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ABSTRACT
Multiple works have leveraged the public Bitcoin ledger to es-

timate the revenue cybercriminals obtain from their victims. Es-
timations focusing on the same target often do not agree, due to
the use of different methodologies, seed addresses, and time peri-
ods. These factors make it challenging to understand the impact of
their methodological differences. Furthermore, they underestimate
the revenue due to the (lack of) coverage on the target’s payment
addresses, but how large this impact remains unknown.

In this work, we perform the first systematic analysis on the
estimation of cybercrime bitcoin revenue. We implement a tool that
can replicate the different estimation methodologies. Using our tool
we can quantify, in a controlled setting, the impact of the different
methodology steps. In contrast to what is widely believed, we show
that the revenue is not always underestimated. There exist method-
ologies that can introduce huge overestimation. We collect 30,424
payment addresses and use them to compare the financial impact
of 6 cybercrimes (ransomware, clippers, sextortion, Ponzi schemes,
giveaway scams, exchange scams) and of 141 cybercriminal groups.
We observe that the popular multi-input clustering fails to discover
addresses for 40% of groups. We quantify, for the first time, the
impact of the (lack of) coverage on the estimation. For this, we
propose two techniques to achieve high coverage, possibly nearly
complete, on the DeadBolt server ransomware. Our expanded cov-
erage enables estimating DeadBolt’s revenue at $2.47M, 39 times
higher than the estimation using two popular Internet scan engines.
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1 INTRODUCTION
The Bitcoin ecosystem has attracted cybercriminal activities such as
ransomware [24, 36, 43, 53, 55, 64, 65], thefts [45], scams [16, 17, 42,
45, 54, 71], human trafficking [56], clippers [31], cryptojacking [37,
67], hidden marketplaces [23, 41, 60], and money laundering [47].
Cybercriminals often request payments in bitcoins from victims that
fall for their scams or are infected with their malware. The public
nature of the Bitcoin ledger has been leveraged by multiple works
to estimate the revenue cybercriminals obtain from victims [17, 24,
36, 37, 41–43, 52–54, 64, 71]. An accurate estimation of the financial
impact on victims is fundamental for understanding the cybercrime
ecosystem, e.g., for comparing the revenue of different types of
cybercrime, such as ransomware versus sextortion. It is also critical
for triaging, i.e., assigning adequate investigative resources to each
cybercriminal group based on their impact. Underestimating the
financial impact of a cybercriminal group may convey the wrong

impression that it is unimportant, removing resources from its
analysis and defense and thus allowing its operations to continue
unfettered. On the other hand, overestimating the financial impact
may wrongly identify small players as dominant, assigning them
unnecessary investigative resources.

Starting from a set of seed Bitcoin addresses, known to belong
to the same cybercriminal group (e.g., ransomware family, Ponzi
scheme) or to the same type of cybercrime (e.g., ransomware, sex-
tortion), estimation works apply different methodologies to quan-
tify the financial impact on the victims. Some works simply add
deposits to the input seed addresses, while others apply a combina-
tion of expansions to discover additional payment addresses (e.g.,
multi-input clustering [15, 45, 48, 59] and change address heuris-
tics [15, 27, 29, 40, 45]) and filters to remove unrelated addresses
and deposits. Estimations focusing on the same target often do not
agree, due to the use of different methodologies, seed addresses, and
time periods (i.e., block heights). Furthermore, these factors make it
very challenging to understand to what degree each methodology
step is responsible for differences in the estimation.

In this work, we perform the first systematic analysis on the
estimation of cybercrime bitcoin revenue. We quantify the impact
in the estimation of the methodology used and the limited seed
coverage. In detail, we survey prior estimation works providing a
detailed analysis of their methodologies and concrete takeaways.
We implement a tool that can replicate the different methodologies.
We apply our tool to estimate the same target using 15 methodolo-
gies, while fixing the set of seeds and the blockchain height. This
allows us to quantify how differences in the methodology affect the
estimation. In contrast to what is widely believed, we show that
estimations do not always underestimate the revenue. There exist
estimation methodologies that can introduce huge overestimation
such as those that do not filter seeds that are online wallets in
exchanges and those using change address heuristics. We collect
30,424 cybercrime Bitcoin payment addresses from publicly avail-
able sources. We use this dataset to compare, using a consistent
methodology, the impact of 6 cybercrimes (ransomware, clippers,
sextortion, Ponzi schemes, giveaway scams, exchange scams) and
of 141 groups running Ponzi schemes, ransomware, and clippers
(which replace addresses copied into the clipboard with their own).
We observe that the top cybercrime groups by revenue are domi-
nated by ransomware and the most successful ones operate in the
ransomware-as-a-service model [46], although there are also Ponzi
schemes and clipper families for which we observe more than one
million USD revenue. There are also 14 groups whose estimated
revenue is below $20, likely indicating limited coverage on their
payment addresses. Our results highlight the limited effectiveness
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of existing expansions. The popular multi-input (MI) clustering fails
to discover additional addresses for 40% of the 141 groups, likely
indicating cybercriminals are actively evading it, while change
address expansion introduces large false positives.

An intrinsic issue in cybercrime revenue estimations is that they
underestimate the real revenue because they start from a limited
set of seeds (oftentimes only one) while the cybercriminals may
use a large number of addresses to receive victim payments. To this
day, no work has quantified the impact of the (lack of) coverage
on the estimation. This requires a vantage point that allows to ob-
serve all victim payments. We perform the first quantification of
this issue. For this, we focus on the DeadBolt server ransomware
family, which infects network-attached storage (NAS) devices [14].
We start by collecting 4,997 DeadBolt payment addresses from two
Internet scan engines [21, 63]. We estimate DeadBolt’s conversion
rate from infections to payments to be 0.7%. A unique characteristic
of DeadBolt is that it releases the decryption key on the blockchain
upon receiving the victim’s payment. We propose two novel tech-
niques, leveraging unique characteristics of DeadBolt’s key release
transactions, to obtain very high coverage, possibly nearly com-
plete, on the payments DeadBolt receives from victims. Using the
34 seeds with victim payments collected from the scan engines
(which MI clustering cannot expand) we would have estimated
a very modest revenue of 2.826 BTCs or $63K. By applying our
coverage-expanding techniques, we instead estimate 98.350 BTC,
35 times higher, and our USD estimation is $2.47M, 39 times higher.
The vantage point provided by the scan engines only identifies
2.6% of victim payments due to issues such as scan frequency or
infections happening before the scanning begins. Still, Internet scan
engines arguably provide higher coverage on server ransomware
(i.e., 34 DeadBolt seeds) that is typically available for other groups
such as desktop ransomware (i.e., a median of one seed per group).
Thus, for other groups, the coverage impact may be even larger.

Our coverage results critically indicate that even if a family or
campaign is estimated to have low revenue, it could still have a
significant non-measured financial impact on victims. Thus, estima-
tions should also consider other impact metrics beyond the revenue,
e.g., the number of family samples observed.

This work provides the following main contributions:

• We perform the first systematic analysis of cybercrime bit-
coin revenue estimations. We build a tool that implements
the different estimation methodologies and use it to quan-
tify the impact of each methodology step in the estimation.
We show that some methodologies can produce huge over-
estimation.

• We quantify, for the first time, the impact of the (lack of)
coverage on the estimation. For this, we propose two novel
techniques to achieve high, possibly complete, coverage of
the victim payments received by the DeadBolt server ran-
somware. The USD revenue DeadBolt collects from victims
is 39 times larger than what would have been estimated by
collecting seeds from two popular Internet scan engines.

• We compare the bitcoin revenue obtained by 6 cybercrimes
and 141 cybercriminal groups. Cybercriminals may be ac-
tively evading the popular multi-input clustering, which
does not discover additional addresses for 40% of groups.

• Wehave released our estimation tool andDeadBolt dataset [7].

2 BITCOIN REVENUE ESTIMATION
This section surveys prior works that estimate cybercrime bitcoin
revenue [17, 24, 36, 37, 41–43, 52–54, 64, 71]. These works do not es-
timate the profit the cybercriminals made, as that would require sub-
tracting from the revenue the unknown expenses they incurred [68].
Estimationsmay target a specific cybercriminal group (e.g., malware
family, Ponzi scheme, scam campaign) or a (type of) cybercrime
(e.g., ransomware) by aggregating revenue of multiple groups in
the same cybercrime (e.g., multiple ransomware families).

At a high level, all the works follow the same approach. They
take as input a set of seed addresses known to receive victim pay-
ments. They optionally expand the seed addresses to obtain an
expanded set of addresses that belong to the same owners as the
seeds. If no expansions are used, the expanded set only contains
the seeds. Then, they obtain all the deposits to addresses in the
expanded set. Next, they optionally apply filtering to remove unre-
lated addresses and deposits. This process results in an estimation
of BTC revenue. Finally, the BTC amount is converted to fiat cur-
rency (typically US Dollars). While the general process is shared,
there exist methodological differences at each of the above steps
that can lead to differing estimations for the same input seeds.

Table 1 summarizes the 12 surveyed works. To select these works,
we first examined papers published since 2009 (the initial Bitcoin
protocol release year) in top computer security venues. To identify
other articles published in smaller venues and pre-print reposito-
ries, we analyzed the references of those initial works. Additionally,
we searched on engines like Google Scholar for combinations of
keywords, including bitcoin, payments, ransomware, and scam. We
limit the selection to papers published on peer-reviewed venues
(and technical reports with public datasets) that include an esti-
mation of cybercriminal bitcoin revenue. We exclude works that
analyze Bitcoin abuse by cybercriminals but do not include a fi-
nancial estimation (e.g., [31, 67]), those performing estimations on
other cryptocurrencies (e.g., Monero [18, 35]), and those estimating
revenue using transaction data not from the Bitcoin blockchain
(e.g., [69]). The rest of this section details the above steps using the
different parts of Table 1.

2.1 Seeds
We call payment addresses to Bitcoin addresses where victims are
requested to send their payments. Payment addresses may be ob-
tained from social media (e.g., [64]), threat intelligence reports by
security companies (e.g., [24]), by running malware samples on a
sandbox (e.g., [36]), from scam emails (e.g., [54]), from Tor hidden
services (e.g., [41]), and from scam websites (e.g., [42]). Payment
addresses can be split into those that have received some deposit,
which are called seeds, and those that have not (yet). This determi-
nation, and generally the whole estimation, needs to be performed
at some particular height of the Bitcoin blockchain. Unfortunately,
only two works provide the specific block height used [53, 54]. Most
works mention a day, but there are roughly 144 blocks in a day, as
a new block is minted every 10 minutes.

Cybercriminals may or may not reuse payment addresses across
victims. In the extreme, they could use a single payment address
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Methodology
Huang et al. [37] 2014 Cryptojacking - 2013-11-30 290 10 ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ DD+MI
Spagnuolo et al. [64] 2014 Ransomware BitIodine 2013-12-15 ≥12 1 ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ DD+MI+CA-VF
Liao et al. [43] 2016 Ransomware - 2014-01-31 2 1 ✗ ✗ [43] ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓ DD+MI+CA-VF-TF
Conti et al. [24] 2018 Ransomware - 2017-12-07 128 20 ✗ ✗ [2] ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓ DD+MI+CA-VF-TF
Huang et al. [36] 2018 Ransomware BlockSci 2017-08-31 25 10 ✓ ✗ ✗ ✓ ✗ G# ✓ ✗ G# ✗ ✓ DD-OW+MI-VF
Bartoletti et al. [17] 2018 Ponzi - - 32 32 ✗ ✗ [1] ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ DD+MI
Lee et al. [41] 2019 Dark Web BlockSci 2018-04-30 85 - ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ G# ✗ ✓ DD-OW+MI+CA
Paquet-Clouston et al. [53] 2019 Ransomware GraphSense 489,181 7,118 35 ✗ ✗ [3] ✓ ✗ ✗ ✗ ✓ ✗ G# ✓ DD+MI-TF-DC
Paquet-Clouston et al. [54] 2019 Sextortion GraphSense 573,989 245 - ✗ ✓ [4] ✓ ✗ ✗ ✓ ✗ G# G# ✓ DD-OW+MI-VF-DC
Xia et al. [71] 2020 Exchange scams - 2019-09-23 66 - ✗ ✓ [5] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ DD
Oosthoek et al. [52] 2022 Ransomware - - 7,321 87 ✗ ✗ [20] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ DD
Li et al. [42] 2023 Giveaway scams - 2022-07-01 860 - ✗ ✓ [11] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ DD

Table 1: Related work on estimating cybercrime Bitcoin financial impact. A tick (✓) indicates a property is implemented by the
work, a cross (✗) no support, a half-filled circle (G#) partial support, and a dash (-) that the paper does not specify it.

for all victims, or generate a different address for each victim. Of-
tentimes, a middle ground is used with a (potentially large) pool of
payment addresses that are reused with some (potentially low) prob-
ability. Payment addresses with deposits are the input seeds to the
estimation. The number of seeds ranges from only one up to 7,036
addresses. However, the high number of seeds in two works [52, 53]
is due to the outlier Locky ransomware with over 7K addresses.
Overall, the median number of seeds per group is 1 (measured on
the dataset in Section 3.4). Seeds are the critical starting point for
any estimation. To enable replicability, authors should release the
seeds used, which happens for 8 of the 12 works.

One challenge when each victim is assigned a unique payment
address is that only a small fraction of payment addresses receives
payments and thus can be used as seeds. For example, in their sex-
tortion paper, Paquet Clouston et al. [54] extracted 12,533 payment
addresses, but only 2% had deposits. Furthermore, for some address
collection methods like running malware on a sandbox or collecting
emails marked as spam (prior to the user receiving them), if the ad-
dress is unique for each victim then none of the collected payment
addresses would have payments, as there are no real victims. To
address this situation, Huang et at. [36] perform micro-payments
to payment addresses. Micro-payments simulate the payment of
a victim, but their value is much smaller than the requested pay-
ment value. Their goal is incentivizing the cybercriminals to move
the micro-payment so that it can reveal other payment addresses
through the expansions presented in Section 2.2. For example, a
micro-payment of a few hundred satoshis is small enough that
to move those funds the recipients need to combine them with
other Unspent Transaction Outputs (UTXOs) in a multi-input (MI)
transaction so that the transaction fee can be paid. This enables
discovering those additional inputs through MI clustering, as de-
scribed in Section 2.2. The larger the micro-payment, the larger the
incentive for the cybercriminals to move the gifted funds. How-
ever, cybercriminals could ignore any payments not matching the
expected values.

Seeds may be labeled with the group to which they belong,
which allows to perform separate estimations for each group. For
example, the label may capture the malware family that uses the
seed, obtained from external reports or from the AV labels of the

samples [62]. But, some collection methods such as visiting Tor
hidden services [41], visiting scam websites [42, 71], and examining
spam emails [54] may collect addresses that belong to different
groups. To perform per-group estimates, these works first need to
cluster the addresses using external information such as the content
of thewebsites or the spam emails.When seeds are unlabeled and no
clustering is performed, it is only possible to provide an estimation
of the type of cybercrime all addresses are associated with (e.g.,
the Dark Web [41]). The quality of the labels is fundamental to
the estimation. If a seed is incorrectly labeled, that will inflate the
estimation of its group.

Some works extract Bitcoin addresses from Web pages using
regular expressions [41, 42, 71]. Since Bitcoin addresses are hashes,
such regular expressions may generate false positives. It is impor-
tant to validate the matches by verifying the checksum embedded
in valid addresses, e.g., using online blockchain explorers or by
using tools that perform such validation during the extraction [12].

Takeaway 1
To be replicable, works should release their payment
addresses (as seeds may change with the block height),
the clustering results (if any), and the block height used
for the estimation.

2.2 Expansions
Given a set of seeds, the simplest estimation consists of adding all
direct deposits the seeds have received, i.e., for each transaction
where a seed address appears in an output slot, accumulate the
value of the seed’s output slot. This simple estimation is used in
three surveyed works [42, 52, 71]. However, if the campaign uses
a large number of payment addresses, the seeds may only receive
a small portion of the revenue received from victims, i.e., there
may exist many unknown payment addresses that also received
victim payments. To discover previously unknown payment ad-
dresses, it is common to apply expansions to the seeds that identify
additional addresses that also belong to the seed owners. Then,
the same estimation as above is performed on the expanded set
of addresses (i.e., seeds plus additional addresses the expansions
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identified). Two main expansions are used in the surveyed works:
multi-input clustering used by 8 works and change address heuris-
tics used by 4 works. They can be combined, e.g., all works using
change address also use multi-input clustering. We also discuss an
exploration expansion, which generalizes the approach used in one
work for one group.
Multi-input clustering. The most popular expansion is multi-
input (MI) clustering [15, 45, 48, 59]. It assumes that input addresses
to the same transaction have the same owner because their pri-
vate keys are used together to sign the transaction. Clusters can
be created transitively. If a transaction has addresses 𝐴 and 𝐵 as
inputs, and another transaction has 𝐵 and 𝐶 as inputs, then 𝐴, 𝐵
and 𝐶 are all clustered together and have the same owner. One
exception is CoinJoin [44] transactions where a group of users cre-
ates a single transaction that simultaneously spends all their inputs
into a shuffled list of outputs. For this reason, before computing MI
clustering, it is common to apply proposed heuristics to identify
CoinJoin transactions [29, 38]. Kappos et al. [40] recently proposed
a machine learning (ML) classifier to reduce the false negatives of
the CoinJoin heuristics. However, their classifier has not yet been
used in estimations.

Once the MI clusters are computed, the seeds and all addresses
in the MI cluster of a seed are added to the expanded set. If the
seeds belong to different MI clusters, the expanded set contains the
union of all addresses in those MI clusters (including the seeds). Of
the 9 works using MI clustering, 5 use open-source platforms to
compute it: one uses BitIodine [19], two use BlockSci [38], and two
use GraphSense [34]. The rest use their own implementation. As far
as we know, no work has compared that different implementations
of MI clustering indeed produce the same results.

While MI clustering is an extremely popular and reliable expan-
sion [33, 49], there are two caveats that could affect the estimation.
First, MI clustering captures same ownership. If the same cyber-
criminals run multiple campaigns, MI clustering may add to the
expanded set addresses from campaigns different from the one the
seeds belong to. If the goal is to estimate the revenue of a specific
campaign, rather than the revenue of a cybercriminal group, or of
a type of cybercrime, this may introduce overestimation.

Takeaway 2
MI clustering may add to the estimation other cam-
paigns from the same owner.

Second, double ownership is common in services (e.g., exchanges)
offering online wallets for their users. In that scenario, the service
owns the address (i.e., has the private key), but the address is han-
dled (and thus indirectly owned) by the user for which it is created.
Performing MI clustering on an online wallet address can bring
into the expanded set thousands (and even millions) of addresses
that also belong to the service, but are unrelated to the estimation
as they belong to other customers of the service. For seeds that
are online wallets, only their direct deposits should be considered,
i.e., other addresses in their MI cluster should not be added to the
expanded set. Failure to filter seeds that are online wallets, can
make the estimation hugely overestimate the financial impact. We
discuss the filtering of online wallets in Section 2.3.

Figure 1: Two approaches to collect payments from two seeds
𝑆1, 𝑆2 (in gray) and two unknown payment address 𝑃1, 𝑃2 into
a collector address 𝐶. On the left, MI clustering discovers the
unknown addresses 𝑃1, 𝑃2, while on the right it does not.

Takeaway 3
It is possible for MI clustering to largely overshoot the
actual revenue if some seeds are online wallets in ser-
vices like exchanges, and the estimation includes all
the cluster deposits. For seeds that are online wallets
in services, the expanded set should contain only the
seeds, i.e., it should not contain other addresses in the
MI clusters of those seeds.

Change address. Bitcoin’s UTXO-based model does not allow the
partial spending of transaction outputs. Since the sum of input
values to a transaction may be larger than the amount that needs
to be paid, a change address can be used by the owner of the in-
put addresses to collect back the change. Several heuristics have
been proposed for identifying which output slot in a transaction is
the change address [15, 27, 29, 40, 45]. Once identified, the change
address (and other addresses in its MI cluster) are added to the
expanded set. Three works ([24, 43, 64]) use the change address
heuristic by Androulaki et al., which checks transactions with two
output addresses. If one output address is fresh (i.e., never used be-
fore) and the other is not, the fresh address is considered the change
address. Instead, Lee et al. use one of the variants implemented
by BlockSci [38], but do not detail which one. Recently, Kappos et
al. [40] compare different change address heuristics, showing that
most have high false positives (FPs). They propose a new heuristic
to reduce FPs, which has not yet been used by any estimation.

Takeaway 4
The change address heuristics currently used by es-
timation works can generate a large number of false
positives, and thus overestimate the financial impact.

Exploration. Cybercriminals may accumulate the received pay-
ments prior to cashing them out or sending them to a mixer to
obfuscate their origin. MI clustering may capture such aggregation
if multiple payment addresses are used as input to the same trans-
action. However, the effectiveness of applying MI clustering on the
seeds depends on how the cybercriminals withdraw their funds.
Consider the example in Figure 1(a), where the cybercriminals use
two seeds (𝑆1, 𝑆2) and two unknown payment addresses (𝑃1, 𝑃2)
as input to a withdrawal transaction (withdrawal for short) that
accumulates the payments into a collector address 𝐶 . In this case,
MI clustering would identify the previously unknown payment
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addresses (𝑃1, 𝑃2). Instead, in Figure 1(b) the funds are first moved
from the 4 payment addresses into 4 aggregation addresses (𝐴1−𝐴4)
in separate transactions, and then collected using a MI transaction
into collector 𝐶 . In this case, MI clustering on the two seeds would
not identify the unknown payment addresses or the aggregators.

Withdrawals from the seeds evade MI clustering if they use a
single input address. We can classify withdrawals based on their
number of distinct input and output addresses. We focus on distinct
addresses rather than on transactions slots because a transaction
can use multiple input slots for the same address. For example, a
payment address may be reused for multiple victims; each victim
payment generates a different UTXO and all UTXOs are consumed
by the same withdrawal. We say a transaction is 1-to-n (𝑛 ≥ 1) if it
has a single input address, regardless of its number of input slots.
In Section 3.5 we measure that 40% of groups only use MI-defeating
1-to-n withdrawals from their seeds, indicating that this evasion is
widely used.

Figure 1(b) captures how the Cerber ransomware operated. To
handle this family, Huang et al. proposed to manually add the
aggregators (𝐴1, 𝐴2) into the set of seeds. That allowsMI to discover
the other two aggregators (𝐴3, 𝐴4) and thus perform amore accurate
estimation. In Section 6 we discuss how we believe their approach
could be generalized to address MI clustering evasion.

Takeaway 5
Cybercriminals can use 1-to-n withdrawals from pay-
ment addresses to defeat MI clustering.

2.3 Filtering
Not all deposits to the expanded set are necessarily victim payments.
The seeds and the additional addresses the expansions identify could
be used for other purposes, e.g., for aggregating funds. For these
reasons, 8 of the 12 works apply filters to exclude deposits that do
not look like victim payments. We describe them next.
Value filtering. If the amounts the victims should pay are known,
deposits for other amounts can be excluded. One consideration is
that some victims may ignore that, in addition to the requested
amount, they also need to pay a transaction fee. This results in
some victim payments not reaching the requested amount since the
transaction fee is discounted prior to depositing the funds. Some
payments can also be slightly higher than the requested amount
because the victim conservatively increases the amount to make
sure any fees are covered. To account for these small deviations in
amounts, some works apply an epsilon around the known payment
values [24, 43]. A limitation of value filtering is that, due to limited
coverage, it may not be possible to know all valid amounts (e.g.,
each victim could be given a different amount). Thus, some victim
payments could be incorrectly excluded. For example, 13 of the 20
ransomware families considered in [24] have no seeds matching the
expected ranges, and thus cannot be estimated. Another limitation
is that value filtering does not apply to cases where the victim
decides how much to pay, e.g., giveaway scams [42].
Time filtering. If the time periods when a campaign was active are
known, deposits to the expanded set outside of those periods can be
excluded. This helps exclude other uses of the payment addresses

before or after a campaign happened. Similar to value filtering, due
to limited coverage, it may not be possible to know all periods when
a campaign was active, which may exclude valid victim payments.

Some works combine value and time filtering by taking as input
a list of time ranges, each associated with a list of values victims
could pay on the period. This handles campaignswhere the amounts
change over time, e.g., they are lowered when the BTC conversion
rate spikes to avoid exorbitant fees that discourage victims to pay.

Takeaway 6
If payment addresses are not reused, value and time
filtering are needless. The problem of coverage affects
not only the discovery of seeds, but also value and time
filtering ranges, possibly introducing underestimation.

Online wallet filtering. If a seed is an online wallet in a service,
only direct deposits to that seed should be considered. Other ad-
dresses in its cluster should not be included in the expanded set.
Two works [41, 54] filter exchange clusters by looking for clusters
that are outliers, in terms of large number of addresses, large total
amount received, and cluster age. Unfortunately, these filters are not
detailed. In addition, two works identify exchange clusters using
tag databases that associate addresses with additional information
like their owner. Lee et al. [41] use the public WalletExplorer [13]
tag database and Huang et al. [36] a proprietary database from
Chainalysis [9]. However, Huang et al. [36] do not use the tags to
identify seeds that are online wallets. Instead, they filter deposits
to the expanded set that do not originate from exchanges, since
most victims likely do not own BTCs and need to purchase them
from exchanges. However, they discarded this filter due to concerns
about the coverage of the tag database. To address this intrinsic
limitation of tag databases, Gomez et al. [31] recently proposed to
complement tag databases with an ML classifier to identify (un-
tagged) exchanges. However, their exchange classifier has not been
used in any estimation.

Takeaway 7
The identification of exchange clusters is better per-
formed using a combination of tag databases and a
machine learning classifier.

Double-counting. Simply adding all deposits to addresses in the
expanded set, without considering their procedence, may lead to
double-counting, i.e., counting the same payment multiple times,
thus overestimating the revenue. The simplest such double-counting
can occur when, in a transaction, one input address also appears in
the outputs, e.g., an input address is used as a change address. While
this is not recommended for privacy reasons, it often happens in
practice. Imagine Alice has two BTCs in one UTXO from a previous
payment and wants to send one BTC to Bob. Instead of creating a
fresh change address, Alice uses the sender address as the change
address. After the payment, the balance of Alice’s address will be
one BTC, but the total amount deposited to her address will be
three BTCs, two BTCs from the original payment that created the
UTXO plus one BTC she received as change from this transaction.
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More generally, double-counting can occur when a transaction
that deposits into an address in the expanded set has an input
address that also belongs to the expanded set. Imagine two deposits.
In the first one, address A which is not in the expanded set deposits
some funds into address B which is part of the expanded set. In the
second one, address Bmoves the received funds to address C which
is also in the expanded set. The funds B received from A are first
counted. Then, if we add the second deposit that only moves funds
between addresses inside the expanded set, we are double counting
the funds that B received from A as also being received by C.

Only the two works by Paquet-Clouston et al. [53, 54] try to
avoid such double-counting by filtering transactions. In [53], they
define collectors as addresses receiving deposits from at least two
addresses in the expanded set. Collectors belonging to the expanded
set were filtered to avoid double-counting. However, it is possible
to double count with a single deposit if the change address is one
of the inputs. In [54] they exclude transactions with at least one
input address and one output address in the expanded set.

One issue to keep in mind is that any filter that tries to minimize
double-counting will be affected by the coverage issue, i.e., it will
not be able to filter deposits between two MI clusters that belong
to the group if one of the two MI clusters has not been included in
the expanded set, i.e., no seed is available from that MI cluster.

Takeaway 8
To avoid overestimating the revenue, deposits into the
expanded set that have an input address also belonging
to the expanded set should be filtered. Double-counting
filtering is also affected by the lack of seed coverage.

2.4 Conversion Rates
Adding the amounts of the filtered deposits to the expanded set
produces an estimation of BTC revenue. Due to Bitcoin’s highly
volatile conversion rate, the estimated BTCs can have very differ-
ent values over time. Converting the BTC amount into US Dollars
makes it easier to understand the revenue and to compare it with
other cybercrime, e.g., those not abusing Bitcoin. To perform this
conversion, 9 of the 12 works use the conversion rate from BTC
to USD on the day the deposit was received. This conversion rate
captures the financial impact on victims, i.e., how much it cost the
victims to pay assuming they bought the BTCs from an exchange
just prior to paying. Two works [64, 71] use instead the conversion
rate on a specific day, e.g., the day of the analysis. Since cybercrimi-
nals may not cash out victim payments immediately, this approach
includes the rise or depreciation in value of the payments from the
day the payment was received until the day of the conversion rate.
Finally, one work uses the highest and lowest conversion rates in
their analysis period [42], providing a USD range.

Takeaway 9
To estimate the financial impact on victims using fiat
currency, it is recommended to apply the conversion
rate on the day each payment was received.

3 METHODOLOGY IMPACT
This section quantifies how the different methodology options pre-
sented in Section 2 impact the estimation. We first introduce the
analyzed methodologies and datasets in Section 3.1, then quantify
their impact on the CryptoLocker ransomware in Section 3.2, and
on our whole dataset in Section 3.3.

3.1 Methodologies and Datasets
Given the 2 main expansions (excluding the exploration as it is only
used for one ransomware family in one work) and 4 filters detailed
in Table 1, 64 different methodologies can be used for the estimation.
We have created a naming scheme to refer to those methodologies.
The name always starts with DD which is an abbreviation for direct
deposits. Then, it can have at most 6 parts for multi-input clustering
(MI ), change address expansion (CA), online wallet filtering (OW ),
value filtering (VF ), time filtering (TF ), and double-counting filtering
(DC). We prefix expansions with a plus sign and filters with a minus
sign. The last column in Table 1 captures the methodology used by
each work using our naming scheme.

We have implemented an extension to the WYB platform [7],
itself built on top of BlockSci [38], which can produce any of the
estimations. Given as input a set of seeds, a block height, a set of
value and time filtering ranges, and a methodology string using our
naming scheme; it produces the estimation using that methodology.
While our extension implements all previously used methodolo-
gies, the results it produces are not guaranteed to be the same as
those obtained in the works in Table 1, even when using the same
methodology on the same seeds. Differences may happen because
the implementation of the expansions and filters may not exactly
match the ones in those works. For example, we use BlockSci to
obtain clusters using multi-input and change address expansions,
while other works use other open-source platforms or their own
implementations.
Selected methodologies. We analyze 15 selected methodologies,
which cover those used in the surveyed works and additional ones
illustrating interesting cases. The first 5 estimations test the filters
without applying expansions. We exclude the filter of online wallets
as it only applies to expansions. DD is the simplest estimation
that sums all deposits to the seeds. DD-VF, DD-TF, and DD-VF-TF
apply value filtering, time filtering, and both, respectively, on the
direct deposits to the seeds using the 7 ranges proposed by Conti
et al. [24]. DD-DC removes overlaps in the direct deposits caused
by transactions where seeds appear as both input and output.

The next 6 estimations correspond to expanding using only MI
clustering and then applying the different filters. The final 4 es-
timations correspond to expanding with both MI clustering and
change address expansions and then applying the different filters.
MI clustering and change address expansions both use the clusters
that BlockSci precomputes for the given block height. MI clustering
excludes CoinJoin transactions using the heuristics in BlockSci.
DD+MI and DD+MI+CA first query BlockSci for the clusters of the
seeds (precomputed using only MI clustering or both expansions,
respectively) and add the seeds and other addresses in the clusters
of the seeds to the expanded set. Then, they obtain all deposits to
the expanded set and sum their value without any filtering. DD-
OW+MI and DD-OW+MI+CA first query BlockSci for the clusters of
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Work Blk Height Methodology Seeds Clust. Addrs. Payments BTC USD
Spagnuolo et al. [64] 2013-12-15 DD+MI+CA-VF ≥12 ≥12 2,118 771 1,226.0000 1,100,000
Liao et al. [43] 2014-01-31 DD+MI+CA-VF-TF 2 1 968 795 1,128.4000 310,472
Conti et al. [24] 2017-12-07 DD+MI+CA-VF-TF 4 1 956 804 1,403.7548 449,275
Huang et al. [36] 2017-08-31 DD-OW+MI-VF 2 2 4,457 - - 667,000
Paquet-Clouston et al. [53] 489,181 DD+MI-TF-DC 2 1 944 - 1,511.7100 519,991

Table 2: Previous estimations on CryptoLocker.

the seeds. Then, they check whether the seed clusters appear in the
WYB tag database marked as service clusters. For any seed cluster
identified as a service, only the seed is added to the expansion set.
For other seed clusters, the seed and other addresses in the cluster
are added to the expanded set. Then, they obtain all deposits to the
expanded set and sum their value without applying any filtering.
DD-OW+MI-DC applies DD-OW+MI but avoids double-counting
by filtering deposits to the expanded set that have an input address
belonging to any of the clusters in the expanded set. All other es-
timations correspond to the ones above with value filtering, time
filtering, or both, applied on the deposits to the expanded set.
Datasets.We collect all publicly available labeled datasets of cyber-
crime Bitcoin seeds that we are aware of. These include all datasets
mentioned in Table 1, as well as an additional dataset of 9,478
addresses used by clippers [31]. Since the ransomware datasets
overlap, we use the Ransomwhere dataset [20], which contains the
seeds used in prior works. For scam datasets containing addresses
for different blockchains [5, 11] we focus exclusively on the Bitcoin
addresses. Other sources of Bitcoin cybercrime seeds exist such as
abuse databases (e.g., [6]), but they do not provide a reliable catego-
rization of cybercrime type. The six datasets used, summarized in
Table 5, in total comprise 30,424 cybercrime Bitcoin addresses, of
which 8,816 have deposits at block height 785,100 (April 12, 2023).
Some works clustered the seeds, but their datasets do not include
the cluster identifier for each seed. To estimate individual groups,
we use a subset of 8,021 labeled seeds belonging to 141 groups: 88
ransomware families, 22 clipper families, and 31 Ponzi schemes.

3.2 Impact on CryptoLocker
We first analyze the CryptoLocker ransomware because its revenue
has been estimated in five prior works with varying results, as
illustrated in Table 2. For each prior estimation, the table shows the
maximum block height (or date) considered in the estimation, the
methodology used, the number of seeds, the number of MI clusters
for the seeds, the total addresses in the expanded set, the number
of victim payments identified after filtering, and the estimation in
BTC and USD. The table illustrates that the estimations can widely
vary, e.g., the highest estimation of $1.1M is 3.5 times larger than
the lowest estimation of $310K. Due to the estimations use different
seeds, methodologies, and block heights, it is complicated to isolate
the impact of each methodology decision on the estimation. To
address this issue, we perform estimations using different method-
ologies, but on a fixed set of seeds and on the same block height.
This allows us to analyze the impact of each methodology decision.

Of the 5 prior estimations, two do not specify the seed addresses
used [36, 64]. Two use the same pair of seeds [43, 53], and one [24]
uses 4 seeds (the two in [43, 53] and two additional ones). We fix
the block height at 498,150 (December 7, 2017) and perform two
estimations: one starting with the two seeds in [43, 53] and another

Methodology Addr. Deposits BTC USD
DD 2 54 100.8608 $12,532
DD-VF 2 48 94.8625 $11,786
DD-TF 2 53 100.8607 $12,531
DD-VF-TF 2 47 93.8625 $11,667
DD-DC 2 54 100.8608 $12,532
DD+MI 968 1,101 1,544.9144 $528,046
DD+MI-VF-TF 968 803 1,130.1121 $309,935
DD-OW+MI 968 1,101 1,544.9144 $528,046
DD-OW+MI-VF-TF 968 803 1,130.1121 $309,935
DD-OW+MI-DC 968 1,077 1,511.7579 $520,238
DD-OW+MI-VF-TF-DC 968 801 1,110.3121 $304,791
DD+MI+CA - - - -
DD-OW+MI+CA 2 54 100.8608 $12,532
DD+MI+CA-VF-TF - - - -
DD-OW+MI+CA-VF-TF 2 47 93.8625 $11,667

Table 3: CryptoLocker estimations using different method-
ologies starting from the two seeds used in [43, 53]. A dash
indicates the estimation did not finish in 5 days.

Methodology Addr. Deposits BTC USD
DD 4 321 70,426.0298 $11,442,063
DD-VF 4 59 123.6568 $18,006
DD-TF 4 288 57,987.8966 $10,094,385
DD-VF-TF 4 50 106.8525 $15,062
DD-DC 4 227 41,614.1073 $6,339,388
DD+MI 12,770,529 27,617,860 134,110,936.7365 $26,405,734,619
DD+MI-VF-TF 12,770,529 39,015 54,091.2840 $32,786,920
DD-OW+MI 970 1,368 71,870.0835 $11,957,577
DD-OW+MI-VF-TF 970 806 1,143.1021 $313,330
DD-OW+MI-DC 970 1,208 34,771.1654 $5,453,205
DD-OW+MI-VF-TF-DC 970 797 1,112.8791 $305,080
DD+MI+CA - - - -
DD-OW+MI+CA 4 321 70,426.0298 $11,442,063
DD+MI+CA-VF-TF - - - -
DD-OW+MI+CA-VF-TF 4 50 106.8525 $15,062

Table 4: CryptoLocker estimations using different method-
ologies starting from the four seeds used in [24]. A dash
indicates the estimation did not finish in 5 days.

from the four seeds in [24]. We convert from BTC to USD using the
rate at the time of each payment, obtained from CoinDesk [10].
Two seeds. Table 3 presents the estimations on the two seeds
from [43, 53]. The estimations without expansions are pretty consis-
tent in the range of $11.6K–$12.5K. MI clustering is quite successful
at discovering additional CryptoLocker addresses increasing the
estimations 26–42 times to $304.7K–$528.0K. Among filters, value
filtering has the largest impact, especially after MI clustering, indi-
cating that some deposits may not correspond to victim payments.
Online wallet filtering has no effect as none of the seeds are on-
line wallets. The double-counting filter reduces the estimations by
1.5%–1.7%.

Surprisingly, we are unable to compute some estimations with
change address expansion. The cluster with the seeds returned by
BlockSci has 160M addresses. Due to the huge number of deposits
to that cluster (261M), the estimation does not finish in 5 days and
we stop it. Three works in Table 2 claim to use change address
expansion. However, their estimates are very close to ours using
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Cybercrime Dataset Seeds Labels OW BTC USD
Ransomware [52] 7,352 88 12 31,434.4069 $115,513,569
Giveaway scams [42] 494 - 17 386.0907 $12,207,462
Ponzi schemes [17] 32 31 7 7,956.3913 $5,029,029
Clippers [31] 637 22 23 891.5331 $2,814,443
Sextortion [54] 248 - 5 305.9584 $1,504,437
Exchange scams [71] 53 - 2 117.2569 $1,021,764
Total 8,816 141 66 41,091.6373 $138,090,704

Table 5: Cybercrime type estimates on April 12, 2023 using
the seeds in public datasets and a DD-OW+MI-DC estimation.

only MI clustering. One possibility is that the change address ex-
pansion they implemented was not transitive, and thus avoided
the explosion affecting BlockSci’s implementation. Similar to what
has been observed in prior work [40], our results indicate that
change address heuristics can have high false positives. We further
examine this issue for all groups in Section 3.3. Once online wallets
are filtered, the estimations with change address expansion finish.
This happens because the huge cluster that contains the seeds also
contains multiple addresses tagged as exchanges. Thus, the cluster
is considered to belong to an exchange, and both seeds are (incor-
rectly) considered online wallets. Thus, DD-OW+MI+CA matches
the results for DD and DD-OW+MI+CA-VF-TF matches the results
for DD-VF-TF.
Four seeds. Table 4 presents the estimations on the four seeds
from [24]. In this case, the estimations without expansions widely
vary from $15K up to $11.4M, due to the additional seeds receiving
deposits of millions of USD. Value and time filtering removes most
of those deposits as likely not being victim payments, resulting in a
$15K estimate, only 30% higher than with two seeds. After applying
MI clustering, the expanded set grows to 12.7M addresses, and the
estimation is an astronomical 26 Billion USD. The online wallet fil-
ter uncovers the reason for this by identifying one of the additional
seeds as an online wallet in the btc-e exchange and the other as
belonging to an incorrect huge cluster due to an address whose pri-
vate key is the empty string [31]. Considering both additional seeds
as online wallets reduces the estimation to $11.9M, and value and
time filtering brings it down to $313K. A key question is whether
the two additional seeds are indeed related to CryptoLocker. We
are inclined to think they are not, but we have no definite proof.
Still, this experiment illustrates how failing to consider seeds that
are online wallets or belong to other problematic MI clusters can
hugely overestimate the financial impact. Value filtering signifi-
cantly reduces the impact of incorrectly applying MI clustering on
online wallets, but it cannot entirely correct the problem as some
fraction of the massive amount of deposits will match the expected
value ranges.

3.3 Impact on the Whole Dataset
This section quantifies the impact of expansions and filters on the
whole dataset. We exclude the value and time filters since we only
have ranges for a few ransomware families. All experiments are
performed on block height 785,100 (April 12, 2023).
Online wallet filter impact. We use BlockSci to precompute
the MI clusters and query the 8,816 seeds to obtain their cluster
identifier. Then, we use the WYB tag dataset to identify tagged
clusters. This step flags 58 seeds. Of those, 57 are online wallets in
exchanges. The other is the only seed for the Razy family in the

Ransomwhere dataset, which really is an FBI address used to seize
the Silk Road funds after its takedown. We remove Razy from our
datasets.

An intrinsic issue in tag databases is the limited coverage, i.e.,
only a fraction of all MI clusters belonging to services will be tagged.
Indeed, when we perform an initial DD-OW+MI-DC estimation for
each cybercrime type, the estimation for giveaway scams returns
an astronomical 6.1 Billion USD. This indicates that the WYB tag
database likely missed some service clusters. To identify untagged
service clusters, we run MI seed clusters with at least 1K addresses
through the exchange classifier provided by WYB. The classifier
identifies 8 of those 11 MI clusters as exchanges: 5 in the giveaway
scams dataset, 2 in the Ransomwhere dataset, and 1 in the exchange
scams dataset. We consider the 9 seeds in these 8 clusters to be
online wallets for all other estimations. Had we not identified these
9 online wallets, we would have grossly overestimated the financial
impact of three cybercrime types: $6.1B for giveaway scams (503
times higher than our final estimation), $543M for ransomware (5
times higher), and $231M for exchange scams (226 times higher).

While only 0.7% of seeds are online wallets, they can introduce
huge overestimation. To avoid missing online wallets, we recom-
mend complementing tag databases with ML classifiers.
MI clustering impact. We use BlockSci to precompute the MI
clusters and query each of the labeled seeds that are not online
wallets to obtain their cluster. The seeds belong to 968 clusters,
with an average cluster size of 19.5 addresses, and a median size of
1 address. Four clusters contain seeds from more than one group.
One cluster holds the seeds for mekotio and mekotion40, which are
known to be run by the same operators [31]. Another holds Tower-
web and Cryptohitman seeds and was already reported in [53]. The
other two clusters hold Jigsaw and Cryptowall, and TripleM and
APT, respectively. We have not found reports linking the groups in
these two clusters. However, the small size of those two clusters
(3 and 4 addresses, respectively) makes us think they may be true
relations or incorrect labels on the seeds. Clustering FPs typically
create a snowball effect that quickly grows the clusters, as we show
next for the change address expansion.
Change address impact. We use BlockSci to precompute the
MI+CA clusters and query each of the 8,021 labeled seeds from
the 141 groups to obtain their cluster. The 8,021 seeds belong to
251 clusters with an average cluster size of 2.2M addresses, and a
median size of 2 addresses. The higher average is due to a huge
cluster with 543M addresses. This cluster contains seeds from 91
of the 141 groups (64.5%). For 70 groups, all their seeds are in this
cluster. It also contains addresses tagged by WYB as belonging to a
variety of different services such as exchanges, gambling sites, and
mixers. All other clusters with seeds contain one group at most,
except for one cluster that contains two malware families known
to belong to the same operators (mekotio and mekotion40) [31].

The fact that one cluster contains 91 unrelated groups and many
unrelated services indicates the change address heuristic is intro-
ducing FPs. Because of this, we suggest that estimations do not use
change address expansion. We further discuss this in Section 6.
Double-counting filter impact. To quantify the impact of the
DC filter, we perform two estimations on all 8,816 seeds using
the DD-OW+MI and DD-OW+MI-DC methodologies, respectively.
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Name Seeds OW Clust Addr. BTC USD
R:Netwalker 66 0 65 329 3,131.7562 $28,262,120
R:Conti 26 0 26 35 410.8025 $18,869,852
R:REvil 7 0 6 77 369.5363 $12,540,689
R:DarkSide 3 0 3 3 158.7086 $9,124,091
R:Locky 7,036 0 2 7,094 15,396.6934 $7,833,613
R:Ryuk 26 0 26 39 866.8069 $4,844,149
R:RagnarLocker 1 0 1 1 414.0007 $4,547,241
R:MountLocker 1 0 1 1 298.5000 $4,226,277
R:BlackMatter 1 0 1 1 96.3863 $4,068,295
R:Makop 1 0 1 996 316.0883 $3,853,713
R:Egregor 9 0 9 9 197.9554 $3,129,599
R:Tejodes 1 0 1 178 345.5527 $2,798,239
P:Leancy 1 0 1 1 3,092.8482 $1,896,583
R:CryptXXX 1 0 1 1,742 3,338.5464 $1,877,833
R:DMALockerv3 9 0 3 177 1,833.9286 $1,757,464
R:MedusaLocker 3 0 3 26 56.1546 $1,454,776
R:HelloKitty 1 0 1 1 32.3529 $1,070,653
R:Bitpaymer 1 0 1 1 90.0004 $1,058,347
C:cliptomaner 1 1 1 1 38.7643 $1,004,397
P:Cryptory 1 1 1 1 1,677.5167 $886,689
Total 8,021 42 383 17,040 40,282.3312 $123,357,041

Table 6: Top-20 groups by USD financial impact on April
12, 2023 using a DD-OW+MI-DC estimation. Ransomware
families are prefixed by R:, clipper families by C:, and Ponzi
schemes by P:. The last row captures total revenue of all 141
labeled groups.

DD-OW+MI estimates a total revenue of 171,994.9777 BTC, while
DD-OW+MI-DC estimates 41,091.6373 BTC. Thus, the DC filter
reduces the BTC estimate by 76.1%. This is much higher than the
reduction observed in CryptoLocker, as the impact of the DC filter
quickly grows as the volume and fund movement increases. In
detail, the DC filter drops 43.7% of deposits to the expanded set and
only 80.8% of the addresses in the expanded set receive funds from
outside the expanded set.

3.4 Cybercrime Estimations
All works in Table 1 have estimated one or multiple groups of
the same type of cybercrime. In this section, we instead compare
revenue across cybercrimes. We perform all estimations at the
same block height of 785,100 (April 12, 2023), using the same DD-
OW+MI-DC methodology, and the conversion rate on the day of
each payment. We select this methodology because we have shown
that change address expansion introduces many false positives and
we only have value and time filtering ranges for some ransomware
families.
Cybercrime comparison. The right side of Table 5 summarizes
the BTC and USD estimations for the 6 cybercrimes. The largest es-
timated revenue is $115.5M for ransomware, followed by giveaway
scams ($12.2M), Ponzi schemes ($5.0M), clippers ($2.8M), sextor-
tion scams ($1.5M), and exchange scams ($1.0M). Giveaway scams
collect lower BTCs (386.0907) than Ponzi schemes (7,956.3913) and
clippers (891.5331). However, their USD financial impact on vic-
tims is larger due to their seeds being collected in 2022, when the
conversion rate BTC-USD was higher than for older seeds.
Group comparison. We also estimate the 141 groups. Table 6
shows the top-20 groups by USD revenue and the 141 groups are
detailed in the Appendix of our extended version [32]. We prefix
each name with R: for ransomware families, C: for clipper families,
and P: for Ponzi schemes. Of the top-20 groups, 17 are ransomware
families, two are Ponzi schemes and one is a clipper family. The
highest revenue is for the Netwalker ransomware which collects

$28.2M. The highest revenue among Ponzi schemes is Leancy with
$1.8M and the highest revenue among clippers is Cliptomaner with
$1.0M. The average revenue per operation is $874K, and the median
is $17.5K. There are 19 groupswith revenues higher than onemillion
USD and 14 groups (13 ransomware families and one Ponzi scheme)
with revenue below $20, likely due to limited seed coverage for
those groups.

Similar to what we observe in the cybercrime comparison, higher
BTC revenue does not necessarily imply a higher financial impact
on victims, measured using fiat currency, due to the wide oscilla-
tions of the Bitcoin conversion rate. For example, Locky collected
the most BTCs (15,396.6934). However, its financial impact mea-
sured in USD is below that of DarkSide, which received nearly
two orders of magnitude fewer BTCs (158.7086). The reason is that
Locky was active from the beginning of 2016 to mid-2017 when
the value of 1 BTC was $780 on average. In contrast, DarkSide was
active during the first half of 2021, when the conversion rate ranged
from $29k to $61k ($55.2k on average). This example highlights the
importance of using the conversion rate at the time of the payment
for more accurate estimations of the financial impact on the victims.

The top-4 earners in Table 6 (Netwalker [25], Conti [66], RE-
vil [30], DarkSide [50]) leverage the ransomware-as-a-service (RaaS)
model, where the ransomware operators recruit affiliates to take
care of the infections [46]. Affiliates are paid a fraction of the vic-
tim’s ransom payment or a fixed fee. Outsourcing infections to affil-
iates helps ransomware gangs target more victims. These families
focus on high-value targets such as large companies and hospi-
tals, e.g., DarkSide was behind the Colonial Pipeline attack [57].
They often use different ransom values for each victim, threaten
victims to release their data publicly, and may even perform double
extortion, i.e., demand a second payment for not leaking the data.
Targeted victims may not want to disclose the attacks, making it
difficult to obtain seeds. For example, there are reports of DarkSide
having at least 90 victims in the US [57], but we only have 3 seeds
for that group and MI clustering does not reveal additional pay-
ment addresses. We examine the impact of the lack of coverage in
Section 4.

3.5 Multi-Input Evasion
This section examines how useful MI clustering on the seeds is,
and whether cybercriminals may be using evasive techniques to
defeat it. For this, we examine the withdrawal transactions from the
seeds of the 141 groups, and their MI clusters. For each group, we
first remove seeds identified as online wallets. Then, we compute
the total number of withdrawals from the remaining seeds and the
fraction of 1-to-n withdrawals. Next, we compute the expanded set
of each group by doing the union of the addresses in the MI clusters
of the seeds that are not online wallets and recompute the above
numbers for all withdrawals from the expanded set of each group.

Figure 2 shows the cumulative distribution of 1-to-n withdrawals
across the 141 groups. 40% of the groups exclusively move funds
from their payment addresses usingMI-defeating 1-to-nwithdrawals.
Three-quarters of the groups use at least 50% of 1-to-n withdrawals,
indicating their preference for suchMI-defeating withdrawals. Only
9% of the groups do not use 1-to-n withdrawals at all, but most
of these have not withdrawn any funds yet. The fact that 40% of
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Figure 2: Cumulative distribution of the proportion of with-
drawals with one input address (1-to-n) over all the with-
drawals across the 141 groups for both withdrawals of seeds
(orange line) and withdrawals of their MI clusters (blue line).

the groups exclusively use MI-defeating withdrawals and 75% use
them more than half of the time, likely indicates that cybercrimi-
nals are aware of the limitations of MI clustering and are actively
taking steps to defeat it. We discuss how to address this evasion in
Section 6.

4 COVERAGE IMPACT
A recurring issue in cybercrime estimations is that they start from
a small number of seeds (a median of one seed per group) and
it is not clear how many other payment addresses with victim
deposits may exist. Expansions are used to try to discover missing
payment addresses, but as shown in Section 3 their effectiveness
is limited. As far as we know, no prior work has tried to quantify
the impact of the lack of coverage in the estimations, due to the
complexity of obtaining the needed vantage point. In this section,
we quantify this issue for the first time using two novel techniques
that allow us to obtain very high coverage, possibly nearly complete,
on the DeadBolt server ransomware [14]. We introduce DeadBolt
in Section 4.1, describe our DeadBolt datasets in Section 4.2, present
our techniques to expand DeadBolt’s coverage in Section 4.3, and
compare the estimations obtained from different vantage points in
Section 4.4.

4.1 DeadBolt
On January 25th, 2022, BleepingComputer first reported a new
server ransomware strain that called itselfDeadBolt and was spread-
ing by exploiting vulnerabilities in network-attached storage (NAS)
devices [14]. DeadBolt encrypted specific data directories and file
extensions and hijacked the login page of the NAS to display a
ransom note titled “WARNING: Your files have been locked by
DeadBolt”. The ransom note requested a Bitcoin payment of 0.03
BTC (1,100 USD at the time) to be sent to a Bitcoin payment address
to obtain the decryption key. In mid-June 2022, DeadBolt intro-
duced a new ransom value of 0.05 BTC, possibly due to a drop in
the BTC-USD conversion rate at that time, and both amounts are
used therefore.

Figure 3: DeadBolt key release transactions. First, the victim
deposits the ransom of 0.03 BTC or 0.05 BTC to the payment
address. Then, the cybercriminals release the decryption key
to the blockchain through a deposit to the payment address.

Engine Events IP Port ASN CC Notes Addr. Seeds
Shodan 23,413 9,999 171 769 89 4,938 4,940 64
Censys 15,886 6,147 66 671 87 - 4,014 49
All 39,299 11,282 199 780 98 4,938 4,997 64

Table 7: DeadBolt datasets summary.

One novel feature in DeadBolt is that after the victim pays the
ransom, the decryption key is automatically posted to the Bitcoin
blockchain by the DeadBolt operators. Figure 3 illustrates the two
transactions involved. First, the victim (address 𝑉 ) pays the ran-
som of 0.03 BTC or 0.05 BTC to the payment address 𝑃 . Then, the
DeadBolt operators perform a deposit of value 0.0000546 BTC ($1.2)
from a key release address 𝐾 to the payment address 𝑃 . This second
transaction has an OP_RETURN output that stores the AES-128
decryption key on the blockchain.

On October 2022, the Dutch National Police tricked the DeadBolt
operators into handing over 155 decryption keys by performing
ransom payments with a very small fee when the blockchain was
heavily congested, and canceling the payment transactions before
they appeared in a block [28]. Since the decryption key was auto-
matically posted to the blockchain, without waiting for the payment
transaction to appear in a block, the police recovered 155 keys be-
fore the attackers realized. A webpage was set up that given one
of the 155 addresses, outputs its decryption key [58]. After that
event, the DeadBolt operators maintained the key release procedure
in Figure 3 but adjusted their processing to wait for the payment
transaction to appear in a block before releasing the decryption key.
From this moment on, the time difference between victim payments
and key release transactions starts varying significantly, reaching
even 3 days in some cases, indicating the key release transactions
are now manually triggered.

4.2 DeadBolt Datasets
DeadBolt exploited network-facing vulnerabilities in the NAS and
hijacked the NAS login page to display the ransom note. A NAS
had to be connected to the Internet to get infected. Thus, the ran-
som note was (potentially) visible to Internet scanners. However,
Internet scanners may not observe all victims since an infected
NAS may have been disconnected or cleaned before being scanned.
We obtain data about DeadBolt infections from two Internet scan-
ners: Censys [21], and Shodan [63]. The datasets are summarized
in Table 7.
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(a) Bitcoin addresses. (b) IP addresses.

Figure 4: Overlap in DeadBolt datasets.

Censys. Censys publishes servers infected with DeadBolt in a
Google Datastudio [22]. Each entry in the dataset represents an
infection and contains the IP address, the port number, the country
code (CC) and ASN of the IP address, the payment address, the
ransom amount, and the DeadBolt variant. The raw content of
the ransom notes is not available. We collect Censys data for four
months, from December 13, 2022, until March 13, 2023. We obtain
4,014 DeadBolt payment addresses from 6,147 IP addresses. The
large number of payment addresses likely indicates each infected
server is given a different one. The number of IP addresses is larger
than the number of payment addresses likely due to infected servers
that change IP addresses.
Shodan.We identify DeadBolt events in Shodan by querying its API
with the dork http.title:"Your files have been locked by
DEADBOLT.". Each query returns events from the last 30 days, so we
query once a month, from December 13, 2022, until March 13, 2023.
From each event, we extract the timestamp, IP address, port number,
country code and ASN of the IP address, and the ransomware note
in HTML format. We obtain 4,938 distinct ransom notes from 9,999
IP addresses. We extract 4,940 payment addresses from the ransom
notes using the iocsearcher tool [12].

Both scanners observe different sets of infected servers, largely
due to their scanning happening at different times. Figure 4a shows
that 79.2% of the payment addresses appear in both datasets, 19.7%
only in Shodan, and 1.1% only in Censys. Figure 4b shows that 43.1%
of the IP addresses appear in both datasets, 45.5% only in Shodan,
and 11.4% only in Censys. Thus, our Shodan dataset has slightly
better coverage on DeadBolt, but the set of payment addresses
and infected IPs observed from both vantage points significantly
overlaps. The larger overlap in payment addresses is likely due to
servers that appear multiple times on different IP addresses.

4.3 Increasing the Coverage
Of the 4,997 DeadBolt payment addresses collected from Shodan
and Censys, only 64 addresses had received deposits as of April 12,
2023. For 30 of those 64 seeds, the Bitcoin ledger does not show
the victim’s payment, but only the key release transaction, all of
them on October 13, 2022. These 30 addresses are part of the 155
addresses for which the Dutch police recovered their decryption
key. Since the ransom payment was withdrawn after the key was
released, the payment transactions do not appear on the ledger.
The fact that our datasets only have 30 of the 155 addresses for
which the Dutch police recovered the keys indicates that we only
have partial coverage. None of the seeds have withdrawals. Thus,

the received payments have still not been moved and expansions
can not reveal new addresses. In the remainder of this section, we
present two novel techniques that leverage unique characteristics
of DeadBolt, which allow us to obtain very high coverage, possibly
nearly complete, on the payments performed by DeadBolt victims.
Key release analysis. All key release transactions to the 64 seeds
have the same format, illustrated in Figure 3, with one input key
release address and three output slots that correspond to (a) the
payment address that receives 0.0000546 BTC, (b) the input key
release address which is used as change address and (c) the OP
RETURN script that stores the decryption key on the blockchain.

Critically, all key release transactions for the 64 seeds originate
from one of two key release addresses: bc1qh61 or bc1q622. The
reuse of key release addresses to post the decryption keys of many
victims allows us to identify ransom payments to previously un-
known payment addresses (i.e., not in our datasets) that correspond
to infected servers the Internet scanners did not observe (e.g., NAS
devices disconnected from the Internet right after infection). For
this, we retrieve all withdrawals from the two key release addresses.
All these transactions match the expected pattern, so their output
addresses receiving 0.0000546 BTC are (potentially unknown) pay-
ment addresses. This technique identifies 2,481 payment addresses,
of which 2,418 (97.5%) are previously unknown.

The payment addresses with deposits we know at this point
contain 154 addresses with only the key release transaction, but no
victim payment. This almost matches the 155 keys the Dutch Police
were able to extract in October 2022. Still, there is one missing
address indicating we may still be missing some victim payments.
One possible reason for this is that there could exist other key
release addresses that we have not observed in our datasets.
Key release signature. We propose a novel technique to identify
additional DeadBolt key release addresses. We leverage that Dead-
Bolt key release transactions are quite distinct, build a signature
for them, and scan all transactions in the Bitcoin ledger for over
15 months to search for unknown key release addresses. Given a
transaction, our signature checks that it has one input and three
outputs slots, where the output slots correspond (in any order) to
(1) an OP RETURN address, (2) an address receiving exactly 5460
satoshis (0.0000546 BTC), and (3) an address that is the same as the
sending address. We apply the signature to all Bitcoin transactions
from block 716,591 (2022-01-01) up to block 785,100 (2023-04-12).
The search takes 16 minutes to complete. We decode the OP RE-
TURN payload data from the matched transactions and observe that
several decoded values start with the string omni, indicating that
they are part of the OMNI protocol [51]. After filtering the OMNI
transactions, all remaining transactions originate from 3 addresses,
two of them are the known key release addresses, and the third one
(bc1q3g3) is a previously unknown key release address. The newly
discovered key release address has delivered the decryption key to
18 (previously unknown) payment addresses. Of those, 17 receive
the expected payments of 0.03 BTC or 0.05 BTC. The other address
only received the key release transaction, but no victim payment.

1bc1qh6pku7gg2d6pw87z3t4f6d4rk6c48ajvsmfjjl
2bc1q62rjm9a82s3qmjzffc6uyytw25p3fppftl5zpd
3bc1q3guvg2yp5mzmf7hnfr7zlg2unah9t6mjwyky72
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Collection Coverage Seeds Addr. Dep. BTC USD
Censys 2.0% 50 50 86 2.45686936 53,151.89
Shodan 2.6% 66 66 114 2.82608808 63,077.10
Censys+Shodan 2.6% 66 66 114 2.82608808 63,077.10
Key rel. analysis 99.2% 2,484 2,485 2,596 97.83718238 2,453,532.39
Key rel. signature 100.0% 2,503 2,504 2,615 98.35008368 2,472,845.02

Table 8: DeadBolt estimations from different vantage points.

Figure 5: Cumulative revenue for DeadBolt over time using
full coverage (blue line) and only scan engines (orange line).

This address receives the missing key of those recovered by the
Dutch police, as confirmed by using the public Web service.

The fact that we have scanned all Bitcoin transactions since
DeadBolt started to operate and have not identified further key
release addresses, along with the fact that we observe all 155 keys
recovered by the Dutch Police, give us strong confidence that we
have achieved nearly perfect coverage on DeadBolt’s victim pay-
ments. Of course, our key release signature assumes a unique key
release transaction pattern, so we could miss victim payments if
multiple patterns exist.

4.4 Coverage Comparison
Table 8 summarizes the coverage and revenue estimation on Dead-
Bolt from different vantage points: using only Censys, only Shodan,
both Censys and Shodan, and extending our coverage using the
key release analysis and the key release signature cumulatively.
The table shows the fraction of DeadBolt addresses, i.e., payment
addresses plus key release addresses, found at each step (Cover-
age), the number of addresses with deposits (Seeds), the number of
addresses found after applying MI clustering (Addr.), the number
of deposits to the addresses (Dep.), the BTC estimation on block
height 785,100 using a DD-OW+MI-DC methodology, and the USD
estimation using the conversion rate at the time of each payment.

Had we focused only on the payment addresses observed in the
union of the Censys and Shodan datasets, we would have only
identified 66 addresses (64 payment addresses and 2 key release
addresses), 2.6% of all DeadBolt addresses finally identified. Of those
addresses, only 34 had victim payments and the MI expansion fails
to identify additional addresses since the funds have not yet been

Figure 6: DeadBolt revenue per day.

moved from those 34. Thus, we would have estimated a very modest
revenue of 2.826 BTCs or $63,077.

Instead, by applying our two coverage-expanding techniques, we
identify 38 times more seeds. The estimation jumps to 98.350 BTC,
35 times higher than the 2.826 BTC. The estimated USD revenue is
$2.47M, 39 times higher than the $63,077 using the Internet scanners
datasets. Figure 5 shows the difference in cumulative DeadBolt
revenue using both vantage points and Figure 6 the daily BTC
amounts received by DeadBolt using our most complete coverage.

In summary, the estimation using only the Shodan and Censys
datasets would have been 2.5% of the total USD estimation, high-
lighting the huge impact of the (lack of) coverage in the estimation.
This in turn means our estimations in Section 3.4 may significantly
underestimate the financial impact of Bitcoin-related cybercrimes.

5 HOW TO ESTIMATE
It is widely accepted that estimated cybercrime Bitcoin revenue is
a lower bound on the actual revenue due to the impact of the lack
of coverage on the seeds. Indeed, we have quantified the coverage
impact to be very significant on the DeadBolt ransomware. How-
ever, our results show that some methodology steps, e.g., handling
online wallets in services and using change address heuristics, may
introduce huge overestimation. In some cases, such methodological
errors can outweigh the underestimation caused by the lack of
coverage, thus overshooting the actual revenue.

This section presents our recommendations on how to perform
estimations. At a high level, we recommend performing two BTC
revenue estimations: DD-DC and DD-OW+MI-DC. First, as a con-
servative estimation, we recommend authors provide the sum of
direct deposit on seeds excluding deposits where seeds appear both
in the input and output slots (DD-DC). This estimation does not
use expansions. Thus, it is easy to compute without specialized
platforms, e.g., deposit transactions to seeds are available from
blockchain explorer webpages and APIs, and the double counting
filter only requires examining if the seeds appear in the input slots
of the deposits. On the other hand, DD-DC may significantly un-
derestimate revenue if seed coverage is low. Overestimation only
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happens if seeds are incorrectly labeled or reused for other pur-
poses. We discuss the latter below in the discussion of value and
time filtering.

As a tighter estimation, we recommend using DD-OW+MI-DC,
which we used for the comparison in Section 3.4. This estima-
tion uses the MI clustering expansion (with special handling for
seeds that are online wallets in services), avoids change address
expansion, and removes duplicate deposits. We have shown that
identifying online wallets in services like exchanges is critical to
prevent huge overestimation when using MI clustering. For such
identification, it is possible to use publicly available tag databases
like those in WYB [31] and GraphSense [34]. However, tag datasets
have limited coverage. For example, our initial giveaway scams
estimation was an astronomical 6.1 Billion USD (503 times higher
than the final estimation) due to seeds in five exchanges not iden-
tified by the WYB tags. Because of that, an ML classifier such as
the one in WYB should complement tag databases. An alternative
is using heuristics to exclude outlier clusters. However, it is hard
to select reliable thresholds on cluster size (e.g., Locky’s MI cluster
has 7,094 addresses) or BTC volume (given the highly volatile BTC
conversion rate). The best option may be to exclude clusters with
multi-million USD revenue, but this may prevent the analysis of
large operations. To prevent overestimation, MI clustering should
use detection heuristics for CoinJoin mixing transactions [29, 38],
available in open-source platforms [34, 38]. This estimate avoids the
change address expansion due to its potentially high false positives,
which prevented us from obtaining some results in Section 3.2. Re-
cently, Kappos et al. [40] proposed a new change address heuristic
with lower false positives than prior heuristics. This heuristic has
not been used for estimations yet, but we would like to evaluate it
in future work. This estimate also avoids double counting deposits,
which we have shown can introduce overestimation. In particular,
we have measured that applying the double-counting filter on all
8,816 seeds removes 76% of the estimated revenue.
Value and time filtering. The proposed estimations do not use
value and time filtering for several reasons. First, these filters are
helpful only if payment addresses are reused for multiple purposes
(e.g., different campaigns or cybercrimes) and the estimation targets
just one (e.g., a specific campaign). Second, they are group-specific,
and the selection of a proper filtering range is affected by the group’s
coverage. In addition, value filtering does not apply to cases where
the payment amount is not pre-determined (e.g., clippers and give-
away scams) and when each victim is assigned a different amount
(e.g., some ransomware families). If authors believe value and time
filtering (or any other group-specific filtering) should be applied, we
recommend providing estimations with and without those filters.
Other blockchains. Three surveyed works also collect seeds for
other blockchains such as Cardano, Ethereum, Monero, and Rip-
ple [41, 42, 71]. We have focused on estimating Bitcoin revenue for
two reasons. First, prior works exclusively apply a DD estimation
on other blockchains. Thus, there are no methodologies to compare.
Besides, our tool currently only supports Bitcoin. To estimate the
revenue of a cybercriminal activity that solicits victim payments
on multiple blockchains, we recommend performing a separate
DD-DC estimation on each blockchain. For each blockchain, de-
posits to the seeds can be obtained using the webpage or API of

blockchain explorers and the double counting filter only requires
checking if seeds appear among the inputs of each deposit. We
expect future research to investigate more sophisticated estimation
methodologies for other blockchains (e.g., novel expansions).
Conversion rate. The above recommendations focus on estimating
BTC revenue. To estimate the financial impact on victims using fiat
currency (e.g., USD) we recommend applying the BTC to fiat con-
version rate on the day each payment was received. This conversion
accounts for a victim’s loss at the time it happened. Conversions
using a later fixed date are difficult to interpret due to the high
variability of the BTC conversion rate over time. In particular, we
have shown how older cybercriminal campaigns that collected high
amounts of BTC (e.g., Locky) had a lower USD financial impact on
victims than more recent campaigns that collected fewer BTCs (e.g.,
DarkSide).
Enabling replicability. Bitcoin transactions are immutable and
public, so in theory, estimation results should be easy to replicate.
In practice, it is often not so due to missing information. To make
results replicable, we recommend that estimation works estate
their estimation target (e.g., a cybercrime type, a cybercriminal
group, or a specific campaign) and release their seeds and the block
height used for the estimation. If applicable, they should also release
filtering ranges and clustering results.We also recommend releasing
other payment addresses that have not received deposits yet, as that
could change at higher block heights. If using expansions, authors
should mention which platform they are using to implement them
and release their code if custom. If using change address expansion,
authors should specify the specific variant employed.

6 FURTHER DISCUSSION
This section discusses other insights and future improvements.
Evasion.MI clustering fails to find new addresses for 40% of the
141 groups, arguably indicating cybercriminals are actively evading
this expansion. Huang et al. [36] addressed this issue for the Cerber
ransomware by observing that the seeds sent the funds to aggre-
gators, on which MI clustering could be successfully applied. We
believe their approach can be generalized using recent platforms for
tracing cybercriminal flows [31]. In particular, it may be possible
to perform a 1-step forward exploration from the seeds and apply
heuristics to determine if the discovered addresses belong to the
cybercriminals. For example, if the attackers use 1-to-1 withdrawals
then the no change heuristic [8] would determine the destination
address belongs to the seed owners. Cybercriminals can also evade
the estimation by hiding their payment addresses. For example,
some ransomware families do not provide the payment address
and value in their ransom notes, but only a contact email or IM ad-
dress [26]. That extra level of indirection complicates the collection
of seeds.

Another common evasion is the use of mixers. While their goal is
to obfuscate the destination of funds, mixing transactions can also
introduce estimation errors. First, undetected mixing transactions
may lead to overestimation with MI clustering by bringing into
the expanded set unrelated addresses from other entities. Second,
undetected mixing transactions that deposit to the expanded set
may originate from the same entity that owns the expanded set
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addresses, but will not be removed by the DC filter, thus introduc-
ing overestimation. We use mixer tags available in WYB [31] and
CoinJoin detection heuristics implemented by BlockSci [29, 38]
to address both issues. However, we acknowledge that both ap-
proaches are incomplete. Heuristics in BlockSci target CoinJoin,
but there exists a variety of other mixing protocols (e.g., CoinShuf-
fle [61]) and mixing techniques [70]. Tags can only identify known
mixers and may miss mixing transactions in those, e.g., if mixing
commission fees are not aggregated. Future work should develop
new mixing detection techniques that can be added to blockchain
analysis platforms.
Generality of DeadBolt results. Our two coverage-increasing
techniques are specific to DeadBolt. Thus, the coverage impact may
differ for other groups.We believe the coverage impact will likely be
larger in other cases because Internet scanners should have better
coverage on server ransomware than most security vendors would
on a malware family. Furthermore, our two techniques generalize
beyond the DeadBolt coverage measurement. The key release analy-
sis technique is an instance of doing one backward exploration step
from a payment address to identify a key release address, followed
by one forward exploration step from the key release address to
discover other payment addresses. It is related to the exploration
Huang et al. [36] performed for Cerber, although that case was one
forward step from the seeds followed by one backward step. We
believe such forward+backward or backward+forward exploration
will be critical to improving estimation methodologies (e.g., to ad-
dress MI clustering evasion). The key release signature technique
builds a signature for a distinctive malicious transaction and scans
all blockchain transactions in a time range to identify more trans-
actions matching the signature. We believe it should be possible to
build signatures for other types of malicious Bitcoin transactions,
such as those used in C&C signaling [31].
DeadBolt conversion rate. Measuring the conversion rate of a
cybercrime, i.e., the fraction of targets that pay, is challenging and
may require developing novel methodologies [39]. The fact that
DeadBolt’s ransom notes are publicly available on the Internet
allows us to identify infected servers (i.e., victims), obtain their
payment addresses, and check what fraction received a deposit in
the expected ranges ([0.029,0.031] or [0.049,0.051]). Since we collect
4,997 payment addresses from Censys and Shodan, and only 34 of
those have received valid payments, this indicates that 0.7% of the
victims paid the ransom. This estimate relies on each server being
assigned a unique payment address. Among the 2,500 payment
addresses with victim payments, only 13 (0.52%) receive more than
one deposit in the expected ranges. Thus, while not every server
may have been assigned a unique address (it is unlikely that the
same victim payed multiple times), most seem to have their own,
and the 0.7% ratio is likely a good estimate of DeadBolt’s conversion
rate. Given the nature of DeadBolt targets, i.e., NAS devices possibly
storing much data (including data backups), this conversion rate
may be very specific to DeadBolt and may not represent other (e.g.,
desktop) ransomware, which may have lower conversion rates.

7 CONCLUSION
We have presented the first systematic analysis on the estimation
of cybercrime bitcoin revenue. Our analysis has quantified the

impact in the estimation of the methodology used and the limited
seed coverage. We have built a tool able to replicate the different
methodologies and have collected a dataset of 30,424 cybercrime
payment addresses. We have used them to quantify the impact of
different methodology steps and to compare the revenue obtained
by 6 cybercrimes and 141 cybercriminal groups. We show that some
methodologies may produce large overestimation by introducing
addresses unrelated to the campaign, through undetected online
wallets in services like exchanges, or by double-counting deposits.
We have measured that for 40% of the groups MI clustering fails to
discover additional addresses, and that ransomware dominates the
Bitcoin-payment cybercrime scene with a revenue almost 10 times
larger than other cybercrimes. For the first time, we have quantified
the impact of the lack of coverage in the estimation. We propose
two techniques to achieve possibly complete coverage of victim
payments to the DeadBolt server ransomware. From our privileged
vantage point, we estimate a revenue of $2.47M, 39 times higher
than estimated from the vantage point provided by two popular
Internet scan engines.
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Family Seeds OW Clust Addr. Activity Period BTC USD
R:Netwalker 66 0 65 329 20180216:20210528 3,131.7562 $28,262,120
R:Conti 26 0 26 35 20171204:20220207 410.8025 $18,869,852
R:REvil 7 0 6 77 20190823:20210611 369.5363 $12,540,689
R:DarkSide 3 0 3 3 20210215:20210511 158.7086 $9,124,091
R:Locky 7,036 0 2 7,094 20160114:20170602 15,396.6934 $7,833,613
R:Ryuk 26 0 26 39 20180811:20230322 866.8069 $4,844,149
R:RagnarLocker 1 0 1 1 20200727:20200728 414.0007 $4,547,241
R:MountLocker 1 0 1 1 20201103:20201104 298.5000 $4,226,277
R:BlackMatter 1 0 1 1 20210730:20210730 96.3863 $4,068,295
R:Makop 1 0 1 996 20190617:20230408 316.0883 $3,853,713
R:Egregor 9 0 9 9 20201023:20201207 197.9554 $3,129,599
R:Tejodes 1 0 1 178 20171117:20200928 345.5527 $2,798,239
P:Leancy 1 0 1 1 20131216:20171123 3,092.8482 $1,896,583
R:CryptXXX 1 0 1 1,742 20160511:20161006 3,338.5464 $1,877,833
R:DMALockerv3 9 0 3 177 20160818:20211105 1,833.9286 $1,757,464
R:MedusaLocker 3 0 3 26 20200603:20220121 56.1546 $1,454,776
R:HelloKitty 1 0 1 1 20210712:20210712 32.3529 $1,070,653
R:Bitpaymer 1 0 1 1 20200813:20200817 90.0004 $1,058,347
C:cliptomaner 1 1 1 1 20191117:20230411 38.7643 $1,004,397
P:Cryptory 1 1 1 1 20130902:20150108 1,677.5167 $886,689
R:Qlocker 22 0 4 45 20210420:20220911 14.9621 $786,335
R:Spora 1 0 1 2,129 20170105:20210102 616.2996 $723,352
R:SamSam 23 0 21 51 20160113:20170630 646.2379 $583,508
R:CryptoLocker 2 0 1 968 20130907:20170710 1,511.7579 $520,238
C:clipsa 576 0 37 784 20180821:20230324 25.9030 $507,931
P:RockwellPartners 1 0 1 1 20140303:20150526 731.7512 $383,136
P:bitcoindoubler.fund 1 1 1 1 20170803:20180127 49.5862 $323,677
P:MiniPonziCoin 1 0 1 1 20140218:20141022 445.9718 $266,979
P:Ponzi.io 2 0 1 33 20140204:20171030 369.3729 $258,604
P:BTC-doubler.com 1 0 1 1 20161226:20170723 176.3050 $229,916
R:SunCrypt 1 0 1 1 20210719:20210719 7.4484 $229,694
C:clipbanker 4 1 2 186 20160422:20230412 17.3412 $210,100
C:phorpiextldr 15 14 2 18 20180531:20230302 19.8600 $198,675
C:slave 1 0 1 1 20150102:20170714 651.4415 $193,837
C:n40 1 1 1 1 20170531:20191002 27.4139 $187,461
R:AES-NI 1 0 1 1 20140606:20210506 85.6786 $183,968
R:NoobCrypt 1 0 1 28 20131018:20160715 550.4330 $164,735
R:LockBit 2.0 2 0 2 51 20200929:20211008 4.9379 $158,709
P:Nanoindustryinv.com 1 0 1 2 20140816:20150213 480.1777 $155,317
C:mrpr0gr4mmer 3 0 2 377 20191226:20230410 9.0049 $130,166
R:WannaCry 5 0 4 6 20170331:20230306 59.5107 $119,094
R:SynAck 1 0 1 1 20150329:20180122 99.2369 $114,116
R:GlobeImposter 1 0 1 1 20141123:20171227 190.1388 $97,266
P:bitcoincopy.site123.me 1 1 1 1 20160725:20181112 17.9770 $91,826
P:1hourbtc.pw 1 0 1 433 20161031:20210104 43.4324 $89,381
R:AvosLocker 1 0 1 1 20210909:20210909 1.8047 $83,722
P:10PERCENTBTC 1 0 1 17 20140812:20230403 115.1086 $81,443
P:Ponzi120 1 0 1 1 20140225:20140301 144.9008 $77,763
C:masad 2 0 2 114 20170117:20230227 5.6161 $76,321
C:cryptoshuffler 1 0 1 156 20160303:20210831 65.1258 $71,890
C:phorpiextrik 7 1 7 9 20160814:20230104 11.4488 $68,726
P:GrandAgoFinance 1 0 1 1 20140924:20150129 178.7435 $64,765
R:Ako 1 0 1 14 20200107:20210530 5.9315 $54,487
P:investorbitcoin.com 1 1 1 1 20160531:20171003 47.3833 $51,444
P:1getpaid.me 1 0 1 2 20150607:20160429 176.7322 $43,250
R:APT 2 0 1 3 20160915:20171130 30.3040 $39,348
R:Globev3 5 0 5 19 20160925:20180220 40.4265 $36,493
P:LaxoTrade 1 1 1 1 20140820:20181218 69.7857 $25,998
R:Flyper 2 0 1 31 20161004:20181013 7.4181 $25,011
C:mekotion40 3 0 2 20 20180125:20221013 2.4035 $24,950
P:Twelverized 1 0 1 1 20140302:20140413 38.8018 $24,599
R:Globe 3 0 3 87 20160605:20170115 31.9565 $23,577
C:predatorthethief 1 0 1 39 20190809:20201115 2.4541 $23,461
C:mekotio 2 0 2 14 20170712:20220530 1.5535 $22,189
C:azorult 1 1 1 1 20180719:20190324 5.9413 $21,872
R:LockBit 1 0 1 1 20201201:20201214 1.1114 $21,007
C:clipboardwallethijacker 4 0 1 34 20180302:20220318 2.6740 $18,721
C:mispadu 1 1 1 1 20190928:20220927 0.7798 $18,473
R:EDA2 2 0 2 33 20140406:20170725 10.8830 $18,299
P:bestdoubler.eu 1 0 1 8 20161223:20170831 13.2392 $18,149
R:Sam 1 0 1 1 20160927:20160927 29.0000 $17,538

Family Seeds OW Clust Addr. Activity Period BTC USD
R:CryptoTorLocker2015 7 0 1 159 20131106:20170312 52.7342 $15,068
R:Black Kingdom 2 0 2 2 20200306:20210318 0.7233 $15,015
R:NotPetya 3 0 3 3 20170626:20230306 4.8104 $13,770
C:casbaneiro 1 0 1 19 20190307:20211109 1.6425 $13,691
R:XLockerv5.0 2 0 2 3 20170124:20170307 12.0000 $12,568
P:BTC-doubler.us 1 0 1 7 20170502:20180512 4.3549 $12,527
R:Xorist 3 1 3 11 20170523:20171001 4.3138 $11,850
R:File-Locker 1 1 1 1 20120309:20230322 2.8771 $10,832
C:kryptocibule 8 0 4 13 20200228:20230308 0.7980 $10,706
R:XTPLocker 1 0 1 4 20160509:20161110 19.1398 $10,283
R:StorageCrypter 1 0 1 5 20171110:20171208 0.9668 $9,908
P:bitcoindoubler.prv.pl 1 0 1 1 20160516:20220217 11.5914 $9,758
R:Ranzy Locker 1 0 1 1 20210226:20210226 0.2100 $9,729
R:Ransomnix 1 0 1 1 20171121:20180704 1.2496 $9,474
P:120cycle 1 0 1 78 20140324:20140329 14.2823 $8,264
P:Minimalism10 1 0 1 1 20140227:20140327 13.0614 $7,839
P:CRYPTOSX2 1 0 1 52 20150129:20180106 27.2141 $7,490
R:LamdaLocker 1 1 1 1 20170110:20170731 6.6692 $7,430
R:ChupaCabra 1 1 1 1 20210513:20210923 0.1907 $7,362
R:AlbDecryptor 1 0 1 18 20200423:20211118 0.2836 $7,355
C:protonbot 2 2 2 2 20180417:20210409 0.9430 $7,349
R:Vega 1 0 1 11 20210809:20210920 0.1463 $6,989
P:doublebitcoin.life 1 1 1 1 20151026:20201016 3.9236 $6,853
R:VenusLocker 2 0 2 5 20160719:20170217 6.8115 $6,742
R:Phobos 1 1 1 1 20210720:20210720 0.1845 $5,497
R:CryptConsole 6 0 6 7 20160428:20170914 3.8135 $4,254
R:Predator 1 1 1 1 20180502:20190629 0.5559 $3,522
R:JigSaw 6 0 5 20 20160328:20170315 5.2538 $3,369
R:Qweuirtksd 1 0 1 11 20181025:20181117 0.5407 $3,301
R:Black Ruby 1 0 1 1 20180205:20180213 0.3678 $3,054
R:Git 1 0 1 4 20190503:20211114 0.3497 $3,006
R:XLocker 1 0 1 1 20170524:20170524 1.0000 $2,476
C:bitcoingrabber 1 0 1 16 20190130:20220807 0.2821 $2,443
P:igjam.com 1 0 1 2 20131211:20170616 3.0101 $2,291
R:HC6/HC7 6 0 6 6 20170729:20171127 0.3206 $2,121
P:world-btc.online 1 0 1 51 20170120:20170924 1.9167 $2,082
R:Bagli 1 0 1 8 20210409:20230403 0.0825 $1,971
R:Cryptowall 1 0 1 4 20160429:20161116 2.6277 $1,689
P:OpenPonzi 1 0 1 1 20150415:20160308 6.0855 $1,490
R:ComradeCircle 1 0 1 1 20161018:20161018 2.0332 $1,292
R:Avaddon 1 0 1 1 20210512:20210512 0.0241 $1,193
R:Cryptohitman 2 0 1 15 20160427:20190923 1.9001 $1,049
R:Encrpt3d 1 0 1 1 20191209:20210704 0.1107 $1,015
C:androidclipper 1 1 1 1 20180223:20181206 0.1287 $942
R:Ecovector 1 0 1 2 20160511:20160521 2.0041 $888
R:Decryptiomega 2 1 2 2 20190718:20190807 0.0600 $705
P:bitcoinprofit2 1 0 1 1 20160221:20200301 0.5118 $672
R:Kelly 1 0 1 1 20200909:20200909 0.0500 $502
R:Gula 1 1 1 1 20180919:20181117 0.0425 $268
R:DMALocker 1 0 1 1 20151228:20151228 0.6000 $253
P:7dayponzi 1 0 1 1 20150321:20150526 0.7735 $202
R:Vevolocker 1 0 1 5 20170923:20171116 0.0227 $152
C:aggah 1 0 1 1 20200518:20200826 0.0130 $141
R:Black Mamba 1 1 1 1 20170619:20170619 0.0399 $105
P:invest4profit 1 0 1 11 20161029:20170929 0.0317 $42
R:LockOn 1 1 1 1 20170826:20170826 0.0050 $22
R:BlackRouter 1 1 1 1 20181219:20190528 0.0023 $15
R:NullByte 1 0 1 1 20160903:20160903 0.0172 $10
R:Exotic 1 0 1 1 20161028:20161028 0.0064 $4
R:Bucbi 1 0 1 1 20160402:20160402 0.0090 $4
R:PopCornTime 1 1 1 1 20161214:20161230 0.0028 $2
R:Phoenix 1 0 1 1 20161214:20161214 0.0026 $2
R:CryptoHost 1 0 1 1 20160612:20160612 0.0020 $1
R:WannaRen 1 0 1 1 20200408:20200408 0.0001 $1
R:7ev3n 1 0 1 1 20160429:20160429 0.0011 $1
R:Chimera 1 0 1 1 20151107:20151108 0.0005 $0
R:WannaSmile 1 0 1 1 20171110:20171110 0.0000 $0
R:CTB-Locker 1 0 1 1 20160313:20160418 0.0002 $0
R:TeslaCrypt 1 0 1 1 20150315:20150315 0.0001 $0
P:btcgains 1 1 1 1 - 0.0000 $0
Total 8,021 42 383 17,040 20120309:20230412 40,282.3312 $123,357,041

Table 9: Operations in the Ransomwhere [20], Ponzi [17], and Clipper [31] datasets, ordered by USD revenue using the DD-
OW+MI-DC estimation. The last row captures total revenue of all 141 operations.
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