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ABSTRACT
As machine learning as a service continues gaining popularity,

concerns about privacy and intellectual property arise. Users often

hesitate to disclose their private information to obtain a service,

while service providers aim to protect their proprietary models.

Decision trees, a widely used machine learning model, are favoured

for their simplicity, interpretability, and ease of training. In this

context, Private Decision Tree Evaluation (PDTE) enables a server

holding a private decision tree to provide predictions based on a

client’s private attributes. The protocol is such that the server learns

nothing about the client’s private attributes. Similarly, the client

learns nothing about the server’s model besides the prediction and

some hyperparameters.

In this paper, we propose two novel non-interactive PDTE pro-

tocols, XXCMP-PDTE and RCC-PDTE , based on two new non-

interactive comparison protocols, XXCMP and RCC. Our evaluation

of these comparison operators demonstrates that our proposed con-

structions can efficiently evaluate high-precision numbers. Specifi-

cally, RCC can compare 32-bit numbers in under 10 milliseconds.

We assess our proposed PDTE protocols on decision trees trained

over UCI datasets and compare our results with existing work in the

field. Moreover, we evaluate synthetic decision trees to showcase

scalability, revealing that RCC-PDTE can evaluate a decision tree

with over 1000 nodes and 16 bits of precision in under 2 seconds.

In contrast, the current state-of-the-art requires over 10 seconds to

evaluate such a tree with only 11 bits of precision.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols; Cryp-
tography.
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1 INTRODUCTION
With the widespread adoption of machine learning (ML) in many

industries, there is a growing interest to offer cloud-based machine

learning services [1–4]. However, using cloud-based ML services

necessitates clients to share their confidential data with providers to

benefit from these services. For many users, this prerequisite raises

serious concerns about the potential loss of privacy. Additionally,

companies which wish to collaborate and use each other’s services

cannot risk exposing their customers’ and employees’ data. This

creates a barrier to potential business collaborations. Moreover,

service providers are unwilling to relinquish classification models

to users, which could eliminate their competitive advantage and

put the users in the training data at risk.

Decision trees are a well-known ML algorithm which are still

used widely in many tasks due to their simplicity, interpretability,

and ease of training [20, 33]. Private Decision Tree Evaluation

(PDTE) is a protocol for providing a prediction using a private

decision tree hosted by a server on a private input provided by a

client. At the end of the protocol, the server learns nothing about

the client’s input (input privacy), and the client learns nothing about

the server’s decision tree (model privacy) other than the result of

the inference and some hyperparameters.

One set of solutions is interactive, where the client and server ex-

change messages [9, 10, 37, 40] in multiple rounds. These solutions

are based on tools such as multi-party computation, secret-sharing

and garbled circuits [25]. Another category of solutions is non-

interactive approaches, where the client can submit the query and

go offline until the response is ready. This is great for the setting

where the client lacks computational power or suffers from lim-

ited bandwidth. All existing solutions to non-interactive PDTE use

levelled or fully homomorphic encryption [6, 15, 29, 39]. Solutions
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requiring levelled homomorphic encryption select parameters that

depend on the comparison’s precision. This limits the scalability

of the solution significantly [29, 40]. Solutions using fully homo-

morphic encryption do not suffer the same issue, but individual

operations are inefficient due to the expensive bootstrapping pro-

cedure. The efficiency problem is exacerbated because some fully

homomorphic schemes do not support SIMD operations, so infer-

ring multiple samples in parallel is not possible.

This work proposes two non-interactive PDTE protocols using

levelled homomorphic encryption schemes. We propose a protocol

where the multiplicative depth of the entire PDTE protocol does

not depend on the tree’s structure or the number of client attributes,

making it more scalable and practical. Our solution can scale to trees

with over 1000 decision nodes and 100 client attributes. At the heart

of our proposed protocols are efficient non-interactive comparison

operators. First, an extension of XCMP by Lu et al. [29], which

we denote as Extended XCMP (XXCMP). This extension supports

arbitrary precision and is implemented using automorphisms in

the SEAL library. Second, is a comparison operator based on the

concept of range covers [24, 35], combined with constant-weight

equality operators proposed by Mahdavi and Kerschbaum [30].

We denote this comparison operator as Range Cover Comparison

(RCC). Both operators are implemented with FV, an RLWE-based

cryptosystem, but in different modes of operation [18]. Comparison

operators are the core building block in all non-interactive PDTE

protocols [6, 8, 15, 29, 40]. Our proposed comparison operators can

efficiently compare numbers with arbitrary precision. In contrast,

previous work is limited in precision due to efficiency. XCMP is

limited to 13 bits, while the operator used by Cong et al. [15] can

only compare 11-bit numbers. The comparison operator of Tueno

et al. [39] can compare numbers with arbitrary precision. However,

the parameters of the levelled FHE scheme grow with bit precision,

limiting the solution’s efficiency for high-precision inputs. Our

evaluation shows that XXCMP and RCC are up to 100 times faster

than the operators proposed by Tueno et al. Since our comparison

operators perform comparisons with arbitrary precision, models

such as decision trees need not be retrained with low precision to

enable private inference.

We use the SumPath algorithm described in Section 2.4 to eval-

uate the paths in the decision tree. SumPath requires no multiplica-

tions and hence does not increase the multiplicative depth of the

circuit. By combining SumPath with XXCMP and RCC, we propose

two new PDTE protocols, XXCMP-PDTE and RCC-PDTE , which

use RLWE-based cryptosystems in two different modes of operation.

While using RLWE-based cryptosystems with SIMD support has

previously been proposed [39], it was only to infer multiple samples

in parallel and reduce amortized time. In contrast, our work uses

SIMD operations to not only perform multiple inferences but also

to speed up even a single inference, which reduces client latency.

This approach also allows the client to pack more information into

fewer ciphertexts, reducing the overall communication between

the client and server when only one inference is performed.

In our evaluation, we train decision trees with different bit preci-

sion over commonly used UCI datasets [16]. Our evaluation shows

that XXCMP-PDTE and RCC-PDTE are up to 5 times faster than

SortingHats [15], which is a state-of-the-art solution for PDTE. This

advantage increases when inferring many samples in parallel. The

performance of PDTE, i.e., the communication and computation

cost, depends mainly on three factors: precision, the number of

decision nodes, and the number of client attributes. We perform

an ablation study over these parameters using synthetic decision

trees to demonstrate the dependency between these parameters

and the performance. Our experiments show that the number of

client attributes affects communication and the number of decision

nodes affects computation, while bit precision influences both met-

rics. Moreover, our experiments show that RCC-PDTE is the most

scalable solution. It outperforms all other solutions when the num-

ber of decision nodes grows, and the number of client attributes

increases. Specifically, it can infer decision trees with over 1000

decision nodes and 16-bit precision in under 2 seconds. SortingHats

requires more than 10 seconds to evaluate such a decision tree with

only 11 bits of precision.

In summary, our contributions are as follows:

• Two non-interactive comparison protocols which we denote

as XXCMP and RCC, that can compare numbers with arbi-

trary precision using levelled homomorphic encryption.

• Two non-interactive PDTE protocols XXCMP-PDTE and

RCC-PDTE .

• Evaluation of proposed comparison operators with state-of-

the-art protocols.

• Ablation of PDTE over the number of client attributes and

the size of the decision tree, which shows RCC-PDTE to

be the most scalable solution. Our experiments show that

RCC-PDTE can evaluate decision trees with up to 1000

nodes in less than 2 seconds.

In Section 2, we review necessary background material such as

homomorphic encryption, decision trees and private decision tree

evaluation, range covers and tree traversal algorithms. We also com-

pare the properties of related work on non-interactive comparison

and non-interactive PDTE in this section. We describe our construc-

tions, XXCMP and RCC, two non-interactive private comparison

protocols in Section 6.1. In Section 5, we describe our PDTE proto-

cols, XXCMP-PDTE and RCC-PDTE . In Section 6.2, we compare

XXCMP and RCC with other non-interactive comparison proto-

cols and then compare PDTE protocols with our constructions. We

conclude in Section 7 with a discussion on limitations and future

work.

2 BACKGROUND & RELATEDWORK
Table 2 summarizes the notation used in the background section

and throughout the paper. Throughout the paper, we use [𝑛] to
refer to the set {0, 1, · · · , 𝑛 − 1}, for 𝑛 ∈ N.

2.1 Homomorphic Encryption
Homomorphic Encryption (HE) is a form of encryption that per-

mits computation on the data while in encrypted form. Levelled

homomorphic encryption (LHE) schemes permit computation of

circuits with a limited multiplicative depth [11, 18]. The parameters

of the cryptosystem are chosen based on the multiplicative depth.

Hence, we try to design algorithms with a lower multiplicative

depth to enhance performance. A fully homomorphic encryption

(FHE) scheme permits an unlimited amount of operations with the
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Encoding Plaintext Space Operation

Polynomial 𝑅𝑝 =
Z𝑝 [𝑋 ]
𝑋𝑁 +1

Polynomial Add 𝑐1 (𝑥), 𝑐2 (𝑥) ∈ C 𝑚1 (𝑥) +𝑚2 (𝑥)
Plain Polynomial Mult. 𝑐1 (𝑥) ∈ C,𝑚2 (𝑥) ∈ 𝑅𝑝 𝑚1 (𝑥)𝑚2 (𝑥)

Polynomial Mult. 𝑐1 (𝑥), 𝑐2 (𝑥) ∈ C 𝑚1 (𝑥)𝑚2 (𝑥)
Oblivion Expansion [7, 13] 𝑐1 (𝑥) ∈ C, 𝑘 ∈ N ∪ {0} Coefficient of 𝑥𝑘 in𝑚1 (𝑥)

Batched Z
𝑁 /2
𝑝

SIMD Add 𝑐1 (𝑥), 𝑐2 (𝑥) ∈ C 𝑚1 (𝑥) ⊕𝑚2 (𝑥)
Plain SIMD Mult. 𝑐1 (𝑥) ∈ C,𝑚2 (𝑥) ∈ Z𝑁 /2𝑝 𝑚1 (𝑥) ⊗𝑚2 (𝑥)

SIMD Mult. 𝑐1 (𝑥), 𝑐2 (𝑥) ∈ C 𝑚1 (𝑥) ⊗𝑚2 (𝑥)
Circular (Right) Rotation 𝑐1 (𝑥) ∈ C, 𝑘 ∈ N Rotate𝑘 (𝑚1 (𝑥))

Table 1: Different encodings for the FV cryptosystem. In all operations, we have 𝑐1 (𝑥), 𝑐2 (𝑥) ∈ C that encrypt 𝑚1 (𝑥),𝑚2 (𝑥),
respectively. Operations over plaintext polynomials happen in 𝑅𝑝 . ⊕ and ⊗ denote element-wise addition and multiplication
modulo 𝑝 between two vectors. Rotate𝑘 denotes the circular right rotation of a vector by 𝑘 slots.

help of bootstrapping [14, 17]. However, FHE is more computation-

ally expensive and requires large cryptographic keys for setup.

Fan–Vercauteren (FV) Cryptosystem. The Fan–Vercauteren (FV)

cryptosystem [18] is a lattice-based homomorphic cryptosystem.

An FV ciphertext is an array of polynomials, each from 𝑅𝑞 =

Z𝑞 [𝑋 ]/(𝑋𝑁 + 1), where 𝑞 is called the coefficient modulus. In the

simplest case, the ciphertext is only two polynomials. Let C denote

the ciphertext space. 𝑁 and 𝑞 determine both the security parame-

ter and how many homomorphic operations can be performed on

ciphertexts before decryption is necessary. Inputs in this cryptosys-

tem can be encoded in two formats. Table 1 shows the two encoding

types and the corresponding operations that can be performed.

Symbol Description

𝜆 Security parameter

𝑁 Polynomial modulus degree

𝑝 Plaintext modulus

𝑥 Encryption of 𝑥

M (T , a, t, v)
T Decision tree nodes

D Set of internal decision nodes in T
L Set of leaf nodes in T
𝑚 Number of decision nodes (|D|)
x Client attribute vector

a Node to attribute mapping

t Threshold value function

v Leaf value function

𝑑 Depth of the decision tree

𝑘 Number of classification labels

ℎ Hamming weight

ℓ Constant-weight code length

𝑛 Bit Precision

[𝑛] {0, 1, · · · , 𝑛 − 1}
B {0, 1}

Table 2: Summary of notation

Microsoft SEAL [34] implements the FV cryptosystem and sup-

ports all the operations mentioned in Table 1. We use the SEAL

library for our implementations in this work.

2.2 Non-interactive Private Comparison
A comparison operator is a function 𝑓 : 𝐷 ↦→ {0, 1} such that for

𝑥,𝑦 ∈ 𝐷 ,

𝑓 (𝑥,𝑦) = I[𝑥 ≤ 𝑦] (1)

A private comparison is a protocol where two inputs, 𝑥 and 𝑦,

are provided, such that one or both of them are encrypted. The

output of the protocol is 𝑓 (𝑥,𝑦) in encrypted form.

In this work, we are particularly interested in non-interactive

solutions to this problem. This is useful in protocols where the

encrypted input is provided by a lightweight client which may

go offline after providing the input. Below we describe three non-

interactive private comparison protocols from the literature.

Folklore Private Comparison. The folklore comparison algorithm

compares two 𝑛-bit numbers in binary format. This is identical to

how binary numbers are compared in the clear, with some adap-

tations to make it easier to compute using HE. The multiplicative

depth of the algorithm is 1 + log
2
(𝑛 + 1), which poses a burden to

compute efficiently using HE. Algorithm 1 shows this algorithm.

The inputs are binary vectors and all operations are element-wise.

We also use the RightShift𝑘 function, which logically shifts the

contents of any vector or bitstring by 𝑘 positions. Additions and

multiplications can also be replaced with XOR and AND operations.

Algorithm 1 Folklore Comparison(I[𝑎 ≤ 𝑏])
Input: 𝑎, 𝑏 ∈ {0, 1}𝑛

1: 𝜃𝑒𝑞 ← 1 − (𝑎 − 𝑏)2
2: 𝜃𝑔𝑡 ← (1 − 𝑎) · 𝑏
3: 𝜃

PrefixEq
= 𝜃𝑔𝑡 ·

∏𝑛−1
𝑘=0

RightShift𝑘 (𝜃𝑒𝑞)
4: 𝜃 ← ∑

𝑖 𝜃PrefixEq [𝑖]
Output: 𝜃 ∈ {0, 1}

Variations of folklore comparison have been implemented in

many works using levelled homomorphic encryption [19, 39].
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XCMP. Lu et al. [29] proposed a comparison operator called

XCMP which compares two encrypted numbers using levelled HE.

Cong et al. introduced a variation using TFHE where one operand

is unencrypted [15]. This relaxation reduces the runtime of the com-

parison. Algorithm 2 shows this variant of XCMP which compares

an encrypted input, 𝑎, provided by the client with an unencrypted 𝑏

provided by the server. The output is I[𝑎 ≤ 𝑏]. Inputs are encoded
as RLWE ciphertexts, i.e., Polynomial encoding from Table 1.

Algorithm 2 XCMP(I[𝑎 ≤ 𝑏]) [29]
1: procedure XCMP(𝐴,𝑏) ⊲ 𝐴 = 𝑋𝑎, 𝑎, 𝑏 ∈ [𝑁 ]
2: 𝑇 ← 1

2
𝑋 −𝑏 · (1 + 𝑋 + · · · + 𝑋𝑁−1)

3: 𝑅
$←− 𝑅𝑝 and 𝑅 [0] = 1/2 mod 𝑝

4: 𝐶 = 𝐴 ·𝑇 + 𝑅
return 𝐶

The result of the comparison is in the constant term of 𝐶 .

Iliashenko and Zucca [21]. The comparison function of 𝑥,𝑦 ∈ Z𝑝
can be represented as either a bivariate polynomial of the two in-

puts or a univariate function of the difference. Iliashenko and Zucca

showed how to exploit the structure of these polynomials to effi-

ciently evaluate the comparison function. Their main observation

was that these polynomials have many zero coefficients which can

be ignored.

Based on this observation, they showed that comparison using

FHE schemes that operate over arithmetic circuits can be efficient.

2.3 Decision Trees and PDTE
Decision Trees. A decision tree is a classification algorithm which

classifies input data by sequentially checking a series of criteria.

The simplest form of a decision tree is represented by a binary tree

where each internal node compares an attribute with a threshold.

Each leaf is assigned a classification value (or simply a class). To

classify a data point, we start at the root of the tree, perform a

comparison and move to the right or left child, depending on the

result of the comparison. We continue until we reach a leaf and

output the class of that leaf.

More formally, a decision tree consists of a set of nodes T =

D ∪ L, where D and L are the set of decision nodes and leaf

nodes, respectively. There also exists an attribute vector, x, and
three functions:

• a : D ↦→ [|x|] maps decision nodes to attribute indices.

• t : D ↦→ Z maps internal nodes to threshold values.

• v : L ↦→ Z maps leaf nodes to classification values.

We denote the tupleM = (T , a, t, v) as the decision tree model.

Private Decision Tree Evaluation (PDTE). Private Decision Tree

Evaluation (PDTE) is a protocol between a server and a client where

the server holds the model,M, and the client holds the attribute

vector, x. The goal is to infer the tree on the client’s attribute vector

such that the server does not learn anything about the client’s input.

Moreover, the client should not learn anything about the server’s

private decision tree other than the classification result and some

hyperparameters.

1 −
𝑐

left
child

right
child

𝑐

𝑐 = 𝕀[𝐱 𝑎 ≤ 𝑡]

𝑟𝑐

left
child

right
child

𝑟(
1 −

𝑐)

𝑐 = 𝕀[𝐱 𝑎 ≤ 𝑡]

𝒙 = client attribute vector

𝒂 = attribute index
𝒕 = threshold

Path Conjugation SumPath

𝑐 = 𝕀[𝒙 𝒂[𝒏𝒐𝒅𝒆] ≤ 𝑡]

Figure 1: Labelling of edges in two tree traversal methods,
Path Conjugation and SumPath. x is the client attribute vec-
tor. 𝑎, and 𝑡 are the attribute index and threshold for the
parent node, respectively. In SumPath, 𝑟 is either a random
number or 1.

The client may try to steal the model with black-box access to an

API through carefully crafted queries to the server [22, 23, 32, 36, 38].

Such an attack is outside the scope of this work, but defences against

such attacks is an active area of research [22, 38].

2.4 Tree Traversal
One of the main steps in all private decision tree evaluation proto-

cols is traversing the tree from the root to the leaves, as discussed

by Kiss et al. [25]. We denote the leaf holding the result of the

prediction as the result leaf and the value of that leaf as the result
value. If all comparisons in the decision nodes are computed as a

binary output, there are two methods to aggregate the results and

compute the result leaf and value. We denote these two methods

as Path Conjugation and SumPath. For each method, the edges in a

tree are annotated as shown in Figure 1.

In Path Conjugation, for each leaf in the tree, all values on the

edges between the root and that leaf are conjugated. Consequently,

the result leaf will have a value of one, and all other leaves will have

a value of zero. This process can be computationally optimized by

reusing computations in inner nodes [39]. Some works, such as

those by Sortinghats and Tueno, utilize this approach with fully

homomorphic encryption and the CMux gate in TFHE [15, 40].

However, this approach is not practical when using levelled ho-

momorphic encryption, given that the multiplicative depth of the

circuit will depend on the depth of the tree.

On the other hand, the SumPath method has been proposed

previously for use with additive encryption [25, 37] or levelled

homomorphic encryption in an arithmetic field [40]. Edges are an-

notated as indicated in Figure 1. For each leaf in the tree, the sum of

all the edges in the tree from the root to that leaf is assigned to that

leaf. Only the result leaf will have a sum of zero, and all others will

be non-zero. By returning the sum on each leaf, plus the masked

value on each leaf, the client can infer the correct result value. The

advantage of this approach is that no multiplications or conjuga-

tions are required, which makes it computationally inexpensive

and does not increase the multiplicative depth.
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2.5 Range Covers & Point Encoding
Range covers are a method to represent intervals in a manner that

is concise and easy to use in secure computation [24, 35]. Let 𝑇 be

a binary tree of internal nodes of prefixes numbers in [2𝑛] and leaf

nodes of the elements in [2𝑛]. The children of a prefix 𝑝 are 𝑝 |0
and 𝑝 |1, and the root is the empty prefix. A range cover 𝑅𝐶𝑛 (𝑎, 𝑏) is
a set of nodes in 𝑇 , such that its set of children at the leaf level are

all elements in the range [𝑎, 𝑏], where 𝑎, 𝑏 ∈ [2𝑛]. The best range
cover contains at most 2 log𝑛 nodes with at most 2 nodes at each

level of 𝑇 (excluding the root level). A uniform range cover is a

modification of the best range cover such that each level of the tree

contains exactly 2 nodes [24, 35]. This is achieved by padding the

best range cover with dummy nodes at all levels if fewer than two

nodes are chosen. The advantage of a uniform range cover is that

the size is independent of the interval, which is a requirement in

private protocols. For every range [𝑎, 𝑏] there exists a best range
cover and uniform range cover.

A point encoding 𝑃𝐸𝑛 (𝑐) of an element 𝑐 ∈ [2𝑛] is the set of nodes
from the leaf 𝑐 to the root (except the root itself). A point encoding

consists of 𝑛 nodes with one node at each level of𝑇 (except the root

level). We denote as 𝑅𝐶𝑛 (𝑎, 𝑏) [𝑖] and 𝑃𝐸𝑛 (𝑐) [𝑖] the 𝑖-th element of

a range cover or encoding, respectively.

We can test the relationship 𝑐 ∈ [𝑎, 𝑏] given 𝑅𝐶𝑛 (𝑎, 𝑏) and
𝑃𝐸𝑛 (𝑐) by checking to see if there are any common prefix nodes

between the range cover and point encoding. We give the full algo-

rithm on how to do this check in Algorithm 12 in the appendix.

Figure 2 shows an example: the prefix tree for [0, 23 − 1] with
the range cover for [0, 4], indicated by the shaded boxes, and point

encodings for 2 and 6. We can see that 𝑅𝐶3 (0, 4) and 𝑃𝐸3 (2) have
the prefix node corresponding to 0 in common whereas 𝑅𝐶3 (0, 4)
and 𝑃𝐸3 (6) have no prefix node in common.

00

000 001

01

010 011

10

100 101

11

110 111

0 1

[      0,         1,         2,         3,          4,         5,         6,         7      ]

RC3(0,4) PE3(2) PE3(6)

Figure 2: Range cover for [0, 4] (shaded boxes) and point
encoding of 2 and 6 in domain [0, 23 − 1]. In this example,
𝑅𝐶3 (0, 4) and 𝑃𝐸3 (2) have a prefix node in common, given
that 2 ∈ [0, 4] but 𝑅𝐶3 (0, 4) and 𝑃𝐸3 (6) have no prefix node in
common since 6 ∉ [0, 4].

2.6 Constant-weight Equality Operators
Constant-weight equality operators, proposed by Mahdavi and

Kerschbaum, are equality operators with a constant multiplicative

depth, independent of the bitlength of the operands [30]. To use

the constant-weight equality operator, numbers are represented

as constant-weight codes with Hamming weight ℎ. We make an

adjustment to the encoding algorithm to encode null values as

well. Null values are encoded as the all-zero string. We include the

adjusted algorithm from the work of Mahdavi and Kerschbaum in

Appendix A. To compare constant-weight codewords, we use the

arithmetic constant-weight equality operator in this work, which

has a multiplicative depth of 1 + log
2
ℎ. We use this operator to be

able to compare many pairs of numbers simultaneously, and in a

SIMD fashion. This operator is shown in Algorithm 3.

Algorithm 3 Arithmetic Constant-weight Equality Operator [30]

1: procedure Arith-CW-Eq-Op(𝑥,𝑦) ⊲ 𝑥,𝑦 ∈ 𝐶𝑊 (ℓ, ℎ) ∪ {0ℓ }
2: ℎ′ =

∑
𝑖∈[ℓ ] 𝑥 [𝑖] · 𝑦 [𝑖]

3: 𝑒 = 1/ℎ! ·∏𝑖∈[ℎ] (ℎ′ − 𝑖)
return 𝑒 ⊲ 𝑒 ∈ B

3 RELATEDWORK ON PDTE
3.1 Interactive PDTE
Decision trees can be privately evaluated using two-party com-

putation (2PC) or using a combination of 2PC and homomorphic

encryption. There are also solutions which use tools such as se-

cret sharing, garbled circuits, and oblivious transfer [9, 12, 25, 28].

Unlike homomorphic encryption, 2PC is usually communication-

bound, i.e., reducing the communication complexity or rounds is

necessary to increase efficiency. However, since this work focuses

on non-interactive decision tree evaluation, we provide only a few

selected examples of the work in private decision trees using 2PC.

2PC, e.g., using Yao’s garbled circuit, implements a constant-

round protocol. Brickell et al. [12] present an improved constant-

round protocol using 2PC and homomorphic encryption. Kiss et

al. [25] later surveyed this and a number of other protocols and

identified several design options and new combinations of these

protocols systematizing the protocols.

However, 2PC usually leads to communication complexity which

is exponential in the tree depth since all branches need to be eval-

uated. Using different techniques, one can also reduce the com-

munication complexity. Tueno et al. [40] propose to use oblivious

RAM (ORAM). Bai et al. [9] propose to use additive homomorphic

encryption or pseudo-random functions.

Given enough network capacity, it is possible to train decision

tree classifiers using 2PC or in general multi-party computation

(MPC). Lindell and Pinkas [27] present a theoretic design of a 2PC

protocol for computing the logarithm in the ID3 training algorithm.

Since then, many proposals for practical systems have been made,

e.g., by Wu et al. [41], by Zheng et al. [42] and by Lu et al. [28].

3.2 Non-Interactive PDTE
Interactive protocols are great for computational efficiency but usu-

ally require high network activity. Moreover, they require several

rounds of interaction between the client and server. This is not a

good solution if the client is not strong or has a limited network

connection. The client may wish to go offline while waiting for the

result inmany use cases. Non-interactive approaches to private deci-

sion tree evaluation primarily use homomorphic encryption. Some
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PROBONITE [8] PDT-Bin [39] PDT-Int [39] SortingHats [15] XXCMP-PDTE RCC-PDTE

Supports Unbalanced × ✓ ✓ ✓ ✓ ✓
Attribute Selection PIR Clear Clear Clear Clear Clear

Comparison PBS (CT-CT ) Folklore Lin-Tzeng [26] XCMP-CT-PT XXCMP RCC
Path Evaluation CMux AND SumPath CMux SumPath SumPath

Batchable × ✓ ✓ × ✓ ✓
Bit Precision < 8

∗ 𝑛 𝑛 11 𝑛 𝑛

Levelled or FHE FHE LHE or FHE LHE(BGV) FHE(TFHE) LHE(FV) LHE(FV)

# of Comparisons 𝑂 (𝑑) |D| |D| |D| |D| |D|
Query Complexity 𝑂 ( |x|) 𝑂 (𝑛 |x|) 𝑂 (𝑛 |x|) 𝑂 (𝑁 |x|) 𝑂 (𝑁 |x|) 𝑂 (ℓ𝑛 |x|)

Mult. Depth N/A log
2
𝑛 log

2
𝑛 N/A

⌈
log

2
(𝑛/log

2
𝑁 )

⌉
1 + log

2
ℎ

Table 3: Properties of Non-interactive Private Decision Tree Evaluation Protocols. 𝑎 is the number of client attributes, 𝑑 is the
depth of the tree, D is the set of internal decision nodes, and x is the client attribute vector. * The precision of PROBONITE
depends on the choice of parameters for the LWE scheme but is typically less than 8 bits.

works used levelled homomorphic encryption [6, 29, 40] while oth-

ers require a fully homomorphic scheme [8, 15, 40]. A decision tree

is comprised of many comparisons between client attributes and

thresholds, so at the heart of all protocols is an efficient comparison

operation. The primary approach in many works is to reduce the

precision of the comparison to make it efficient [15, 29]. For this

to be possible, the decision tree evaluation has to be fine-tuned for

low precision. Quantization-aware training is one approach to this.

If a model already exists with high precision, it can not be used

as it is and has to be retrained. Table 3 summarizes the properties

of related work. We also provide a short description of how each

protocol works.

XCMP PDTE [29]. Lu et al. proposed a non-interactive PDTE

protocol based on XCMP, described in Section 2.2. All comparisons

are performed using XCMP, and all paths are evaluated using the

same method as the work of Tai et al. [37]. This protocol’s main

limitation is that the precision of the comparison which they use is

limited to 13 bits, i.e., log
2
𝑁 . The protocol’s design was such that

the model holder could also encrypt the thresholds of the model

and delegate the evaluation to a third-party server. In this case, the

third party would learn the tree’s structure but not the thresholds.

PDT-Bin & PDT-Int [39]. Tueno, Boev, and Kerschbaum proposed

two PDTE protocols using a binary and arithmetic circuit. In their

first construction, denoted as PDT-Bin, In this construction, num-

bers are represented using binary encoding and compared using a

Folklore comparison. Traversal of the decision tree in PDT-Bin is

performed using homomorphic AND operations, ultimately yield-

ing a single result that represents the outcome of the classification.

In addition to PDT-Bin, Tueno, Boev, and Kerschbaum introduced

another protocol, PDT-Int, which is based on levelled homomor-

phic encryption, specifically employing the BGV scheme. For the

comparison operator in PDT-Int, they adopted a variation of the Lin-

Tzeng [26] protocol, which outputs zero in the case of a match and

a random number otherwise. To traverse paths in the decision tree,

the SumPath technique is employed, and one value corresponding

to each leaf node is returned.

PROBONITE [8]. Azogagh et al. proposed a PDTE protocol named

PROBONITE which evaluates only one path of the tree [8]. In

contrast to other non-interactive protocols, which perform one

comparison for each node in the decision tree and evaluate all

paths, PROBONITE only evaluates one path. The protocol starts

at the root and traverses one path down the tree. This is done

by using two subprocedures: 1) Blind Array Access, which is used

to select the next attribute with which to compare 2) Blind Node
Selection, which selects the next node to traverse to based on the

result of the comparison. The entire protocol is performed using

HE, and the comparison is also performed using the functional

bootstrapping capability of TFHE. Given that only one comparison

is performed at each level, this greatly improves performance by

not performing unnecessary comparisons. The drawback is that

since the server does not know which threshold to compare with,

it must blindly find the correct threshold with the Blind Array

Access subprocedure, which can be computationally expensive.

Moreover, the comparison happens between two ciphertexts, as

opposed to other approaches which compare encrypted attributes

with cleartext thresholds [15, 40]. For privacy, imbalanced trees are

padded with redundant nodes to a full, balanced tree so that all

queries are equally expensive. The protocol only leaks the depth of

the tree and not the number of leaves or any other properties of

the tree. There is no public implementation of this work available,

so we only resort to the theoretical comparison provided in the

Table 3.

SortingHats [15]. Cong et al. expanded on the idea of XCMP-style

comparisons [29]. XCMP focused on comparing two encrypted

numbers, but in PDTE, one operand is usually in the clear, making

the comparison operation simpler. Cong et al. proposed a faster

comparison operation based on XCMP where only one operand is

encrypted and the other is in the clear [15]. We describe this proto-

col in Algorithm 2. The operation is done with only two polynomial

multiplications, which is much cheaper than comparing two en-

crypted numbers which requires 16 polynomial multiplications [29].

Using their proposed operand, they designed a non-interactive pri-

vate decision tree evaluation protocol called SortingHats. The au-

thors used TFHE-based FHE to implement their protocol. They also
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proposed using transciphering to reduce communication between

the client and server, a method orthogonal to this work to reduce

communication costs. The main limitation of SortingHats is the bit

precision, which is currently capped at 11 bits.

4 OUR COMPARISON OPERATORS
In this section, we propose two operators for non-interactive private

comparison. First is an extension of the XCMP protocol mentioned

in Section 2 for larger bit precision. Second, is a novel protocol

based on range covers in combination with constant-weight codes.

4.1 XXCMP: Extended XCMP Operator
XCMP only supports the comparison of numbers smaller than 𝑁 .

We propose an extension based on XCMP which can support num-

bers of arbitrary size. We denote this as XXCMP. The idea is to

represent large numbers in base 𝑁 . High-order digits are compared

first and if they are equal, the next digits are compared. For example,

let 𝑎 = 𝑎1𝑁 + 𝑎0 and 𝑏 = 𝑏1𝑁 +𝑏0 where 𝑎𝑖 , 𝑏𝑖 ∈ [𝑁 ]. Then we use

the following identity:

I[𝑎 > 𝑏] = I[𝑎1 > 𝑏1] + I[𝑎1 = 𝑏1] · I[𝑎0 > 𝑏0] . (2)

For this, we need an equality operator over numbers encoded

as XCMP ciphertexts. Within that algorithm, we use another sub-

protocol which checks the equality of two numbers in the XCMP

format. This protocol uses the oblivious expansion technique pro-

posed by Angel et al. [7]. Algorithm 4 shows the extension of XCMP

for numbers smaller than 𝑁 2
. This algorithm requires one homo-

morphic multiplication. This can be extended to numbers with

arbitrary length. We have included the algorithm for numbers of

arbitrary size in the appendix. In the general case, to compare num-

bers smaller than 𝑛 = 𝑁𝑘 , the multiplicative depth of the circuit is⌈
log

2
𝑘
⌉
and requires 𝑘 (𝑘 − 1)/2 homomorphic multiplications.

Algorithm 4 Computing I[𝑎 > 𝑏] using Extended XCMP (XXCMP)

for 𝑎, 𝑏 ∈ [𝑁 2] such that 𝑎 = 𝑎1𝑁 + 𝑎0 and 𝑏 = 𝑏1𝑁 + 𝑏0 where
𝑎𝑖 , 𝑏𝑖 ∈ [𝑁 ]
1: procedure XCMP0(𝑋

𝑎, 𝑏) ⊲ 𝑎, 𝑏 ∈ [𝑁 ]
2: 𝑇 ← −(1 + 𝑋 + · · · + 𝑋𝑁−𝑏−1)
3: 𝑅

$←− 𝑅𝑝 and 𝑅 [0] = 0 mod 𝑝

4: 𝐶0 = 𝑋
𝑎 ·𝑇 + 𝑅

return 𝐶0

5: procedure XXCMP2(𝐴,𝑏) ⊲ 𝐴 ∈ 𝑅2𝑝 , 𝑏 ∈ [𝑁 2]
6: 𝑋𝑎1 , 𝑋𝑎0 ← 𝐴

7: 𝑔𝑡0 ← XCMP0(𝑋
𝑎0
, 𝑏0)

8: 𝑔𝑡1 ← XCMP0(𝑋
𝑎1
, 𝑏1)

9: 𝑒𝑞1 ← Oblivious-Expansion(𝑋𝑎1 , 𝑏1)

10: 𝐶 = 𝑔𝑡1 + 𝑒𝑞1 · 𝑔𝑡0
return 𝐶

4.2 Range-Cover Comparison (RCC) Operator
Assume we have 𝑎, 𝑏 ∈ [2𝑛] and we want to compute I[𝑎 ≤ 𝑏]. At
a high level, the idea is to use the following statement:

𝑎 ≤ 𝑏 ⇐⇒ 𝑏 ∈ [𝑎, 2𝑛 − 1] (3)

which is similar to the RC/PE inclusion problem. However, one

end of the interval is always the maximum value. Using this con-

straint, we define a restricted version of a range cover called the

One-sided Uniform Range Cover (OURC). The main difference be-

tween a typical range cover and OURC is that an OURC consists of

only one prefix node in each level of the prefix tree (including the

root level). Hence, the inclusion check requires only 𝑛 + 1 equality
checks instead of 2𝑛. This results in a major performance improve-

ment when running the circuit using HE. Algorithm 5 shows the

procedure for computing the OURC. The modified OURC/PE inclu-

sion procedure is shown in Algorithm 5. We include the procedure

for calculating the point encoding as well.

Algorithm 5 Calculating OURC and PE

1: procedure OURC(𝑥, 𝑛) ⊲ 𝑥 ∈ [2𝑛]
2: 𝜃𝑂𝑈𝑅𝐶 ← [Null] ∗ (𝑛 + 1)
3: if 𝑥 = 0 then
4: 𝜃𝑂𝑈𝑅𝐶 [𝑛] = 0

return 𝜃𝑂𝑈𝑅𝐶
5: 𝑠 = 2

𝑛 − 1
6: 𝐾 ← {}
7: while 𝑠 ≥ 𝑥 do
8: Find 𝑗 such that 2

𝑗 ≤ 𝑠 < 2
𝑗+1

9: 𝜃𝑂𝑈𝑅𝐶 [ 𝑗] = 2
𝑛− 𝑗 − 1 −∑𝑘∈𝐾 2

𝑘− 𝑗

10: 𝑠 ← 𝑠 − 2𝑗
11: Add 𝑗 to 𝐾

return 𝜃𝑂𝑈𝑅𝐶

12: procedure PE(𝑦, 𝑛) ⊲ 𝑦 ∈ [2𝑛]
return

[
𝑦, ⌊𝑦/2⌋,

⌊
𝑦/22

⌋
, · · · , ⌊𝑦/2𝑛⌋

]
13: procedure PE-RC-Inclusion(𝜃𝑂𝑈𝑅𝐶 , 𝜃𝑃𝐸 )
14: 𝜃𝑖𝑛 = 0

15: for 𝑖 ∈ [𝑛 + 1] do
16: 𝜃𝑖𝑛 = 𝜃𝑖𝑛 + I [OURC(𝑎, 𝑛) [𝑖] == PE(𝑏, 𝑛) [𝑖]]

return 𝜃𝑖𝑛

As shown in Algorithm 5, 𝑛 + 1 equality checks are required

for one RCC comparison. We replace the equality checks in each

iteration of the for loop with a constant-weight equality operator

of Hamming weight ℎ. All other operations are additions so the

total multiplicative depth of the inequality operator only depends

on ℎ. Note that the multiplicative depth does not depend on 𝑛, the

bit precision of the numbers.

OURC Inclusion using Homomorphic Encryption. In our private

comparison protocol, the client, which holds 𝑎, sends an encryption

of OURC(𝑎, 𝑛) to the server. The input is encoded and encrypted

such that the comparison is performed efficiently. More specifically,

if OURC(𝑎, 𝑛) = {𝑎0, 𝑎1, · · · , 𝑎𝑛}, then constant-weight encoding

of 𝑎𝑖 is spread across ℓ ciphertexts. Figure 3 shows a visualization
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of how the packing happens. Each blue box contains all the bits

of information about OURC(𝑎, 𝑛). Using this encoding, each prefix

node, 𝑎𝑖 occupies exactly 𝑛 slots in each ciphertext. The number of

occupied slots does not depend on the parameters of the constant-

weight code, i.e., the Hamming weight. Multiple pairs of numbers

from the client and server can be compared in parallel.

Algorithm 6 details the procedure to encode OURC(𝑎, 𝑛) across
multiple FV ciphertexts in batched mode. We provide the packing

method for the point encoding as well, which is used in the compar-

ison protocol. We note that this is not the only method to encode

values in FV ciphertexts. We elaborate on other packing methods

and why we chose this method in Section 7.

Algorithm 6 OURC and PE Encoding

1: procedure OURC-Encode(𝑎, ℎ, ℓ, 𝑛) ⊲ 𝑎 ∈ [2𝑛]
2: [𝑎0, 𝑎1, · · · , 𝑎𝑛] ← OURC(𝑎, 𝑛)
3: for 𝑖 ∈ [𝑛 + 1] do
4: 𝑎′

𝑖
= CWEncode(𝑎𝑖 , ℎ, ℓ) ⊲ 𝑎′

𝑖
∈ Bℓ

5: for 𝑖 ∈ [ℓ] do
6: 𝑝𝑡𝑂𝑈𝑅𝐶 [𝑖] =

[
𝑎′
0
[𝑖], 𝑎′

1
[𝑖], ..., 𝑎′𝑛 [𝑖]

]
return 𝑝𝑡𝑂𝑈𝑅𝐶

7: procedure PE-Encode(𝑏, ℎ, ℓ, 𝑛) ⊲ 𝑏 ∈ [2𝑛]
8: [𝑏0, 𝑏1, · · · , 𝑏𝑛] ← PE(𝑏, 𝑛)
9: for 𝑖 ∈ [𝑛 + 1] do
10: 𝑏′

𝑖
= CWEncode(𝑏𝑖 , ℎ, ℓ) ⊲ 𝑏′

𝑖
∈ Bℓ

11: for 𝑖 ∈ [ℓ] do
12: 𝑝𝑡 [𝑖] =

[
𝑏′
0
[𝑖], 𝑏′

1
[𝑖], ..., 𝑏′𝑛 [𝑖]

]
return 𝑝𝑡𝑃𝐸

… … … …

CW-Encode("!)

ct[ℓ − 1]

ct[0]

ct[1]

* + 1

OUCR , = {,!, ,", … , ,#}

… … … …

… … … …

… … … …

Buffer

Figure 3: Packing OURC in FV ciphertexts in batched mode.

Given the encryption of OURC(𝑎, 𝑛), we can now outline the

procedure for comparison. Algorithm 7 shows this procedure. The

red symbols show the values that are encrypted when the procedure

is performed between a client and server.

5 PDTE USING LEVELED HE
This section describes our two proposed protocols, XXCMP-PDTE

and RCC-PDTE .We describe the setup, security model, and details

about the two protocols.

Algorithm 7 RCC Comparison

1: procedure RCC-Compare(𝑎, 𝑏)
2: 𝑎𝑐𝑡 ← OURC-Encode(𝑎, ℎ, ℓ, 𝑛) ⊲ Done by client

3: 𝑏𝑝𝑡 ← PE-Encode(𝑏, ℎ, ℓ, 𝑛)
4: 𝜃 = Arith-CW-Eq-Op(𝑎𝑐𝑡 , 𝑏𝑝𝑡 )
5: 𝜃sum ←

∑𝑛
𝑖=0 Rotate𝑖 (𝜃 )

6: 𝑀 ← 0
𝑁
,𝑀 [0] = 1 ⊲ Mask

7: 𝜃cmp ← 𝜃sum ⊗ 𝑀
return 𝜃cmp

5.1 Setup and Security Model
Our PDTE protocols work in the client/server model. The server

holds a decision tree model, and the client holds a vector of at-

tributes. The goal is for the client to learn nothing about the server’s

model other than the inference result. The server should learn noth-

ing from the protocol. Our protocol is non-interactive, i.e., the client

uploads its query to the server and waits for a response. The client

need not be online while the server processes the query.

Similar to prior work, we work in the semi-honest model, where

both the client and server follow the protocol but may try to infer

extra information.

Both protocols use homomorphic encryption and assume cryp-

tographic keys such as public keys, evaluation keys, and relin-

earization keys have been exchanged between the client and server,

similar to previous works.

5.2 XXCMP-PDTE: XXCMP + SumPath
In XXCMP-PDTE , we combine the XXCMP comparison with the

SumPath algorithm. This protocol is implemented using FV cipher-

texts in polynomial mode. The protocol has two main parts 1) For

each node, compare the correct client attribute to the corresponding

node threshold. 2) Run SumPath and get one encrypted result per

leaf. Algorithm 8 depicts this algorithm. 𝑑.left and 𝑑.right denote

the left and right exiting edge from 𝑑 , respectively. The final result

can be compressing the leaves into the same ciphertext. Each leaf

can occupy one of the coefficients of the final ciphertext.

Variables that are coloured red are encrypted when running the

procedure between a server and client.

Algorithm 8 XXCMP-PDTE : PDTE using XXCMP

1: procedure XXCMP-PDTE(x,M)

2: (T , a, t, v) ← M
3: for 𝑑 ∈ D do
4: 𝑐 ← XXCMP(x[a[𝑑]], t[𝑑])
5: 𝑑.left← 𝑐

6: 𝑑.right← 1 − 𝑐
7: for ℓ ∈ L do
8: 𝑠 (ℓ) = Sum of edges from root to ℓ

9: 𝑟𝑥 , 𝑟𝑦
$←− Z𝑝

10: 𝑥 (ℓ) ← 𝑟𝑥 · 𝑠 (ℓ)
11: 𝑦 (ℓ) ← 𝑟𝑦 · 𝑠 (ℓ) + 𝑣 (ℓ)

return {(𝑥 (ℓ), 𝑦 (ℓ))}ℓ∈L
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5.3 RCC-PDTE: RCC + SumPath
In RCC-PDTE , comparisons are performed using RCC and the

tree is traversed using SumPath. One important difference between

this protocol and XXCMP-PDTE is that all comparisons happen

in parallel using the batched mode of FV. The results of the com-

parisons will occupy different slots of the ciphertext. Algorithm 9

outlines this procedure. In the implementation, we also batched the

final result into one ciphertext to reduce communication costs.

Algorithm 9 RCC-PDTE : PDTE using RCC

1: procedure RCC-PDTE(x,M)

2: T , a, t, v←M
3: t′ ← array of thresholds, aligned with client attributes

4: 𝑐 ← RCC-Compare(x, t′)
5: for 𝑑 ∈ D do
6: 𝑐′ ← Rotate 𝑐 to get 𝑑 to first slot

7: 𝑑.left← 1 − 𝑐′
8: 𝑑.right← 𝑐′

9: for ℓ ∈ L do
10: 𝑠 (ℓ) = Sum of edges from root to ℓ

11: 𝑟𝑥 , 𝑟𝑦
$←− Z𝑝

12: 𝑥 (ℓ) ← 𝑟𝑥 · 𝑠 (ℓ)
13: 𝑦 (ℓ) ← 𝑟𝑦 · 𝑠 (ℓ) + 𝑣 (ℓ)

return {(𝑥 (ℓ), 𝑦 (ℓ))}ℓ∈L

Choosing the Hamming weight. The Hamming weight used for

the constant-weight code directly affects the code length. More

specifically, the code length is the smallest ℓ such that(
ℓ

ℎ

)
≥ 2

𝑛
(4)

For 1 ≤ ℎ ≤ 𝑛/2, the code length decreases as the Hamming

weight increases. But for ℎ > 𝑛/2, the code length increases as the

Hamming weight increases. So we do not choose the Hamming

weight to be larger than half the bit precision. Given that analy-

sis, the choice of the Hamming weight requires consideration of

the trade-off between runtime and communication costs. In our

evaluation, we plot several Hamming weights to show the effect.

6 EVALUATION
In this section, we present our evaluation in two parts. In Section 6.1

we benchmark the runtime of our proposed non-interactive pri-

vate comparison operators in comparison with existing operators.

In Section 6.2, we evaluate PDTE algorithms over decision trees

trained over UCI datasets. We perform ablation studies to measure

the performance of different algorithms with respect to precision,

the number of client attributes and the size of the decision tree.

6.1 Benchmarking Private Comparison
In this experiment scenario, we assume a client wants to compare

its input values with that of the server using a private comparison

operator. We measure the computation time for the operators pro-

posed in Section 4. Specifically, we benchmark 1) RCC 2) Folklore

Comparison 3) XXCMP 4) SortingHats Comparison and 5) the work

of Iliashenko et al. [21]. The first three are implemented using Mi-

crosoft SEAL [34]. In Figure 4 we plot the amortized runtime and

communication as a function of the bitlength of the values. RCC is

parameterized by the Hamming weight ℎ which has a significant

effect on the performance. We plot RCC for multiple Hamming

weights to show the effect of the parameter.

All experiments are performed 10 times and the average results

are reported. The shaded areas show one standard deviation of

error.
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Figure 4: Amortized Time for Comparison. The shaded areas
indicate one standard deviation of error. Time for a Sorting-
Hats comparison is measured by using the benchmarks in
their repository. For RCC, at each point, we use the Ham-
ming weight which has the smallest runtime.

XCMP and SortingHats perform one comparison at a time, whereas

Folklore and RCC are batched and perform the comparison in a

SIMD fashion. The input is encoded in the same format as that

described in Figure 3. In this encoding, the number of parallel com-

parisons is a function of the precision and the parameters of the

encryption scheme. Table 4 shows the number of comparisons for

different precisions. The number of parallel comparisons decreases

as the precision increases. Due to our encoding method, the number

of parallel comparisons does not depend on the Hamming weight,

in the case of RCC. The work of Iliashenko et al. also performs

comparison in a batched manner. We use the univariate variant

of their protocol which, per their experiments, produces the best

results.

Bitlength 8 12 16 20 24 28 32 36

# of

Comps

963 655 496 399 334 287 252 224

Table 4: Number of parallel comparisons in RCC and Folklore
comparison as a function of the bit precision.
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Figure 4 shows that RCC has the smallest amortized runtime for

a private comparison for any bit precision. For a bit precision of 11,

SortingHats and RCC have an approximately similar runtime, but

SortingHats can not extend to higher bit precision.

6.2 Benchmarking PDTE
In this subsection, we compare the proposed private decision tree

evaluation protocols in terms of server computation time and com-

munication between the client and server. We first benchmark the

performance whilst inferring decision trees trained on common UCI

datasets and measure the communication and computation over-

head. Our experiments over datasets show that the performance

of these algorithms is tied to the number of client attributes and

the size of the decision tree. Hence, we ablate with respect to these

two parameters to understand the effect.

6.2.1 Implementation & Experimental Details. XXCMP-PDTE and

RCC-PDTE are implemented as described in Section 5. We paral-

lelized some steps in both protocols to enhance performance. Partic-

ularly, in RCC-PDTE , the constant-weight equality operator was

shown to be highly parallelizable by Mahdavi and Kerschbaum [30].

We also implement a baseline solution which we denote as Folklore-
PDTE. Folklore-PDTE is implemented similarly to RCC-PDTE ,

with only the comparison replaced with the Folklore comparison

from Section 2.2. All three algorithms are implemented using Mi-

crosoft SEAL version 4.0
1
, which implements the FV cryptosystem

in polynomial and batching mode [34]. Our implementation is pub-

licly available on Github.
2

For SortingHats, we use the implementation provided by the

authors
3
. We activate the parallelization flag and use artificial input.

Experiments are conducted on an Intel(R) Xeon(R) Platinum 8368

CPU @ 2.40GHz server running Ubuntu 22.02 with 32 cores. All

experiments are repeated 10 times and the average is reported. The

shaded areas indicate the standard deviation of the measurements.

6.2.2 Evaluation over Datasets. We train decision trees over four

datasets from the UCI repository [16], Heart, Breast, Spam, and Steel,

which are also used in related work [15, 40]. We train decision trees

with the desired precision using the Concrete-ML framework [31].

Table 5 shows the properties of the datasets. The structure of the de-

cision tree changes as the precision increases. In general, a decision

tree with higher precision has fewer nodes.

Name ID

# of

Classes

# of

Attributes

Breast 1510 2 30

Steel 1504 2 33

Heart 1565 5 13

Spam 44 2 57

Table 5: Characteristics ofUCI datasets used in our evaluation

1
https://github.com/microsoft/SEAL

2
https://github.com/RasoulAM/private-decision-tree-evaluation

3
https://github.com/KULeuven-COSIC/SortingHat

In Figure 5, communication and computation are plotted as a

function of the precision for Folklore-PDTE, XXCMP-PDTE , and

RCC-PDTE . SortingHats does not permit arbitrary precision, so

we plot it as one point in the graphs.

Figure 5 shows the results for four datasets. Folklore-PDTE

is consistently the slowest of all solutions. None of the bench-

marked approaches is consistently better, but in all cases, it is ei-

ther XXCMP-PDTE or RCC-PDTE . In communication, Folklore-

PDTE is dominant given that it has themost compact representation

for a number, but given its impractical runtime, we can dismiss that.

Hence, if we disregard that, SortingHats has the least communica-

tion overhead compared to XXCMP-PDTE and RCC-PDTE .

These experiments show that there is not a dominant solution

that wins in all cases for all metrics. Communication and computa-

tion are a function of many factors, such as the number of client

attributes and the number of decision nodes. We perform ablations

to better understand the effect of each of these parameters.

6.2.3 Ablation over Number of Attributes. In this experiment, we

benchmark PDTE over a synthetic decision tree with a varying

number of client attributes. Specifically, we generate a synthetic

balanced tree of depth 6 (with 31 decision nodes) with three different

bit precision, 𝑛 = 8, 16, 26. Note that the same results hold for trees

of other sizes and shapes (balanced or unbalanced). We plot the

communication complexity of RCC-PDTE and XXCMP-PDTE as

we vary the number of client attributes from 5 to 100.

20 40 60 80 100
Number of Attributes

103

104

KB
yt

es

Commmunication versus Number of Attributes

RCC-PDTE
XXCMP-PDTE
SortingHats

n=8
n=16
n=26

n=8
n=16
n=26

Figure 6: Communication cost of PDTE as a function of the
number of attributes.

SortingHats and XXCMP-PDTE encrypt each client attribute

in a separate RLWE ciphertext. Hence, the communication com-

plexity scales linearly with the number of client attributes (notice

the logarithmic vertical axis). For a given precision, RCC-PDTE

has constant communication cost due to the use of batch encoding.

When the number of client attributes is small, RCC-PDTE has a

higher communication cost compared to other solutions. Sorting-

Hats has the smallest communication overhead when precision is

less than 11 bits. For precision higher than 11 bits, XXCMP-PDTE

is the best solution in terms of communication. While RCC-PDTE

has the highest communication cost when the number of attributes

https://github.com/microsoft/SEAL
https://github.com/RasoulAM/private-decision-tree-evaluation
https://github.com/KULeuven-COSIC/SortingHat
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Figure 5: Runtime and Communication for Private Decision Tree Evaluation over four datasets. For each dataset, the left graph
plots the runtime, and the right graph plots the communication. The shaded area shows one standard deviation of error.

is small, this high overhead shrinks as the number of attributes

grows and in some cases, it becomes the dominant solution. For

example, at 16-bit precision, RCC-PDTE has the least communica-

tion overhead once the number of client attributes exceeds 40.

Note that the runtime of both algorithms does not have a notice-

able change as the number of attributes changes. Hence, we only

report the approximate runtimes of each approach in Table 6. Simi-

lar to the results shown in Figure 5, XXCMP-PDTE is the fastest

for a low bit precision, but RCC-PDTE overtakes it for higher bit

precision. SortingHats is only applicable for low precision and is

slower in that case.

Precision (bits)

Runtime (ms)

SortingHats XXCMP-PDTE RCC-PDTE

8 648 - 662 133 - 155 149 - 170

16 - 673 - 753 187 - 234

26 - 752 - 845 747 - 966

Table 6: Approximate runtime for private evaluation of bal-
anced decision tree of depth 6 (with 31 decision nodes). The
number of attributes varies from 7-100

6.2.4 Ablation over Number of Nodes. In this experiment, we bench-

mark PDTE over synthetic trees as we vary the number of decision

nodes. We fix the number of attributes to 32, but the same results

hold for a different number of attributes. We generate balanced

trees with depths up to 10, but the results do not depend on the

shape of the tree, and the same results hold if the tree is unbalanced.

This is because the tree traversal algorithm, SumPath, only takes

up at most 10% of the total runtime. Hence, a change in the shape of

the tree does not significantly impact the runtime. Figure 7 shows

the runtime as a function of the number of nodes for 𝑛 = 8, 16, 26.

Note that the horizontal axis is logarithmic.
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Figure 7: Runtime as a function of the number of nodes.

As expected, the runtime of XXCMP-PDTE increases linearly

with the number of decision nodes, given that one comparison

is performed for each decision node in the tree. Due to batched

computations, the runtime of RCC-PDTE only increases if more

ciphertexts are required for the comparisons. For low precision,

XXCMP-PDTE has better runtime compared to RCC-PDTE . How-

ever, for larger decision trees, RCC-PDTE is faster.

In all the reported protocols, the communication cost is a func-

tion of the precision and number of client attributes (and the Ham-

ming weight, in the case of RCC-PDTE ). Communication cost

does not depend on the size of the decision tree. Hence, we only

report the communication cost of each protocol in Table 7.
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Precision

(bits)

Communication (KB)

SortingHats XXCMP-PDTE RCC-PDTE

8 2342 1486 4757

16 - 13847 16001

26 - 20770 53795

Table 7: Communication cost for private evaluation of bal-
anced tree over an input with 32 attributes. The depth of the
tree to evaluate is up to 7.

6.3 Summary of Results
For non-interactive private comparison, XXCMP and RCC can be

utilized for arbitrary precision, while SortingHats has limited pre-

cision. If a single comparison with arbitrary precision is required,

XXCMP is a good option; however, RCC offers a significantly better

amortized time for comparing numerous pairs.

In the context of PDTE, for low precision, either SortingHats,

XXCMP-PDTE , or RCC-PDTE may be faster. The optimal solu-

tion is contingent on a combination of factors, including bit pre-

cision, the number of decision nodes, and the number of client

attributes. For low precision, SortingHats is superior in terms of

communication, but RCC-PDTE and XXCMP-PDTE are gener-

ally faster.

When dealing with bit precision higher than 11, XXCMP-PDTE

and RCC-PDTE are the only practical available options, with

RCC-PDTE proving to be faster, particularly as the number of

decision nodes increases.

7 DISCUSSION AND FUTUREWORK
High-precision Applications. While decision trees may be achiev-

able with smaller precision and quantization-aware training, there

are other cases where the precision can not be sacrificed. For exam-

ple, in the case of intrusion detection, servers may want to check to

see if an IP, which is a 32-bit number, is in a specific range or not.

Extension of SortingHats. Other protocols such as SortingHats

can also be modified to accommodate larger precision. This can

be done using a similar algorithm to XXCMP but with a fully ho-

momorphic scheme such as TFHE. Specifically, the equality check

that is performed in line 9 of Algorithm 4 can be performed with

functional bootstrapping instead.

Other Packing Methods. Homomorphic encryption in the batched

setting offers a lot of flexibility to choose the packing method.

Other packing methods can improve communication, particularly

when trying to reduce the time for one inference. Tools such as

HELayers [5] can help find the other packing strategies.

Comparison with PROBONITE. There is currently no public im-

plementation for PROBONITE available.We conducted a theoretical

comparison of PROBONOTE with other PDTE protocols in Table 3,

but a practical comparison would also be interesting as part of

future work.

8 CONCLUSION
In this work, we propose two protocols for non-interactive private

decision tree evaluation leveraging levelled homomorphic encryp-

tion, XXCMP-PDTE and RCC-PDTE . These protocols are based

on XXCMP and RCC, two non-interactive comparison protocols

which can efficiently compare numbers of arbitrary precision with

a constant multiplicative depth.

Our experimental analysis demonstrates that several protocols

can be used when the client’s input features a small number of

attributes, the decision tree remains small, and lower precision is

acceptable. However, when faced with many client attributes, large

decision trees or the necessity for high precision, XXCMP-PDTE

and RCC-PDTE emerge as better options compared to SortingHats.

In some cases, these two protocols are up to 5 times faster than

SortingHats. In very large decision trees, RCC-PDTE is the best

solution and can infer a decision tree with over 1000 nodes and 16

bits of precision in under 2 seconds.
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A ARITHMETIC CONSTANT-WEIGHT
EQUALITY

Mahdavi and Kerschbaum proposed constant-weight equality op-

erators, which were equality operators used to compare constant-

weight codes with a constant multiplicative depth. We use these

operators as a building block in our work to achieve a PDTE pro-

tocol that has a multiplicative depth independent of precision and

the depth of the tree.

Mahdavi and Kerschbaum offer a function for encoding numbers

as constant-weight codes. We use this function with the added

option of encoding a null value. This is useful in our case since

we may need to encode null elements as well. Null elements are

encoded as the all-zero string.

Algorithm 10 shows this algorithm. 𝐶𝑊 (ℓ, ℎ) denotes the set of
constant-weight codes with length ℓ and Hamming weight ℎ.

Algorithm 10 CW-Encode [30]

Input: 𝑥 ∈ [2𝑛] ∪ {Null}, ℓ, ℎ ∈ N such that

(ℓ
ℎ

)
≥ 2

𝑛

1: if x==Null then
2: return 0

ℓ

3: 𝑟 ← 𝑥 , ℎ′ ← ℎ, 𝑦 ← 0
ℓ

4: for ℓ′ = ℓ − 1, ..., 1, 0 do
5: if 𝑟 ≥

(ℓ ′
ℎ′
)
then

6: 𝑦 [ℓ′] = 1

7: 𝑟 = 𝑟 −
(ℓ ′
ℎ′
)

8: ℎ′ = ℎ′ − 1
9: if ℎ = 0 then break

10: return y

Output: 𝑦 ∈ 𝐶𝑊 (ℓ, ℎ) ∪ {0ℓ }
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The arithmetic constant-weight equality operator is the same

as proposed by Mahdavi and Kerschbaum. The input can now be

the all-zero string as well. Comparing anything with the null string

will yield a non-match.

B XXCMP FOR ARBITRARY-LENGTH
NUMBERS

XXCMP can compare numbers of arbitrary size. Algorithm 11 shows

the general XXCMP algorithm which compares two number 𝑎, 𝑏 ∈
[𝑁𝑘 ], for some known parameter 𝑘 . The output of the comparison

is in the constant

Algorithm 11 Computing I[𝑎 > 𝑏] using Extended XCMP

(XXCMP) for 𝑎, 𝑏 ∈ [𝑁𝑘 ] such that 𝑎 = (𝑎𝑘−1, · · · , 𝑎1, 𝑎0)𝑁 and

𝑏 = (𝑏𝑘−1, · · · , 𝑏1, 𝑏0)𝑁 where 𝑎𝑖 , 𝑏𝑖 ∈ [𝑁 ]

1: procedure XXCMP(𝐴,𝑏) ⊲ 𝐴 ∈ 𝑅2𝑝 , 𝑏 ∈ [𝑁 2]
2: (𝑋𝑎𝑘−1 , · · · , 𝑋𝑎1 , 𝑋𝑎0 ) ← 𝐴

3: for 𝑖 ∈ [𝑘] do
4: 𝑔𝑡𝑖 ← XCMP0(𝑋

𝑎𝑖
, 𝑏𝑖 )

5: for 𝑖 ∈ [𝑘] do
6: 𝑒𝑞𝑖 ← Oblivious-Expansion(𝑋𝑎𝑖 , 𝑏𝑖 )

7: 𝐶 =
∑𝑘−1
𝑖=0 𝑔𝑡𝑖 ·

∏𝑘−1
𝑗=𝑖+1 𝑒𝑞 𝑗

return 𝐶

C RC/PE INCLUSION
We can test the relationship between a range cover and point en-

coding using Algorithm 12. Assume we want to check 𝑐 ∈ [𝑎, 𝑏]
using 𝑅𝐶𝑛 (𝑎, 𝑏) and 𝑃𝐸𝑛 (𝑐).

In this notation, 𝑅𝐶𝑛 (𝑎, 𝑏) contains 2𝑛 prefix nodes and we as-

sume the prefix nodes from level 𝑖 of the prefix tree are in𝑅𝐶𝑛 (𝑎, 𝑏) [2𝑖]
and 𝑅𝐶𝑛 (𝑎, 𝑏) [2𝑖 + 1] (and some levels may be empty). 𝑃𝐸𝑛 (𝑐) con-
tains 𝑛 prefix nodes and the prefix node from level 𝑖 of the prefix

tree is in 𝑃𝐸𝑛 (𝑐) [𝑖]. The inclusion algorithm requires 2𝑛 equality

check at most.

Algorithm 12 RC/PE Inclusion

Input: 𝑅𝐶𝑛 (𝑎, 𝑏), 𝑃𝐸 (𝑐, 𝑛)
1: 𝜃𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 = 0

2: for 𝑖 ∈ [𝑛] do
3: 𝜃𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 = 𝜃𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 + I [𝑅𝐶𝑛 (𝑎, 𝑏) [2𝑖] == 𝑃𝐸𝑛 (𝑐) [𝑖]]
4: 𝜃𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 = 𝜃𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 + I [𝑅𝐶𝑛 (𝑎, 𝑏) [2𝑖 + 1] == 𝑃𝐸𝑛 (𝑐) [𝑖]]

Output: I [𝑐 ∈ [𝑎, 𝑏]]
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