
the bits being transmitted on the target long-wire. [48] performs a
similar attack and recovers the secret key of an AES crypt circuit.
[20] provides detailed tests of several RO designs and validate the
efficiency of these variants of long-wire attacks. Defence mecha-
nisms are proposed as well to mitigate long-wire attacks. Remote
power side-channel attack is another type of FPGA side-channel at-
tack. In [57], it is performed by programming an on-chip RO-based
power monitor to reveal the secret key of a RSA crypto module.
This paper also shows that by using the RO-based power monitor,
it is possible to perform an FPGA-to-CPU attack on the same SoC.
Power side-channel attacks have also been proven to be feasible in
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production environment [24], where researchers retrieved AES key
information from an AWS EC2 F1 FPGA instance.

Our attack is based on PCle communication side-channels. There
has been attack in FPGA cloud using PCle contention. In [52], the
authors utilize the generation of PCle contention to perform in-
frastructure cartography. They use PCle stressors to generate PCle
contention and reveal information regarding cloud servers in AWS
cloud. However, their attack targets multiple FPGAs and aim at re-
vealing infrastructure information instead of revealing information
about applications on the same FPGA. In [22, 23], the authors build
a covert communication channel based on PCle contention and
consider information leakage in the PCle contention side-channel.
Similar to our work, PCle traffic is monitored, and information like
execution timing traces of victim applications can be obtained. The
difference is that we consider multi-tenancy FPGAs (accelerators
from multiple users residing on the same FPGA hardware), whereas
they consider the scenario where accelerators from different users
are distributed to multiple FPGA boards connected to the same
server.

The most similar works we find in literature are [15, 25]. To the
best of our knowledge, they are also the only works about multi-
tenancy FPGA accelerator fingerprinting. In these papers, to achieve
a similar goal, the authors propose to use power side-channel for
fingerprinting co-located FPGA circuits. Their measurement tar-
gets lower-level side-channel leakage and they focus on classifying
cryptographic cores, whereas our method is more coarse-grained
and we focus on identifying general accelerator workloads.

Our proposed method is more closely related and will be ben-
eficial to side-channel attacks in FPGA cloud, which rely on co-
locating with target victims and information about co-located vic-
tim circuits. These attacks include attacks targeting cross-talk in-
formation leakage [21], power analysis attacks [40, 47] that collects
power side-channel information using co-located malicious circuits
and reveal secret information from collected data, fault attacks [5]
that actively induces faults like voltage drops to victim circuits, etc.

8 CONCLUSION

In this paper, we propose a novel attack targeting multi-tenancy
FPGA clouds, where attackers can obtain knowledge about co-
located accelerators. By implementing a PoC attack accelerator
as well as its corresponding host program, we test accelerators
from several application scenarios like signal processing, numerical
simulation acceleration, etc. Our results show that communication
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links like PCle can serve as a new source of side-channel and can be
exploited by fingerprinting attacks targeting co-located FPGA ac-
celerators. Our proposed attack method will be beneficial for cloud
FPGA side-channel attacks, since successfully recognizing target
co-located victims is a prerequisite and can significantly reduce the
costs of attacks. As far as we know, this is the first work targeting
fingerprinting co-located FPGA accelerators using communication
side-channels. Future work will be dedicated to security-enhanced
FPGA interface development and another version of this research
under an open-world setting.
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