
Lifting Network Protocol Implementation to Precise Format
Specification with Security Applications

Qingkai Shi

Purdue University

West Lafayette, USA

shi553@purdue.edu

Junyang Shao

Purdue University

West Lafayette, USA

shao156@purdue.edu

Yapeng Ye

Purdue University

West Lafayette, USA

ye203@purdue.edu

Mingwei Zheng

Purdue University

West Lafayette, USA

zheng618@purdue.edu

Xiangyu Zhang

Purdue University

West Lafayette, USA

xyzhang@cs.purdue.edu

ABSTRACT
While inferring protocol formats is critical for many security appli-

cations, existing techniques often fall short of coverage, inasmuch

as almost all of them are in a fashion of dynamic analysis and driven

by a limited number of network packets. If a feature is not present in

the input packets, the feature will be missed in the resulting formats.

To tackle this problem, we develop a novel static program analysis

that infers protocol message formats from the implementation of

common top-down protocol parsers. However, to achieve the tri-

fecta of coverage, precision, and efficiency, we have to address two

challenges, namely path explosion and disordered path constraints.

To this end, our approach uses abstract interpretation to produce a

novel data structure called the abstract format graph. The graph

structure delimits precise but costly operations to only small re-

gions, thus ensuring precision and efficiency at the same time. Our

inferred formats are of high coverage and precisely specify both

field boundaries and semantic constraints among packet fields. Our

evaluation shows that we can infer formats for a protocol in one

minute with over 95% precision and recall, much better than four

baselines. Our inferred formats can substantially enhance existing

protocol fuzzers, improving the coverage by 20% to 260% and dis-

covering 53 zero-days with 47 assigned CVEs. We also provide case

studies of adopting our inferred formats in network traffic auditing

and network intrusion detection.

CCS CONCEPTS
• Security and privacy → Web protocol security; Software
reverse engineering; • Software and its engineering→ Auto-
mated static analysis.

KEYWORDS
Reverse engineering; network protocols; protocol formats.

This work is licensed under a Creative Commons Attribution

International 4.0 License.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0050-7/23/11.

https://doi.org/10.1145/3576915.3616614

ACM Reference Format:
Qingkai Shi, Junyang Shao, Yapeng Ye, Mingwei Zheng, and Xiangyu Zhang.

2023. Lifting Network Protocol Implementation to Precise Format Specifi-

cation with Security Applications. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’23), November
26–30, 2023, Copenhagen, Denmark. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3576915.3616614

1 INTRODUCTION
Network protocols define how computing systems are connected.

Thus, security vulnerabilities in network protocols may have dev-

astating consequences. For example, the WannaCry attack, which

was caused by a protocol vulnerability, led to over $8 billion loss

across 150 countries [1]. To aid automated security analysis for

network protocols, a formal specification of packet formats is often

mandatory — it facilitates the generation of legitimate network

packets for security testing [41, 62]; it is the foundation for proto-

col model checking [24, 60] and formal verification [25]; and it can

guide automated code generation with strong guarantees [69].

However, while protocols may have their specification docu-

ments in natural languages, formal, or machine-readable, packet

formats are often not available, and even when they are, they may

be incomplete or inaccurate [22]. Therefore, automatically inferring

formal protocol formats is of importance. There are three typical

scenarios. First, the protocol implementation is not accessible but

network packets are available. In this case, network trace analy-

sis [33, 46, 47, 57, 71, 72, 77] are proposed. They leverage statistical

analysis and machine learning to infer how a packet can be divided

into fields. Since the underlying techniques have inherent uncer-

tainty, the quality of inferred formats tends to be insufficient to

drive many security applications such as protocol fuzzing. We call

them the category-one techniques.
In the second scenario, the executable code of a protocol and a set

of valid packets are available. Dynamic program analysis [26, 27, 35,

54–56, 74] then traces how individual packet bytes are propagated

when running the code on the provided packets. The protocol

formats then can be inferred from the data or control flow relations

collected at runtime. For example, a typical rule to infer a raw

data field is that consecutive bytes in the field are accessed by

the same instruction [26, 35, 54]. These techniques can precisely

infer the syntax of provided packets and denote the state of the

art. In some cases (e.g., [35]), semantics constraints, for example,

1287

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3576915.3616614
https://doi.org/10.1145/3576915.3616614
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576915.3616614&domain=pdf&date_stamp=2023-11-21

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Qingkai Shi, Junyang Shao, Yapeng Ye, Mingwei Zheng, and Xiangyu Zhang

those describing correlations across packet fields like the sum of

fields 𝐴 and 𝐵 cannot exceed a certain threshold, can be inferred as

well. However, the inferred formats are often incomplete when the

provided packets do not have good coverage of all possible formats.

We call them the category-two techniques.
We focus on the third scenario, in which the source code of a

network protocol is available. As we will demonstrate in §6, open-

source protocol implementations have many zero-day vulnerabili-

ties. Without precise formal formats, existing protocol fuzzers such

as BooFuzz [11] can hardly find them. In a recent work FRAME-

SHIFTER [44], critical bugs were found by fuzzing HTTP/1 and

HTTP/2, whose implementations are publicly available. While the

authors manually crafted the protocol formats, automatic format in-

ference can generalize their method to other protocols. In network

traffic auditing and attack detection, e.g., using Wireshark [15]

and Snort [10], substantial manual efforts are still needed to write

dedicated protocol parsers for Wireshark and Snort even when

a protocol is open-sourced. In contrast, with our inferred formal

formats, Wireshark and Snort can be automatically extended.

We develop a static program analysis to produce packet formats,

including both syntax and semantics, from the source code of a pro-

tocol parser, which often parses a packet in a top-down fashion [18].

We call it a protocol lifting technique, belonging to category-three.
We resort to static analysis in order to address the coverage problem

in dynamic analysis. Meanwhile, high accuracy can be achieved as it

adopts a path-sensitive analysis. We produce BNF-like protocol for-

mats. While BNF [32] is a common language to describe syntax, we

enhance it to include semantic constraints across protocol fields. As

we will show in §4, lifting source code to protocol formats is highly

challenging. First, the traditional data-flow analysis that aggregates

analysis results of multiple program paths at their joint point yields

very poor results, whereas path-sensitive analysis that considers

individual paths separately is prohibitively expensive due to path

explosion. Second, the inferred formats are mostly out of order for

human interpretation, which is highly undesirable as humans are

important consumers of the formats in security applications.

To address the challenges, we develop a novel static analysis. In

particular, we develop abstract interpretation rules that can derive

an abstract format graph (AFG) from the source code. AFG can be

considered as a transformed control flow graph. It precludes state-

ments that are irrelevant to packet formats. It further merges pro-

gram subpaths that are irrelevant to formats so that path-sensitive

analysis is not performed on the merged places. Meanwhile, it

retains sufficient information such that a localized but precise path-

sensitive analysis can be performed on the unmerged parts of the

graph. Therefore, it mitigates the path-explosion problem without

losing analysis accuracy. The AFG is further unfolded and reordered

to generate BNF-style production rules and first-order-logic for-

mulas that describe semantic constraints across protocol fields. In

summary, we make the following four contributions:

• We develop an abstract interpretation method that produces

a novel representation, namely the abstract format graph, to

facilitate format inference.

• We propose a localized graph unfolding algorithm that can

perform precise path-sensitive analysis in small AFG regions

to significantly mitigate path explosion.

formats
in BNF

1. void decode_command(char* buf, int len) {
2. char cmd = buf[5];
3. switch (cmd) {
4. case 0x7B: …; break;
5. case 0x7C: // for file transfer, B[5] = 0x7C
6. …
7. file_type
8. file_size
9. file_offset
10. …
11. if (len < 12) // len = B[3]B[2] – B[4]&4 ? 8:7
12. abort(); // error
13. …
14. f->ops.write(…) // CVE-2022-30498
15. break;
16. …

= buf[6];
= *((int *) buf + 7);
= *((int *) buf + 11);

(a) Code snippet (b) Workflow of protocol fuzzer

1. L → B[2..3] B[4] B[5] B[6] B[7..10] B[11..14] ...
2. assert(B[3]B[2] – (B[4] & 0x04 ? 8 : 7) ≥ 12
3. assert(B[5] = 0x7C
4. assert(name(B[5]) = “cmd”
5. assert(name(B[6]) = “file_type”
6. assert(name(B[7..10]) = “file_size”
7. assert(name(B[11..14]) = “file_offset”
8. …

)
)
)
)
)
)

Target to FuzzBooFuzz Bug Reports

may call an invalid address

Figure 1: (a) Simplified code that parses the file-transfer com-
mand. (b) The typical workflow of protocol fuzzers with a
snippet of the format inferred by Netlifter, in which the first
row is a BNF production rule denoting syntax (e.g., field par-
titioning) and the remaining denote semantic constraints.

• We devise a graph reordering algorithm that translates an un-

folded AFG to the commonly-used BNF so that our inferred

formats can be widely applied in practice.

• We implement our approach as a tool, namely Netlifter, to

infer packet formats from protocol parsers written in C. We

evaluate it on a number of protocols from different domains.

Netlifter is highly efficient as it can infer formats in one

minute. Netlifter is highly precise with a high recall as its

inferred formats uncover ≥ 95% formats with ≤ 5% false

ones. In contrast, the baselines, often miss >50% of formats

and, sometimes, produce > 50% false ones. We use the in-

ferred formats to enhance grammar-based protocol fuzzers,

which are improved by 20% ∼ 260% in terms of coverage and

detect 53 zero-day vulnerabilities with 47 assigned CVEs.

Without our formats, only 12 can be found. We also provide

case studies of adopting our approach in traffic analysis and

intrusion detection. Netlifter is publicly available [17].

2 MOTIVATION
We use an open-source protocol, namely Open Supervised Device

Protocol (OSDP), to illustrate the limitations of existing methods

and how our technique can facilitate various security applications.

OSDP is an access control communications standard developed

by the Security Industry Association to improve interoperability

among access control and security products. Although it is an open-

source protocol, its full specification is not publicly available. The

only available document [2] lacks many details. For instance, it

includes the formats for only 7 out of the 27 supported commands.

Figure 1(a) shows a part of the packet parsing function of OSDP,

which contains a bug found by a protocol fuzzer enhanced by our

approach. The variable buf is a byte array representing the OSDP

packet, and we use 𝐵 [𝑖] to represent the (𝑖 + 1)th byte. The bug at

Line 14 may invoke an invalid function pointer f->ops.write, which
could lead to a crash or be exploited for DoS or ROP attacks. Many

ways can avoid such attacks. The first one is to use fuzzers to find

such bugs and have them fixed before exploitation. The second

is to provide OSDP support in network traffic analysis and attack

detection tools such that the attack can be analyzed and further

prevented. However, existing methods fall short as discussed below.

1288

Lifting Network Protocol Implementation to Precise Format Specification with Security Applications CCS ’23, November 26–30, 2023, Copenhagen, Denmark

normal traffic

abnormal traffic
which may be attacks

Netlifter Formats in BNF Wireshark plugin

(a) Abnormal traffic observed by Wireshark

(b) Packet details using original Wireshark (c) Details using our enhanced one

Figure 2: Network traffic auditing via Wireshark.

Standard Network Fuzzing Can Hardly Find the Zero-day.
Different from stand-alone application fuzzers such as AFL [16],

network fuzzers, such as BooFuzz [11], often operate in a client-

server architecture. The server runs the target protocol implemen-

tation. The client leverages grammar-based fuzzing to generate

packets as per the formats, send the packets to the server, receive

responses, and generate new packets to fuzz the target. However,

the effectiveness of these fuzzers hinges on the protocol formats.

When the formats are not available like in our OSDP case, they

quickly degenerate into traditional greybox fuzzers that arbitrarily

mutate bits or bytes. Such mutated packets can hardly pass many

input validity checks in the code. For example, in Figure 1(a), to

expose the bug, a fuzzer has to get through the check at Line 11,

which is a complex relation across multiple fields as shown in the

comment. As a result, standard network fuzzers fail to find the bug

when an imprecise or incomplete format of OSDP is provided.

Lack of Support for OSDP inWireshark and Snort.We can also

rely on network traffic analyzers, e.g., Wireshark [15], and attack

detection tools, e.g., Snort [10], to ensure security. However, both

Wireshark and Snort do not support OSDP. Assume Wireshark is

deployed at the gateway. It detects abnormal traffic as highlighted

in the red box in Figure 2(a). Note that in the diagram the x-axis

denotes the elapsed time and the y-axis denotes the amount of traffic

per second. However, the traffic is not interpretable for Wireshark

as OSDP is not supported. Instead, the OSDP packets are treated as

raw data bytes as shown in Figure 2(b). Thus, it is hard to analyze

the packet details and determine which device launches the attack.

2.1 Limitations of Existing Techniques
A way to address the aforestated defense insufficiency is to infer

the protocol formats. As discussed in §1, existing techniques fall

into categories one and two. Category-one infers formats from a

set of network packets. For example, a recent method NetPlier [77]

leverages a probabilistic analysis on network packets to determine

a keyword field, i.e., the field identifying the packet type, by com-

puting the probabilities of each byte offset. Once the keyword field

is determined, it clusters packets according to the value of the field

and applies multi-sequence alignment to derive message format.

However, real-world network packets suffer from all sorts of dis-

tribution biases, e.g., lacking some kinds of messages due to their

rare uses in practice, leading to sub-optimal results.

For instance, NetPlier partitions the first four bytes of an OSDP

packet as | 0x53 0xff | 0x29 | 0x00 | ... |, which mistakenly places

the first two bytes into the same field and splits 𝐵 [2] and 𝐵 [3]
into two different fields while 𝐵 [2..3] — with the value of 𝐵 [3]𝐵 [2]
that represents a two-byte integer with 𝐵 [3] the most significant

byte and 𝐵 [2] the least — should be a single field representing the

packet length. However, since most input packets are shorter than

255, 𝐵 [3] is always zero while 𝐵 [2] has different values in different

packets. Thus, these two bytes follow different distributions in the

packet samples, and NetPlier incorrectly regards them as separate

fields. Moreover, NetPlier does not infer semantic constraints such

as the condition at Line 11 in Figure 1(a). Such imprecise formats

prevent a grammar-based protocol fuzzer from finding the zero-day

and fail to enhance Wireshark and Snort.

Category-two methods dynamically analyze protocol execution

using a set of input packets. AutoFormat [54] is a representative.

It leverages the observation that most packet parsers utilize top-

down parsing such that they invoke a function to parse a sub-

structure. Therefore, the dynamic call graph in parsing a packet

discloses its structure. However, the function call hierarchy may

not be sufficiently fine-grained to disclose detailed packet formats.

Similar to NetPlier, it does not infer semantic constraints across

fields, such as the one at Line 11 in Figure 1(a). As dynamic analysis,

the inferred format may be incomplete, depending on the coverage

of the input packets that drive the dynamic analysis. For instance,

in our evaluation, Autoformat misses 15 out of the 27 packet types

because these types of packets do not appear in regular workloads.

Some category-two techniques, e.g., Tupni [35], can precisely in-

fer semantic constraints among packet fields. However, as dynamic

analyses, they suffer from the innate coverage problem. As per our

results, the inference results of Tupni may miss >50% of possible

formats. The problem is that if the program executions analyzed

by Tupni do not cover the file-transfer command, i.e., Lines 5-15

in Figure 1(a), Tupni will not generate formats for the command.

Without the formats, it is hard for a fuzzer to generate packets that

can pass the validity check at Line 11 and expose the bug at Line 14.

2.2 Our Solution and Security Applications
Observing that the source code discloses substantial information

about packet formats, we propose a category-three method that

lifts the source code of OSDP to the protocol formats. For instance,

Line 5 of the code in Figure 1(a) indicates that the command code for

file transfer is 0x7c. Line 7 indicates that 𝐵 [6] is a field representing
the file type to transfer. Lines 8-9 load two four-byte integers to

variables file_size and file_offset and, thus, indicate that there are
two four-byte fields, one from 𝐵 [7] to 𝐵 [10] and the other from

𝐵 [11] to 𝐵 [14], meaning the size and the offset of the file to transfer,

respectively. In addition to the syntactic information (e.g., field

partitioning), the code also discloses the semantic relations across

fields. For instance, the if-statement at Line 11 implies a cross-field

constraint dictating that if 𝐵 [4] & 4 = 0, a valid packet must satisfy

the constraint 𝐵 [3]𝐵 [2] − 7 ≥ 12 or, otherwise, 𝐵 [3]𝐵 [2] − 8 ≥ 12.

1289

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Qingkai Shi, Junyang Shao, Yapeng Ye, Mingwei Zheng, and Xiangyu Zhang

We extract the above syntactic and semantic information via

static analysis and produce a BNF-style production rule in Fig-

ure 1(b). Our lifted formats are both precise and of high coverage.

In terms of precision, we precisely identify each field and its name

as shown in Figure 1(b) and, meanwhile, also specify the field con-

straints as first-order-logic formulas. In terms of coverage, since we

do not rely on any input packets like category-one and category-two

techniques, any format included in the source code will be inferred.

We can use the lifted formats to support many applications.

Application 1: Finding Zero-days by Network Fuzzing. We

leverage a theorem prover such as Z3 [37] to produce valuations

for individual packet fields, such as the 𝐵 [𝑖]’s in Figure 1(b), which

satisfy the semantic constraints. The generated packets can pass

the check at Line 11 in Figure 1(a), thereby enabling the discovery

of the CVE at Line 14. In addition, our inferred packet format is of

high coverage and allows the fuzzer to generate diverse packets to

improve test coverage. In particular, the vulnerable code can only

be reached when the packet is a file-transfer command, i.e., the

0x7c branch of the switch statement (Line 5). If the format is not

covered, the chance that a fuzzer can mutate a packet of different

types to a valid file-transfer command is very slim. Our evaluation

shows that the lifted formats can improve the coverage of fuzzing

by 20% to 260% and allow us to detect 41 more zero-days, compared

to using the formats inferred by category-one and category-two

methods. Note that we do not claim direct contributions to fuzzing.

Instead, our approach is orthogonal to existing fuzzing methods

that rely on packet formats.

Application 2: Network Traffic Auditing. Wireshark is the fore-

most protocol analyzer to ensure network security for hundreds

of protocols [15]. Supporting a new protocol in Wireshark can be

achieved by providing an extension, which is usually a library to

parse protocol packets. We develop an extension generator that

takes a lifted format as input and generates the corresponding

Wireshark extension. Figure 2(c) shows that with the generated

extension, Wireshark can look inside an OSDP packet sampled from

the abnormal traffic. Our lifted format provides not only precise

packet syntax but also informative field names extracted from vari-

able names. With Wireshark, we observe that all packets during the

abnormal traffic have the field osdp.address=35 and osdp.cmd=0x7c,
indicating they are all from a device with the id #35 via the file-

transfer commands. As will be shown in our evaluation, category-

two approaches miss over 50% of possible fields. Building extensions

from these incomplete formats would render Wireshark incapable

of processing many packets. In addition, they can hardly provide

field names that are as informative as the ones we can provide.

Application 3: Network Intrusion Detection. We put discus-

sions of this application in an extended version of this paper [66].

3 BACKGROUND AND OVERVIEW
Protocol Format vs. Protocol Specification. Generally, the spec-
ification of a protocol consists of protocol formats and protocol

state machines [61]. Protocol formats are often specified using a

grammar in BNF, which specifies how a network packet, i.e., a bit

or byte stream, can be dissected into multiple segments, i.e., fields,

and specifies the semantic constraints the fields need to satisfy. For

example, Figure 3(b) shows a typical BNF-style format of OSDP

packets. The productions specify how an OSDP packet can be di-

vided into multiple fields such as som, address, and so on. Like many

previous works [26, 27, 33, 35, 42, 43, 46, 47, 54–57, 71, 72, 74, 77],

Netlifter focuses on inferring the protocol formats.

Protocol state machines, on the other hand, specify the state

transitions of a network server upon receiving or sending a specific

network packet. For instance, a TCP server may transition from

the state SYN-SENT, meaning it waits for a matching connection,

to the state ESTABLISHED, meaning a connection has been estab-

lished, upon receiving an acknowledgment packet. There have been

many works focusing on state machine inference [20, 29, 30, 34,

38, 49, 51, 58, 65, 73, 77, 78]. Typically, these works accept a set of

network packets as input and produce a protocol state machine.

While Netlifter only focuses on the formats, since the formats are

sufficient to produce a number of packets, one can feed the packets

into the aforementioned techniques for state machine inference.

Static Program Analysis. Static analysis processes a program

without executing it and often has various forms such as dataflow

analysis and abstract interpretation. As pointed out by Cousot and

Cousot [31], while dataflow analysis and abstract interpretation are

in different forms, they are equivalent when used to compute sound

results. Basically, this is because both of them use abstract values

to approximate program behavior. A complete/sound analysis uses

abstract values, which are often formulas over predefined symbols,

to under-/over-approximate concrete values that may assign to

program variables at runtime. For instance, in our work, the abstract

value of a variable is a formula over bytes, e.g., 𝐵 [0], 𝐵 [1], . . . , in a

network packet. Here, 𝐵 [𝑖] is a byte ranging from 0x00 to 0xFF and,

thus, over-approximates all possible values of the (𝑖 + 1)th byte.

A static analysis is often defined by a set of transfer functions and

merging functions over abstract values. A transfer function speci-

fies how we compute an abstract value when visiting a program

statement. For instance, given the abstract values of two variables,

e.g., 𝑥 = 𝐵 [1], 𝑦 = 𝐵 [2], the transfer function of the statement

𝑧 = 𝑥 + 𝑦, accepts the abstract values of 𝑥 and 𝑦 as the input and

outputs the abstract value of 𝑧, which typically is 𝐵 [1] + 𝐵 [2].
When a variable is assigned multiple abstract values in two pro-

gram paths, at the joint point of the two paths, we use a merging

function to compute a merged abstract value. For instance, assume

that we compute 𝑥 = 𝐵 [1] and 𝑥 = 𝐵 [2] in two different paths and

Θ is an operator returns either of its operands. At the joint point,

the merged abstract value of 𝑥 could be Θ(𝐵 [1], 𝐵 [2]). This value is
sound as it over-approximates the value of 𝑥 , saying that 𝑥 is either

𝐵 [1] or 𝐵 [2]. However, it is not complete or not precise, because it

loses the path information, i.e., from which path 𝑥 = 𝐵 [1] (or 𝐵 [2]).
A static analysis can be performed with varying degrees of pre-

cision. In this work, we choose to perform a path-sensitive static

analysis, which is of high precision as it can distinguish abstract

values from different paths. To this end, one often needs to enumer-

ate all paths in a program, just like symbolic execution [45], which,

however, suffers from the notorious path-explosion problem due

to the exponential number of paths in a program. In this work, we

fend off this problem by introducing a special merging operator,

Θ𝜅 , as explained later.

Input of Netlifter. The input of our static analyzer is the source
code of a top-down protocol parser [18] written in C. A top-down

1290

Lifting Network Protocol Implementation to Precise Format Specification with Security Applications CCS ’23, November 26–30, 2023, Copenhagen, Denmark

1. void decode_command(char* buf, int len) {
2. char cmd = buf[5];
3. switch (cmd) {
4. case 0x7B: …; break;
5. case 0x7C: // for file transfer, B[5] = 0x7C
6. …
7. file_type
8. file_size
9. file_offset
10. …
11. if (len < 12) // len = B[3]B[2] – B[4]&4 ? 8:7
12. abort(); // error
13. …
14. }

15. void decode_packet(char *buf, int blen) {
16. char som = buf[0];
17. assert(som == 0x53);
18. char address = buf[1];
19. short length = buf[2] | (buf[3] << 8);
20. char ctrl = buf[4];
21. length = length – ctrl & 0x4 ? 8 : 7;
22. decode_command(buf, length);
23. }

= buf[6];
= *((int *) buf + 7);
= *((int *) buf + 11);

24. S → B[0] B[1] L
25. assert(B[0] = 0x53
26. assert(name(B[0]) = “som”
27. assert(name(B[1]) = “address”

28. # for cmd = 0x7B
29. L → B[2..3] B[4] B[5] …

30. # for cmd = 0x7C
31. L → B[2..3] B[4] B[5] B[6] B[7..10] B[11..14] ...
32. assert(B[3]B[2] – (B[4] & 0x04 ? 8 : 7) ≥ 12
33. assert(B[5] = 0x7C
34. assert(name(B[2..3]) = “length”
35. assert(name(B[4]) = “ctrl”
36. assert(name(B[5]) = “cmd”
37. assert(name(B[6]) = “file_type”
38. assert(name(B[7..10]) = “file_size”
39. assert(name(B[11..14]) = “file_offset”

som address CMD
length ctrl 0x7b …
length ctrl 0x7c filetype filesize fileoffset …
…

OSDP
CMD
CMD

…

→
→
→
→

(a) Simplified OSDP code (c) Inferred OSDP formats

(b) Conventional BNF-style formats

)
)
)

)
)
)
)
)
)
)
)

Figure 3: Extended example for OSDP.

parser applies each production rule in a BNF-style format to incom-

ing bytes of the network packet, working from the left-most symbol

of a production rule and then proceeding to the next production

rule for each non-terminal symbol encountered [19]. Given the

parsing function of a protocol, e.g., parse(char* buf, int len) { ... },
the user annotates the parameters, i.e., the buffer variable, buf, that
contains the network packet to parse, and the integer variable, len,
which stands for the packet length. Except for the two annotations,

Netlifter is fully automated.

Example. Figure 3 extends the example in Figure 1. It shows a

simplified OSDP parser starting from Line 15. The packet is a byte

array stored in buf and the array length is blen. The user needs
to annotate the two variables. The parser with the annotations is

the input of Netlifter. In Lines 16-21, the parser loads the first five

bytes into the variables som, address, len, and ctrl, where som stands

for “start of message” and is used to identify OSDP packets. The

remaining code invokes the function decode_command to parse an

OSDP command as explained in Figure 1. □

Output of Netlifter. The output of Netlifter is defined below. Our

protocol format is similar to common BNF so that it aligns well

with existing standards in formally describing protocol formats.

Definition 1 (Protocol Format). The format includes syntax and

semantics. The syntax is denoted by production rules in BNF, where

each rule is a sequence of consecutive bytes. Semantics is described

by non-recursive first-order-logic (FOL) constraints with two spe-

cial functions, name(...) and repeat(...), which are explained in the

example below. The format satisfies three properties:

(1) Each terminal symbol in the grammar is either 𝐵 [𝑖] or 𝐵 [𝑖 .. 𝑗],
which is a bit-vector standing for the (𝑖 + 1)th byte or a range

of bytes from 𝐵 [𝑖] to 𝐵 [𝑗];
(2) Each production rule is associated with a set of assertions

that assert FOL constraints over the terminals in this rule.

The constraints must not conflict with each other.

(3) Each assertion contains only a single atomic constraint that

does not contain any connectives ∧ or ∨.

Example. Figure 3(b) shows a typical BNF-style format of OSDP,

which is often manually constructed. The output format of Netlifter

is shown in Figure 3(c), which closely resembles the manually con-

structed BNF in (b). The first rule in (c) resembles the first rule in

(b), where we correctly determine that the first two bytes, 𝐵 [0] and
𝐵 [1], are two separate fields, corresponding to the fields som and

address. Similarly, the second and third rules in (c) resemble the

two CMD rules in (b), where, besides single-byte fields, we also cor-

rectly determine multi-byte fields including 𝐵 [2..3], 𝐵 [7..10], and
𝐵 [11..14], corresponding to the fields length, filesize, and fileoffset.

The output format also associates each rule with two kinds of

assertions. One kind, such as Line 25 and Lines 32-33, specifies the

semantic constraints among packet fields. They are inferred from

branching conditions in the code. When we infer a constraint in-

cluding a value like 𝐵 [3]𝐵 [2], it indicates a two-byte field with 𝐵 [3]
the most significant byte and 𝐵 [2] the least. In other words, in ad-

dition to field boundaries, our format also expresses the endianness,
whereas the standard BNF cannot. Netlifter also describes seman-

tic constraints not expressible in standard BNF such as the one in

Line 32. All constraints have the bit-level precision. For instance,
the expression 𝐵 [4] & 4 in Line 32 computes the third bit of 𝐵 [4].

The other kind, such as Lines 26-27 and Lines 34-39, specifies

the field names, which provide high-level field semantics for us to
understand the format. In addition to those in the example, we

also produce many other names such as name(𝐵 [𝑖 .. 𝑗]) = ‘times-
tamp’/‘checksum’ to indicate a timestamp/checksum field. As ex-

plained later, we infer such high-level semantics using the names

of program variables or library APIs. □

In addition to the example above, we elaborate on two places

where our format is more expressive than the standard BNF. First,

our format specifies direction fields. A direction field locates another

field and is often a length field, whose value encodes the variable

length of a target field [27]. For instance, we may produce a produc-

tion rule 𝑆 → 𝐵 [0]𝐵 [1..𝐵 [0]], where 𝐵 [1..𝐵 [0]] is a variable-length
field whose length is determined by the direction field 𝐵 [0].

Second, our format can also specify repetitive fields and how

many times a field repeats. As an example, we may produce the

production rule 𝑆 → 𝐵 [0]𝐵 [1..2]𝐵 [3] with three assertions: (1)

assert(𝐵 [0] = 𝐵 [3] = 0𝑥00), (2) assert(𝐵 [1]𝐵 [2] ≠ 0𝑥0000), and
(3) assert(repeat(𝐵 [1..2]) = 3). The first assertion constrains the

first and last byte. The second constrains the field 𝐵 [1..2] in middle.

The third states that the middle field repeats three times. When

generating packets based on the rule, we first generate a packet

satisfying the first two assertions, e.g., 0𝑥00 0𝑥0001 0𝑥00. Due to

the third assertion, we insert another two fields satisfying the same

constraints as 𝐵 [1..2], e.g., 0𝑥00 0𝑥0001 0𝑥0011 0𝑥0101 0𝑥00.

4 TECHNICAL CHALLENGES
We discuss two prominent challenges and our ideas for addressing

them. The discussion is driven by a crafted protocol parser in Fig-

ure 4(a). Figure 4(e) shows an ideal format inferred from the parser,

where a packet is dissected into three segments, i.e., 𝐿1, 𝐿2 |𝐿3, and
𝐿4 |𝐿5. The segment 𝐿1 has two fields, a code field (reflected by Lines
10-11 in the code) and a state field (reflected by Lines 14-16 in the

code). 𝐿2 and 𝐿3 consist of a single field located at byte offset 3 and

differ only in the field value (reflected by Line 13 in the code). 𝐿4
and 𝐿5 consist of three single-byte fields and differ in the semantic

constraints (reflected by Lines 3-8 in the code).

1291

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Qingkai Shi, Junyang Shao, Yapeng Ye, Mingwei Zheng, and Xiangyu Zhang

void parse_packet(byte *pkt) {
int ctrl, state, code;
if (pkt[5] == 0) {

ctrl = pkt[4] + 1; …
} else { ctrl = pkt[4] – 1; … }

if (pkt[6] > 0) assert(ctrl == 0);
else abort(); // exit with error

code = ((int) pkt[0] << 8) | pkt[1];
assert(code == 10);

if (pkt[3] == 0) {
state = pkt[2] + 1; …

} else { state = pkt[2] – 1; … }
print(state); …

}

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.

𝜿3: B[5] = 0 ¬𝜿3: B[5] ≠ 0

name(B[4]) = ‘ctrl’

𝜿7: B[6] > 0

Θ𝜿 (B[4] + 1, B[4] – 1) = 0

B[0]B[1] = 10

name(B[0..1]) = ‘code’

𝜿13: B[3] = 0 ¬𝜿13: B[3] ≠ 0

name(B[2]) = ‘state’

𝜿3: B[5] = 0 ¬𝜿3: B[5] ≠ 0

𝜿7: B[6] > 0

B[4] + 1 = 0

B[0]B[1] = 10

name(B[0..1]) = ‘code’

name(B[2]) = ‘state’

𝜿7: B[6] > 0

B[4] – 1 = 0

name(B[4]) = ‘ctrl’

𝜿13: B[3] = 0 ¬𝜿13: B[3] ≠ 0

𝜿7: B[6] > 0

B[4] + 1 = 0

B[0]B[1] = 10

name(B[0..1]) = ‘code’

𝜿13: B[3] = 0 ¬𝜿13: B[3] ≠ 0

name(B[2]) = ‘state’

𝜿3: B[5] = 0 ¬𝜿3: B[5] ≠ 0

𝜿7: B[6] > 0

B[4] – 1 = 0

name(B[4]) = ‘ctrl’

reorder as
a whole

L1 (L2 | L3) (L4 | L5)
B[0..1] B[2]
assert(B[0]B[1] = 10)
assert(name(B[0..1]) = ‘code’)
assert(name(B[2]) = ‘state’)

B[3]; assert(B[3] = 0)
B[3]; assert(B[3] ≠ 0)

B[4] B[5] B[6]
assert(name(B[4]) = ‘ctrl’)
assert(B[4] + 1 = 0)
assert(B[5] = 0)
assert(B[6] > 0)
B[4] B[5] B[6]
assert(name(B[4]) = ‘ctrl’)
assert(B[4] – 1 = 0)
assert(B[5] ≠ 0)
assert(B[6] > 0)

S
L1

L2
L3

L4

L5

→
→

→
→

→

→

(a) Parser (b) AFG (c) Unfolded AFG (d) Ordered AFG (e) Formats

3

Figure 4: A crafted running example.

Challenge 1: Insufficiency of Traditional Static Analysis. Tra-
ditional static analysis is path-insensitive and merges analysis re-

sults from different paths at their joint point to achieve scalability.

As introduced before, such merging yields over-approximation

and incurs low precision. For example, the abstract values of ctrl
from the two branches at Lines 4 and 5, respectively, are merged

at Line 6, yielding ctrl = 𝐵 [4] + 1 ∨ ctrl = 𝐵 [4] − 1. As such, we

lose the correlation between 𝐵 [4] and 𝐵 [5] as the precise value of
ctrl should depend on the value of 𝐵 [5] due to the if-statement at

Line 3. In consequence, the resulting format will lose the correla-

tions between 𝐵 [4] and 𝐵 [5], while in the ideal format shown in

Figure 4(e), the production rules 𝐿4 and 𝐿5 include such correlations,

i.e., 𝐵 [4] + 1 = 0⇔ 𝐵 [5] = 0 and 𝐵 [4] − 1 = 0⇔ 𝐵 [5] ≠ 0.

A typical solution is to use a path-sensitive static analysis that

separately analyzes individual paths and does not merge results

from multiple branches. Lifting is thus reduced to enumerating

paths, each constituting a production rule. In our example, there are

four paths that denote valid packets, i.e., (P1) ...→ 4→ ...→ 14→
..., (P2) ... → 5 → ... → 14 → ..., (P3) ... → 4 → ... → 15 → ...,

and (P4) ...→ 5→ ...→ 15→ Thus, the lifted format has four

rules, each of which corresponds to a path constraint. For example,

the format for the path P1 is shown below.

𝑆 → 𝐵 [0..1] 𝐵 [2] 𝐵 [3] 𝐵 [4] 𝐵 [5] 𝐵 [6]
assert(𝐵 [5] = 0) ; assert(𝐵 [6] > 0) ; assert(𝐵 [4] + 1 = 0) ;
assert(𝐵 [0]𝐵 [1] = 10) ; assert(𝐵 [3] = 0) ;

Enumerating program paths incurs the notorious path-explosion

problem, which has two consequences: (1) the analysis is not scal-

able and (2) the lifted format has an explosive number of semantic

constraints. For example, due to path explosion, KLEE [28], a state-

of-the-art path-sensitive static analyzer, cannot finish analyzing

Linux’s implementation of L2CAP, a Bluetooth protocol containing

a few thousand lines of code, within twelve hours.

Solution 1: Localized Path-Sensitive Analysis.We observe that

in lifting, path-sensitivity is only needed in certain places. In our

example, we only want to analyze the sub-paths 3→ 4→ 7 and

3→ 5→ 7 separately such that we can generate production rules

𝐿4 and 𝐿5 in Figure 4(e). The criterion to determine a local code

region for path-sensitive analysis is that the path conditions within

the region and their branches have inter-dependencies. For exam-

ple, the condition at Line 3 determines the value of ctrl, which is

checked inside the true branch at Line 7, allowing Lines 3-8 to form

a region for path-sensitive analysis. In contrast, Lines 10-16 have

no dependencies on Lines 3-8 and, thus, are considered separately.

In §5, we will discuss how we use a new selection operator and

a novel representation called the abstract format graph (AFG) to

identify such regions for localized path-sensitive analysis.

Challenge 2: Handling Out-of-Order Fields. Protocol parsers
may not parse network packets in strict byte order. Hence, if a naïve

lifting algorithm directly derives format from code, for example,

generating production rules following the order that the bytes are

accessed along program paths, the resulting format may have out-

of-order fields, which do not comply with the BNF standard. For

example in Figure 4(a), the parser parses bytes 𝐵 [4..6] before𝐵 [0..3].
Therefore, we have to break the program order. This requires us

to reorder the bytes such that they follow the byte order while not

violating program semantics. For example, in Lines 3-8 in Figure 4(a),

the access of pkt[4] occurs after that of pkt[5]. One cannot simply

relocate Line 4 and the else branch in Line 5 to in front of Line 3,

because the resulting program is broken as shown in the following.

ctrl=pkt[4]-1; ctrl=pkt[4]-1; if (pkt[5]==0) ...

Solution 2: Graph-Based Reordering. We propose to first ab-

stract the code to the aforementioned AFG that models only the

packet format-related behaviors and precludes the rest. As such,

we do not need to transform the program which is complex and

unnecessary. An algorithm is developed to ensure dependencies

can be respected during reordering.

5 DESIGN
Figure 4(a-e) presents the workflow of Netlifter. Given the code

of a protocol, abstract interpretation is performed to construct an

abstract format graph (AFG). Path-sensitive analysis is performed in

selected local regions of AFG to produce an unfolded AFG, which is

further reordered and post-processed to produce the lifted formats.

5.1 Abstract Format Graph
AFG is a directed acyclic graph representing first-order-logic con-

straints. The AFG of a constraint 𝜌 is inductively defined byAFG(𝜌):
(1) AFG(atomic constraint) = Vertex(atomic constraint);
(2) AFG(𝜌1 ∧ 𝜌2) = AFG(𝜌1) ⊲⊳ AFG(𝜌2);
(3) AFG(𝜌1 ∨ 𝜌2) = AFG(𝜌1) ⊎ AFG(𝜌2).

1292

Lifting Network Protocol Implementation to Precise Format Specification with Security Applications CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Generally, a vertex of AFG is an atomic constraint that does not con-

tain any connectives ∧ or ∨, and an edge means logical conjunction.

In the definition, the first rule returns a single vertex for any atomic

constraint. The second creates a graph for conjunction by connect-

ing all exit vertices (vertices without outgoing edges) of AFG(𝜌1)
to all entry vertices (vertices without incoming edges) of AFG(𝜌2).
The third creates a graph for disjunction by simply creating a union

of the two graphs, which contains the vertices and edges from both.

The following lemma states the equivalence relation between the

graph AFG(𝜌) and the constraint 𝜌 . In other words, AFG(𝜌) is an
equivalent graphic representation of the constraint 𝜌 . All proofs of

our lemmas can be found in an extended version of this paper [66].

Lemma 5.1. GivenAFG(𝜌) with𝑛 paths, we have 𝜌 ≡ ∨𝑛
𝑖=1 𝜌𝑖 where

each 𝜌𝑖 equals the conjunction of all constraints in an AFG path.

Example. Consider the constraint 𝜌 ≡ (𝑎∨𝑏)∧𝑐∧(𝑑∨𝑒). By defini-
tion, AFG(𝜌) is a directed graph with five nodes, which respectively
correspond to the five atomic constraints 𝑎, 𝑏, 𝑐 , 𝑑 , and 𝑒 . The AFG

also contains four edges respectively from 𝑎 to 𝑐 , from 𝑏 to 𝑐 , from

𝑐 to 𝑑 , and from 𝑐 to 𝑒 . The AFG has four paths, respectively repre-

senting four constraints, 𝜌1 = 𝑎∧𝑐∧𝑑 , 𝜌2 = 𝑎∧𝑐∧𝑒 , 𝜌3 = 𝑏∧𝑐∧𝑑 ,
and 𝜌4 = 𝑏 ∧ 𝑐 ∧ 𝑒 . Apparently, we have 𝜌1 ∨ 𝜌2 ∨ 𝜌3 ∨ 𝜌4 ≡ 𝜌 .

Thus, we say the AFG(𝜌) is an equivalent graphic representation

of the constraint 𝜌 . □

5.2 Abstract Interpretation
The static analysis derives an AFG denoting path constraints related

to the packet format. It features a new selection operator at the joint

point of branches, which enables localized path-sensitive analysis.

Abstract Language. For clarity, we use a C-like language in Fig-

ure 5 to model our target programs. A program in the language has

an entry function that parses an input network packet, pkt, which is
a byte array. The parsing function often has a parameter specifying

the packet length, len, to avoid out-of-bounds access during parsing.
The language contains assignments, binary operations, statements

that read bytes from the packet, assertions, branching, and sequenc-

ing. Each branching statement is labeled by a unique identifier 𝜅.

Although we do not include function calls or returns for discus-

sion simplicity, our system is inter-procedural as a call statement is

equivalent to a list of assignments from the actual parameters to

the formals, and a return statement is an assignment from the re-

turn value to its receiver. The language includes statements reading

bytes from the packet but does not include statements that store

values into the packet. This is because, for parsing purposes, the

input packet is often read-only. Note that the abstract language

serves for demonstrating how we address the challenges discussed

in §4. Thus, for simplicity, we abstract away some common program

structures, e.g., pointers and loops, from the language. Dealing with

these structures is not our technical contribution. In §5.5, we discuss

how we handle them in our implementation.

Abstract Domain. An abstract value of a variable represents all

possible concrete values that may be assigned to the variable during

program execution. The abstract domain specifies the limited forms

of an abstract value. In our analysis, the abstract value of a variable

𝑣 is denoted as 𝑣 and defined in Figure 6. An abstract value could

be a constant or a special value length that represents the packet

Function 𝐹 := parse(pkt, len) { 𝑆 ; }
Statement 𝑆 := 𝑣1 ← 𝑣2 ::assign

| 𝑣1 ← 𝑣2 ⊕ 𝑣3 ::binary
| 𝑣1 ← pkt[𝑣2] ::read
| assert(𝑣1) ::assertion
| if𝜅 (𝑣) {𝑆1; } else {𝑆2; } ::branching
| 𝑆1;𝑆2 ::sequencing

⊕ ∈ {∧,∨, +,−,>,<,=,≠, . . . }
Figure 5: Language of target programs.

Abstract Value 𝑣̃ := 𝑐 ::constant
| length ::packet length
| 𝐵 [𝑣̃] ::byte in packet
| Θ𝜅 (𝑣̃1, 𝑣̃2) ::selection
| 𝑣̃1 ⊕ 𝑣̃2 ::binary operation

𝑣̃1 = Θ𝜅 (𝑣̃2, 𝑣̃2)
𝑣̃1 = 𝑣̃2

(1)

𝑣̃1 = Θ𝜅 (𝑣̃2, 𝑣̃3)
𝑣̃1 ⊕ 𝑣̃4 = Θ𝜅 (𝑣̃2 ⊕ 𝑣̃4, 𝑣̃3 ⊕ 𝑣̃4)

(2)

𝑣̃1 = Θ𝜅 (𝑣̃2, 𝑣̃3)
𝐵 [𝑣̃1] = Θ𝜅 (𝐵 [𝑣̃2], 𝐵 [𝑣̃3])

(3)

𝑣̃1 = Θ𝜅 (Θ𝜅 (𝑣̃2, 𝑣̃3), 𝑣̃4)
𝑣̃1 = Θ𝜅 (𝑣̃2, 𝑣̃4)

(4)

𝑣̃1 = Θ𝜅 (𝑣̃2,Θ𝜅 (𝑣̃3, 𝑣̃4))
𝑣̃1 = Θ𝜅 (𝑣̃2, 𝑣̃4)

(5)

Figure 6: Abstract values.

length. The (𝑣 + 1)th byte of the input packet is 𝐵 [𝑣]. We introduce

a new selection operator Θ𝜅 such that 𝑣 = Θ𝜅 (𝑣1, 𝑣2) means when

the if-statement at 𝜅 takes the true branch, we have 𝑣 = 𝑣1, 𝑣 = 𝑣2
otherwise. One may find that the operator Θ𝜅 is similar to the

operator 𝜙 in the classic SSA code form [36] because both of them

merge values from multiple branches. We note that Θ𝜅 differs from

𝜙 in two aspects. First, in the SSA form, 𝑣 = 𝜙 (𝑣1, 𝑣2) is always
placed at the end of a branching statement, whereas in our analysis

𝑣 = Θ𝜅𝑖 (𝑣1, 𝑣2) represents an abstract value of the variable 𝑣 and is

propagated to many other places where the variable 𝑣 is referenced.

Second, since 𝑣 = Θ𝜅 (𝑣1, 𝑣2) may be used at any place in the code,

we use the subscript 𝜅 to record the branching statement where it

originates. This is a critical design for the next step, i.e., the localized

graph unfolding, as illustrated later. An abstract value can also be

a first-order logic formula over other abstract values. To ease the

explanation, we only support binary formulas.

Figure 6 lists the rules that normalize expressions over abstract

values. Rule (1) states that we do not need aΘ𝜅 operator if wemerge

two equivalent values. Rules (2-3) state that any operation with a

Θ𝜅 -merged value is equivalent to operating on each value merged

by the Θ𝜅 operator. Rules (4-5) simplify nested Θ𝜅 operators.

Abstract Semantics. The abstract semantics describe how we

analyze a given protocol parser. They are described as transfer

functions of program statements. Each transfer function updates

the program’s abstract state, which is a pair (E,G). Given the set𝑉

of program variables and the set 𝑉̃ of abstract values, E : 𝑉 ↦→ 𝑉̃

maps a variable to its abstract value. We use E[𝑣 ↦→ 𝑣] to denote

updating the abstract value of the variable 𝑣 to 𝑣 . G is the output

AFG. Since AFG is an equivalent form of path constraint, we directly

create AFG without computing the path constraint first.

Figure 7 lists the transfer functions as inference rules. In each

rule, the part above the horizontal line includes a set of assumptions

and, under these assumptions, the bottom part describes the abstract

states before and after a statement 𝑆 , in the form of E,G ⊢ 𝑆 : E′,G′.
Initially, we assign the special abstract value length to the variable

1293

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Qingkai Shi, Junyang Shao, Yapeng Ye, Mingwei Zheng, and Xiangyu Zhang

E = ∅ G = ∅
E,G ⊢ parse(pkt, len) : E[len ↦→ length],G

init
E(𝑣2) = 𝑣̃2

E,G ⊢ 𝑣1 ← 𝑣2 : E[𝑣1 ↦→ 𝑣̃2],G
assign

E(𝑣2) = 𝑣̃2 E(𝑣3) = 𝑣̃3

E,G ⊢ 𝑣1 ← 𝑣2 ⊕ 𝑣3 : E[𝑣1 ↦→ 𝑣̃2 ⊕ 𝑣̃3],G
binary

E(𝑣2) = 𝑣̃2

E,G ⊢ 𝑣1 ← pkt[𝑣2] : E[𝑣1 ↦→ 𝐵 [𝑣̃2]],G
read

E(𝑣1) = 𝑣̃1

E,G ⊢ assert(𝑣1) : E,G ⊲⊳ AFG(𝑣̃1)
assertion

E1,G1 ⊢ 𝑆1 : E2,G2 E2,G2 ⊢ 𝑆2 : E3,G3

E1,G1 ⊢ 𝑆1;𝑆2 : E3,G3

sequencing

E(𝑣) = 𝑣̃ G1 = AFG(𝑣̃) G2 = AFG(¬𝑣̃)
E,G ⊲⊳ G1 ⊢ 𝑆1 : E𝜅 ,G ⊲⊳ G𝜅 E,G ⊲⊳ G2, ⊢ 𝑆2 : E¬𝜅 ,G ⊲⊳ G¬𝜅

E,G ⊢ if𝜅 (𝑣) {𝑆1; } else {𝑆2; } : mergeE(E𝜅 ,E¬𝜅 , 𝜅),G ⊲⊳ (G𝜅 ⊎ G¬𝜅)
branching

procedure mergeE(E1 , E2 , 𝜅)
foreach (𝑣, 𝑣̃1) ∈ E1 ∧ (𝑣, 𝑣̃2) ∈ E2 do E1 ← E1 [𝑣 ↦→ Θ𝜅 (𝑣̃1, 𝑣̃2)];
return E1 ;

Figure 7: Inference rules and auxiliary procedure.

len, which represents the length of input network packet. The rules

for assignment, binary operation, read operation, and assertion are

straightforward. For instance, in the rule for assertions, the abstract

value 𝑣1 represents a constraint that must be satisfied. Therefore,

we append the graph AFG(𝑣1) to the graph G. This is equivalent to
appending the constraint 𝑣1 to the current path constraint.

The sequencing rule states that, for two consecutive statements,

we analyze them in order, using the postcondition of the first state-

ment as the precondition for the second. In the branching rule, G
denotes the path constraint before the branching statement. G1
and G2 represent the branching condition and its negation. Thus,

G ⊲⊳ G1 and G ⊲⊳ G2 represent the initial path constraints before

the two branches. After analyzing the two branches, the resulting

AFGs are assumed to be G ⊲⊳ G𝜅 and G ⊲⊳ G¬𝜅 . The branching rule
states that, under these assumptions and after an if𝜅 -statement,

we merge the abstract states from both branches. The procedure

mergeE merges abstract values of the same variable via the Θ𝜅

operator. Graph merging is straightforward based on the definition

of AFG, which is equivalent to merging path constraints of the two

branches with the common prefix pulled out. Our merging is differ-

ent from the value merging in traditional analyses due to the use

of the selection operator. On one hand, merging allows achieving

scalability as the number of values is no longer exponential of the

number of statements. On the other hand, the selectors in abstract

values can be unfolded to support path-sensitive analysis if needed.

Packet Fields. The abstract interpretation builds the AFG to repre-

sent the path constraints. As discussed in §3, from these constraints,

it is direct to infer the endianness, field boundaries, and direction

fields. For instance, if multiple consecutive bytes, e.g., 𝐵 [0] and 𝐵 [1]
in Figure 4, belong to a single field, the field value, e.g., 𝐵 [0]𝐵 [1],
will be computed and occur in the path constraint.

High-Level Field Semantics.We also extend our analysis to infer

high-level field semantics, i.e., field names, using rich source code

information. Such high-level semantics can help better understand

a format, e.g., identifying checksum fields. As illustrated in Fig-

ure 4, we can name a field (via some variable name) by adding

extra path constraints. Formally, given the AFG G and a formula

over a field 𝐵 [𝑖 .. 𝑗], denoted as f(𝐵 [𝑖 .. 𝑗]), we name the field by

G ⊲⊳ AFG(name(𝐵 [𝑖 .. 𝑗]) = ‘var’) if there is a statement assigning

f(𝐵 [𝑖 .. 𝑗]) to the variable var. In addition to variable names, we also

leverage system APIs used in the code. For instance, if a field 𝐵 [𝑖 .. 𝑗]
is used in the system API, difftime(), it is likely to be a timestamp

field. In our experience, this method helps us identify many special

fields via names such as ‘length’, ‘version’, ‘checksum’, and ‘times-

tamp’, to name a few. If there are multiple options for naming a

field, we prefer the names inferred by system APIs because software

developers may not be careful to name program variables. If there

are still multiple options, we simply keep the first.

Example. Given the code in Figure 4(a), the abstract interpreta-

tion yields the AFG in (b) from top to bottom. After Line 5, we

merge the two paths forked from Line 3 and get the path con-

straint, name(𝐵 [4]) = ‘ctrl’ ∧ (𝐵 [5] = 0 ∨ 𝐵 [5] ≠ 0). By the

branching rule, we do not compute the path constraint but directly

create the equivalent AFG, i.e., the first two rows in Figure 4(b).

We name the byte 𝐵 [4] ‘ctrl’ because the arithmetic results of 𝐵 [4]
are assigned to the variable ctrl in both branches. The constraint

𝐵 [5] = 0 ∨ 𝐵 [5] ≠ 0 merges the branching constraints. Meanwhile,

the abstract store is updated such that ctrl = Θ𝜅3 (𝐵 [4] +1, 𝐵 [4] −1).
At Line 7, since the false branch aborts, we only consider the true

branch, for which we add 𝐵 [6] > 0 ∧ Θ𝜅3 (𝐵 [4] + 1, 𝐵 [4] − 1) = 0

to the path constraint. This is equivalent to adding the third and

fourth rows in Figure 4(b). At Lines 10-11, we add the constraint

𝐵 [0]𝐵 [1] = 10 ∧ name(𝐵 [0..1]) = ‘code’. This is equivalent to
adding the fifth and sixth rows in Figure 4(b). We regard 𝐵 [0] and
𝐵 [1] as a single field as they are used in a single value 𝐵 [0]𝐵 [1].

Similarly, after Line 15, we merge the paths forked from Line 11

as the constraint (𝐵 [3] = 0 ∨ 𝐵 [3] ≠ 0) ∧ name(𝐵 [2]) = ‘state’
and append it to the path constraint. This is equivalent to adding

the last row in Figure 4(b). After Line 15, we update the value

state = Θ𝜅13 (𝐵 [2] + 1, 𝐵 [2] − 1). In this example, the variable state
is simply printed at Line 16 and never used in any if-statements

or assertions. Hence, the merged value of state is abstracted away

from the final constraint. Observe that the size of AFG is linear size

with the number of statements. This is critical to scalability. □

Lemma 5.2. Given a program in the language defined in Figure 5,
the AFG produced by the abstract interpretation is sound and complete.

5.3 Localized Graph Unfolding
We observe that high-precision, i.e., path-sensitive, analysis is only

needed in localized regions during lifting (Challenge 1 in §4). In-

tuitively, a code region that requires path sensitivity is identified

as follows. If a Θ𝜅 -merged value is used in path constraint, each

branch of the if𝜅 -statement needs to be analyzed separately. How-

ever, given an if𝜅 -statement, if the path constraint we compute does

not include any Θ𝜅 -merged values, we do not need to separately

analyze its branches, meaning that path sensitivity is not necessary.

1294

Lifting Network Protocol Implementation to Precise Format Specification with Security Applications CCS ’23, November 26–30, 2023, Copenhagen, Denmark

… …

…

…

…

… … …

𝜌!
𝜌"

𝜌!#
𝜌"#

𝜌!##
𝜌"##

(a) Before unfolding (b) After unfolding

𝜌$𝜌$ 𝜌$

𝔾!! 𝔾¬!! 𝔾!! 𝔾¬!!

Figure 8: Example of unfolding an AFG.

In detail, given an AFG created by the abstract interpretation,

we eliminate all Θ𝜅 -merged values by a localized graph unfolding

algorithm shown in Algorithm 1. Assume that the AFG to unfold

contains a list of Θ𝜅 operators, e.g., Θ𝜅0 , Θ𝜅1 , and Θ𝜅2 . The algo-

rithm eliminates Θ𝜅𝑖 one by one. For each Θ𝜅𝑖 , it works in two

steps — slicing (Lines 3-7) and unfolding (Lines 8-11). To ease the

explanation, we use Figure 8 for illustration. In Figure 8(a), without

loss of generality, assume that we are unfolding Θ𝜅𝑖 in the AFG

and that only the constraints 𝜌1 and 𝜌2 contain Θ𝜅𝑖 -merged values.

The exiting vertices of G𝜅𝑖 and G¬𝜅𝑖 are shown in the figure.

Slicing. This step delimits the next unfolding step to a local region

in AFG. First, we find all exiting vertices of G𝜅𝑖 and G¬𝜅𝑖 . We then

perform a forward graph traversal (e.g., depth-first search) from the

exiting vertices. Denote the subgraph visited during the traversal

as G
forward

. Second, we identify all vertices containing Θ𝜅𝑖 -merged

values, e.g., 𝜌1 and 𝜌2 in Figure 8(a). A backward graph traversal

from them yields a subgraph denoted asG
backward

. The overlapping

part ofG
forward

andG
backward

, e.g., the yellow part in Figure 8(a), is

the graph slice where we will perform unfolding, denoted as G
slice

.

Unfolding. As illustrated in Figure 8(b), we copy the subgraph

to unfold, obtaining G
slice

and G′
slice

. The copy G
slice

is connected

to G𝜅𝑖 , and by the definition of the merging operator, all the Θ𝜅𝑖 -

merged values are replaced by its first operand. Similarly, the other

copy G′
slice

is connected to G¬𝜅𝑖 , and all the Θ𝜅𝑖 -merged values

are replaced by its second operand. Since the subgraphs to unfold

are limited in small local regions in practice, we significantly miti-

gate the path-explosion problem, which is sufficient to make our

approach scalable. Note that we do not claim to have a theoreti-

cal bound on the size of subgraphs that need to be unfolded, as

path explosion is still an open problem and cannot be completely

addressed in theory, similar to all previous path-sensitive analyzers.

Lemma 5.3. The unfolded AFG does not contain Θ𝜅 -merged values
and represents an equivalent constraint as the original AFG.

Example (continued). In Figure 4(b), the value merged by Θ𝜅3

indicates that the branches forked at Line 3 need a path-sensitive

analysis and delimits the analysis to the local region colored gray.

To distinguish the two branches, the gray region in (b) is unfolded

to two disjoint paths in (c), which eliminates the Θ-merged values

and make the two semantic relations among 𝐵 [4], 𝐵 [5], and 𝐵 [6]
explicit: 𝐵 [5] = 0∧𝐵 [6] > 0⇔ 𝐵 [4] +1 = 0; and 𝐵 [5] ≠ 0∧𝐵 [6] >

Algorithm 1: Unfolding.
1 Procedure unfold(G)
2 foreach operator Θ𝜅𝑖

in G do
3 Gforward ← subgraph reachable from but excluding G𝜅𝑖 and G¬𝜅𝑖 ;
4 V← all vertices including Θ𝜅𝑖

expressions;

5 Gbackward ← subgraph that can reach any vertex in V, including V;

6 Gslice ← overlapping subgraph of Gforward and Gbackward ;

7 G′
slice
← a copy of Gslice , including all its incoming/outgoing edges;

8 disconnect Gslice from G¬𝜅𝑖 ;
9 replace all Θ𝜅𝑖

expressions in Gslice with their first operands;

10 disconnect G′
slice

from G𝜅𝑖 ;

11 replace all Θ𝜅𝑖
expressions in G′

slice
with their second operands;

0 ⇔ 𝐵 [4] − 1 = 0. In contrast, the Θ𝜅13 value in variable state is
never used in any conditional, suggesting that we do not need to

path-sensitively analyze the branches led by Line 13. □

5.4 Localized Graph Reordering
As illustrated in Figure 4, bytes in a packet may not appear in the

order in a program path, e.g., 𝐵 [5] may precede 𝐵 [2]. To produce

legitimate BNF productions, we need to reorder them to produce the

ordered AFG (Challenge 2 in §4). To this end, we first define the con-

cepts of vertical decomposition (VD) and horizontal decomposition

(HD) of an AFG.

Definition 2 (VD). Given an unfolded AFG G = G1 ⊲⊳ G2 ⊲⊳

. . . ⊲⊳ G𝑛 , namely, the exit vertices in G𝑖 are fully connected to the

entry vertices in G𝑖+1, its vertical decomposition is the sequence of

subgraphs, denoted as VD(G) = G1G2 . . .G𝑛 .

Definition 3 (HD). Given an unfolded AFG G, its horizontal de-
composition is a set of subgraphs, each of which is rooted at a single

entry vertex in the AFG and includes the subgraph reachable from

the entry vertex, denoted as HD(G) = G1 |G2 | . . . |G𝑛 .

Figure 10(a) shows an example of vertical decomposition, where

the graph is decomposed into two parts, one containing the vertices

𝜌1 and 𝜌2, and the other containing the vertices 𝜌3, 𝜌4, and 𝜌5. The

graph in Figure 10(b) cannot be vertically decomposed because

the upper two vertices are not fully connected to the other three.

Instead, it can be horizontally decomposed into two parts, one

containing the vertices 𝜌1, 𝜌3, 𝜌4, and 𝜌5, and the other containing

the vertices 𝜌2, 𝜌
′
3
, and 𝜌 ′

5
. Here, 𝜌 ′

3
and 𝜌 ′

5
are copies of 𝜌3 and 𝜌5,

respectively. As illustrated in the example and stated in Lemma 5.4,

the AFGs before and after decomposition contain the same number

of paths and the constraint represented by each path is not changed.

Lemma 5.4. AFGs before and after decomposition are equivalent
in representing path constraint.

The decomposition has three properties. First, the horizontal

decomposition is more expensive than the vertical one as it may

copy vertices. Hence, Algorithm 2 always tries the vertical decom-

position first. Second, as stated in Lemma 5.5, the decomposition

can be recursively performed on a graph and its subgraphs. For

instance, after the horizontal decomposition in Figure 10(b), we

can further apply vertical decomposition to each subgraph. This

property allows us to describe our reordering approach as a re-

cursive process in Algorithm 2. Third, the vertical decomposition

follows the commutative law stated in Lemma 5.6. For instance,

1295

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Qingkai Shi, Junyang Shao, Yapeng Ye, Mingwei Zheng, and Xiangyu Zhang

B[6] > 0

B[5] ≠ 10 B[0]B[1] = 10

B[3] = 1

B[2] = 0

B[5] ≠ 10

B[6] > 0

B[4] = 0

B[6] < 0

B[5] ≠ 10 B[5] ≠ 10

B[6] > 0

B[4] = 0 B[4] ≠ 0

B[6] < 0

B[5] ≠ 10 B[5] ≠ 10

(a) VD (b) Reordering & Merging (c) HD (d) VD (e) Result

B[4] ≠ 0

B[0]B[1] = 10

B[3] = 1

B[2] ≠ 0B[2] = 0

B[0]B[1] = 10

B[3] = 1

B[2] ≠ 0B[2] = 0

𝔾a

𝔾b

𝔾c

𝔾e

𝔾d

𝔾1

𝔾2

𝔾3

𝔾4

B[2] ≠ 0

B[6] > 0

B[4] = 0

B[6] < 0

B[4] ≠ 0

B[4] = 0 B[4] ≠ 0

B[6] < 0

B[3] = 1

B[2] = 0 B[2] ≠ 0

B[0]B[1] = 10

B[5] ≠ 10

B[4] = 0 B[4] ≠ 0

B[5] ≠ 10

B[6] > 0 B[6] < 0

B[0]B[1] = 10

B[3] = 1

B[2] ≠ 0B[2] = 0

Figure 9: Example of Algorithm 2.

𝜌! 𝜌"

𝜌# 𝜌$ 𝜌%

𝔾1
𝔾2

𝜌"𝜌!

𝜌%𝜌$𝜌#

𝔾2
𝔾1

(a) Vertical Decomposition

(c) Commutative law of VD (b) Horizontal Decomposition

𝜌! 𝜌"

𝜌# 𝜌$ 𝜌%

𝜌!

𝜌# 𝜌$ 𝜌%

𝜌"

𝜌#& 𝜌%&

𝔾1 𝔾2

Figure 10: Decomposition for graph reordering.

after switching G1 and G2 in Figure 10(a), we get the graph in Fig-

ure 10(c), which is equivalent to the original graph because they

represent equivalent path constraints: (𝜌1 ∨ 𝜌2) ∧ (𝜌3 ∨ 𝜌4 ∨ 𝜌5)
and (𝜌3∨𝜌4∨𝜌5) ∧ (𝜌1∨𝜌2). Such a commutative property allows

us to reorder vertices in Algorithm 2.

Lemma 5.5. If an AFG with multiple vertices cannot be vertically
decomposed, each subgraph after horizontal decomposition contains
a single vertex or can be vertically decomposed.

Lemma 5.6. Switching the position of subgraphs in VD yields an
AFG that represents an equivalent constraint as the original AFG.

Algorithm 2 first tries to vertically decompose the input AFG

(Line 2). If failed, Lemma 5.5 allows us to horizontally decompose

it into subgraphs and recursively order each subgraph (Lines 14-

15). If VD succeeds in splitting AFG into a list of subgraphs, these

subgraphs are reordered by byte indices (Lines 3-5). Figure 9(a) and

Figure 9(b) illustrate this step. In Figure 9(a), the AFG is vertically

decomposed into five subgraphs,G𝑎 ,G𝑏 ,G𝑐 ,G𝑑 , andG𝑒 , which are
respectively put in five dashed boxes. The minimum byte indices of

the subgraphs are 5, 4, 3, 2, and 0. Figure 9(b) shows the AFG after

reordering the subgraphs based on the minimum byte indices. After

reordering, since G𝑎 and G𝑏 contain overlapping byte indices
1
,

they are merged into a single subgraph, i.e., G4 in Figure 9(b). In

this example, the subgraphs after reordering and merging are put

1
The range of byte indices in G𝑎 is [5, 5], and the range in G𝑏 is [4, 6]. The former is

a subset of the latter. Thus, they overlap each other.

Algorithm 2: Reordering.
1 Procedure reorder(G)
2 if VD(G) = G𝑎G𝑏 . . . then
3 reorder G𝑎 , G𝑏 , . . . , based on the min byte index of each subgraph;

4 merge adjacent subgraphs if they contain overlapping byte indices;

5 let A ← [G1 , G2 , . . .] be subgraphs after reordering and merging;

6 foreach G𝑖 ∈ A do
7 if G𝑖 = G𝑖,1 ⊲⊳ G𝑖,2 ⊲⊳ . . . is a merged graph then
8 assume G𝑖,𝑗 has multiple entry vertices;

9 switch the position of G𝑖,𝑗 and G𝑖,1 in G𝑖 ;

10 assume HD(G𝑖) = G𝑎′ |G𝑏′ | . . . ;
11 reorder(G𝑎′) ; reorder(G𝑏′) ; . . . ;
12 else
13 reorder(G𝑖) ;

14 else if HD(G) = G𝑎 |G𝑏 | . . . then
15 reorder(G𝑎) ; reorder(G𝑏) ; . . . ;
16 else // a single-vertex graph, do nothing

Algorithm 3: Packet Format in BNF.

1 Procedure bnf(G)
2 𝐿 ← new non-terminal symbol;

3 if VD(G) = G𝑎G𝑏 . . . then
4 𝐿 → bnf(G𝑎) bnf(G𝑏) . . . ;
5 else if HD(G) = G𝑎 |G𝑏 | . . . then
6 𝐿 → bnf(G𝑎) | bnf(G𝑏) | . . . ;
7 else

// a single vertex containing 𝐵 [𝑖], 𝐵 [𝑖 + 1], . . . , 𝐵 [𝑖 + 𝑘]
8 𝐿 → 𝐵 [𝑖]𝐵 [𝑖 + 1] . . . 𝐵 [𝑖 + 𝑘] with assertions in the vertex;

9 return 𝐿;

in the array A = [G1,G2,G3,G4]. These subgraphs are ordered
and contain mutually exclusive byte indices.

We then recursively reorder subgraphs in A (Lines 6-13). Espe-

cially, for a merged subgraph, e.g., G4 = G𝑎 ⊲⊳ G𝑏 in the example,

since we have tried vertical decomposition, which does not work as

neitherG𝑎 G𝑏 norG𝑏 G𝑎 respects the stream order, we turn to hori-

zontal decomposition (Lines 8-11). Lines 8-9 ensure the feasibility of

horizontal decomposition and Line 10 performs the decomposition.

Figure 9(c) illustrates this step, where the subgraph G4 is horizon-
tally decomposed into the white and the gray parts. Each part then

is recursively reordered (Line 11). Figure 9(d) shows that the white

and the gray parts are recursively split by vertical decomposition

and reordered as indicated by the arrows, yielding the ordered AFG

in Figure 9(e). Lemma 5.7 states the correctness of Algorithm 2.

1296

Lifting Network Protocol Implementation to Precise Format Specification with Security Applications CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Lemma 5.7. Algorithm 2 yields an ordered AFG, which represents
an equivalent constraint as the input AFG.

From Ordered AFG to BNF-like Format. It is straightforward
to translate an ordered AFG to packet formats in BNF. Due to its

simplicity, the detailed discussion is elided and the formal algo-

rithm is put in Algorithm 3. As an example, Figure 4(e) shows the

inferred packet format where 𝑆 is the start symbol that represents

the whole graph and each non-terminal 𝐿𝑖 represents a subgraph —

𝐿1 represents the path prefix containing 𝐵 [0], 𝐵 [1], and 𝐵 [2]; 𝐿2
and 𝐿3 represent two possible constraints of 𝐵 [3]; and 𝐿4 and 𝐿5
stand for the two path suffixes containing 𝐵 [4], 𝐵 [5], and 𝐵 [6].

5.5 Soundness and Completeness in Practice
Lemmas 5.1-5.7 together guarantee the theoretical soundness and

completeness of our approach for a program written in our abstract

language. In practice, we need to handle common program struc-

tures not included in the abstract language, such as function calls,

pointers, and loops. This section discusses how we handle them in

our implementation and their effects on soundness or completeness.

Pointers. In the previous discussion, we focus on building an AFG

for format inference. Pointer operations are not directly related

to AFG. In the implementation, we follow existing works [68] to

resolve pointer relations, which helps us identify what values may

be loaded from a memory location. For instance, when visiting an

assertion in the program such as assert(*(p + 1) > 1) where p is

a pointer, if the pointer analysis tells us p+1 points to a memory

location storing the value 𝐵 [5] on the condition 𝜌 , we then compute

and include the constraint 𝜌 ⇒ 𝐵 [5] > 1 (which equals¬𝜌∨𝐵 [5] >
1) in AFG. Pointer operations such as p+1 are not a part of path

constraints and, thus, are not included in AFG. That is, according

to the assertion rule in Figure 7 and assuming the AFG before the

assertion isG, the AFG after the assertion isG ⊲⊳ AFG(¬𝜌∨𝐵 [5] >
1). Since the pointer analysis we use is sound and path-sensitive, it

allows Netlifter to be sound and highly precise.

Function Calls. Although we do not include function calls in our

abstract language for simplicity, our system is inter-procedural as a

call statement is equivalent to a list of assignments from the actual

parameters to the formals, and a return statement is an assignment

from the return value to its receiver. Thus, in our analysis, function

calls and returns are treated as assignments. This treatment does

not degrade soundness and completeness. Especially, for recursive

function calls, we convert them to loops, which are discussed below.

Loops and Repetitive Fields. Loops in a protocol parser are often

used to parse repetitive fields [35]. We follow existing techniques

to analyze loops [64, 76], which are good at inferring repetitive

fields and how many times a field repeats. For example, the code

below parses a packet where 𝐵 [0] represents the packet length and

contains a positional constraint that all bytes after 𝐵 [0] are less than
five. For this example, we produce the production 𝑆 → 𝐵 [0]𝐵 [1]
with two semantic constraints: 𝐵 [1] < 5 and repeat(𝐵 [1]) = 𝐵 [0].

j = 0; while(j < packet[0]) { assert(packet[++j] < 5); }

Basically, the loop analysis works in two steps. First, they analyze

several iterations of a loop. For instance, it analyzes three iterations

and gets the results, 𝑗 = 1 ∧ 𝐵 [1] < 5, 𝑗 = 2 ∧ 𝐵 [2] < 5, and

𝑗 = 3 ∧ 𝐵 [3] < 5, for each iteration. Second, it inductively infers

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.

short compute_crc(char *buf, int len) {
short crc = 0x1d0f;
for (; len > 0; len--) {

crc = (crc >> 8) | (crc << 8);
crc ^= *buf++;
crc ^= (crc & 0xff) >> 4;
crc ^= crc << 12;
crc ^= (crc & 0xff) << 5;

}
return crc;

}

void parse_packet (char *buf, int len) {
…
short crc = buf[len - 1] << 8 | buf[len - 2];
assert (crc == compute_crc(buf, len – 2));
…

}

// read B[k] in (k+1)th iteration

// buf: packet; len: packet length

// crc: B[length -1]B[length - 2]
// crc == f (B[0], B[1], B[2], …)

Figure 11: An irregular loop that computes checksum.

the conditions. For instance, the above results can be inductively

summarized to 𝑗 = 𝑘 ∧ 𝐵 [𝑘] < 5, where 1 ≤ 𝑘 ≤ 𝐵 [0] is an
induction variable representing the iteration counter. Equivalently,

we write the constraint as 𝐵 [1] < 5 ∧ repeat(𝐵 [1]) = 𝐵 [0] and,
by the definition of AFG, represent it as an edge from a vertex

containing 𝐵 [1] < 5 to one containing repeat(𝐵 [1]) = 𝐵 [0]. If the
inductive inference succeeds, its result is sound and complete.

Irregular Loops. Nevertheless, not all loops can be inductively

summarized as above. This is an inherent limitation of static analy-

sis. For irregular loops, we follow the practice of bounded model

checking [23] to unroll loops a fixed number of times. While this

may introduce unsoundness and incompleteness, we observe few

irregular loops (involved in packet parsing) in practice and their

influence is limited. In other words, it may produce some unsound

or incomplete constraints for some fields in a packet but such un-

soundness and incompleteness are rarely propagated to other fields.

The most common irregular loops related to protocol formats are

those computing the checksum. Figure 11 shows an example where

the function compute_crc computes the CRC value as the checksum

and the function parse_packet compares the computed CRC value

to the received one in the packet. The CRC value is computed by

a loop, which cannot be inductively summarized. This is because,

unlike the variable 𝑗 in the previous example, we cannot write the

value of crc as a formula parameterized by the loop counter 𝑘 .

Thus, we unroll the loop a fixed number of times 𝑡 , yielding an

unsound and incomplete formula of crc that relies on 𝐵 [0], 𝐵 [1],
. . . , 𝐵 [𝑡 − 1], denoted as 𝑓 (𝐵 [0], 𝐵 [1], . . . , 𝐵 [𝑡 − 1]). At Line 16, this
formula is compared to the CRC field in the packet. Generally, by

the assertion rule in Figure 7, an AFG node with the constraint

𝐵 [length − 1]𝐵 [length − 2] = 𝑓 (𝐵 [0], 𝐵 [1], . . . , 𝐵 [𝑡 − 1]) should be

appended to the AFG. However, in the implementation, we skip

such unsound and incomplete constraints, so that they are not

included in the protocol format output by Netlifter. Excluding these

constraints keeps our inferred format sound but may lose some

precision (i.e., completeness) as we miss some constraints.

While we cannot compute precise non-recursive FOL constraints

for checksum fields (this is a limitation shared by existing works

on protocol format reverse engineering), as discussed in §5.2, we

can still infer the boundary of checksum fields. Such field bound-

aries, together with all sound constraints we compute, can already

support many security applications (see §6.3).

1297

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Qingkai Shi, Junyang Shao, Yapeng Ye, Mingwei Zheng, and Xiangyu Zhang

Table 1: Protocols and Their Codebases for Evaluation

Name Codebase Size Time Description
(kloc) (sec.)

L2CAP linux/bluetooth [7] 38 12 logical link ctrl and adaptation proto.

SMP linux/bluetooth [7] 12 2 low energy security manager proto.

APDU opensc [14] 3 3 application proto. data unit

OSDP libosdp [5] 14 27 open supervised device proto.

SSQ libssq [8] 8 1 source server query proto.

TCP/IP lwip [6] 41 53 transport control & internet proto.

IGMP/IP lwip [6] 17 16 internet group mgmt. & internet proto.

QUIC ngtcp2 [4] 59 11 general-purpose transport layer proto.

BABEL frrouting [3] 7 9 a distance-vector routing proto.

IS-IS frrouting [3] 22 6 intermediate system (IS) to IS proto.

A2MP linux/bluetooth [7] 16 2 amp manager proto.

BNEP linux/bluetooth [7] 15 3 BT network encapsulation proto.

CMTP linux/bluetooth [7] 20 1 c-api message transport proto.

HIDP linux/bluetooth [7] 17 4 human interface device proto.

UDP lwip [6] 37 33 user datagram proto.

ICMP lwip [6] 22 12 internet control message proto.

DHCP lwip [6] 25 43 dynamic host configuration proto.

ICMP6 lwip [6] 30 54 internet control message proto. v6

DHCP6 lwip [6] 35 51 dynamic host configuration proto. v6

BGP frrouting [3] 13 2 border gateway proto.

LDP frrouting [3] 20 5 label distribution proto.

BFD frrouting [3] 10 17 bidirectional forwarding detection

VRRP frrouting [3] 8 12 virtual router redundancy proto.

EIGRP frrouting [3] 14 21 interior gateway routing proto.

NHRP frrouting [3] 11 11 next hop resolution proto.

OSPF2 frrouting [3] 9 14 open shortest path first v2

OSPF3 frrouting [3] 7 16 open shortest path first v3

RIP1 frrouting [3] 11 13 routing information proto. v1

RIP2 frrouting [3] 11 15 routing information proto. v2

RIPng frrouting [3] 7 41 routing information proto. for ip6

6 EVALUATION
We implement our method as a tool, namely Netlifter, to lift packet

formats from source code in C. It is implemented on top of the

LLVM (12.0.0) compiler infrastructure [50] and the Z3 (4.8.12) SMT

solver [37]. The source code of a protocol is compiled into the LLVM

bitcode, where we perform our static analysis. In the analysis, Z3

is used to represent abstract values as symbolic expressions and

solve path constraints. All experiments are run on a Macbook Pro

(16-inch, 2019) equipped with an 8-core 16-thread Intel Core i9 CPU

with 2.30GHz speed and 32GB of memory.

As shown in Table 1, we have run Netlifter over a number of

protocols from different codebases (e.g., Linux and LWIP) and do-

mains (e.g., IoT and routing). They include widely-used ones such

as TCP/IP and niche ones like APDU that is used in smart cards. As

shown in the table, the code size of a protocol parser ranges from

3KLoC to 59KLoC, and it takes Netlifter <1min to infer the format of

each protocol. Determining the precision and recall of the inferred

formats requires manually comparing them with their official docu-

ments. We cannot afford to manually inspect all protocols because

we have to learn a lot of domain-specific knowledge to understand a

protocol, which is time-consuming and not very related to our core

contribution to the static analysis. In the remaining experiments,

we focus on the first ten, which are from different codebases. We

believe that other protocols in the same codebases are implemented

in similar manners and, thus, do not introduce extra challenges. We

use these protocols and codebases because of two reasons. First,

their repositories in GitHub are relatively active, which makes it

easy to get feedback from developers when we report bugs. Second,

they have their own fuzzing drivers, meaning that they have been

extensively fuzzed by the developers themselves. Thus, their code

is expected to be of high quality and an approach that can find

vulnerabilities in their codebase is highly effective.

0%

20%

40%

60%

80%

100%

L2
CAP

SM
P

APDU
OSD

P
SS

Q
TCP/IP

IG
MP/IP

QUIC
BABEL

IS-
IS

Abs. Interp. Unfolding Reordering

10800 10800 10800 10229 10800

12
2 3

27

1

53
16 11 9 6

1

10

100

1000

10000

100000

L2C
AP SM

P
AP
DU

OS
DP SSQ

TC
P/I
P

IGM
P/I
P
QU
IC
BA
BE
L

IS-
IS

KLEE NetLifter(a) Time cost (b) Decomposition of time cost

10800 10800 10800 10229 10800

12
2 3

27

1

53
16 11 9 6

1

10

100

1000

10000

100000

L2C
AP SM

P
AP
DU

OS
DP SSQ

TC
P/I
P

IGM
P/I
P
QU
IC
BA
BE
L

IS-
IS

KLEE NetLifter

0%

20%

40%

60%

80%

100%

L2
CAP

SM
P

APDU
OSD

P
SS

Q
TCP/IP

IG
MP/IP

QUIC
BABEL

IS-
IS

Abs. Interp. Unfolding Reordering

Figure 12: Time cost (seconds) and its decomposition.

6.1 Effectiveness of the Three-Step Design
For technical contributions, we explained in §4 that our static anal-

ysis avoids individually exploring program paths to address two

challenges. To show the importance of our solution, we implement

a baseline that employs a well-known symbolic executor, KLEE [28],

to infer packet formats. Similar to our solution, it infers packets by

computing path constraints. Different from our solution, it has to

analyze individual program paths. We then compare their time cost

of format inference. The results are shown in Figure 12(a) in log

scale. The line chart shows that the KLEE-based approach runs out

of time (≥ 3 hours) for almost all protocols. We use a three-hour

time budget here as it is sufficient to show the advantage of our ap-

proach over symbolic execution. As plotted in Figure 12(a), Netlifter

can finish in one minute. Figure 12(b) shows the decomposition

of Netlifter’s time cost, indicating that the three steps of Netlifter

respectively take 14%, 44%, and 42% of the total time.

6.2 Precision and Recall of Packet Formats
As discussed in §1, existing techniques focus on network trace anal-

ysis (category one) or dynamic program analysis (category two). We

refer to both of them as dynamic analyses as they rely on dynami-

cally captured network packets as their inputs. We cannot find any

static program analysis that infers formats from a protocol parser.

Thus, while the dynamic analyses have a different assumption from

our static analysis, not for a comparative purpose but to show the

value of our approach, we evaluate Netlifter with two network

trace analyses, i.e., NemeSys [46, 47] and NetPlier [77], and two

dynamic program analyses, i.e., AutoFormat [54] and Tupni [35].

NemeSys and NetPlier are open-source software and we directly

use their implementation. AutoFormat and Tupni are not publicly

available. We implement them on top of LLVM based on their pa-

pers. We cannot find other open-source dynamic program analyses

for evaluation. We evaluate them in terms of precision and recall.

Given a set of packets, the precision is the ratio of correctly inferred

fields in the packets to all inferred fields. The recall is the ratio of

correctly inferred fields to all fields in the ground truth. To compute

the precision and recall, we manually build the formats based on

the protocols’ official documents or source code. We then write

scripts to compare the inferred and the manually-built formats.

Dynamic Analysis. To use dynamic analyses, we follow their

original works to collect 1000 network packets for each protocol

from publicly available datasets [9, 12, 63]. Table 2 shows the pre-

cision and recall of the inferred field boundaries. Network trace

analyses often exhibit low precision (<50%) and recall (<50%), be-

cause they use statistical approaches to align message fields while

1298

Lifting Network Protocol Implementation to Precise Format Specification with Security Applications CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Table 2: Precision(%)/Recall(%) of Field Boundaries.

Protocol Netlifter NemeSys NetPlier AutoFormat Tupni Combined

L2CAP 96/98 14/9 14/15 72/32 88/41 66/49

SMP 100/100 27/37 20/52 100/52 96/78 45/82

APDU 100/100 52/21 43/45 44/25 100/61 58/71

OSDP 100/100 17/11 10/16 74/31 89/47 43/52

SSQ 100/100 25/1 26/11 88/19 95/54 41/67

TCP/IP 98/95 5/7 4/12 24/19 88/21 39/25

IGMP/IP 99/98 13/12 13/22 35/22 92/25 54/36

QUIC 97/99 19/14 18/25 70/29 86/43 69/53

BABEL 99/99 28/14 37/8 43/16 80/24 40/28

IS-IS 98/99 23/5 19/14 100/34 87/21 62/42

Table 3: Precision(%)/Recall(%) of Field Names.

L2CAP SMP APDU OSDP SSQ

100/97 100/96 100/100 100/100 100/100

TCP/IP IGMP/IP QUIC BABEL IS-IS

100/95 100/98 96/96 100/95 100/94

statistical approaches are known to have inherent uncertainty and

their effectiveness heavily hinges on the quality of input packets.

The two dynamic program analyses, especially Tupni, signifi-

cantly improve the precision due to the analysis of control and data

flows in the code. AutoFormat has a relatively low precision be-

cause it tracks coarse-grained control and data flows. For instance,

AutoFormat regards consecutive bytes of a packet processed in

the same calling context as a single field. However, it is common

for a parser to process multiple fields in the same calling context.

Tupni tracks more fine-grained control and data flows, such as

predicates in the code, and, thus, exhibits higher precision. As ac-

knowledged by Tupni itself, it may also produce false fields in many

cases. For instance, when the value of a multi-byte field is computed

by multiple instructions over every single byte in the field, it will

incorrectly split the field into multiple fields. Despite the high preci-

sion achieved by Tupni, the key problem of these dynamic analyses

is their coverage (i.e., recall), which is often lower than 50% and

may compromise downstream security analyses as discussed in the

next subsection.

Note that simply combining the results of multiple tools does not

help improve the quality of the inferred formats. This is because,

when combining the formats inferred by multiple tools, with the

increase of correctly inferred fields, the number of incorrect fields

also increases. For instance, after combining the results of the four

dynamic tools, the precision for OSDP is 0.43, which is even worse

than the result when using Tupni independently. The combined

results are shown in the last column of Table 2.

Static Analysis. Table 2 shows that, in terms of field boundaries,

our inferred formats cover >96% formats and produce <4% false

ones. For many of them, we can produce absolutely correct formats.

We also miss some fields and report some false ones due to the

inherent limitations of static analysis (see §9). These limitations,

e.g., the incapability of handling inline-assembly in the source

code, lets us lose information, thereby leading to the false formats.

Table 3 also shows the quality of the inferred field names. A name

is considered to be correct if it is the same as the official documents

or a reasonable abbreviation, e.g., ‘len’ vs. ‘length’. Overall, we can
infer >94% field names with a precision >96%. The names provide

high-level semantics and help us identify special fields to facilitate

security applications as discussed next.

0

0.2

0.4

0.6

0.8

1

L2CAP SMP APDU OSDP SSQ TCP/IP IGMP/IP QUIC BABEL ISIS

NetLifter NetPlier Tupni

Figure 13: The y-axis is the number of covered branches
normalized to one. It shows the branch coverage averaged
over twenty runs with a 95% confidence interval.

6.3 Security Applications
Protocol Fuzzing. To show the value of our approach, we respec-

tively input the formats inferred by Netlifter, NetPlier, and Tupni to

a typical grammar-based (i.e., format-based) protocol fuzzer, namely

BooFuzz [11, 13]. Particularly, since we can locate checksum fields

by names such as ‘checksum’ and ‘crc’, in the fuzzing experiments,

we can skip the checksum checks in the code. This is critical for

fuzzing as random mutations in fuzzing can easily invalidate the

checksum values [70]. The experiments are performed on a three-

hour budget and repeated twenty times to avoid random factors.

We use a three-hour budget because we observe that the baseline

fuzzers rarely achieve new coverage after three hours.

The results are shown in Figure 13. Since Netlifter can provide

formats with precise field boundaries and semantic constraints,

Netlifter-enhanced BooFuzz achieves 1.2× to 3.6× coverage com-

pared to others. We also detected 53 zero-day vulnerabilities while

the others detect only 12. All detected vulnerabilities are exploitable

as they can be triggered via crafted network packets. To date, 47 of

them have been assigned CVEs. We can detect more bugs as our

inferred formats are of both high precision and high coverage. In

the extended version of this paper [66], we provide more details

about the fuzzing experiments and the detected bugs.

Traffic Auditing and Intrusion Detection. The extended ver-

sion of this paper [66] also provides a case study of applying our

approach to network traffic auditing and intrusion detection. We

conclude that the precise and high-coverage formats inferred by us

are critical in these security applications.

7 RELATEDWORK
We discuss some typical existing works in this section. For a broader

overview, we refer readers to four surveys [40, 52, 61, 67].

Network Trace Analysis (NTA). NTA uses statistical methods to

identify field boundaries based on runtime network packets. Dis-

coverer [33] relies on a recursive clustering approach to recognize

packets of the same type. Biprominer [71] uses the variable length

pattern to locate protocol keywords and is enhanced by ProDe-

coder [72]. AutoReEngine [57] uses data mining to identify proto-

col keywords, based on which packets are classified into different

types. ReverX [20] uses a speech recognition algorithm to identify

delimiters in packets. NemeSys [46, 47] interprets binary packets as

feature vectors and applies an alignment and clustering algorithm

to determine the packet format. NetPlier [77] leverages a probabilis-

tic analysis to determine the keyword field, clusters packets based

on the keyword values, and applies multi-sequence alignment to

1299

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Qingkai Shi, Junyang Shao, Yapeng Ye, Mingwei Zheng, and Xiangyu Zhang

derive packet format. These techniques analyze neither the binary

nor the source code and, thus, are different from ours.

Dynamic Program Analysis (DPA). DPA can be used over both

source and binary code. They work by running protocol parsers

against network packets and monitoring runtime control or data

flows. Polyglot [27] uses dynamic taint analysis to infer fixed or

variable length fields. AutoFormat [54] approximates the field hi-

erarchical structure by monitoring call stacks. This approach then

is extended to both bottom-up and top-down hierarchical struc-

tures [55]. Wondracek et al. [75] identify delimiters and length

fields within a hierarchical structure. Tupni [35] tracks fine-grained

taint flows to identify packet fields. It also applies loop analysis to

infer repeated fields and records path constraints to infer length or

checksum fields. ReFormat [74] recognizes encrypted fields based

on the observation that encrypted fields are processed by a high

percentage of arithmetic/bitwise instructions. Our approach can

be easily extended with the same observation, i.e., by counting

relevant instructions to recognize an encrypted field. In addition

to inferring the formats of received packets, Dispatcher [26] and

P2C [48] reverse engineer the formats of packets to be sent and,

thus, are different from all aforementioned approaches and ours.

Static Program Analysis (SPA). There are a few SPAs for reverse

engineering protocols. However, they either infer the formats of

packets to be sent via imprecise abstract domain [53] or focus on

cryptographic mechanisms [21]. Our approach precisely infers the

format of received packets and, thus, is different from these works.

8 CONCLUSION
We propose a static analysis that can infer protocol formats with

both high precision and high recall. Hence, the formats significantly

enhance network protocol fuzzing, traffic auditing, and intrusion

detection. Particularly, our format-inference technique has helped

existing protocol fuzzers find 53 zero-day vulnerabilities.

9 LIMITATIONS AND FUTUREWORK
Our static analysis currently is implemented for C and does not sup-

port C++ due to the difficulty in analyzing virtual tables. We focus

on the source code and do not handle inline assembly and libraries

that do not have code available. We believe these limitations can

be addressed with more engineering work. For instance, we can

use class hierarchical analysis, e.g., [39], to deal with virtual tables

and support C++. We can use existing disassembly techniques, e.g.,

[59], to support inline assembly. We leave them as our future work.

As discussed earlier, Netlifter employs existing techniques to deal

with pointers and loops. Thus, it inherits their limitations. A com-

mon limitation shared by both Netlifter and all recent techniques

is that the quality of inferred formats relies on the protocol imple-

mentation. For instance, if the implementation ignores a field, the

output formats will ignore it, either. Nevertheless, we have shown

that Netlifter is promising in practice via a set of experiments.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their comments and sug-

gestions. This work was supported in part by DARPA VSPELLS

HR001120S0058, NSF1901242 and 1910300, ONR N000141712045,

N000141410468 and N000141712947. Any opinions, findings, and

conclusions in this paper are those of the authors only and do not

necessarily reflect the views of our sponsors.

REFERENCES
[1] 2018. 2018 IBM X-Force Report. https://securityintelligence.com/2018-ibm-x-

force-report-shellshock-fades-gozi-rises-and-insider-threats-soar/. (2018).

[2] 2022. Documents of OSDP. https://libosdp.gotomain.io/. (2022).

[3] 2022. The FRRouting protocol suite. https://github.com/FRRouting/frr. (2022).

[4] 2022. The IETF QUIC protocol. https://github.com/ngtcp2/ngtcp2. (2022).

[5] 2022. Implementation of OSDP. https://github.com/goToMain/libosdp. (2022).

[6] 2022. A lightweight TCPIP stack. https://github.com/lwip-tcpip/lwip. (2022).

[7] 2022. Linux kernel source tree. https://github.com/torvalds/linux. (2022).

[8] 2022. A modern source server query protocol library written in C. https://github.

com/BinaryAlien/libssq. (2022).

[9] 2022. Network forensics tools and datasets. https://github.com/

MartinaZembjakova/Network-forensic-tools-taxonomy. (2022).

[10] 2022. Network intrution & prevention systems. https://www.snort.org/. (2022).

[11] 2022. Network protocol fuzzing. https://github.com/jtpereyda/boofuzz. (2022).

[12] 2022. Packet captures. https://packetlife.net/captures. (2022).

[13] 2022. A pure-python fully automated and unattended fuzzing framework. https:

//github.com/OpenRCE/sulley. (2022).

[14] 2022. Smart card tools. https://github.com/OpenSC/OpenSC. (2022).

[15] 2022. Wireshark. https://www.wireshark.org//. (2022).

[16] 2023. American fuzzy lop. https://lcamtuf.coredump.cx/afl/. (2023).

[17] 2023. Lifting network implementation to precise format specification. https:

//github.com/qingkaishi/netlifter. (2023).

[18] 2023. Top-down parsing. https://wikipedia.org/wiki/Top-down_parsing. (2023).

[19] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2007. Compilers:
Principles, Techniques, and Tools. Pearson Addison Wesley.

[20] Joao Antunes, Nuno Neves, and Paulo Verissimo. 2011. Reverse engineering of

protocols from network traces. In Working Conference on Reverse Engineering
(WCRE ’11). IEEE, 169–178.

[21] Matteo Avalle, Alfredo Pironti, and Riccardo Sisto. 2014. Formal verification of

security protocol implementations: a survey. Formal Aspects of Computing 26, 1

(2014), 99–123.

[22] Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. 2017. Synthesizing

program input grammars. InACMSIGPLANConference on Programming Language
Design and Implementation (PLDI ’17). ACM, 95–110.

[23] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. 1999. Sym-

bolic model checking without BDDs. In Proceedings of the 5th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems (TACAS
’99). Springer, 193–207.

[24] Steve Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell, Michael Smith,

and Keith Wansbrough. 2005. Rigorous Specification and Conformance Testing

Techniques for Network Protocols, as Applied to TCP, UDP, and Sockets. In

Proceedings of the 2005 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications (SIGCOMM ’05). ACM, 265–276.

[25] Steve Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell, Michael Smith,

and Keith Wansbrough. 2006. Engineering with Logic: HOL Specification

and Symbolic-Evaluation Testing for TCP Implementations. In ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’06). ACM,

55–66.

[26] Juan Caballero, Pongsin Poosankam, Christian Kreibich, and Dawn Song. 2009.

Dispatcher: Enabling Active Botnet Infiltration UsingAutomatic Protocol Reverse-

Engineering. In ACM Conference on Computer and Communications Security (CCS
’09). ACM, 621–634.

[27] Juan Caballero, Heng Yin, Zhenkai Liang, and Dawn Song. 2007. Polyglot: Auto-

matic Extraction of Protocol Message Format Using Dynamic Binary Analysis.

In ACM Conference on Computer and Communications Security (CCS ’07). ACM,

317–329.

[28] Cristian Cadar, Daniel Dunbar, Dawson R. Engler, et al. 2008. KLEE: Unassisted

and automatic generation of high-coverage tests for complex systems programs.

In Proceedings of the 8th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’08). USENIX, 209–224.

[29] Chia Yuan Cho, Domagoj Babić, Eui Chul Richard Shin, and Dawn Song. 2010.

Inference and Analysis of Formal Models of Botnet Command and Control Pro-

tocols. In ACM Conference on Computer and Communications Security (CCS ’10).
ACM, 426–439.

[30] Paolo Milani Comparetti, Gilbert Wondracek, Christopher Kruegel, and Engin

Kirda. 2009. Prospex: Protocol specification extraction. In 2009 30th IEEE Sympo-
sium on Security and Privacy (S&P ’09). IEEE, 110–125.

[31] Patrick Cousot and Radhia Cousot. 1979. Systematic design of program analysis

frameworks. In Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages (POPL ’79). ACM, 269–282.

[32] Dave Crocker and Paul Overell. 1997. Augmented BNF for syntax specifications:
ABNF. Technical Report. RFC 2234.

1300

https://securityintelligence.com/2018-ibm-x-force-report-shellshock-fades-gozi-rises-and-insider-threats-soar/
https://securityintelligence.com/2018-ibm-x-force-report-shellshock-fades-gozi-rises-and-insider-threats-soar/
https://libosdp.gotomain.io/
https://github.com/FRRouting/frr
https://github.com/ngtcp2/ngtcp2
https://github.com/goToMain/libosdp
https://github.com/lwip-tcpip/lwip
https://github.com/torvalds/linux
https://github.com/BinaryAlien/libssq
https://github.com/BinaryAlien/libssq
https://github.com/MartinaZembjakova/Network-forensic-tools-taxonomy
https://github.com/MartinaZembjakova/Network-forensic-tools-taxonomy
https://www.snort.org/
https://github.com/jtpereyda/boofuzz
https://packetlife.net/captures
https://github.com/OpenRCE/sulley
https://github.com/OpenRCE/sulley
https://github.com/OpenSC/OpenSC
https://www.wireshark.org//
https://lcamtuf.coredump.cx/afl/
https://github.com/qingkaishi/netlifter
https://github.com/qingkaishi/netlifter
https://wikipedia.org/wiki/Top-down_parsing

Lifting Network Protocol Implementation to Precise Format Specification with Security Applications CCS ’23, November 26–30, 2023, Copenhagen, Denmark

[33] Weidong Cui, Jayanthkumar Kannan, and Helen Wang. 2007. Discoverer: Au-

tomatic protocol reverse engineering from network traces. In USENIX Security
Symposium (Security ’07). USENIX, 199–212.

[34] Weidong Cui, Vern Paxson, Nicholas Weaver, and Randy H Katz. 2006. Protocol-

independent adaptive replay of application dialog.. In Network and Distributed
System Security Symposium (NDSS ’06). Internet Society, 1–15.

[35] Weidong Cui, Marcus Peinado, Karl Chen, Helen J. Wang, and Luis Irun-Briz. 2008.

Tupni: Automatic Reverse Engineering of Input Formats. In ACM Conference on
Computer and Communications Security (CCS ’08). ACM, 391–402.

[36] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth

Zadeck. 1989. An efficient method of computing static single assignment form.

In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’89). ACM, 25–35.

[37] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In

International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS ’08). Springer, 337–340.

[38] Joeri De Ruiter and Erik Poll. 2015. Protocol State Fuzzing of TLS Implementations.

In USENIX Security Symposium (Security ’15). USENIX, 193–206.
[39] Jeffrey Dean, David Grove, and Craig Chambers. 1995. Optimization of object-

oriented programs using static class hierarchy analysis. In Proceedings of the
9th European Conference on Object-Oriented Programming (ECOOP ’95). Springer,
77–101.

[40] Julien Duchene, Colas Le Guernic, Eric Alata, Vincent Nicomette, and Mohamed

Kaâniche. 2018. State of the art of network protocol reverse engineering tools.

Journal of Computer Virology and Hacking Techniques 14, 1 (2018), 53–68.
[41] Hugo Gascon, ChristianWressnegger, Fabian Yamaguchi, Daniel Arp, and Konrad

Rieck. 2015. Pulsar: Stateful black-box fuzzing of proprietary network protocols.

In International Conference on Security and Privacy in Communication Systems
(SecureComm ’15). Springer, 330–347.

[42] Rahul Gopinath, Björn Mathis, and Andreas Zeller. 2020. Mining Input Grammars

from Dynamic Control Flow. In ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE ’20). ACM, 172–183.

[43] Matthias Höschele and Andreas Zeller. 2016. Mining input grammars from

dynamic taints. In International Conference on Automated Software Engineering
(ASE ’16). ACM, 720–725.

[44] Bahruz Jabiyev, Steven Sprecher, Anthony Gavazzi, Tommaso Innocenti, Kaan

Onarlioglu, and Engin Kirda. 2022. FRAMESHIFTER: Security Implications

of HTTP/2-to-HTTP/1 Conversion Anomalies. In USENIX Security Symposium
(Security ’22). USENIX, 1061–1075.

[45] James C. King. 1976. Symbolic execution and program testing. Commun. ACM
19, 7 (1976), 385–394.

[46] Stephan Kleber, Henning Kopp, and Frank Kargl. 2018. NEMESYS: Network

message syntax reverse engineering by analysis of the intrinsic structure of

individual messages. In USENIX Workshop on Offensive Technologies (WOOT ’18).
USENIX, 1–13.

[47] Stephan Kleber, Rens W. van der Heijden, and Frank Kargl. 2020. Message Type

Identification of Binary Network Protocols using Continuous Segment Similarity.

In IEEE Conference on Computer Communications (INFOCOM ’20). IEEE, 2243–
2252.

[48] Yonghwi Kwon, Fei Peng, Dohyeong Kim, Kyungtae Kim, Xiangyu Zhang,

Dongyan Xu, Vinod Yegneswaran, and John Qian. 2015. P2C: Understanding

output data files via on-the-fly transformation from producer to consumer execu-

tions. In Network and Distributed System Security Symposium (NDSS ’15). Internet
Society, 1–14.

[49] Patrick LaRoche, ANur Zincir-Heywood, andMalcolm I Heywood. 2012. Network

protocol discovery and analysis via live interaction. In European Conference on
the Applications of Evolutionary Computation (ECAEC ’12). Springer, 11–20.

[50] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for

lifelong program analysis & transformation. In Proceedings of the 2nd International
Symposium on Code Generation and Optimization (CGO ’04). IEEE, 75:1–75:12.

[51] Corrado Leita, Ken Mermoud, and Marc Dacier. 2005. ScriptGen: an automated

script generation tool for Honeyd. In Annual Computer Security Applications
Conference (ACSAC ’05). IEEE, 203–214.

[52] Xiangdong Li and Li Chen. 2011. A survey on methods of automatic proto-

col reverse engineering. In Proceedings of the 7th International Conference on
Computational Intelligence and Security (CIS ’11). IEEE, 685–689.

[53] Junghee Lim, Thomas Reps, and Ben Liblit. 2006. Extracting output formats from

executables. In Working Conference on Reverse Engineering (WCRE ’06). IEEE,
167–178.

[54] Zhiqiang Lin, Xuxian Jiang, Dongyan Xu, and Xiangyu Zhang. 2008. Automatic

protocol format reverse engineering through context-aware monitored execu-

tion. In Network and Distributed System Security Symposium (NDSS ’08). Internet
Society, 1–15.

[55] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. 2010. Reverse engineering

input syntactic structure from program execution and its applications. IEEE
Transactions on Software Engineering 36, 5 (2010), 688–703.

[56] Min Liu, Chunfu Jia, Lu Liu, and ZhiWang. 2013. Extracting sent message formats

from executables using backward slicing. In Proceedings of the 4th International
Conference on Emerging Intelligent Data and Web Technologies (EIDWT ’13). IEEE,
377–384.

[57] Jian-Zhen Luo and Shun-Zheng Yu. 2013. Position-based automatic reverse

engineering of network protocols. Journal of Network and Computer Applications
36, 3 (2013), 1070–1077.

[58] Chris McMahon Stone, Sam L. Thomas, Mathy Vanhoef, James Henderson, Nico-

las Bailluet, and Tom Chothia. 2022. The Closer You Look, The More You Learn:

A Grey-Box Approach to Protocol State Machine Learning. In ACM SIGSAC Con-
ference on Computer and Communications Security (CCS ’22). ACM, 2265–2278.

[59] Kenneth Miller, Yonghwi Kwon, Yi Sun, Zhuo Zhang, Xiangyu Zhang, and

Zhiqiang Lin. 2019. Probabilistic disassembly. In International Conference on
Software Engineering (ICSE ’19). IEEE, 1187–1198.

[60] Madanlal Musuvathi, Dawson R Engler, et al. 2004. Model Checking Large

Network Protocol Implementations. In Proceedings of the 1st USENIX Symposium
on Networked Systems Design and Implementation (NSDI ’04). USENIX, 1–14.

[61] John Narayan, Sandeep Shukla, and Charles Clancy. 2015. A survey of automatic

protocol reverse engineering tools. Comput. Surveys 48, 3 (2015), 1–26.
[62] P. Oehlert. 2005. Violating assumptions with fuzzing. IEEE Security & Privacy 3,

2 (2005), 58–62.

[63] Markus Ring, Sarah Wunderlich, Deniz Scheuring, Dieter Landes, and Andreas

Hotho. 2019. A survey of network-based intrusion detection data sets. Computers
& Security 86, 1 (2019), 147–167.

[64] Prateek Saxena, Pongsin Poosankam, Stephen McCamant, and Dawn Song. 2009.

Loop-extended symbolic execution on binary programs. In ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis (ISSTA ’09). ACM, 225–236.

[65] Maxim Shevertalov and Spiros Mancoridis. 2007. A Reverse Engineering Tool

for Extracting Protocols of Networked Applications. InWorking Conference on
Reverse Engineering (WCRE ’07). IEEE, 229–238.

[66] Qingkai Shi, Junyang Shao, Yapeng Ye, Mingwei Zheng, and Xiangyu Zhang.

2023. Lifting Network Protocol Implementation to Precise Format Specification

with Security Applications. arXiv preprint arXiv:2305.11781 (2023).
[67] Baraka D Sija, Young-Hoon Goo, Kyu-Seok Shim, Huru Hasanova, and Myung-

Sup Kim. 2018. A survey of automatic protocol reverse engineering approaches,

methods, and tools on the inputs and outputs view. Security and Communication
Networks 2018, 8370341 (2018), 1–17.

[68] Yulei Sui, Sen Ye, Jingling Xue, and Pen-Chung Yew. 2011. SPAS: Scalable path-

sensitive pointer analysis on full-sparse SSA. In Proceedings of the 9th Asian
Symposium on Programming Languages and Systems (APLAS ’11). Springer, 155–
171.

[69] Fei Wang, Jianliang Wu, Yuhong Nan, Yousra Aafer, Xiangyu Zhang, Dongyan

Xu, and Mathias Payer. 2022. ProFactory: Improving IoT Security via Formalized

Protocol Customization. In USENIX Security Symposium (Security ’22). USENIX,
1–18.

[70] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. 2010. TaintScope: A checksum-

aware directed fuzzing tool for automatic software vulnerability detection. In

IEEE Symposium on Security and Privacy (S&P ’10). IEEE, 497–512.
[71] Yipeng Wang, Xingjian Li, Jiao Meng, Yong Zhao, Zhibin Zhang, and Li Guo.

2011. Biprominer: Automatic mining of binary protocol features. In International
Conference on Parallel and Distributed Computing, Applications and Technologies
(PDCAT ’11). IEEE, 179–184.

[72] Yipeng Wang, Xiaochun Yun, M Zubair Shafiq, Liyan Wang, Alex X Liu, Zhibin

Zhang, Danfeng Yao, Yongzheng Zhang, and Li Guo. 2012. A semantics aware

approach to automated reverse engineering unknown protocols. In IEEE Interna-
tional Conference on Network Protocols (ICNP ’12). IEEE, 1–10.

[73] Yipeng Wang, Zhibin Zhang, Danfeng Daphne Yao, Buyun Qu, and Li Guo. 2011.

Inferring protocol state machine from network traces: a probabilistic approach.

In International Conference on Applied Cryptography and Network Security (ACNS
’11). Springer, 1–18.

[74] Zhi Wang, Xuxian Jiang, Weidong Cui, Xinyuan Wang, and Mike Grace. 2009.

ReFormat: Automatic reverse engineering of encrypted messages. In European
Symposium on Research in Computer Security (ESORICS ’09). Springer, 200–215.

[75] Gilbert Wondracek, Paolo Milani Comparetti, Christopher Kruegel, Engin Kirda,

and Scuola Superiore S Anna. 2008. Automatic network protocol analysis. In

Network and Distributed System Security Symposium (NDSS ’08). Internet Society,
1–18.

[76] Xiaofei Xie, Bihuan Chen, Yang Liu, Wei Le, and Xiaohong Li. 2016. Proteus:

Computing disjunctive loop summary via path dependency analysis. In ACM
SIGSOFT International Symposium on the Foundations of Software Engineering
(FSE ’16). ACM, 61–72.

[77] Yapeng Ye, Zhuo Zhang, Fei Wang, Xiangyu Zhang, and Dongyan Xu. 2021.

NetPlier: Probabilistic network protocol reverse engineering from message traces.

In Symposium on Network and Distributed System Security (NDSS ’21). Internet
Society, 1–18.

[78] Zhao Zhang, Qiao-Yan Wen, and Wen Tang. 2012. Mining Protocol State Ma-

chines by Interactive Grammar Inference. In International Conference on Digital
Manufacturing & Automation (ICDMA ’12). IEEE, 524–527.

1301

	Abstract
	1 Introduction
	2 Motivation
	2.1 Limitations of Existing Techniques
	2.2 Our Solution and Security Applications

	3 Background and Overview
	4 Technical Challenges
	5 Design
	5.1 Abstract Format Graph
	5.2 Abstract Interpretation
	5.3 Localized Graph Unfolding
	5.4 Localized Graph Reordering
	5.5 Soundness and Completeness in Practice

	6 Evaluation
	6.1 Effectiveness of the Three-Step Design
	6.2 Precision and Recall of Packet Formats
	6.3 Security Applications

	7 Related Work
	8 Conclusion
	9 Limitations and Future Work
	References

