HODOR: Shrinking Attack Surface on Node.js via System Call Limitation

Wenya Wang
Shanghai Jiao Tong University
Shanghai, China
ducky_97@sjtu.edu.cn

Wang Gao
Shanghai Jiao Tong University
Shanghai, China
gaowang.sjtu@gmail.com

Xingwei Lin
Ant Group
Hangzhou, China
xwlin.roy @ gmail.com

Dawu Gu*
Shanghai Jiao Tong University
Shanghai, China
dwgu@sjtu.edu.cn

Jingyi Wang*

Zhejiang University
ZJU-Hangzhou Global Scientific and
Technological Innovation Center
Hangzhou, China
wangjyee @zju.edu.cn

Wei Lv
Ant Group
Hangzhou, China
huaxing.lw @antgroup.com

Jiashui Wang
Zhejiang University, Ant Group
Hangzhou, China
jiashui.wjs@antgroup.com

ABSTRACT

Node.js applications are becoming more and more widely adopted
in the server side, partly due to the convenience of building these ap-
plications on top of the runtime provided by popular Node.js engines
and the large number of third-party packages provided by the Node
Package Management (npm) registry. Node.js provides Node.js ap-
plications with system interaction capabilities using system calls.
However, such convenience comes with a price, i.e., the attack sur-
face of JavaScript arbitrary code execution (ACE) vulnerabilities is
expanded to the system call level.

There lies a noticeable gap between existing protection techniques
in the JavaScript code level (either by code debloating or read-write-
execute permission restriction) and a targeted defense for emerging
critical system call level exploitation. To fill the gap, we design and
implement HODOR!, a lightweight runtime protection system based
on enforcing precise system call restrictions when running a Node.js
application. HODOR achieved this by addressing several nontriv-
ial technical challenges. First, HODOR requires to construct high-
quality call graphs for both the Node.js application (in JavaScript)
and its underlying Node.js framework (in JavaScript and C/C++).
Specifically, HODOR incorporates several important optimizations
in both the JavaScript and C/C++ level to improve the state-of-the-art
tools for building more precise call graphs. Then, HODOR creates
the main-thread whitelist and the thread-pool whitelist respectively
containing the identified necessary system calls based on the call
graphs mappings. Finally, with the whitelists, HODOR implements
lightweight system call restriction using the Linux kernel feature
Secure Computing Mode (seccomp) to shrink the attack surface. We
utilize HODOR to protect 168 real-world Node.js applications com-
promised by arbitrary code/command execution attacks. HODOR
could reduce the attack surface to 19.42% on average with negligible
runtime overhead (i.e., <3%).

*Corresponding authors: Jingyi Wang and Dawu Gu

"HODOR refers to the role of Hodor in the Game of Thrones, who sacrificed his life to
resist the attack of the White Walkers by holding the door. We name our tool HODOR
to signify its protection of the Node.js applications against malicious payloads attack by
restricting the use of system calls.

1 INTRODUCTION

Node.js is an open-source, cross-platform JavaScript runtime envi-
ronment [1], which allows JavaScript code to be executed on the
server-side. Currently, some well-known websites use Node.js in
their web product, such as Paypal [2], LinkedIn [3], Microsoft [4],
and Netflix [5]. The success of Node.js largely owes to the libraries
that Node.js depends on. Moreover, Node.js application developers
can easily invoke and manage third-party libraries through Node
Package Manager (npm) [6]. For example, the 1ibuv [7] library
provides Node.js with asynchronous I/O capabilities and V8 [8]
library provides Node.js with a JavaScript engine.

These libraries enable the Node.js applications to interact with the
low level system kernel, which however may pose severe security
threats besides convenience. Specifically, Node.js applications are
likely to depend on obsolete third-party libraries with different kinds
of security issues, which are expanded into the Node.js ecosystem [9—
12]. As observed in [10] , one-quarter of the versions of packages,
which make up 19.63% of the npm ecosystem, have dependencies on
vulnerable packages. such as gadget chain attacks (prototype pollu-
tion attacks) [13, 14], inject-related attacks [15], and supply chain at-
tack [11]. Most of them may lead to ACE attacks [16] (i.e., arbitrary
code execution attacks). Take the prototype pollution attack as an ex-
ample. When the attacker pollutes Object . prototype. someattr and
the application runs the code snippet eval (someobject.someattr),
s/he can perform the ACE attacks [13, 17]. When armed with the
ability of ACE attacks, attackers can further perform critical oper-
ations such as reading private files, creating scheduled tasks, and
reversing shells.

Existing protection techniques against the above security impli-
cation mostly focus on the JavaScript code, either by code debloat-
ing [18, 19] or read-write-execute permission restriction [20]. For
instance, Mininode [18] and stubbifier [19] aim to identify
and remove useless JavaScript code to reduce the attack surface so
that the attackers cannot easily exploit the compromised third-party
modules. MIR [20] designs a fine-grained read-write-execute per-
mission model and wraps the privilege reduction over every module

based on the function closure mechanism. Although effective in dif-
ferent ways, existing protections targeting the JavaScript code level
have several limitations faced with diverse exploitation possibilities.
First, they cannot limit the attack surface of arbitrary command exe-
cution. For example, when the attacker can pass any malicious data
to exec method, s/he can execute any command without utilizing
any third-party modules or even the JavaScript language. Moreover,
existing protections [18-20] require to modify the source code of the
Node.js application which may influence the application’s normal
operation to an uncertain degree.

i I Hodor Protection Field
Amplify the |

Arbitrary Code Execution

)

|

| |

eval(code) Attack Surface | Node.js Application Vulnerabilities, |

VL U (L) I| Application Obsolete Third-party Packages | !
new Function(code) oo) 1| Needed | V| wics” N S PE : |
)1

|

|

|

|

: Needed [“Network 1 File !f perm. 1 Cmd.
Arbitrary Command Executio N—— e

child_process.exec(cmd)

{[System Calls]
_________________________ J

Figure 1: HODOR protection birdview.

In this work, we provide a complementary perspective to shrink
the attack surface on Node.js applications at the lower system call
level to prevent critical operations from attackers as shown in Fig.1.
We notice some attack surface reduction works at the system call
level for application scenarios other than Node.js [21-29]. However,
such low level protection is currently missing for Node.js and several
unique challenges are to be properly addressed. @ We need to first
precisely identify those system calls used by the Node.js application
during execution, which require cross-language mapping from the
JavaScript source code to the underlying system calls. Previous ap-
proaches are not enough as they mostly generate system call lists
over a single language [21-28]. Another work Saphire [29] scans
the AST to identity built-in function calls and builds call graphs
over the compiled binary from Debian repositories (to address cross-
language challenge), resulting in some loss of accuracy. ® Moreover,
the highly dynamic nature of JavaScript language makes call graphs
construction approaches solely relying on static or dynamic program
analysis [18-20] imprecise. ® The restriction needs to be trans-
parent to the Node.js framework: the restriction needs to be easily
integrated into the Node.js framework and will not influence the nor-
mal operation of the application with acceptable overhead. Previous
restrictions are mostly performed on the process granularity [21-29],
which are inefficient for Node.js which is multi-threaded.

To address the challenges, we develop a lightweight system call
level protection system HODOR specifically designed for Node.js
applications. HODOR is equipped with three core techniques to
tackle each challenge: @ and ® To generate a precise system call list,
HODOR performs cross-language and combined static-dynamic call
graphs analysis for the Node.js applications and Node.js framework
over JavaScript code and C/C++ code. In particular, HODOR incor-
porates several significant optimizations to improve state-of-the-art
call graphs building methods for both the JavaScript code [30, 31]
and the C/C++ code [32]. For JavaScript code, we propose com-
bined static-dynamic analysis to build call graphs for Node.js and
we consider the code pattern related to the execution pattern of
builtin method features. As for C/C++ code, we propose new partial
context-sensitive mechanisms to generate more precise call graphs.

Our experimental results show that these optimizations help generate
a much more precise set of required system calls for Node.js appli-
cations during execution compared to traditional methods. Note that
to adapt to the Node.js framework, HODOR distinguishes different
system calls executed by different threads. HODOR then create the
main-thread whitelist and the thread-pool whitelist respectively con-
taining the identified necessary system calls based on the call graphs
mapping. ® HODOR finally enforces efficient system call limitation
on Node.js with the whitelists using the seccomp mechanism in the
Linux kernel. Specifically, HODOR implements the restrictions at
carefully selected moments to ensure that the protection of different
threads does not affect each other.

We implement a prototype of HODOR, and evaluate the effective-
ness and efficiency of HODOR in defending 168 real-world Node.js
applications compromised by arbitrary code/command execution
attacks. The results show that HODOR could reduce the attack sur-
face to 19.42% on average with < 3% runtime overhead. Overall, we
make the following contributions:

e We design and implement a system call level protection
system HODOR for Node.js applications. HODOR could
accurately infer the system calls used by the applications in
the thread granularity at runtime and provide system call
restrictions for different threads respectively.

e We propose several significant optimizations in the cross-
language analysis to build more precise call graphs for
identifying more accurate system call lists. Specifically,
we present dynamic/static combined and new server-side
related mechanisms to improve JavaScript call graphs con-
struction, and new partial context-sensitive mechanisms
to improve C/C++ call graphs construction.

e We evaluated HODOR by applying it to defend 168 real-
world Node.js packages suffering from arbitrary code/com-
mand execution attacks. Experimental results confirm the
effectiveness and efficiency of HODOR in shrinking the
attack surface significantly (80.57 % reduction on average)
with negligible runtime overhead (i.e., <3%).

e We released the implementation, evaluation dataset and
constructed attack payloads of HODOR? to facilitate future
research in the Node.js attack and defense area.

2 BACKGROUND & MOTIVATION
2.1 Node.js Architecture

As shown in Figure 2, Node.js framework consists of builtin module
layer, binding module layer, and dependency module layer. Com-
pared with client-side JavaScript runtime, Node.js has two major
important features: non-blocking and interaction with OS kernel.
We utilize a Node.js application example in Figure 2 to illustrate
the working mechanism of Node.js framework. Figure 2 is a code
fragment of the version 0.1.0 of dns-sync [33] package. By utiliz-
ing the method exec of the builtin module child_process, it could
execute the value of cmd parameter.

Builtin module Layer: Builtin module layer provides Node.js ap-
plication with builtin modules [34]. Different from JavaScript run-
time on browser-side, Node.js runtime provides more functionalities

Zhttps://github.com/NodeHodor/Hodor

—> 1 var child = require('child_process’);

2 var ¢ = child.exec(cmd, {*}, function(err) {
3 if (callback) callback(*);

4 1;

> 5 const { Process } = internalBinding('process_wrap’);

6 function exec(*)

I

1
________ |
7 this._handle = new Process(); ' :
8 ChildProcess.prototype.spawn“= function(options) { 1
9 this._handle.spawn(options); ——M8¥ —— :
1

1

1

1

1

\

Builtin
10 }; Module Layer
11 module.exports = child_process = {
—12 exec,
13 };

14 static void Spawn(*) {
15 uv_spawn(*);
16 }

17 static void Initialize(*) {

1
1
1
1
1
! =
18 env->SetProtoMethod(*, “spawn", Spawn); 1 Binding
19 } : Module Layer
1
1
1
1
\

20 NODE_MODULE_CONTEXT_AWARE_INTERNAL (
—21 process_wrap,

22 node::ProcessWrap::Initialize

23)

24 int uv_spawn(*) {

1vg) libuv |)
25 uv__process_child_init(*); 1 1
26 } : Dependency :
27 static void uv__process_child_init(*) { | Module Layer
H .

28 execvp(*);

203 0 TTTTTe- .. o ;@I

[r _S;sc_alTl_ :r Syscall2 :' fork

Figure 2: The overview of Node.js framework.

suitable for the server side, such as file system access, asynchro-
nous communication and system command execution. Developers
can further build packages on the basis of these builtin modules.
Specifically, the application can use the require function to invoke
builtin modules (Line 1), and these modules use module.exports or
exports to export public API of a module (Line 11).

Binding Module Layer: The binding module layer encapsulates
Node.js dependencies as binding modules for builtin modules to in-
voke. The binding module layer consists of several binding modules.
When Node.js engine is running, RegisterBuiltinModules will tra-
verse all the node_module structures and link them into a global
linked list of Node.js, so that the binding modules can be accessed
by the builtin module layer through the internalBinding method.
Each binding module will implement the Initialize function (Line
17), and bind the C++ function implemented in this module with the
corresponding builtin module layer JavaScript method name. The
binding module name and the Initialize function will be stored in
anode_module structure.

Dependency Module Layer: Node.js relies on the dependency
module layer to achieve this functionality of builtin modules. The
dependency module layer consists of several dependencies written
in C/C++ code. For example, V8 provides Node.js with JavaScript
bytecode execution environment, 1ibuv provides Node.js with
non-blocking i/o ability and OpenSSL provides Node.js with cryp-
tographic operations. The Node.js application can then use the
internalBinding function to utilize these dependencies. As shown
at Line 5, the builtin modules import builtin module process_wrap
through internalBinding function call.

Non-Blocking Ability: As Node.js is non-blocking, it can handle
thousands of concurrent connections. Node.js runs in a single process

that creates two kinds of threads: main thread is used to execute the
tasks on the event loop; threads in the thread pool are used to handle
asynchronous I/O operations. Developers can handle asynchronous
I/0 operations by calling specific functions. For example, method
readFile of the module fs is executed by the threads in the thread
pool and it allows the program to read a file in a non-blocking
asynchronous way. And the method readFileSync is executed by the
main thread and it would block execution until finished. The thread
pool would be loaded only when the asynchronous I/O methods
are required. Therefore, Node.js applications can be divided into
applications that use a thread pool and applications that do not use a
thread pool.

2.2 Seccomp BPF

Seccomp BPF [35] provides a defense mechanism to limit the
system call set available to a given application. It used the Berkeley
Packet Filter language [36] to allow developers to implement sys-
tem call filtering with configurable policies. It’s worth noting that
Seccomp filters could be applied to multi-threaded programs. The
threads would inherit the filters of their parents when they are cre-
ated. In this work, we aim to apply the Seccomp mechanism to limit
the system call set of Node.js application and engine at the thread
level, in order to implement a thread-aware defense mechanism.

2.3 Motivation

We use an example here to illustrate the motivation of our work.
Figure 3 shows the growl function defined in growl library (v1.8.0)
with more than three million weekly downloads [37]. In this ex-
ample, users can use the growl function to create a notification
message (Line 4). The message is passed to the exec method of
child_process module (Line 15), and is executed as the param-
eter of notify-send command. As the message string is not val-
idated and restricted, command injections can happen. Attackers
can inject malicious commands into the message string such as
"You have a mail echo Hacker"", and the Hacker string is being
printed. When the attacker is armed with the same permissions as
the process that runs the Node.js application, s/he could expand
the attack surface and perform critical operations. For example,
she can read the sensitive file (e.g., "mail " cat /etc/passwd""), cre-
ate a remote connection (e.g., "mail nc —1 —e /bin/bash 8001 "),
and change root permission (e.g., "mail " su root""). Existing works
restrict the attacker’s ability at the JavaScript source code level,
including application reducer [18] and context wrapper [20]. For
attackers who have the same permissions as the process running the
application, these protections are not effective.

A recent study [38] evaluatde the packages in the npm repository
and observed that 192,585(31.9%) packages in the npm repository
do not need access to security relevant resources, such as file systems
or network APIs. The inspiration is that we do not need to grant a
running Node.js application access to unnecessarily many system
calls. In this work, HODOR focuses on shrinking the ACE attack
surface significantly by system call limitation. For the attack example
described above, we identify that the application does not use other
system calls except exec-related and notify-send-related system
calls. When running the application, we only allow the application
to access exec-related and notify-send-related system calls while

// main.js
var growl = require(“growl");

var message = 'You have mail!”’;
growl(message);

// ./1ib/growl.js
exports = module.exports = growl; $———

VNV A WN R

9 var exec = require('child_process').exec
10 cmd = { pkg: "notify-send" };

12 function growl(msg, *) {

13 args = [cmd.pkgl;

14 args.push(quote(msg)); €<—
15 exec(args.join('"),..);

16 };

Figure 3: An example of ACE attacks.

disabling its use of file-related, permission-related, and network-
related system calls. Therefore, even if an attacker has the ability
to execute arbitrary commands, s/he cannot perform many critical
operations as s’he wishes.

3 THREAT MODEL

We consider the runtime protection of a Node.js application which
suffers from two popular types of highly risky attacks: @ arbitrary
command execution vulnerability where an attacker could execute
arbitrary system command, @ arbitrary code execution vulnerability
where an attacker could execute arbitrary JavaScript code. In practice,
the attackers can gain the ability of ACE attacks through injection
attack [15], gadget chaining attacks (prototype pollution) [13, 14],
and supply chain attack [11]. In general, the functionality of the ma-
licious payloads may include file operation, permission modification,
network interaction, and process operation, where a system call is
highly likely to be invoked [28].

This work aims to shrink the attack surface of both arbitrary
command execution and arbitrary code execution. More precisely,
the considered attack surface is the sum of arbitrary code/command
execution attack vectors, which can be explicitly quantified as the
number of all system calls provided by the system. Our goal is to
implement the principle of least privilege for a running Node.js
application and minimize the system calls that an attacker can utilize.
That is, we only grant a Node.js application access to the minimum
set of system calls it requires to run properly. Implementing such
system call restrictions does not need additional privileges. It is
worth mentioning that our goal is not to prevent ACE attacks but to
shrink the attack surface and minimize the critical operations caused
by ACE attacks.

This work does not focus on the arbitrary command execution or
arbitrary code execution vulnerabilities in the low layer of Node.js
(i.e., binding module layer and dependency module layer). Race
conditions [39], DOS attacks (such as regular expression DoS) [40,
41], hidden property abuse [42] in Node.js applications, and global
variable alterations are also out of the scope of this work, as these
attacks are usually triggered without invoking system calls. Install-
time attacks [43] is out of the scope of this work since the attacks are
triggered during the installation. Moreover, these can be addressed
by complementary techniques [20, 39-44].

4 SYSTEM DESIGN

The goal of HODOR is to generate system call whitelists for Node.js
applications and apply a runtime protection mechanism based on the
whitelists to applications to shrink the attack surface of ACE attacks.

4.1 Overview

Figure 4 shows the overall framework of HODOR containing four
main steps. @ We first adopt the call graph constructor for both
the source code of Node.js application and the Node.js engine. &
Next, based on the call graphs, we build mapping relationships
between the builtin module APIs and their system call list. ® Then,
by analyzing the call graphs of Node.js application, we identify
the builtin modules used by the Node.js application. And based
on the mappings between methods of builtin modules and system
calls, we generate whitelists (of system calls) for the application. ®
Finally, we apply the whitelist restriction of system calls protection
mechanism to the threads on which the Node.js application runs.

4.2 Call Graph Constructor

The system calls used by a Node.js application are encapsulated layer
by layer in Node.js engine. In order to generate a system call lists
for a Node.js application, we improve the precision of traditional
call graphs constructors (for both JavaScript and C/C++ language)
with multiple optimizations, and construct modular call graphs for
both the application and the dependent Node.js engine.

JavaScript Language: For Node.js applications and builtin modules
written in JavaScript, we build their modular call graphs respectively.
The state-of-art JavaScript call graphs constructors [30, 31] do not
fully consider the execution pattern of the methods in the builtin
modules of JavaScript (e.g., Promise) and builtin modules of Node.js
(e.g., £s), as the source code of builtin methods is not included in
the applications. However, the execution of these functions triggers
the invocation of functions or the creation of objects that appear
in their arguments. For example, as shown in Figure 2 on Line 2,
the execution of builtin method child_process.exec triggers the
execution of the callback function in the last argument, and the
execution of builtin method Function.binds creates a new function.
Not considering such cases can result in a significant number of
missing edges from the callback function invocation to the callback
function definition of the function nodes creations. In this work, we
summarize the execution pattern of the builtin methods provided
by JavaScript [45] and Node.js [34] and add the function nodes and
edges related to the function execution.

The highly dynamic nature of JavaScript code leads to unsound
call graph construction [30]. For example, the JavaScript code can
utilize dynamic constructors to create new functions represented as
a string or execute JavaScript code represented as a string and can
perform dynamic addition and deletion of object properties. These
cannot be accurately analyzed by static call graph construction and
lead to a significant number of missing edges from the function invo-
cation represented as a string to the function definition represented as
a string. In this work, we utilize dynamic call graph construction to
identify the missing nodes and missing edges and generate combined
static-dynamic call graphs for Node.js applications.

Node.js
Application

Builtin
Modules

JavaScript
Source Code

Main Thread

= @ |

[H H

Main- Thread- |;i H

Thread- Pool- K Application HE

Excuted Excuted : :
1

Seccomp Ext 1

@ % Binding M —_— r_‘gbg —_ |>?%I — @ Wh“eﬂh’he"“ '_____J_____ ______ 1

Modules Call Graph

Node.js @
Code @ Dependencies Bft“"‘;'
itcoae

Mappings
Constructor Builder

- <) @

System Call (Kernel)

Recorder

Restriction Profile Installation

® @

Figure 4: The HODOR pipeline.

C/C++ Language: When analyzing Node.js binding and depen-
dency modules written in C/C++ language, the traditional context-
insensitive call graphs construction method brings considerable false
positives. Using this result directly will make the subsequent syscall
whitelist overly broad. However, conducting context-sensitive analy-
sis for all the source code will bring extremely large memory and
time overhead. Therefore, we propose a partial context-sensitive
call graphs construction algorithm to handle the above challenges.

We summarize two code patterns leading to false positives and im-
plement context-sensitive analysis for these patterns. The first pattern
is context-insensitive for switch-case statement. Taking Figure 5 as
an example, uv_fs_access (Line 3) and uv_fs_write (Line 7) call
the same uv__fs_work function (Line 14). uv__£s_work implements
diverse logic using switch-case statements and only one case-branch
can be reached depending on the function parameters. The context-
insensitive algorithm considers all the branches of the switch-case
statement to be reached, which causes false positives. We locate func-
tions like uv__fs_work, collect the context information on each call-
site, and eliminate unreachable case-branches of these functions. The
second pattern is context-insensitive for function-pointer parame-
ter. Taking Figure 6 as an example, Read(Line 1), Unlink and RMDir
functions call call (Line 20) functions through different call chains.
The function pointer £n will be called finally, and its value changes
depending on different call chains. The context-insensitive algorithm
considers all the possible functions (like uv_fs_read, uv_fs_unlink
and uv_fs_rmdir) to be called through £n, which causes false pos-
itive. We collect all the functions that call function pointers and
perform a backward data-flow analysis to determine the assignment
location of function pointers and record the call chains. We traverse
the call chain and clone each function in it to make sure that ev-
ery different value of the function pointer pass to different cloned
functions (like Call).

4.3 Mappings Builder

After obtaining call graphs of each layer, we identify the function
call relationships between layers at this stage. We finally generate a
mapping set between builtin modules and system calls.

Builtin Module Layer: Starting with the builtin methods as entry
points, we traverse the call graphs of builtin module layer and collect
the binding methods used by builtin methods. As shown in Figure 2,
we generate the mapping between builtin method exec method on
Line 12 and the spawn method of binding method spawn on Line 9.

Binding Module Layer: Referring to the code pattern of registering
the C++ modules and methods, we implement an LLVM Pass to
collect the mappings between binding methods and C++ functions.
As shown in Figure 2, we record the binding module process_wrap
and its method spawn on Line 20. Furthermore, on Line 18, we
generate the mapping between the method and C++ function Spawn
defined on Line 14.
Dependency Module Layer: We generate the mapping between
C/C++ functions and 1ibc functions based on the call graphs of the
binding module layer and dependency module layer. For example,
we generate the mapping between C++ function uv_spawn on Line
24 and the 1ibc function execvp on Line 28 in Figure 2.

Finally, combining the mappings between 1ibc functions and
system calls, with the mappings of three layers, we build the map-
pings between builtin modules and system calls.

4.4 Whitelist Generator

At this stage, we generate system call whitelists for applications.
We first identify which builtin modules and builtin methods are used
by the application at runtime based on the call graphs generated
in Section 4.2. Furthermore, based on the mapping relationships
generated in Section 4.3, we link the builtin modules and methods
with their system call whitelist. As discussed in Section 2.1, the
tasks of the main thread and the thread pool are different, and the
required system calls are also different. Therefore, to achieve a
thread granularity protection mechanism, we divide the system call
whitelist into main-thread-executed whitelist and thread-pool-
executed whitelist based on the code pattern of two kinds of threads.

4.5 HODOR Builder

We generate the corresponding system call filters based on system
call whitelists and use the seccomp facility to restrict the actions
available within the threads.

A challenge in loading the filters is the timing of loading the
filters for the main thread and the child threads in the thread pool
separately. Child threads in the thread pool will only be created by
the main thread when the tasks arrive. Considering the inheritance
feature of seccomp, i.e., the child threads in the thread pool inherit
filters of the parent (main) thread when they are created by the par-
ent (main) thread. However, the main thread and the thread pool
perform different tasks, inherited filters will block the execution
of child threads in the tread pool. To overcome this challenge, we
design a fine-grained filtering mechanism, where for different types

of applications, we adopt different loading mechanisms. Especially,
for thread pool required applications, we add the filters at two care-
fully selected moments. We illustrate the detail implementation in
Section 5.5.1.

5 IMPLEMENTATION

In this section, we elaborate the core implementation details of
HODOR to realize the design goals. To generate a more complete
system call list for Node.js applications, we adopt static analysis and
dynamic analysis for Node.js applications and Node.js engine.

5.1 JavaScript Call Graph Construction

We first perform static analysis for JavaScript code. Referring to
JAM [30], we build modular call graphs for Node.js applications and
Node.js builtin modules. The call graph constructor also considers
JavaScript promise-chain [46] and execution pattern of builtin meth-
ods [34, 45]. JAM is the state-of-art modular call graphs building
methods for Node.js applications. However, we could not access the
source code of JAM. We reproduce the methodology of constructing
modular JavaScript call graphs based on the rules of JAM.

Moreover, different from the previous work, our work also con-
siders the execution pattern of builtin methods of Node.js engine and
JavaScript. JAM [30] and js—-callgraph [31] did not record the
functions that act as a parameter of the builtin method. For Node.js
builtin methods, functions can be executed as a callback function.
For example, as shown in Figure 2, the anonymous function on Line
2 will be invoked after executing the command. In our work, we first
manually collect 32 builtin methods whose parameters are callback
functions and record the location of the callback function based on
the Node.js API document [34]. Then, when building call graphs,
we match these builtin methods and add the edge pointing from
the domain where such a method is invoked to the point where the
callback function is defined. The state-of-art call graphs building
tools also omit the execution pattern of builtin methods of JavaScript.
For example, when the function wrapped by the Promise object
is finished, the callback function of then method will be invoked.
And when a builtin method map of Array Object is invoked (e.g.,
[1,2,3] .map(x => x * 2)), its first argument would be executed
as a function. Moreover, different from builtin methods provided
by Node.js engine, developers could also invoke builtin methods
(e.g., Object.create) to create objects, which would also affect the
construction of the call graphs. The method properties of the object
may be invoked. In our work, we refer to the Standard built-in ob-
jects [45]. We collect ten builtin methods with function parameters
including the methods of Promise and Array. When building call
graphs, we match these builtin methods and add the edges pointing
from the domain where such a method is invoked to the point where
the callback function is defined. Moreover, we also record the nine
builtin methods including the methods of Function and Objects and
add nodes when these methods are invoked.

5.1.1 Dynamic Analysis Refiner. The highly dynamic na-
ture of JavaScript leads to unsound call graph construction [30].
JavaScript code can use eval, new Function, and the method of
vm to execute JavaScript code represented as a string and returns
its completion value. For example, eval("console.log(’hello’)")
prints hello string, and let sum = new Function(’a’,’b’,’return

a+b?) ; creates a function that sums two arguments. However, ex-
isting work generally does not analyze the string of these functions
accurately, thus the definition of a new function or function call
represented as a string cannot be included in the call graphs. To
solve this deficiency, we introduce dynamic call graphs analysis. We
use the dynamic call graphs tool Nodeprof [47]. We first collect
the test suites from the packages installed by npm or github.com
and build test suites for the application manually. Then we execute
test suites and build dynamic call graphs for the application through
the dynamic call graphs construction tool. Finally, we combine the
nodes and edges of call graphs conducted by the static analysis and
call graphs conducted by the dynamic analysis and generate the
combined static-dynamic call graphs for the application.

5.1.2 Dynamic Command Execution. Node.js applications
can utilize exec and spawn methods of child_process module to
execute dynamic commands. For example, as shown in Figure3,
notify-send command also requires system calls. However, existing
protection work does not consider the system calls needed by the
commands. Disallowing the execution of the system calls required
by the commands can lead to program failure. In this work, we
first identify the location of command execution methods at the
static analysis phase. We then extract the commands executed by the
command execution methods at the dynamic analysis phase. Then
we use Linux st race utility [48] to record system calls utilized by
the commands.

5.2 C/C++ Call Graph Construction

The C/C++ call graphs construction method of HODOR is based
on SVF [32], which is a static program analysis tool for LLVM-
based languages. We wrapped clang [49] with w11vm[50] to compile
all the Node.js engine C/C++ source code to LLVM bitcode. By
monitoring the command outputs of the compilation process, we
utilize 11vm-1ink [51] to link all the source code of binding and
dependency modules into a single LLVM bitcode file as our call
graphs analysis target.

As described in Section 4.2, the traditional context-insensitive call
graphs construction algorithm leads to considerable false positives
for switch-case statements and function-pointer parameters. SVF
conducts its default call graphs construction algorithm based on
context-insensitive analysis. To balance precision and the overhead
of context-sensitive analysis, we design a partial context-sensitive
algorithm to eliminate false positive cases.

5.2.1 Unreachable Branch Elimination for Switch-Case
Statement. We summarize the code patterns to locate functions
for switch-case statement context-sensitive analysis: @ There exists
a switch-case statement in the function and different branches of
the switch-case statement would call different functions; @& The
parameters of the function influence the branch selection variable.

For each call-site of functions that match the pattern: @ Per-
forming intra-procedural data-flow analysis to record the parame-
ter or the member field offset within the structure parameter that
propagates to the branch selection variable of the switch-case state-
ment. @ Performing backward data-flow analysis from the caller
function to locate the assignment of the above variables. If the as-
signed constant can be determined, (funccaiier, fUNCsyitch—cases

#define INIT(subtype) req->fs_type = UV_FS_ ## subtype;

int uv_fs_access(*) {
INIT(ACCESS);
POST;
}
int uv_fs_write(*) {
INIT(WRITE);
POST;
}

#define POST uv__fs_work(&req->work_req);

static void uv__fs_work(struct uv_ work* w) { uv__fs_work.uv_fs_access*—
req = container_of(w, uv_fs_t, work_req);
switch (req->fs_type) {
X(ACCESS, access(req->path, req->flags));
X(WRITE, uv__fs_write_all(req));

default: abort();
}

Figure 5: Switch-case statement context-insensitive.

constantgyitch—case) Would be recorded and funcgyitch—case Would
be cloned using LLVM. @ For each cloned funcgyitch—case, case-
branches except that belonging to constantgyitch—case Would be
deleted.

For example, the call-site of uv__£fs_work in uv_fs_access would
be replaced to uv_fs_access.12 (12 is ACCESS’s enum value).uv_fs_
access.12 contains only the access case-branch and other case-
branchs like uv__fs_write_all would be deleted. Therefore, this
kind of false positives would be eliminated.

static void Read(const FunctionCallbackInfo<Value>& args) {
AsyncCall(..., uv_fs_read, ...);

static void Unlink(const FunctionCallbackInfo<Value>& args) {

AsyncCall(..., uv_fs_unlink, ...);

static void RMDir(const FunctionCallbackInfo<Value>& args) {
AsyncCall(..., uv_fs_rmdir, ...);

FSRegBase* AsyncCall(..., Func fn, Args... fn_args) { AsyncCall.uv_fs_read <—
re’tlx’rn AsyncDestCall(..., fn, fn_args...);

ESRquase* AsyncDestCall(..., Func fn, Args... fn_args) (AsyncDestCall.uv_Fs_r‘ead(J
r‘en;;u;r‘apﬁDispatch(Fn, fn_args..., after);

[...1
CallLibuvFunction<T, LibuvFunction>::Call(fn, ...);

int RegWrap<T>::Dispatch(LibuvFunction fn, Args... args) { Dispatch.uv_fs_read <J

struct CallLibuvFunction<ReqT, int(*)(uv_loop_t*, ReqT*, Args...)> {

[...]
static int Call(T fn, uv_loop_t* loop, ReqT* req, PassedArgs... args) {
return fn(loop, req, args...); Call.uv_fs_read

15

Figure 6: Function-pointer parameter context-insensitive.

5.2.2 Function-Pointer Parameter Resolution. We summa-
rize the code patterns to locate functions for function-pointer pa-
rameter context-sensitive analysis: @ There exists more than one
function pointer parameter in the function; @ The function pointer
parameter would be called within the function. In Figure 6, Call
satisfies these code patterns.

For each call-site of functions that match the pattern: @ HODOR
performs inter-procedural and context-sensitive data-flow analy-
sis for each call-site to trace the source of the function pointer
object. @ If the depth of the call chain that locates the function
pointer object is 1, { funccatier, funcealiee, funcey,) are recorded.
funcealiee is the function that contains function pointer parame-
ters, and func, is the function pointed by the function pointer

parameter. We perform function clone on funcgai1ee. The cloned
function is named func¢a11ee.funcep, and the call-site in the cloned
function is replaced to call the resolved function pointer. ® If the
call chain depth is greater than 1, { funccailer, fUnCcallees *)
are recorded layer by layer backward until the function pointer
object is determined to specific funcg, point. Then we perform
function clone to the functions of entire call chain from top to
down. funccaiiee Will be cloned to funceaiiee.funce, in each
layer, and the call-site in the cloned function is replaced to invoke
the corresponding modified callee function except the last layer,
which is replaced to call the resolved function pointer. For exam-
ple, AsyncCall is cloned to three versions: AsyncCall.uv_fs_read,
AsyncCall.uv_fs_unlink and AsyncCall.uv_fs_rmdir. The simi-
lar logic is performed in AsyncDestCall, Dispatch and Call. Even-
tually uv_fs_read is called through the chain: Read — AsyncCall.
uv_fs_read = AsyncDestCall.uv_fs_read — Dispatch.
uv_fs_read — Call.uv_fs_read and the fnin Call.uv_fs_read
is resolved to uv_fs_read. Therefore, for each different value of the
function pointer parameter, the call chain is different, which can
eliminate the false positives.

We perform partial context-sensitive data-flow analysis to de-
termine the assignment of the variables propagating to the branch
selection variables and the source of the function pointer objects for
the above two cases. The backward data-flow analysis starts with the
branch selection variable or function pointer parameter, then it stops
until the variable or the parameter is assigned with constants or ac-
tual function. When we achieve the endpoint of backward data-flow
analysis, we perform a use-define chain analysis based on LLVM
pass to determine whether the variable is assigned with one or more
than one constant or actual function in the intra-procedural data
flow analysis. When the variable is assigned with a single constant
or actual function through different calling contexts, we perform
context-sensitive analysis. In contrast, for the variable assigned with
different constants or actual functions, we use context-insensitive
analysis. As for the inter-procedural data-flow analysis, we addition-
ally locate the starting point of the analysis at the callsite, record the
context of different callsites, recursively perform intra-procedural
analysis to complete inter-procedural data-flow analysis.

5.2.3 Libc Analysis. Almost all the dependency modules de-
pend on libc library to interact with OS kernel. The popular
glibc [52] library cannot be compiled into LLVM IR, thus we
cannot utilize SVF to analyze it.

Previous works [28, 29] proposed methods for gl ibc analysis,
but these analysis methods will introduce false positives and false
negatives. temporal- specialization [28] utilizes GCC’s
RTL IR to analyze glibc. @ This method will lose some important
system calls, such as CLONE system call in pthread_create and
the EXECVE system call in system, etc.; @ It also connects some
unrelated system calls to libc functions: read contains 41 system
calls including VFORK, but actually the read function only contains
one syscall READ. Saphire [29] utilizes ob jdump to generate the
assembly of 1ibc. so and analyzes the assemble text to collect
system calls of libc functions. This method cannot recognize the
CLONE system call in pthread_create and the EXECVE system call in
system due to the lack of pointer analysis.

Musl libc [53] is a lightweight libc library compatible with
Node.js and can be compiled by LLVM. We replaced glibc with
musl to construct more precise call graphs. Musl libc uses
the inlineAsm statement to set the register numbers including the
syscall number and then call the syscall instruction. We imple-
ment an LLVM pass to conduct data-flow analysis to identify each
inlineAsm statement related to syscall and figure out the syscall
number. Mus1l libc also encapsulates syscall in C function. We
compiled Mus1 with -03 optimization to inline these functions at
their call-sites, so that all the encapsulated functions are expanded to
inlineAsm statement and our data-flow analysis can gain the correct
result.

5.3 Building Mappings

In this stage, we build API mappings to infer the system call whitelist
between builtin modules, binding modules, and dependency modules.
Algorithm 1 illustrates how HODOR generates mappings of the three
layers.

Algorithm 1: Mapping generation

Data: Call graphs of builtin modules cg.builtin, call graphs of binding modules and
dependencies cg_bottom, call graphs of libc ¢g.libc, LLVM IR of binding
modules ir_bind

Result: Output mapping dict M

M.builtin « {};

forall cg.Module € cg_builtin do

forall method € module.exports do
M.builtin.module.method «— {};
Callers C invoked by the method by traversing cg.Module;
forall c € C do
if ¢ == internalBinding then
\ M.builtin.module.method «— (module, method);

M.binding « {}; /* Mappings of binding modules */

forall ir Module € ir_bind do

forall method_bind € ir.Module do

| M.binding.module.method «— func;

M.depend — {} ; /* Mappings of dependencies x/

forall func € M.bindings.module.method do

M_depend.module.method — {};

Callers C invoked by the function by traversing cg.bottom;

forall ¢ € C do

if ¢ == libc then

| M.depend.module.method « libc:

forall libc € M.depend.module.method do

M.depend.module.method < {};

Callers C invoked by the function by traversing cg.libc;

forall ¢ € C do

if ¢ € syscall then

‘ M.depend.module.method.libc « syscall;
return M.builtin, M.binding, M.depend;

/* Mappings of builtin modules */

PRSI N

==
22 e

T
3 e oD

NN R
PERREZ

S
»
S G

5.3.1 Building Mappings for Builtin Modules. Builtin mod-
ules utilize module.export Or export object to export the builtin
modules to Node.js applications and utilize internalBinding method
to import the binding modules (i.e., binding method). To map the
builtin methods and binding methods, we traverse the call graph (i.e.,
cg.Module) of each builtin module (Line 2-12). The entry point of
the call graph is the method (i.e., M.builtin.module.method) list in
the module.export object or export object. When the method in-
vokes a method of an object which is imported by the internalBinding
method, we record the method as the method of a binding module
(Line 8). The name of the binding module is the argument of the
internalBinding, and the name of the binding method is the prop-
erty of the binding module.

5.3.2 Building Mappings for Binding Modules. As illus-
trated in Section 2.1, node_module structure is used to register bind-
ing modules to the builtin module layer. We develop a LLVM Pass
to locate and analyze node_module structures (Line 13-18). We first
traverse all global variables in the LLVM IR (i.e., ir.Module) to
locate of lib node and locate the node_module structures that are
used to register binding modules by matching the variable names
and structure types. For each node_module structure, we record the
binding module (i.e., M.bindings.module) and the Initialize func-
tion. As Initialize function utilizes set-method functions (includ-
ing SetMethod, SetMethodNoSideEffect, etc [54]) to bind the bind-
ing methods (i.e., M.bindings.module.method) and C++ functions
defined in binding layer, we traverse the Initialize function and
extract set-method functions (Line 16). By analyzing the parameters
of the call-sites of the set-method functions, we record mappings
between binding methods and C++ functions. Finally, we collect the
binding modules and the mapping between the builtin methods and
the C++ functions. And the binding modules can be used on builtin
module layer.

Algorithm 2: Whitelist generation

Data: Call graph of Node.js Application cg_app, mapping sets M
Result: Output whitelist W

1 wl.main « {};

2 wl.pool — {};

3 Callers C invoked application by traversing cg_app;
4 forallc € Cdo

5 if c € M.native.c then

6 forall b € M.native.c do

7 if f € M.bindings.b then

8 forall sys € M.depend.f do
9 if b € builtin_threadpool then
10 | wl.pool «— sys;
1 else

12 wl.main « sys;
13 return W

5.3.3 Building Mappings for Dependency Modules. We
identify the system calls utilized by the C++ functions collected
in the previous stage (Line 20-25). We first traverse the call graph
of dependency modules, starting with the C++ functions that map
binding methods. Then we collect 1 ibc functions invoked by the
C++ functions at Line 22. For 1ibc functions, we collect the sys-
tem calls utilized by the 1ibc functions by traversing the 1ibc
library call graph. Finally, we collect the mappings between the C++
function and system calls.

Moreover, we also identify the builtin methods that submit tasks
to the thread pool, and the tasks they submit. As the main thread can
submit tasks to the thread pool via uv__work_submit Or uv_queue_work
function, we first transverse the call graphs of Node.js framework
to identify which methods use the thread pool. Furthermore, as
uv__work_submit passes the function pointer in the fourth parameter
to the thread pool for execution, we collect the tasks that are submit-
ted to the thread pool by analyzing the call-site of uv__work_submit.

5.4 Whitelist Generation

Algorithm 2 illustrates how HODOR generate the whitelist the for
Node.js application. We need to identify the method used by the ap-
plications. Since the application use require method to load builtin
modules and dependent packages, we first traverse the call graph

of the application, and identify require method call (Line 3). We
identify the builtin methods and modules (i.e., M.bindings.b), and
generate system call list for the application by linking builtin meth-
ods with the mappings constructed in the Building Mappings stage
(on Line 4-9). Furthermore, to provide a fine-grained protection, we
divide the system call list into system call list of main thread and
system call list of thread pool. In Section 5.3, we collect the builtin
methods that utilize the thread pool (builtin_threadpool). When
generating the system call, if the builtin method is in the builtin
thread pool (i.e., builtin_threadpool (Line 9), we add the system
calls used by the tasks (i.e., dependency function M.depend.f) in
thread-pool whitelist(Line 10), otherwise we add the system calls to
the main thread whitelist (Line 12). Finally, we get the main thread
whitelist and thread-pool whitelist.

5.5 HODOR Building

5.5.1 Seccomp Implementation. We propose a system-call
level protection mechanism HODOR. As discussed in Section 2.1,
Node.js applications can be divided into the applications that use the
thread-pool thread and applications that do not use the thread-pool
thread. For different types of applications, we adopt different load-
ing mechanisms. For thread pool required applications, we first
install the filter for the thread-pool thread based on the thread-pool
whitelist and then install the filter for the main thread to prevent
the thread pool thread from inheriting the main thread filter. Specifi-
cally, before the program is loaded, the thread pool will be executed
first. We utilize Libseccomp [55] library and add the code to the
load filter after thread pool initialization. Then, before the main
thread loads the applications, we load the main thread filter by using
the node-seccomp. node—-seccomp is a Node.js package that
wraps around the libseccomp C library [56]. For thread pool dis-
required applications, we only load the main thread filter. Moreover,
HODOR collects system calls, which we refer to as engine-required
system calls. These system calls are required by the pure Node.js
engine without Node.js applications running on it. We collect these
system calls by the dynamic tracing (strace tool [48]), and we
add them to the whitelists.

5.5.2 Read/write Permission Restrictions. The state-of-art
protection mechanisms based on seccomp do not restrict read
and write system calls due to the requirements of application and
process [21-29]. However, the lack of fine-grained restriction of
read and write system calls allows the attackers to read or write
sensitive files. Due to the wide use of read and write system calls
in the Node.js engine (file operations or lower-level inter-thread
communication), system call limitation mechanism can not shrink
the attack surface related to these two system calls. In this work,
we isolate the file system through chroot mechanism of 1inux
to temporarily limit the root directory to the application directory
when running the Node.js application. In this way, the attacker will
not be able to modify the files outside the application directory
for conducting corresponding attacks. Furthermore, we also switch
the ownership of the files in the application directory to a high-
privileged user and then set the files to read-only to prevent attackers
from modifying the JavaScript code of the application. As the syscall
for setting file permissions or switching the uid or gid are restricted

by HODOR in most cases, the ability of attackers to tamper files can
be further limited.

5.5.3 Attack Surface Limitation. Next, we will introduce the
ability of HODOR to reduce the attack surface of several kinds of
popular real-world ACE attacks referring to threat list of Node.js [57,
58]. ® Gadget chain attacks [13]. Prototype pollution attack is one
of gadget chain attacks and is one of the most popular attacks of
Node.js applications. The attacker gain the ability of ACE by pollut-
ing the arguments of eval or child_process.exec method. HODOR
could mitigate gadget chain attacks in two aspects. If the application
requires child_process.exec method, the attacker will not gain
ACE ability as EXECVE system call is restricted. And if exec method
or eval is allowed, HODOR protects the applications against the crit-
ical operations by system call limitation. @ Injection attacks [15].
Injection attacks include command injection, template injection, and
code injection [58]. An attacker can achieve arbitrary code execution
by injecting malicious code. By system call limitations, some ma-
licious injection code cannot be executed. ® Improper file access
attacks [59]. HODOR limits the file permissions that the application
can access, and the attackers cannot read/write sensitive files. If
the attacker can overwrite the permission allowed and executable
files, the malicious code in the executable file cannot compromise
the system further as HODOR applies system call limitation on the
executable files. @ Supply chain attacks [11]. Supply chain at-
tacks happen when the dependency chain exists vulnerabilities [11].
HODOR only provides the system calls used by the application.
Therefore, although the attackers could exploit the code to obtain the
ability of ACE through obsolete packages of the dependency chain,
s/he cannot do any critical operations s/he wants due to the system
calls limitations.

5.5.4 Quantifying Attack Surface in Syscall Level. We quan-
tify the extent of syscall-related attack surface reduction. The base
permissions of the application are the number of all system calls
provided by the system.

Sbase = |SYSCALLsystem | (D

We generate whitelists for the main thread and thread pool and
HODOR implements system call restriction on main thread the
threads of thread pool:

Sapp = |SYSCALLmain—thread| U |SYSCALLthread-pool| 2

Finally we can quantify the extent of attack surface reduction:

S
SR = —4PP (3)
Sbase

6 EVALUATION

We extensively evaluate HODOR by answering the following four

research questions.

e RQ1: Can HODOR construct sufficiently more precise call
graphs to achieve fine-grained system call level protection?

e RQ2: Can HODOR effectively reduce the privileges of attack-
ers with arbitrary code/command execution attack ability?

e RQ3: How does HODOR compare with state-of-the-art tools?

e RQ4: What is the runtime overhead of the protection mechanism
provided by HODOR?

350
300
250
200
150
100

50

mUnfiltered Critical Syscall

Unfiltered Trival Syscall

3
Filtered Critical Syscall

Filtered Trival Syscall

Figure 7: System call for Node.js applications (RQ1).

Table 1: HODOR granularity at system call level and thread
level (RQ1 ans RQ2).

Node.js w/ Musl Hodor

Type #of Package | oo r e rorcs | For TS

Arb Comm Exec 110 1,161 10,636 910 7,617
Arb Code Exec 58 243 3,352 110 2,294
Total 168 1,404 13,988 1,020 9,911
Type # of Package | #of MT | #of TP | #of MT | #of TP

Arb Comm Exec 110 11,797 2,958 8,444 1,212

Arb Code Exec 58 3,595 1,218 2,362 496

Total 168 15,392 4,176 10,806 1,708

CS: Critical syscalls invocation; TS: Trivial syscalls invocation; MT: Main Thread system calls
invocation; TP: Thread Pool system calls invocation;

Our experiments were conducted on a machine running 64-bit
Ubuntu 18.04 with 64 AMD Ryzen Threadripper 3970X 28-Core
Processor and 256GB RAM. The call graph building component
for JavaScript code amounts to about 3.5K LoC and the call graph
building component for C/C++ code amounts to about 2K LoC. The
runtime enforcement component amounts to about 100 LoC.

Result overview We use Eq.3, i.e., SR, as a criterion to quantify
the attack surface reduction ability. The smaller is the criterion, the
better protection (attack surface reduction) can HODOR achieve. As
shown in Figure 7 and Table 1, HODOR grants an average of 66
system calls each for the 168 packages in our evaluated dataset. For
58 packages with arbitrary code execution, among the 335 system
calls provided by Linux kernel (i.e., Spqse 15 335), the average SR is
12.37%. For 110 packages with arbitrary command execution, the
average SR is 23.14%. on average, HODOR can reduce the attack
surface of Node.js applications to 19.42%.

6.1 Dataset

We extensively collect those packages which are affected by arbitrary
code execution or arbitrary command execution attacks from the
GitHub Advisory Database [60] as follows. Firstly, we extracted
the vulnerabilities with "arbitrary code execution" or "command
execution" in the description. Then, we filtered out the vulnerabilities
which are exploited from the client-side (e.g., Cross-Site Scripting
attack). For the remaining vulnerabilities, we selected those readily
available proof-of-concept exploits. In total, our experimental dataset
consists of 169 packages. Among the 169 packages, HODOR crashes
on one package. 58 packages suffer from code injection attacks ,
sandbox breakout attacks , file overwrite attacks , prototype pollution
attacks , and template injection attacks . The left 111 packages
suffer from arbitrary command execution attacks. The dataset fully
covers the evaluated packages in MIR [20] and packages suffering

10

from arbitrary code execution in SecBench. js [61]. Table 5 in
Appendix shows the detailed descriptions of the vulnerable packages.
We utilize this dataset as experiment targets for RQ1, RQ2, RQ3
and RQ4. To evaluate the RQ1, we also take three large-scale real-
world applications as extra datasets: koa [62], express [63] and
json-server [64], whose github stars were no less than 30,000.
Furthermore, to extensively evaluate RQ4 (Runtime Overhead), we
take two extra datasets: Node.js core tests [65] and 4 well-known web
frameworks including koa [62], fastify [66], express [63],
and connect [67], whose weekly downloads were no less than
500,000.

6.2 Call Graph Construction and Resulting
Protection (RQ1)

We evaluate the improvement of HODOR in terms of call graphs
construction and the resulting protection.

Call Graphs Analysis We first evaluate the achieved precision im-
provement of our call graphs construction optimizations, which is
critical to accurately identify the system calls utilize by the Node.js
application. In total, for 168 Node.js applications, @ Our static call
graphs building method adds 3,555 edges that are triggered by the
execution of builtin methods of JavaScript and 547 edges that are
triggered by builtin methods of Node.js engine. In particular, 37 out
of 168 packages (22.02%) invoke system calls that are triggered by
the execution of builtin methods and would be undetectable without
optimization. For example, npm-lockfile utilizes method exec
of child_process module in the builtin objection Promise. A lack of
analysis of them will lead to a too-restrictive whitelist, and the protec-
tion system will affect the normal operation of the application. ® As
for dynamic call graph building methods, we build five test suites for
the tested application on average and build combined static-dynamic
call graphs for the application. In total, the combined static-dynamic
call graphs building method adds and 1,271 nodes and 2,474 edges.
These nodes and edges are generated due to the dynamic nature
of JavaScript code, which cannot be captured by static call graphs
analysis. ® For C/C++ code in the Node.js engine, HODOR to-
tally cloned and replaced 36 functions for switch-statement and
284 functions for function-pointer parameter to implement partial
context-aware analysis.

For the optimization of static call graphs construction for JavaScript
code, we compared our method with the state-of-the-art JavaScript
call graphs construction tools JAM [30] and js—callgraph [31].
Since we could not access the source code of JAM, we reproduce
their comparison experiments and utilize the results they have done
on six Node.js packages. We measured the precision (measured by

comparing against dynamic call graphs building tool NodeProf [47])
according to JAM test method. As shown in Table 2, the result shows
that HODOR finds that the coverage based on dynamically created
edges is 92.39%, compared to 79.77% for JAM and 52.49% for
js—-callgraph. The missing edges are triggered by the dynamic
nature of JavaScript code. The results suggest that our optimizations
for JavaScript code result in substantially higher coverage than the
state-of-art JavaScript call graphs construction tools.

Table 2: Experimental results for JavaScript call graph construc-
tions (RQ1).

HODOR Jam js-callgraph
makeappicon 1.2.2 95.02% 86.05% /
npm-git-snapshot 0.1.1 86.63% 82.45% 43.86%
nodetree 0.0.3 83.33% 70.65% /
jwtnoneify 1.0.1 93.43% 71.43% /
npmgenerate (.0.1 100% 97.42% 59.81%
smrti 1.0.3 97.29% 80.80% 66.20%
openbadges-issuer 0.4.0 91.05% 75.85% 40.08%
Average 92.39% 79.77% 52.49%

We choose 7 of 12 Node.js packages as NodeProf successfully builds call graph
for these packages;
Recall: The coverage based on dynamically created edges;

For call graphs construction for C/C++ code, we compare our par-

tial context-sensitive algorithm with state-of-art call graphs building
tool SVE. Under the premise of running the program properly, we
compared the size of the system call list generated by HODOR and
SVF. In total, the size of the system call whitelist constructed by
HODOR is 71.02% (10,931/15,392) of the size of the whitelist con-
structed by SVF. In other words, the optimization for C/C++ code
significantly reduces the attack surface to 71.02% of SVF-built
call graphs. Furthermore, we divided the 335 system calls into 17
critical system calls (in Table 10 in Appendix) and 318 trivial system
calls referring to temporal-specialization [28]. The criti-
cal system calls include command-execution-related system calls,
network-related system calls, and permission-related system calls>.
These critical system calls are not many but can cause enormous
consequences such as creating scheduled tasks and reversing shells.
As shown in Table 1, for critical system calls, our method could
reduce the whitelist to 72.65% (1,020/1,404) of whitelist generated
by SVF-built call graphs. For trivial system calls, our method could
reduce the whitelist to 70.85% (9,911/13,988) of whitelist gener-
ated by SVF-built call graphs. More details are listed in Table 5 in
Appendix. These results show that our optimization for C/C++ code
help generate more precise system call lists for better shrinking the
attack surface of ACE attacks.
System Call Level Protection. For 58 packages with arbitrary code
execution, among the 335 system calls provided by Linux kernel (i.e.,
Shase 18 335), the average SR is 12.37For 110 packages with arbitrary
command execution, the average SR is 23.14%. HODOR can shrink
the attack surface to 19.42% of the Node.js applications.

We divided the system calls into engine-required system call type
and app-required system call type. Engine-required system calls are
a list of system calls required for the pure Node.js engine on which

3Note that read, write, and unlink are carefully addressed by limiting file permis-
sions by HODOR as discussed in Section 5.5.2

11

no application runs, and we record these system calls with the help
of st race [48] utility. The engine-required system call set includes
28 system calls for the main thread and 15 system calls for the thread
pool. The full list of the engine-required system calls is shown in
Table 9 in Appendix. Other system calls are considered as app-
required system calls, which are only used when the application
calls the methods of builtin modules. Among the 168 packages, we
observed 129 of 168 (76.79%) packages use builtin modules and
methods. Therefore, in addition to the engine-required system call,
HODOR also needs to use the mappings between builtin modules
and system calls to infer the app-required system calls. 39 of 168
(23.21%) packages do not utilize the builtin modules, that is, do not
need app-required system calls. All of them are packages that are
compromised by arbitrary code attacks. Since no additional builtin
methods are used, HODOR can reduce the attack surface to the
maximum extent, i.e., the attacker could only use 28 system calls.
Thread Level Protection. HODOR adds filters on both the main
threads and the threads of thread pool. As shown in Table 1, for
the main thread, the attack surface can be reduced to 19.20% by
HODOR on average. Among the 129 builtin-method-needed pack-
ages, we observe 66 packages (51.16%) invoke the system calls that
are executed in the thread pool. For these packages, HODOR also
adds filters on the threads of the thread pool, and the attack surface
thread pool can be reduced to 7.73% by HODOR on average. For
example, HODOR can identify npm-lockfile package utilize
method readFile, writeFile, stat, and mkdir belongs to the builtin
module fs, which are accomplished by the thread pool. Armed with
HODOR, attackers cannot perform thread pool related exploits apart
from readFile, writeFile, stat, and mkdir.

Dynamic Command Execution We extract and analyze the com-
mand arguments of command execution methods (i.e., exec and
spawn methods of child_process module) and add the system calls
required by these commands into the system call list of the main
thread. For 98 packages, we add 4,887 system calls to the system
calls, including 61 critical system calls and 4,826 trivial system calls.
Code Coverage and HODOR’s Effectiveness. We reported the
coverage of each of the evaluated benchmark in the test suite in the
last three columns of Table 5 in the Appendix to show its effect
on HODOR’s effectiveness. The key observation here is that there
is little correlation between the code coverage and the number of
system calls in the whitelist of HODOR, i.e., the Pearson product-
moment correlation coefficient between the package module covered
line number and the whitelist size is -0.038, coefficient between
the code coverage of package and the whitelist size is -0.027, and
coefficient between the code coverage of package module and the
whitelist size is -0.066 (more details in Figure 9 in the Appendix).
The implication is that HODOR is able to precisely infer the system
calls required regardless of the code coverage, which thus alone does
not have a significant effect on HODOR’s effectiveness.
HODOR’s Effect on Benign Applications. We used the above test
suites and three more real-world applications to evaluate HODOR’s
effect on the application’s normal operation. Among the 169 pack-
ages, 168 packages run correctly, while HODOR crashed on the pack-
age extra—asciinema [68]. Note that as shown in Table 5 in
Appendix, the average covered line of the package module is 69.79%,
and the average cover line of the package including the dependent

module is 33.98%. The crashed package contains Python scripts, and
there was an interaction between Python3 and JavaScript scripts at
runtime. HODOR does not support to analyze Python scripts leading
to the syscall list missing required by the Python scripts at runtime.
Therefore, the package suffered from a too-restrictive list of system
calls, causing it to crash with the protection of HODOR. For real-
world applications testing, we deployed and accessed the websites.
As shown in Table 3, the average covered line of the package module
is 56.11%, and the average cover line of the package is 11.15%.
The result shows that HODOR can be integrated into well-known
applications and does not affect the normal functionalities.

Takeaway: The optimization of JavaScript call graph construc-
tion helps identify hidden required system calls for 23.21% pack-
ages. And the optimization in C/C++ level further reduces the
system call permissions by 71.02% on average. They together
enable HODOR to reduce the attack surface for the main thread
to 19.20%, and reduce the attack surface of the thread pool thread
to 7.73%, while not affecting the application’s normal operation.

Table 3: Experimental results for correctness (RQ1).

Stars LoC #Syscall % CL-1 % CL-2 Pass Ratio
json-server 66.5K 258,094 61 53.36% 3.34% 32/32
express 60.6K 58,997 63 66.05% 26.12% 75175
koa 339K 291,226 64 48.92% 3.98% 28/28
Average 537K 202,772 62.67 56.11% 11.15% 135/135

CL-1: Covered line of the package module; CL-2: Covered line of the package;

6.3 Exploit Mitigation (RQ2)

We further evaluate the effectiveness of HODOR from the exploition
perspective. Traditional runtime protection work usually uses the
attack payload provided by the proof of concept when evaluating
their effectiveness. However, the payload provided by proof of con-
cept is far from enough, as the operations performed by attackers
in reality can be sophisticated and require system calls, while the
proof of concept is generally simple, such as print 123 or execute
1s. Therefore, to extensively verify the effectiveness of our tool, we
construct different advanced attack payloads to simulate vari-
ous dangerous behaviors of attackers, where a variety of critical
system calls can be invoked. Specifically, according to different
vulnerability types, we construct seven payloads written in bash
language for arbitrary code execution and seven payloads written in
JavaScript language for arbitrary command execution. The details
are shown in Table 8 in Appendix.

For the packages with arbitrary command execution, HODOR
could successfully defend against 62.08% of the critical exploits
and defend against 99.09% of real-world exploits. HODOR cannot
block the execution of functions associated with arbitrary command
execution (e.g., child_process.exec), but it can reduce the ability
of the code that can be executed. For the packages with arbitrary
code execution, HODOR could defend against all of the attacks with
arbitrary code execution. On average, HODOR could effectively
mitigate the execution of 91.63% critical exploits and defend against
51.72% of real-world exploits.

12

We demonstrate two case studies to further show the exploit miti-
gation capability of HODOR. @ For arbitrary command execution
vulnerabilities, attackers can inject shell code to achieve arbitrary
code execution. This type of vulnerability utilizes the exec method
or spawn method of the child_process module. Such vulnera-
bilities utilize exec system calls, while due to the inheritance feature
of seccomp, the system calls that exec can invoke are restricted.
Package dns—-sync use child_process.execSync method to exe-
cute the bash command. By command injections, the attackers could
inject the bash code into the applications. HODOR limits the attack
surface by applying the system call restrictions on the commands.
Thus although the attacker can inject arbitrary command into the
execSync method of child_process module, the critical exploits
cannot execute successfully as HODOR disables the system calls
required by critical exploits. ® For arbitrary code execution vul-
nerabilities, the attacker can inject JavaScript code to achieve the
purpose of arbitrary code execution. Package access-policy
does not use builtin methods, and the vulnerabilities are caused
by the parameter injection of the eval method. HODOR provide
access—policy with minimum permissions. Therefore although
the attacker can inject arbitrary JavaScript code into the eval method,
the exploits cannot execute successfully as HODOR disables the
system calls required by critical exploits.

Takeaway: HODOR could effectively mitigate the execution of
73.59% exploits.

6.4 Comparison with Other Techniques (RQ3)

Table 4: Comparison with state-of-art protection mechanisms.

Property Mininode [18] Mir [20] HODOR

Security mechanism Code debloating
Runtime protection /

Source code change Debloating
Protection granularity /

Privilege reduction
JavaScript level
Function Closure
Module

Kernel level
Non-change
Application

Syscall limitation

Qualitative Comparison. As shown in Table 4, we perform a quali-
tative comparison between HODOR and the state-of-art works [18,
20] for attack surface shrinking from four aspects. Security Mecha-
nism. Mininode removes the unused code and MIR designs privi-
lege reduction through context wrappers for the application, which
both targets the JavaScript source code level (and may bring notice-
able overhead). HODOR takes a complementary perspective to target
the system call level for shrinking the attack surface. Mininode does
not provide runtime protection. For attackers with ACE attack abil-
ity, s/he can still perform relevant critical operations. MIR provides
runtime protections mainly at the JavaScript application level while
HODOR provides runtime protection at the Kernel level via Syscall
limitation. Source Code change. Mininode reduces the packages
and MIR wraps the module with a function closure, which both need
source code modification. Nevertheless, considering the dynamic
nature of JavaScript, the source code level modifications might in-
validate the protection mechanism and even disable the application
to run properly. Protection Granularity. MIR is module-level pro-
tection where different module has different privilege. Mininode
and HODOR are application-level protection.

Quantitative Comparison. We compare HODOR with state-of-art
attack surface shrinking tool for Node.js applications, i.e., MIR, a per-
mission inference and restriction system, which restricts the arbitrary
code attack surface by adding a read-write-execute (RWX) permis-
sion model. MIR has two configurations, MIR-sa and MIR-da.
MIR-sa generate default permissions for the package and MIR-da
enforce the protection on the Node.js applications at runtime.

We utilize MIR-sa and MIR-da to run the 58 packages that suf-
fer from arbitrary code attacks and check the permissions against the
payload we constructed in Section 6.3. We manually audit the default
permission generated by MIR-sa and run the tested application with
MIR-da.MIR-sa failed to analyze 15 of 58 (25.86%) packages, as
it can not generate proper permissions for these packages. Therefore,
MIR-sa loads the most strict filter for them, which blocks their
proper execution. MIR-da failed to run 17 of 58 (29.31%) pack-
ages. Among them, three failures were caused by program errors of
MIR-da. 14 failures were caused by changes of MIR to the global
variables of the applications. For the rest 41 packages, 99.39% of the
critical exploits could be blocked under the permission models gener-
ated by MIR-sa. MIR-da introduced an overhead of 6.98%. Since
MIR-da checks the permissions of the module every time methods
or global variables are invoked. while the overhead of HODOR is
0.72% (more details in Sec. 6.5).

Takeaway: Compared to MIR and mininode, HODOR does
not require source code modification and is capable of defend-
ing against a wider spectrum of attacks (additionally covering
arbitrary command execution) with less runtime overhead.

6.5 Runtime Overhead (RQ4)

To evaluate the overhead introduced by libc library changes and
HODOR additions, we ran these tests using Node.js in three states:
Node.js with glibc, Node.js with Musl libc, and with HODOR
Node.js (i.e. protected Node.js with Musl libc). Since Node.js is
developed based on glibc libc, we standardize the results on when
Node.js with glibc runs code.

For the Node.js core tests, the test case will run a statement
containing a builtin method execution multiple times (200 in our
experiments) and record the running time. Figure 8a shows that the
total time of running the tests. The results show that the overhead
introduced by libc library replacement is 1.27%, and the protection
mechanism introduces 0.61% overhead further.

For the web frameworks of koa, fastify, express, and
connect, we measure the overhead of HODOR by observing the
response of the index page provided by the the example code in the
framework tutorial. We conducted 2000 requests of index page visits
and record the total response time of the server. As shown in Fig-
ure 8b, the replacement of libc library introduces 0.76% overhead on
average and the protection mechanism introduces 2.80% overhead.

Figure 8c shows the runtime overhead of different attack type of
the 168 packages. We find that libc replacement introduces 1.90%
overhead on average, and the protection mechanism introduces
0.39% on average. Not surprisingly, we find packages that use fewest
builtin methods (i.e., the packages effected by arbitrary code execu-
tion attack) introduce minimal overhead (0.22%), while packages

13

that use more system call related operations (i.e., the packages ef-
fected by arbitrary command execution attack) introduce higher
overhead (0.42%).

Takeaway: On average, the runtime overhead of HODOR is
0.61% for Node.js core tests, 2.80% for the web framework, and
0.39% for all the 168 packages, which is in general acceptable.

7 RELATED WORK

System Call Limitation: Many studies reduced the attack surface
by limiting the system call set that the attacker can invoke in other
application domains including software [25, 43], android applica-
tions [69], container applications [24, 28], linux applications [27]
and PKU-based memory isolation systems [70], etc. For instance,
the closest and recent work to HODOR proposed by Wyss et al. [43]
introduces Lat ch for mediating the install-time capabilities of npm
packages. It generates a system call manifest of install script and
enforces it to prevent undesirable install-time behavior. Bulekov et
al. [29] proposed an automatic approach for generating and apply-
ing system-call limitations to interpreted PHP applications. They
performed static and dynamic analysis to build call graphs over the
interpreter for the binary of the PHP application and interpreter.
Compared with HODOR, Saphire scanned the AST to identify
all built-in function calls, built call graphs over the compiled binary
from Debian repositories, and applied protection to the entire pro-
cess, which are coarse-grained for Node.js applications. Moreover,
in addition to including the system calls used by the application,
the whitelist also preserved the system calls that Node.js invokes at
runtime. Ghavamnia et al. [28] was tailored for server applications.
They presented an approach that could restrict the system call set fur-
ther based on the execution phase. Ghavamnia et al. [24] proposed
a solution for automatically generating limited system call policies
for Docker containers including server application containers. Their
work is orthogonal as Node.js provides capabilities to create a web
server. Nevertheless, the system calls invoked by Node.js are re-
lated to the application. What’s more, Node.js is a multi-threaded
application, which needs thread granularity filtered limitation.

Code Debloating, Privilege Reduction, and Security Isolation: In
this line of research, some studies removed the unused API or un-
used code of the application. Koishybayev ez al. [18] leveraged static
analysis to remove the unused code and dependencies of Node.js
applications. Azad et al. [71] obtained the dead code of PHP applica-
tions by using the by dynamic analysis. Snyder et al. [72] evaluated
the Web API of modern browsers and proposed a Web-API access
extension for client-side users. Qian et al. [73] utilized a hybrid
approach to determine the bloated units of Chromium and removed
them. In the comparison of our work, these technologies could pre-
vent attackers from further exploiting malicious code. However, as
mentioned in Section 6.4, these techniques cannot limit arbitrary
code execution attacks. Others implement privilege reduction. Bittau
et al. [74] presented the system Wedge to splitting the application
into fine-grained, least-privilege compartments. Gudka et al. [75]
proposed the Security-Oriented Analysis of Application Programs
(SOAAP) that could create isolated components for complex appli-
cations to limit privileges leaked. Vasilakis et al. [20] focused on

™ Node.js with Glibc

X 1.013 X1.019

Node.js with Musl|
51757.29

Node.js with Hodor
63862.28
61404.9

= Node.js with Glibc = Node.js with Musl = Node.js with Hodor

7
o 3500 3122.11 3161.7 3180.67 E70000 5040607 6258131 12 1.000 1.014 1.017 1.000 1.024 1.028
£ 3000 Lot 49393.88 1
2 2500 £ 50000 15460.86
E 2000 2 40000 14801.18 . 0.8
' 1500 S30000 | 1474538 15385.13 0.6
S 1000 2 20000 14092.36 14797.32 04
3 500 2 10000 . 0.2
% o 0 0
Node.js with Glibc Node.js with Musl Node.js with Hodor koa fastify express connect Arbitrary Code i Arbitrary C
(a) Node.js Core Tests (b) Web Framework (c) Node.js Packages

Figure 8: Runtime overhead of Node.js core tests, web framework and applications under the protection of HODOR (RQ4).

the dynamic compromise on Node.js. They proposed a read-write-
execute (RWX) permission module MIR for the Node.js applica-
tion. MIR is close and the most recent to our work, however, as
shown in section 6.4, this work cannot reduce the attack surface of
some arbitrary code execution attacks. Others implement security
isolation mechanism. For instance, Vasilakis et al. [76] introduced
BreakApp that transforms a module into its own compartment and
enforces security policies on module communication automatically
based on the users’ configuration. While the policies are generated
manually. Ahmadpanah et al. [77] performed security analysis on
Node-RED applications and proposed sandbox system SandTrap
for the applications. SandTrap can enforce fine-grained access
control policies on third-party applications.

JavaScript Program Analysis: In recent years, researchers have de-
veloped static analyzers (such as JSAI [78], TAJS [79], WALA [80],
and SAFE [81]) and dynamic analysis (such as Jalangi [82] and
Nodeprof [47]) to understand behaviors of JavaScript programs and
to detect their bugs in a sound manner. Analysis precision and per-
formance are being increased. Andreasen et al. [83] presented a
static dataflow analysis for JavaScript with high degrees of context
sensitivity. Park et al. [84] presented Loop-Sensitive Analysis (LSA)
approach to enhance the static analysis precision in loops. Stein
et al. [85] presented a conventional non-relational static dataflow
analysis with a value refinement mechanism to increase precision
on demand at critical locations. Park et al. [86] proposed dynamic
shortcuts to switch between abstract and concrete execution during
JavaScript static analysis in a sound way. By employing more effi-
cient static and dynamic analysis, we can generate more fine-grained
system call whitelist for the Node.js applications.

Node.js Application Analysis: The past two years have seen many
researches on Node.js security. Nielsen et al. [30] proposed an ap-
proach to build call graphs for Node.js applications, which can be
used for security scanning. Li and Kang ef al. [58] leveraged a static
analysis to generate a graph structures, called Object Dependence
Graph (ODG), for detecting Node.js vulnerabilities. staicu et al. [87]
presented an automatically extracting taint specifications for Node.js
applications. Xiao et al. [42] found the hidden property abusing
(HPA) attack, and designed a tool to detect and verify the vulnera-
bility. Compared to the previous work focusing on mining Node.js
application vulnerabilities, our work aims to provide runtime protec-
tion for Node.js applications.

8 DISCUSSION & CONCLUSION

We now conclude by considering potential limitations of HODOR as
well as opportunities for future work: @ HODOR does not analyze

14

native extensions [88] of Node.js applications yet, as the evaluated
applications do not use them. They will be considered for future
through LLVM pass extensions (in Section 5.3.2). ® HODOR pro-
vides application-level enforcement mechanisms that is more coarse-
grained than module-level mechanisms (e.g., mir [20]). Moreover,
HODOR cannot reduce the attack surface to zero due to system
call requirements of pure Node.js engine. In the future, it can be
combined with other protection mechanisms at different levels to
complement each other. ® As now, our static analysis for Node.js
application only supports the module system CommonJS, which
lacks portability on ES6 and AMD module systems. In the future,
we will consider supporting ES6 and AMD module systems.

In this paper, we propose HODOR, a novel permission restric-
tion system in the lower system call level for Node.js applications to
shrink the attack surface. HODOR first generates fine-grained system
call permissions for the Node.js applications, benefiting from mul-
tiple significant optimizations to improve state-of-the-art methods
in call graph construction for both JavaScript code and C/C++ code.
A more precise CFG can also benefit a broad range of applications
including supply chain attack detection, program security analysis,
code navigation and refactoring, etc. Then, based on the identified
required permissions, HODOR creates the whitelists and imple-
ments the runtime restriction in thread granularity level with the
seccomp mechanism. Armed with HODOR, we apply HODOR on
168 real-world Node.js applications suffering from arbitrary code/-
command execution attacks. Extensive experiments show that the
attack surfaces of the vulnerable packages reduce to 19.42%, while
introducing negligible runtime overhead, i.e., less than 3%.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their valuable
feedback during the revision process. This work was supported by
the National Key Research and Development Program of China (No.
2021YFB3101402).

REFERENCES

[1] Node.js. Node.js. https://nodejs.org/. Accessed: 2023.

[2] PayPal Tech Blog Admin Account. Paypal Engineering. Node.js at PayPal.
https://medium.com/paypal-engineering/node- js-at- paypal-4e2d 1d08ce4f.

[3] LinkedIn Moved From Rails To Node: 27 Servers Cut And Up To 20x

Faster. http://highscalability.com/blog/2012/10/4/linkedin-moved- from-rails-

to-node-27-servers-cut-and-up-to-2.html.

Matthew Baxter-Reynolds. Here’s why you should be happy that microsoft is

embracing node.js. https://www.theguardian.com/technology/blog/2011/nov/09/

programming-microsoft.

Netflix TechBlog. Nodejs. https://netflixtechblog.com/tagged/nodejs.

npm. https://www.npmjs.com/.

libuv. Asynchronous I/O made simple. https:/libuv.org/. Accessed: 2023.

[4

[5]
(6]
(7

https://nodejs.org/
https://medium.com/paypal-engineering/node- js-at-paypal-4e2d1d08ce4f
http://highscalability.com/blog/2012/10/4/linkedin-moved-from-rails-to-node-27-servers-cut-and-up-to-2.html
http://highscalability.com/blog/2012/10/4/linkedin-moved-from-rails-to-node-27-servers-cut-and-up-to-2.html
https://www.theguardian.com/technology/blog/2011/nov/09/programming-microsoft
https://www.theguardian.com/technology/blog/2011/nov/09/programming-microsoft
https://netflixtechblog.com/tagged/nodejs
https://www.npmjs.com/
https://libuv.org/

[8]
[9]

(10]

(1]

[12]

[13]

[14]

[15]

(1e]
[17]

(18]

[19]

[20]

[21]
[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

V8. V8 JavaScript engine. https://v8.dev/. Accessed: 2023.

Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and Michael Pradel.
Small world with high risks: A study of security threats in the npm ecosystem. In
28th USENIX Security Symposium (USENIX Security 19), pages 995-1010, 2019.
Chengwei Liu, Sen Chen, Lingling Fan, Bihuan Chen, Yang Liu, and Xin Peng.
Demystifying the vulnerability propagation and its evolution via dependency trees
in the npm ecosystem. arXiv preprint arXiv:2201.03981, 2022.

Nusrat Zahan, Thomas Zimmermann, Patrice Godefroid, Brendan Murphy, Chan-
dra Maddila, and Laurie Williams. What are weak links in the npm supply chain?
In 2022 IEEE/ACM 44th International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), pages 331-340. IEEE, 2022.
Bodin Chinthanet, Raula Gaikovina Kula, Shane McIntosh, Takashi Ishio, Akinori
Thara, and Kenichi Matsumoto. Lags in the release, adoption, and propagation of
npm vulnerability fixes. Empirical Software Engineering, 26(3):1-28, 2021.
Mikhail Shcherbakov, Musard Balliu, and Cristian-Alexandru Staicu. Silent
spring: Prototype pollution leads to remote code execution in node. js. In USENIX
Security Symposium 2023, 2023.

Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao. Detecting node. js
prototype pollution vulnerabilities via object lookup analysis. In Proceedings of
the 29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 268-279, 2021.
Cristian-Alexandru Staicu, Michael Pradel, and Benjamin Livshits. Synode:
Understanding and automatically preventing injection attacks on node. js. In
NDSS, 2018.

Wikipedia. Arbitrary code execution.
Arbitrary_code_execution.

Prototype Pollution. https://security.snyk.io/vuln/SNYK-JS-LODASHMERGE-
173732.

Igibek Koishybayev and Alexandros Kapravelos. Mininode: Reducing the attack
surface of node. js applications. In 23rd International Symposium on Research in
Attacks, Intrusions and Defenses (RAID 2020), pages 121-134, 2020.

Alexi Turcotte, Ellen Arteca, Ashish Mishra, Saba Alimadadi, and Frank Tip.
Stubbifier: debloating dynamic server-side javascript applications. Empirical
Software Engineering, 27(7):1-36, 2022.

Nikos Vasilakis, Cristian-Alexandru Staicu, Grigoris Ntousakis, Konstantinos
Kallas, Ben Karel, André DeHon, and Michael Pradel. Preventing dynamic
library compromise on node. js via rwx-based privilege reduction. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security,
pages 1821-1838, 2021.

Sandboxing ChromeOS system services. https://chromium.googlesource.com/
chromiumos/docs/+/HEAD/sandboxing.md.

Seccomp security profiles for Docker. https://docs.docker.com/engine/security/
seccomp/.

Nuno Lopes, Rolando Martins, Manuel Eduardo Correia, Sérgio Serrano, and
Francisco Nunes. Container hardening through automated seccomp profiling. In
Proceedings of the 2020 6th International Workshop on Container Technologies
and Container Clouds, pages 31-36, 2020.

Seyedhamed Ghavamnia, Tapti Palit, Azzedine Benameur, and Michalis Poly-
chronakis. Confine: Automated system call policy generation for container attack
surface reduction. In 23rd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2020), pages 443458, 2020.

Nicholas DeMarinis, Kent Williams-King, Di Jin, Rodrigo Fonseca, and
Vasileios P Kemerlis. Sysfilter: Automated system call filtering for commodity
software. In 23rd International Symposium on Research in Attacks, Intrusions
and Defenses (RAID 2020), pages 459-474, 2020.

Daoyuan Wu, Debin Gao, Yingjiu Li, and Robert H Deng. Seccomp: Towards
practically defending against component hijacking in android applications. arXiv
preprint arXiv:1609.03322, 2016.

Claudio Canella, Mario Werner, Daniel Gruss, and Michael Schwarz. Automating
seccomp filter generation for linux applications. In Proceedings of the 2021 on
Cloud Computing Security Workshop, pages 139-151, 2021.

Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra, and Michalis Polychronakis.
Temporal system call specialization for attack surface reduction. In 29th USENIX
Security Symposium (USENIX Security 20), pages 1749-1766, 2020.

Alexander Bulekov, Rasoul Jahanshahi, and Manuel Egele. Saphire: Sandboxing
php applications with tailored system call allowlists. In 30th USENIX Security
Symposium (USENIX Security 21), pages 2881-2898, 2021.

Benjamin Barslev Nielsen, Martin Toldam Torp, and Anders Mgller. Modular call
graph construction for security scanning of node. js applications. In Proceedings
of the 30th ACM SIGSOFT International Symposium on Software Testing and
Analysis, pages 29-41, 2021.

Asger Feldthaus, Max Schifer, Manu Sridharan, Julian Dolby, and Frank Tip.
Efficient construction of approximate call graphs for javascript ide services. In
2013 35th International Conference on Software Engineering (ICSE), pages 752—
761. IEEE, 2013.

Yulei Sui and Jingling Xue. Svf: interprocedural static value-flow analysis in llvm.
In Proceedings of the 25th international conference on compiler construction,

https://en.wikipedia.org/wiki/

15

[33]
[34]
[35]

[36]

[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]
[49]
[50]

[51]
[52]
[53]
[54]
[55]
[56]
[571

[58]

[591

[60]
[61]

[62]
[63]
[64]
[65]
[66]
[67]
[68]
[69]

[70]

[71]

pages 265-266, 2016.

dns-sync. https://www.npmjs.com/package/dns-sync.

Node.js. Nodejs document. https://nodejs.org/api.

The Linux Kernel. Seccomp BPF (SECure COMPuting with filters). https:
/lwww kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html.

Berkeley Packet Filter. https://en.wikipedia.org/wiki/Berkeley_Packet_Filter.
Growl for nodejs. https://www.npmjs.com/package/growl.

Gabriel Ferreira, Limin Jia, Joshua Sunshine, and Christian Kastner. Containing
malicious package updates in npm with a lightweight permission system. In 2027
IEEE/ACM 43rd International Conference on Software Engineering (ICSE), pages
1334-1346. IEEE, 2021.

André Takeshi Endo and Anders Mgller. Noderacer: Event race detection for
node. js applications. In 2020 IEEE 13th International Conference on Software
Testing, Validation and Verification (ICST), pages 120-130. IEEE, 2020.

James C Davis, Eric R Williamson, and Dongyoon Lee. A sense of time for
Javascript and node. js: First-class timeouts as a cure for event handler poisoning
In 27th {USENIX} Security Symposium ({ USENIX} Security 18), pages 343-359,
2018.

Cristian-Alexandru Staicu and Michael Pradel. Freezing the Web: A Study of
ReDoS Vulnerabilities in JavaScript-based Web Servers. In USENIX Security
Symposium, pages 361-376, 2018.

Feng Xiao, Jianwei Huang, Yichang Xiong, Guangliang Yang, Hong Hu, Guofei
Gu, and Wenke Lee. Abusing hidden properties to attack the node.js ecosystem.
In 30th USENIX Security Symposium (USENIX Security 21), pages 2951-2968,
2021.

Elizabeth Wyss, Alexander Wittman, Drew Davidson, and Lorenzo De Carli. Wolf
at the door: Preventing install-time attacks in npm with latch. In Proceedings of
the 2022 ACM on Asia Conference on Computer and Communications Security,
pages 1139-1153, 2022.

Zhihao Bai, Ke Wang, Hang Zhu, Yinzhi Cao, and Xin Jin. Runtime recovery
of web applications under zero-day redos attacks. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 1575-1588. IEEE, 2021.

Standard built-in objects. https://developer.mozilla.org/en- US/docs/Web/
JavaScript/Reference/Global_Objects.

Saba Alimadadi, Di Zhong, Magnus Madsen, and Frank Tip. Finding broken
promises in asynchronous javascript programs. Proceedings of the ACM on
Programming Languages, 2(O0OPSLA):1-26, 2018.

NodeProf on GraalVM - Panathon 2018. https:/github.com/Haiyang-Sun/
nodeprof.js.

Strace Utility. https://strace.io/.

failOverflow. Clang. https://clang.llvm.org.

Tan A Mason. Whole Program LLVM. https://github.com/travitch/whole-
program-1lvm.

Ilvm-link. https://llvm.org/docs/CommandGuide/llvm-link.html.

The GNU C Library (glibc). https://www.gnu.org/software/libc/.

musl libe. https://www.musl-libc.org.

node_buffer.cc. https://github.com/nodejs/node/blob/main/src/node_buffer.cc.
libseccomp. https://github.com/seccomp/libseccomp.

node-seccomp. https://www.npmjs.com/package/node-seccomp.

Node.js. Node.js Security Best Practices. https://nodejs.org/en/docs/guides/
security/. Accessed: 2022.

Mining node.js vulnerabilities via object dependence graph and query. In 3/st
USENIX Security Symposium (USENIX Security 22), Boston, MA, August 2022.
USENIX Association.

Node.js Vulnerability Cheatsheet. https://www.shiftleft.io/blog/node.js-
vulnerability-cheatsheet/. Accessed: 2022.

GitHub Advisory Database. https://github.com/advisories.

Masudul Hasan Masud Bhuiyan, Adithya Srinivas Parthasarathy, Nikos Vasilakis,
Michael Pradel, and Cristian-Alexandru Staicu. Secbench. js: An executable
security benchmark suite for server-side javascript. In International Conference
on Software Engineering (ICSE), 2023.

koa. https://www.npmjs.com/package/koa.

express. https://www.npmjs.com/package/express.

JSON Server. https://github.com/typicode/json-server.

Node.js Core Tests. https://github.com/nodejs/node/tree/main/test.

fastify. https://www.npmjs.com/package/fastify.

connect. https://www.npmjs.com/package/connect.

wolfram77. extra-asciinema. https://www.npmjs.com/package/extra-asciinema.
Yingjiao Niu, Yuewu Wang, Shijie Jia, Quan Zhou, Lingguang Lei, Qionglu
Zhang, and Xinyi Zhao. Enhancing the security of mobile device management
with seccomp. In Journal of Physics: Conference Series, volume 1646, page
012138. IOP Publishing, 2020.

David Schrammel, Samuel Weiser, Richard Sadek, and Stefan Mangard. Jenny:
Securing syscalls for pku-based memory isolation systems. In Proceedings of the
31th USENIX Security Symposium, 2022.

Babak Amin Azad, Pierre Laperdrix, and Nick Nikiforakis. Less is more: quan-
tifying the security benefits of debloating web applications. In 28th USENIX

https://v8.dev/
https://en.wikipedia.org/wiki/Arbitrary_code_execution
https://en.wikipedia.org/wiki/Arbitrary_code_execution
https://security.snyk.io/vuln/SNYK-JS-LODASHMERGE-173732
https://security.snyk.io/vuln/SNYK-JS-LODASHMERGE-173732
https://chromium.googlesource.com/chromiumos/docs/+/HEAD/sandboxing.md
https://chromium.googlesource.com/chromiumos/docs/+/HEAD/sandboxing.md
https://docs.docker.com/engine/security/seccomp/
https://docs.docker.com/engine/security/seccomp/
https://www.npmjs.com/package/dns-sync
https://nodejs.org/api
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://en.wikipedia.org/wiki/Berkeley_Packet_Filter
https://www.npmjs.com/package/growl
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects
https://github.com/Haiyang-Sun/nodeprof.js
https://github.com/Haiyang-Sun/nodeprof.js
https://strace.io/
https://clang.llvm.org
https://github.com/travitch/whole-program-llvm
https://github.com/travitch/whole-program-llvm
https://llvm.org/docs/CommandGuide/llvm-link.html
https://www.gnu.org/software/libc/
https://www.musl-libc.org
https://github.com/nodejs/node/blob/main/src/node_buffer.cc
https://github.com/seccomp/libseccomp
https://www.npmjs.com/package/node-seccomp
https://nodejs.org/en/docs/guides/security/
https://nodejs.org/en/docs/guides/security/
https://www.shiftleft.io/blog/node.js-vulnerability-cheatsheet/
https://www.shiftleft.io/blog/node.js-vulnerability-cheatsheet/
https://github.com/advisories
https://www.npmjs.com/package/koa
https://www.npmjs.com/package/express
https://github.com/typicode/json-server
https://github.com/nodejs/node/tree/main/test
https://www.npmjs.com/package/fastify
https://www.npmjs.com/package/connect
https://www.npmjs.com/package/extra-asciinema

[72]

(73]

[74]

[75]

[76]

(771

(78]

(791

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

Security Symposium (USENIX Security 19), pages 1697-1714, 2019.

Peter Snyder, Cynthia Taylor, and Chris Kanich. Most websites don’t need to
vibrate: A cost-benefit approach to improving browser security. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pages 179-194, 2017.

Chenxiong Qian, Hyungjoon Koo, ChangSeok Oh, Taesoo Kim, and Wenke Lee.
Slimium: Debloating the chromium browser with feature subsetting. In Proceed-
ings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, pages 461-476, 2020.

Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. Wedge: Splitting
applications into reduced-privilege compartments. USENIX Association, 2008.
Khilan Gudka, Robert NM Watson, Jonathan Anderson, David Chisnall, Brooks
Davis, Ben Laurie, Ilias Marinos, Peter G Neumann, and Alex Richardson. Clean
application compartmentalization with soaap. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, pages 1016—
1031, 2015.

Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan Dautenhahn, André DeHon,
and Jonathan M Smith. Breakapp: Automated, flexible application compartmen-
talization. In NDSS, 2018.

Mohammad M Ahmadpanah, Daniel Hedin, Musard Balliu, Lars Eric Olsson, and
Andrei Sabelfeld. Sandtrap: Securing javascript-driven trigger-action platforms.
In USENIX Security Symposium (USENIX Security 2021), 2021.

Vineeth Kashyap, Kyle Dewey, Ethan A Kuefner, John Wagner, Kevin Gibbons,
John Sarracino, Ben Wiedermann, and Ben Hardekopf. Jsai: A static analysis
platform for javascript. In Proceedings of the 22nd ACM SIGSOFT international
symposium on Foundations of Software Engineering, pages 121-132, 2014.
Simon Holm Jensen, Anders Mgller, and Peter Thiemann. Type analysis for
javascript. In International Static Analysis Symposium, pages 238-255. Springer,
2009.

Stephen Fink and Stephen Fink. WALA-The TJ Watson Libraries for Analysis.
https://github.com/wala/WALA. Accessed:2012.

Hongki Lee, Sooncheol Won, Joonho Jin, Junhee Cho, and Sukyoung Ryu. Safe:
Formal specification and implementation of a scalable analysis framework for
ecmascript. In FOOL 2012: 19th International Workshop on Foundations of
Object-Oriented Languages, page 96. Citeseer, 2012.

Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. Jalangi: A
selective record-replay and dynamic analysis framework for javascript. In Pro-
ceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering,
pages 488-498, 2013.

Esben Andreasen and Anders Mgller. Determinacy in static analysis for jquery.
In Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications, pages 17-31, 2014.
Changhee Park and Sukyoung Ryu. Scalable and precise static analysis of
javascript applications via loop-sensitivity. In 29th European Conference
on Object-Oriented Programming (ECOOP 2015). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2015.

Benno Stein, Benjamin Barslev Nielsen, Bor-Yuh Evan Chang, and Anders Mgller.
Static analysis with demand-driven value refinement. Proceedings of the ACM on
Programming Languages, 3(OOPSLA):1-29, 2019.

Joonyoung Park, Jihyeok Park, Dongjun Youn, and Sukyoung Ryu. Accelerating
javascript static analysis via dynamic shortcuts. In Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, pages 1129-1140, 2021.
Cristian-Alexandru Staicu, Martin Toldam Torp, Max Schifer, Anders Mgller, and
Michael Pradel. Extracting taint specifications for javascript libraries. In Proceed-
ings of the ACM/IEEE 42nd International Conference on Software Engineering,
pages 198-209, 2020.

Cristian-Alexandru Staicu, Sazzadur Rahaman, Agnes Kiss, and Michael Backes.
Bilingual problems: Studying the security risks incurred by native extensions in
scripting languages. arXiv preprint arXiv:2111.11169, 2021.

16

https://github.com/wala/WALA

Table 5: HODOR granularity of packages at system call level and thread level (RQ1).

| Node.js with Musl Libc | Hodor | Node.js with Musl Libe | Hodor | | |
Attack Type CVE Package Name | #0fCS | #ofTS | #0fCS | #of TS | #of MT | #of TP | #ofMT | #ofTP | #ofCL | %ofCL-1 | % of CL-2
Arbitrary Command Injection / command-exists 10 95 7 74 105 87 80 34 47 74.60% 74.60%
Arbitrary Command Injection CVE-2021-23363 kill-by-port 10 93 3 57 103 0 60 0 6 0.01% 85.71%
Arbitrary Command Injection CVE-2021-23360 killport: 11 99 11 72 110 0 83 0 237 18.53% 95.83%
Arbitrary Command Injection CVE-2021-23356 Kkill-process-by-name 11 99 11 72 110 0 83 0 6 75.00% 75.00%
Arbitrary Command Injection CVE-2018-13797 macaddress 10 93 5 58 103 0 63 0 52 36.36% 36.36%
Arbitrary Command Injection CVE-2022-25973 mc-kill-port 10 95 7 74 105 87 80 33 405 34.40% 72.72%
Arbitrary Command Injection CVE-2021-23377 onion-oled-js 10 93 3 57 103 0 60 0 145 10.11% 82.35%
Arbitrary Command Injection / open 10 93 3 57 103 0 60 0 12 47.82% 47.82%
Arbitrary Command Injection CVE-2018-3757 pdf-image: 11 99 11 75 110 87 85 34 194 25.19% 86.15%
Arbitrary Command Injection CVE-2018-3746 pdfinfojs 10 93 4 60 103 87 62 34 535 15.06% 100.00%
Arbitrary Command Injection CVE-2017-1000220 pidusage: 10 93 3 57 103 0 60 0 68 62.96% 62.96%
Arbitrary Command Injection CVE-2021-23379 portkiller: 10 93 3 57 103 0 60 0 12 88.23% 88.23%
Arbitrary Command Injection CVE-2021-23359 port-killer 10 95 7 72 105 0 79 0 8 100.00% 100.00%
Arbitrary Command Injection CVE-2021-23348 portprocesses: 10 93 3 57 103 0 60 0 19 88.57% 88.57%
Arbitrary Command Injection CVE-2018-16460 ps 10 93 3 57 103 0 60 0 28 75.00% 75.00%
Arbitrary Command Injection CVE-2021-23355 ps-kill 11 99 11 72 110 0 83 0 3 12.50% 100.00%
Arbitrary Command Injection CVE-2021-23374 ps-visitor 11 99 11 72 110 0 83 0 29 14.79% 76.68%
Arbitrary Command Injection CVE-2021-23380 roar-pidusage:: 10 93 3 57 103 0 60 0 62 50.81% 70.81%
Arbitrary Command Injection / samsung-remote 11 99 11 75 110 87 85 34 27 56.52% 56.52%
Arbitrary Command Injection / 11 99 11 72 110 0 83 0 14 87.50% 87.50%
Arbitrary Command Injection CVE-2018-3772 11 99 11 72 110 0 83 0 15 28.30% 83.33%
Arbitrary Command Injection CVE-2021-23399 wincred 11 99 11 72 110 0 83 0 10 76.92% 76.92%
Argument Injection CVE-2022-24437 git-pull-or-clone 10 95 9 75 105 87 82 36 177 31.72% 92.85%
Command Injection CVE-2020-7636 adb-driver 11 99 11 73 110 87 83 33 66 39.75% 91.30%
Command Injection / alfred-workflow-nodejs 10 93 4 60 103 87 62 34 729 2.18% 86.95%
Command Injection CVE-2018-16462 apex-publish-static-files 10 95 9 73 105 0 82 0 8 7.76% 7.76%
Command Injection CVE-2020-7633 apiconnect-cli-plugins 10 93 3 57 103 0 60 0 19,230 8.83% 11.43%
Command Injection CVE-2021-3190 async-git 11 99 11 72 110 0 83 0 59 69.41% 74.19%
Command Injection CVE-2020-7730 Z 11 99 11 82 110 87 92 35 4,204 12.60% 89.04%
Command Injection CVE-2019-10807 10 93 3 57 103 0 60 0 1,465 13.88% 57.57%
Command Injection CVE-2020-7795 cd-messenger 10 95 9 72 105 0 81 0 374 36.77% 83.33%
Command Injection CVE-2020-7613 clamscan: 10 93 6 56 103 87 57 35 2,493 8.16% 21.28%
Command Injection / cocos-utils 10 93 4 64 103 87 66 34 95 9.17% 9.17%
Command Injection CVE-2020-15123 codecov 10 95 7 76 105 87 81 37 1,895 8.53% 8.53%
Command Injection CVE-2020-7635 compass-compile 10 93 3 57 103 0 60 0 202 13.96% 95.65%
Command Injection CVE-2020-7781TAB connection-tester 10 95 9 72 105 0 81 0 43 68.25% 67.74%
Command Injection CVE-2019-10789 curling 11 99 11 72 110 0 83 0 52 85.24% 85.24%
Command Injection CVE-2020-28425 curljs 11 99 11 72 110 0 83 0 75 66.37% 78.12%
Command Injection CVE-2020-28438 deferred-exec 11 99 11 72 110 0 83 0 1339 9.93% 87.75%
Command Injection / i 10 93 3 57 103 0 60 0 55 94.82% 94.82%
Command Injection CVE-2020-7631 diskusage-ng 11 99 11 72 110 0 83 0 23 13.93% 32.39%
Command Injection CVE-2020-7606 docker-compose-remote-api 11 99 9 75 110 87 83 35 1,143 10.99% 88.88%
Command Injection CVE-2019-10801 11 99 11 72 110 0 83 0 84 65.62% 87.80%
Command Injection CVE-2021-26275 11 99 11 72 110 0 83 0 5,629 10.41% 66.66%
Command Injection CVE-2021-23376 11 99 11 73 110 0 84 0 43 41.74% 36.95%
Command Injection CVE-2021-23376 11 99 11 72 110 0 83 0 18 75.00% 75.00%
Command Injection / 10 93 3 57 103 0 60 0 110 5.56% 42.96%
Command Injection / 11 101 11 80 112 0 91 0 27 44.26% 59.09%
Command Injection CVE-2020-28429 geojson2kml 10 93 3 57 103 0 60 0 6 100.00% 100.00%
Command Injection CVE-2020-7630 git-add-remote 11 101 11 80 112 0 91 0 13 65.00% 65.00%
Command Injection CVE-2020-28434 gitblame 11 99 11 72 110 0 83 0 9 18.00% 75.00%
Command Injection CVE-2018-3785 git-dummy-commit 11 101 11 87 112 0 98 0 490 7.41% 88.88%
Command Injection CVE-2019-10802 giting 11 99 11 73 110 87 83 34 197 20.02% 64.56%
Command Injection CVE-2022-1440 git-interface 10 93 9 60 103 0 69 0 94 68.11% 68.11%
Command Injection / git-tags-remote: 11 99 11 72 110 0 83 0 236 32.14% 100.00%
Command Injection CVE-2020-28436 google-cloudstorage-command: 10 93 3 57 103 0 60 0 13 52.00% 52.00%
Command Injection CVE-2017-16042 growl 10 93 9 61 103 0 70 0 35 45.45% 45.45%
Command Injection CVE-2020-36650 gry 11 99 11 74 110 87 83 34 190 59.00% 88.23%
Command Injection CVE-2020-7601 gulp-scss-lint: 11 99 9 86 110 87 89 42 5,065 9.60% 40.54%
Command Injection CVE-2020-7607 gulp-styledocco 11 99 11 86 110 87 91 44 664 1.30% 77.08%
Command Injection CVE-2020-7605 gulp-tape 11 99 11 86 110 87 91 44 32 5.08% 84.21%
Command Injection CVE-2020-28437 heroku-env 11 99 11 75 110 87 85 34 25 33.33% 42.00%
Command Injection CVE-2019-10788 im-metadata 11 99 11 72 110 0 83 0 57 86.36% 83.72%
Command Injection CVE-2019-10787 im-resize 10 93 3 57 103 0 60 0 85 19.63% 85.71%
Command Injection CVE-2020-7629 install-package 11 99 11 72 110 0 83 0 42 93.33% 93.33%
Command Injection CVE-2020-8178 Jjison 10 93 3 57 103 0 60 0 1,916 9.01% 61.24%
Command Injection CVE-2021-23381 Killin; 11 99 11 72 110 0 83 0 38 9.76% 90.24%
Command Injection CVE-2019-15609 kill-port-process 11 101 11 81 112 87 91 33 259 20.45% 56.75%
Command Injection CVE-2018-16461 libnmap 11 99 11 74 110 87 83 34 3,069 6.30% 80.93%
Command Injection / local-devices 10 93 8 79 103 87 66 57 37 37.37% 55.73%
Command Injection CVE-2019-10783 Isof 11 99 11 72 110 0 83 0 54 91.30% 91.30%
Command Injection / Iyewed-spritesheetjs 10 93 4 61 103 87 63 35 1,715 34.02% Y
Command Injection CVE-2020-7786 macfromip 11 99 11 75 110 87 85 34 39 45.88%
Command Injection CVE-2020-28434 monorepo-build 10 95 7 72 105 0 79 0 7.810 7.58%
Command Injection CVE-2019-10786 network-manager 10 95 9 72 105 0 81 0 93 89.42%
Command Injection CVE-2019-15597 node-df 11 99 11 72 110 0 83 0 84 1.71% 91.30%
Command Injection CVE-2020-7627 node-key-sender: 11 99 11 72 110 0 83 0 93 77.50% 77.50%
Command Injection CVE-2020-28433 node-latex-pdf 11 99 11 72 110 0 83 0 9 60.00% 60.00%
Command Injection CVE-2020-7632 node-mpv 10 95 7 72 105 0 79 0 36 14.63% 14.63%
Command Injection CVE-2020-7602 node-prompt-here 10 95 7 72 105 0 79 0 8 6.66% 57.14%
Command Injection CVE-2020-7785 node-ps 11 99 11 72 110 0 83 0 37 75.51% 75.51%
Command Injection / node-unrar 11 99 11 72 110 0 83 0 17 8.21% 100.00%
Command Injection CVE-2022-0841 npm-lockfile: 10 93 3 57 103 0 60 0 1,963 7.01% 70.96%
Command Injection CVE-2021-23375 psnode 11 99 11 72 110 0 83 0 63 6.12% 35.13%
Command Injection CVE-2020-7604 pulverizr 11 99 11 77 110 87 87 33 614 6.56% 87.02%
Command Injection CVE-2021-24033 react-dev-utils 10 95 9 72 105 0 81 0 6,425 11.77% 22.32%
Command Injection CVE-2019-10796 rpi 11 99 11 72 110 0 83 0 28 65.11% 65.00%
Command Injection CVE-2019-10804 serial-number 11 99 11 73 110 87 83 33 45 57.69% 57.69%
Command Injection / strider-git 11 99 11 77 110 87 87 36 464 24.82% 42.40%
Command Injection CVE-2020-7621 strong-nginx-controller 10 93 3 57 103 0 60 0 17,994 6.37% 49.70%
Command Injection CVE-2020-28432 theme-core 10 93 4 58 103 87 60 33 1,721 15.46% 81.35%
Command Injection CVE-2020-7784 ts-process-promises 11 99 11 73 110 87 83 33 2,376 16.29% 84.76%%
Command Injection CVE-2020-7628 11 99 11 72 110 0 83 0 965 8.20% 71.73%
Command Injection / 11 99 11 75 110 87 85 34 55 25.82% 25.82%
Command Injection CVE-2020-28431 11 99 11 72 110 0 83 0 31 0.44% 82.50%
Command Injection CVE-2020-15362 wifiscanner 11 99 11 73 110 87 83 33 215 9.10% 83.33%

17

Command Injection CVE-2020-28447 11 99 11 72 110 0 83 0 9 90.00% 90.00%
Command Injection / 11 99 11 72 110 0 83 0 51 4.26% 54.54%
Remote Code Execution CVE-2020-36378 11 101 11 87 112 0 98 0 457 13.00% 97.05%
Remote Code Execution / 11 99 11 72 110 0 83 0 98 27.68% 78.40%
Remote Code Execution CVE-2020-11079 11 101 11 83 112 87 93 35 344 27.80% 97.22%
Remote Code Execution CVE-2021-23632 10 93 3 57 103 0 60 0 648 15.72% 15.89%
Remote Code Execution / 3 10 93 3 57 103 0 60 0 999 11.35% 59.02%
Remote Code Execution / git-parse 10 93 4 60 103 87 62 34 704 2.96% 39.51%
Remote Code Execution / gity 11 99 11 72 110 0 83 0 33 13.25% 55.93%
Remote Code Execution / imagickal 11 99 11 75 110 87 85 35 1,183 13.13% 83.16%
Remote Code Execution / meta-git: 10 93 3 57 103 0 60 0 355 8.32% 89.02%
Remote Code Execution / node-os-utils: 10 95 7 72 105 0 79 0 172 47.77% 47.77%
Remote Code Execution CVE-2020-7620 pomelo-monitor 10 93 3 58 103 0 61 0 90 86.53% 86.53%
Remote Shell Command Injection CVE-2015-7982 gmi 10 93 3 57 103 0 60 0 675 49.52% 58.50%
Arbitrary Code Execution CVE-2020-7729 grunt 11 98 5 67 109 87 70 33 6,747 7.69% 47.13%
Arbitrary Code Execution / is-my-json-valid 1 28 1 28 29 0 29 0 3,560 9.92% 93.84%
Arbitrary Code Execution CVE-2020-7777 jsen 11 99 11 72 110 0 83 0 766 34.56% 95.15%
Arbitrary Code Execution CVE-2020-7673 node-extend 1 28 1 28 29 0 29 0 24 82.75% 82.75%
Arbitrary Code Execution CVE-2017-16082 Pg 1 28 1 28 29 0 29 0 260 12.26% 27.54%
Arbitrary Code Execution CVE-2020-7640 pixl-class 1 28 1 28 29 0 29 0 38 79.16% 79.16%
Arbitrary Code Execution CVE-2022-0748 post-loader 6 83 1 40 89 0 41 0 900 8.64% 69.23%
Arbitrary Code Execution / serialize-to-js 1 28 1 28 29 0 29 0 120 5.10% 86.33%
Arbitrary Code Execution CVE-2021-23389 total.js 6 83 2 46 89 87 44 35 2,072 6.55% 6.55%
Arbitrary Code Execution CVE-2021-23390 totald 10 94 5 72 104 87 75 38 1.874 6.79% 6.79%
Arbitrary Code Execution CVE-2017-1001004 typed-function 1 28 1 28 29 0 29 0 397 74.62% 74.62%
Arbitrary Code Injection / kme 6 83 1 45 89 0 46 0 2,267 6.02% 55.81%
Arbitrary Code Injection / marsdb 1 28 1 28 29 0 29 0 1,825 18.20% 54.06%
Arbitrary Code Injection / mixin-pro 1 28 1 28 29 0 29 0 78 82.10% 82.10%

Arbitrary Code Injection / m-log 1 28 1 28 29 0 29 0 289 0.88% 100.00%
Arbitrary Code Injection / mobile-icon-resizer 10 93 4 59 103 87 61 35 54 33.75% 65.51%

Arbitrary Code Injection / mock2easy 10 93 5 70 103 87 73 35 / / /

Arbitrary Code Injection / modjs 10 93 4 62 103 87 64 34 167 2.11% 6.77%
Arbitrary Code Injection / modulify 6 83 1 40 89 0 41 0 1,133 1.97% 80.70%
Arbitrary Code Injection / mol-proto 1 28 1 28 29 0 29 0 403 90.76% 90.76%
Arbitrary Code Injection / mongoosemask 1 28 1 28 29 0 29 0 50 19.92% 67.56%
Arbitrary Code Injection / protojs 1 28 1 28 29 0 29 0 132 10.09% 90.76%
Arbitrary Code Injection CVE-2020-7660 serialize-javascript 1 28 1 28 29 0 29 0 71 5.10% 93.42%
Arbitrary File Overwrite CVE-2021-32803 tar 6 83 3 56 89 87 57 48 7,830 11.69% 83.14%
Arbitrary File Write CVE-2018-1002204 adm-zip 6 83 1 41 89 0 42 0 516 26.81% 26.84%
Code Execution CVE-2017-5941 node-serialize 1 28 1 28 29 0 29 0 52 92.85% 92.85%
Code Injection CVE-2022-25760 accesslog 6 83 1 43 89 0 44 0 95 41.48% 83.33%

Code Injection CVE-2020-7674 access-policy 1 28 1 28 29 0 29 0 81 0.26% 96.42%

Code Injection CVE-2021-21277 angular-expressions 1 28 1 28 29 0 29 0 713 48.01% 48.01%

Code Injection CVE-2020-7675 cd-messenger 1 28 1 28 29 0 29 0 374 36.77% 90.69%

Code Injection CVE-2018-3784 cryop 1 28 1 28 29 0 29 0 90 84.11% 84.11%

Code Injection CVE-2019-15657 eslint-utils 6 83 2 50 89 87 48 35 436 8.92% 80.89%

Code Injection CVE-2021-23639 front-matter 6 83 2 42 89 87 36 33 1,096 11.35% 80.95%

Code Injection CVE-2020-6836 hot-formula-parser 1 28 1 28 29 0 29 0 1,650 6.25% 89.94%

Code Injection / js-yaml 1 28 1 28 29 0 29 0 1,753 19.62% 70.66%

Code Injection CVE-2022-21122 metacalc 7 90 2 52 97 0 54 0 59 54.12% 86.95%

Code Injection CVE-2019-5413 morgan 6 83 2 48 89 87 46 35 2,135 11.69% 81.48%

Code Injection CVE-2022-25921 morgan-json 6 83 1 32 89 0 33 0 261 12.59% 94.11%

Code Injection CVE-2020-7672 mosc.js 1 28 1 28 29 0 29 0 47 0.93% 88.67%

Code Injection CVE-2020-7609 node-rules.js 1 28 1 28 29 0 29 0 939 40.57% 91.58%

Code Injection CVE-2016-10548 reduce-css-calc 1 28 1 28 29 0 29 0 110 87.27% 87.27%

Code Injection CVE-2020-7677 thenify 1 28 1 28 29 0 29 0 50 56.81% 82.14%
Prototype Pollution CVE-2020-7743 mathjs 1 28 1 28 29 0 29 0 2,650 9.83% 8.52%
Prototype Pollution CVE-2021-235%4 realms-shim 6 83 1 38 89 0 39 0 1,118 3.59% 78.18%
Remote Code Execution / djv 1 28 1 28 29 0 29 0 300 33.44% 55.35%
Remote Code Execution / mongodb-query-parser 7 90 3 60 97 87 59 35 2,688 5.32% 28.49%
Remote Code Execution CVE-2019-10758 mongo-express 6 83 2 43 89 87 42 33 9,225 11.46% 23.58%
Remote Code Execution CVE-2020-24391 mongo-parse 1 28 1 28 29 0 29 0 342 83.82% 83.82%
Sandbox Breakout / notevil 1 28 1 28 29 0 29 0 2,828 9.68% 89.58%
Sandbox Breakout CVE-2019-10769 safer-eval 7 90 2 52 97 0 54 0 119 35.31% 80.76%
Sandbox Breakout / sandbox 10 93 4 58 103 87 60 33 42 48.88% 48.88%
Sandbox Breakout / static-eval 11 99 9 74 110 87 82 34 2,891 7.69% 75.51%
Sandbox Breakout / value-censorship 7 90 2 52 97 0 54 0 3,089 8.43% 95.00%
Sandbox Bypass CVE-2019-10761 vm2 7 90 2 52 97 0 54 0 50 0.09% 53.33%
Sandbox Escape CVE-2020-7710 safe-eval 6 83 1 38 89 0 39 0 11 95.15% 95.15%

Sandbox Escape CVE-2020-7710 zhaoyao91-eval-in-vm 6 83 1 38 89 0 39 0 7 100.00% 100.00%
Template Injection CVE-2022-29078 ejs 6 83 1 40 89 0 41 0 32 5.22% 87.33%
Template Injection CVE-2021-23358 underscore 1 28 1 28 29 0 29 0 239 48.38% 48.38%
Arbitrary Command Execution | w161 | 1063 | 910 | 7617 | 11,797 | 2958 | 8444 | 1212 | 936 35.61% 69.14%

Arbitrary Code Execution | 243 | 332 | 10 | 2294 | 355 | 1218 | 2362 | 4% | 1178 30.83% 71.03%

CS: Critical system calls invocation;
TS: Trivial system calls invocation;
MT: Main Thread system calls invocation;
TP: Thread Pool system calls invocation;
: Packages that invoke system calls that are triggered by the execution of builtin methods;
C ‘overed line num of the package;
CL-1: Covered line of the package;
CL-2: Covered line of the package module;

18

Table 6: Exploit execution for packages with arbitrary command execution attacks.

Package Name

Initial Attack

HODOR
Cmd Permission Net
Initial Attack Eyec Fork Setgid Setuid Connect Listen Bind

command-exists
kill-by-port
killport
kill-process-by-name
macaddress
me-kill-port
onion-oled-js
open
pdf-image
pdfinfojs
pidusage
portkiller
port-Killer
portprocesses
ps
ps-kill

samsung-remote
scp
whereis
wincred
git-pull-or-clone
adb-driver
alfred-workflow-nodejs
apex-publish-static-files
apiconnect-cli-plugins
async-git
bestzip
blamer
cd-messenger
clamscan
cocos-utils
codecov
compass-compile
connection-tester
curling
curljs
deferred-exec
diskstats
diskusage-ng
docker-compose-remote-api
enpeem
eslint-fixer
ffmpegdotjs
ffmpeg-sdk
find-process
freespace
geojson2kml
git-add-remote
gitblame
git-dummy-commit
giting
git-interface
git-tags-remote
google-cloudstorage-commands
growl
gry
gulp-scss-lint
gulp-styledocco
gulp-tape
heroku-env
im-metadata
im-resize
install-package
Jison
killing
kill-port-process
libnmap
local-devices
Isof
lycwed-spritesheetjs
macfromip
monorepo-build
network-manager
node-df
node-key-sender
node-latex-pdf
node-mpv
node-prompt-here
node-ps
node-unrar
npm-lockfile
psnode
pulverizr
react-dev-utils
rpi
serial-number
strider-git
strong-nginx-controller
theme-core
ts-process-promises
umount
vboxmanage.js

Write command-exists
Write success
Write success
Write success

‘Write /tmp/poof
Write newFile.txt
Write success
Write /tmp/tada
‘Write /tmp/hacked
Write a
Execute /usr/local/bin/python
Write success
Write success
Write success
Write success.txt
Write success
Write success
Write success
Write /tmp/malicious;
nc localhost 4444;
‘Write /tmp/tada
Write success
Write /tmp/pwn3
Write a
Write hacked
Write apex-publish-static-files
‘Write Song
Write HACKED #
Write bestzip
Write vulnerable
Write JHU
Write create.txt
Write hacked
Write codecov
Write JHU
Write 111
Write JHU
Write JHU
Write JHU
‘Write HACKED
Write Song
‘Write vulnerable.txt
Write create.txt
Write eslint-fixer
Write success
Write success
Write /tmp/semicolon_file
Write /tmp/semicolon_file
Write JHU
‘Write Song
Write JHU
Write git-dummy-commit
Write create.txt
‘Werite /tmp/pwned
‘Write /tmp/command-injection.test
Write JHU
Write aaaa
Write HACKED
Write create.txt
Write Vulnerable
‘Write JHU.txt
Write JHU
Write im-metadata
Write create.txt
Write Song
Write pwned
Write success
Write kill-port-process
Write success.txt
Makek directory attacker
Write create.txt
Write 111233 #
‘Write JHU2
Write JHU
Write create.txt
Write HACKED
Write Song
Write JHU
Write JHU
Write create.txt
Write JHU
Write node-unrar
Write rce
Write success
‘Write Song
Write react-dev-utils
Write vulnerable.txt
Write create.txt
Write HACKED;
Write Song
Write JHU
Write JHU
‘Write Song
‘Write HACKED

A S N N N N N S S S S S S NN

—
O

RAXXXXXXXXXXXXXXXXXXXXRXXXXXXXXXXXXXRXX

RXRXRXRXRXRXRXRXXXXXXXXXXXXXXXXRXRXRXRXRXRXRXXXXXXXXXXXXXXXXXRXXXRXRXRXXXXXXXXXXXXXXXXXXXXRXRXXXXXXXXXXXXXXXXXXXXX

A A S S S S A A S N S N N S N S S S SR S SN

AL A R N A A A A S A S N N AN S S S N N N O NN

R TR XN A XN RNNCN XX XAAXXAACCUXRACCAXRAXRXXAACCCAXAXRAXRACCACCALXACACCAXACXRAXRXAAXRCXRAAXAAAACCCCCCXCNIRKRIXISRU%x

AR N A N A A A A N S S S S S NN

AR S A A A A A S S S N N S O A AU NN NS

zhaoyao91-eval-in-vm
mobile-icon-resizer

we-cmd Write JHU v X X [4 v v v v
wifiscanner ‘Write /tmp/exploit.txt v X X v v v v v
xopen Write JHU v X x [4 v v v [4
Xps Write HACKED v x X v v v v (4
aaptjs Write aaptjs v X X X x X X x
arpping Write HACKED v X 1 4 v v v v [4
dns-sync Write pwned v X X (4 v X v v
git date x x x v v X v v
git-lib Write HACKED; v x X v v v v v
git-parse Write HACKED v X x v v v v v
gity ‘Write HACKED v X x [4 v v v v
imagickal ‘Write HACKED v X X v v v v [4
meta-git ‘Write HACKED v X X v v v v 4
node-os-utils Write DUMMY_FILE 4 X X v v X 4 v
pomelo-monitor Write Song v X X v v v v [4
gm Write gm v X X v v v v [4
X: Exploits are executed; ¢: Exploits are blocked;
Table 7: Exploit execution for packages with arbitrary code execution attacks.
HODOR | MIR
. Cmd Permission Net ‘ Permission Net
Package Name Initial Attack . .
Initial Attack gyec Fork Setgid Setuid Conmect Listen Bind | Initial Attack gyec Fork Setgid Setuid Connmect Listen Bind
accesslog Print xSS X v v v [4 v v 4 /
access-policy Print 123 x v v v v v v v v v v v v v v v
adm-zip Path traversal v v v v [4 v v v /
angular-expressions Write file angular-expressions-success v [4 v v v v v [4 /
cd-messenger Print JHU X v v v v v v v v v v v v v v [4
cryop Print defconrussia x v v v 4 v v v v 4 v v v v v [4
djv touch HACKED (4 v v v v v v v /
ejs Write file ejs-success v v v v v v v v /
eslint-utils Write file eslint-utils-success v v v v (4 v v v
front-matter Print 1 x v v v v v v 4 /
grunt Returns Date.now v x x v v v v (4 v v v v v v v v
hot-formula-parser Write file test v v v v [4 v v 4 v [4 v 4 v v v (4
is-my-json-valid Execute cat /etc/passwd v v v v v v v v /
jsen Write file malicious 4 X X X X X X X /
Js-yaml Returns Date.now v v v v [4 v v [4 /
kme Write file kme-success v v v v v v v v v v v v v v v v
marsdb ‘Write file marsdb-success v v v v v v v v v v v v v v v v
metacalc Print process x v v v (4 v v v /
mixin-pro Print hacked X v v v [4 v v v v v v v v v v [4
m-log Print injected X 4 v v [4 v v 4 v (4 v v v v v [4
mock2easy ‘Write mock2easy-success X 4 v v [4 X X X v [4 v v v v v [4
modjs Write modjs-success.txt x x x v v X x x v v v 4 v v v v
modulify Print hacked v v v v v v v v v v v (4 v v v v
mol-proto Write file mol-proto-success x (4 v v v v v [4 v v v v v v v v
mongodb-query-parser touch test-file v 4 (4 v [4 X X X /
mongo-express exec calculator v v 4 4 4 4 4 v /
mongoosemask Print "my evil code was run" x v v v [4 v v v /
mongo-parse Write file hacked v v v v 4 v v v v 4 v v v v v [4
morgan ‘Write file mongui-success X v v v [4 v v v v [4 v v v v v [4
morgan-json Print GLOBAL CTF HIT v v v v (4 v v v v (4 v v v v v [4
mosc.js Write file Song v 4 v v [4 v (4 v v (4 v v v v v [4
node-extend Print 123 x (4 v v v v v (4 v v v (4 v v v v
node-extend Print 123 x v v v v v v (4 v v v v v v v v
node-rules.js Print 123 x v v v v v v v v v v v v v v v
node-serialize Execute Is X v v v v v v v v v v v v v v v
notevil Print pwned v v v v [4 v v v v [4 v v v v v [4
pg Print process.env x v v v [4 v v v v 4 v v v v v [4
pixl-class Print 123 x v v v [4 v v v v 4 v v v v v [4
post-loader Print rce v v v v v v v v v v v v v v v 4
protojs Write file protojs-success v v v v v v v v v (4 v v v v v v
realms-shim Messed with Object.toString v 4 v v (4 v v v v v v v (4 v v [4
reduce-css-calc Read /etc/passwd v 4 v v [4 v (4 v v [4 v 4 v v v [4
safe-eval Return proces (4 v v v [4 v v v v (4 v 4 v v v (4
safer-eval Print id x 4 v v (4 v v v v v v v v v v v
sandbox Print process.pid X x x v v v v v v X x v v v v v
-javascript Print 1 x 4 (4 v [4 v (4 v v (4 v v v v v [4
3 Execute Is X v v v [4 v v 4 v [4 v 4 (4 v v [4
static-eval Print hacked v X x v v v v v v v v v v v v v
tar Overwrite file v v v v v v v v v v v v v v v v
thenify Write file Song v v v v [4 v v v /
total.js Touch HACKED X v v v v X X X /
totald Touch HACKED v X x v (4 x x X /
typed-function Execute whoami (4 v v v [4 v v 4 /
underscore touch HELLO x v v v v v v v
value-censorship Access the Function constructor v v v v v v v v
vm2 return process.env x v v v v v v v
X (4 v v v v v [4
X X X v v v v v

return process.env
Print hacked

AN N N AN

AN N N AN

AN N N AN

AN N N

AN N N NN

AN N N AN

AN N N AN

AN N N AN

X: Exploits are executed; ¢: Exploits are blocked;

20

gry

adb-driver
ffmpegdotjs

dns-sync
git-pull-or-clone
ts-process-promises

kill-port-process
macfromip

git-dummy-commit
gulp-tape
git-add-remote
strider-git
heroku-env
samsung-remote

Table 8: Vulnerability payloads.

Critical Syscall | JavaSeript | e

Cmd Execution exec child_process.exec execve
fork child_process.fork fork

Permission setg}t process.selu?d selu?d
setuid process.setgid setgid
bind net.connect bind

Network connect dgram.createSocket.bind connect
listen server.listen listen

*: We compile the C code into binary and execute the
binary as a shell.

Table 9: Engine-required system calls.

Thread Type | Engine-required System Call

mprotect; futex; rt_sigaction; munmap; read; fstat; getpid; open; ioctl; rt_sigprocmask;
Main Thread stat; fentl; writev; epoll_pwait; pread64; dup3: close; write; getewd: getdents64;
rt_sigreturn; brk; shutdown; statx; readlink; madvise; exit_group; epoll_ctl; mmap;

read; futex; openat; socket; statx; open; exit; close; write; rt_sigprocmask; fentl; getewd;

arpping
modulify
realms-shim

zhaoyao91-eval-in-vm

Thread Pool .
lTlZIdVlSel munmap; mmap;
oge
Table 10: Critical system calls.
Type | Critical System Call
Cmd Execuion clone; execveat; execve; munmap; fork;
Permission chmod; mprotect; setgid; setreuid; setuid
Network acceptd; accept; bind; connect; listen; recvfrom; socket
< w a_ v o - a
YRR N R N N S R R A N I L L A
AT X e P ES A S R BT I A p i8R nBlbsTEREST
R A RHEAG T T CBL 00 XML WL ARSI D RO NS ERAHE M Baes >S5 @S)
dTebrdmEacexce vy BN LY AN 0 LRt L8 RO E NS AToRua 8 £ ME
Y5HrPCHAT8853 Uyn sgcrrddm5 Y TSGR EARorEMROS0S YV 5 @S
88guekr mTUzesld 4¥F 2850 .Y¥3VI2LBARSSLAHETEGS8S ¢ 8 8%
SYREn 8dT22%5 e b WhE28YTY awEHRTA Wowe Bomon & S
Sam SETSIS] geloieg 88BSR"T A9¥S glEgE & o
25 A w78 2 ESxiot Se¥s2 o B9 ¥ c®sfd % ®
oK o o8 92 1] TAtsgg en Eg o o 9 § £¢ &
ER T o 3 s0g288 St R & s £
s £ % 3 BL2s s 5 g ® E g¢o
b 8 2 38 @] 4 § 8¢
2 £ €% i 2 S
A 8 £e ° 3 £
° H H 3 1]
- S H 3]
= 4 K H
o EY H 3
< 2 2
)
@
)
H
&
——$# of System Call —% of Covered Line of Package «% of Covered Line of Node Module

Figure 9: The relationships between line coverage and syscall number.

21

==

Pg

protojs

djv
serialize-javascript

is-my-json-valid
marsdb
mixin-pro
mol-proto

access-policy
cd-messenger
mongo-parse
node-extend
node-serialize
thenify
underscore

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Node.js Architecture
	2.2 Seccomp BPF
	2.3 Motivation

	3 Threat Model
	4 System Design
	4.1 Overview
	4.2 Call Graph Constructor
	4.3 Mappings Builder
	4.4 Whitelist Generator
	4.5 HODOR Builder

	5 Implementation
	5.1 JavaScript Call Graph Construction
	5.2 C/C++ Call Graph Construction
	5.3 Building Mappings
	5.4 Whitelist Generation
	5.5 HODOR Building

	6 Evaluation
	6.1 Dataset
	6.2 Call Graph Construction and Resulting Protection (RQ1)
	6.3 Exploit Mitigation (RQ2)
	6.4 Comparison with Other Techniques (RQ3)
	6.5 Runtime Overhead (RQ4)

	7 Related Work
	8 DISCUSSION & CONCLUSION
	Acknowledgments
	References

