2309.06496v1 [cs.CR] 12 Sep 2023

arxXiv

Level Up: Private Non-Interactive Decision Tree Evaluation using
Levelled Homomorphic Encryption

Rasoul Akhavan Mahdavi
rasoul.akhavan.mahdavi@uwaterloo.ca
University of Waterloo
Waterloo, Canada

Dimitry Linkov
dimitry.linkov@uwaterloo.ca
University of Waterloo
Waterloo, Canada

ABSTRACT

As machine learning as a service continues gaining popularity,
concerns about privacy and intellectual property arise. Users often
hesitate to disclose their private information to obtain a service,
while service providers aim to protect their proprietary models.
Decision trees, a widely used machine learning model, are favoured
for their simplicity, interpretability, and ease of training. In this
context, Private Decision Tree Evaluation (PDTE) enables a server
holding a private decision tree to provide predictions based on a
client’s private attributes. The protocol is such that the server learns
nothing about the client’s private attributes. Similarly, the client
learns nothing about the server’s model besides the prediction and
some hyperparameters.

In this paper, we propose two novel non-interactive PDTE pro-
tocols, XXCMP-PDTE and [RCC-PDTE |, based on two new non-
interactive comparison protocols, XXCMP and RCC. Our evaluation
of these comparison operators demonstrates that our proposed con-
structions can efficiently evaluate high-precision numbers. Specifi-
cally, RCC can compare 32-bit numbers in under 10 milliseconds.

We assess our proposed PDTE protocols on decision trees trained
over UCI datasets and compare our results with existing work in the
field. Moreover, we evaluate synthetic decision trees to showcase
scalability, revealing that [RCC-PDTE can evaluate a decision tree
with over 1000 nodes and 16 bits of precision in under 2 seconds.
In contrast, the current state-of-the-art requires over 10 seconds to
evaluate such a tree with only 11 bits of precision.

CCS CONCEPTS

« Security and privacy — Privacy-preserving protocols; Cryp-
tography.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0050-7/23/11...$15.00
https://doi.org/10.1145/3576915.3623095

Haoyan Ni
h27ni@uwaterloo.ca
University of Waterloo
Waterloo, Canada

Florian Kerschbaum
florian.kerschbaum@uwaterloo.ca
University of Waterloo
Waterloo, Canada

KEYWORDS

Homomorphic Encryption, Decision Tree, Private Decision Tree
Evaluation

ACM Reference Format:

Rasoul Akhavan Mahdavi, Haoyan Ni, Dimitry Linkov, and Florian Ker-
schbaum. 2023. Level Up: Private Non-Interactive Decision Tree Evaluation
using Levelled Homomorphic Encryption. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security (CCS °23),
November 26-30, 2023, Copenhagen, Denmark. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3576915.3623095

1 INTRODUCTION

With the widespread adoption of machine learning (ML) in many
industries, there is a growing interest to offer cloud-based machine
learning services [1-4]. However, using cloud-based ML services
necessitates clients to share their confidential data with providers to
benefit from these services. For many users, this prerequisite raises
serious concerns about the potential loss of privacy. Additionally,
companies which wish to collaborate and use each other’s services
cannot risk exposing their customers’ and employees’ data. This
creates a barrier to potential business collaborations. Moreover,
service providers are unwilling to relinquish classification models
to users, which could eliminate their competitive advantage and
put the users in the training data at risk.

Decision trees are a well-known ML algorithm which are still
used widely in many tasks due to their simplicity, interpretability,
and ease of training [20, 33]. Private Decision Tree Evaluation
(PDTE) is a protocol for providing a prediction using a private
decision tree hosted by a server on a private input provided by a
client. At the end of the protocol, the server learns nothing about
the client’s input (input privacy), and the client learns nothing about
the server’s decision tree (model privacy) other than the result of
the inference and some hyperparameters.

One set of solutions is interactive, where the client and server ex-
change messages [9, 10, 37, 40] in multiple rounds. These solutions
are based on tools such as multi-party computation, secret-sharing
and garbled circuits [25]. Another category of solutions is non-
interactive approaches, where the client can submit the query and
go offline until the response is ready. This is great for the setting
where the client lacks computational power or suffers from lim-
ited bandwidth. All existing solutions to non-interactive PDTE use
levelled or fully homomorphic encryption [6, 15, 29, 39]. Solutions

https://doi.org/10.1145/3576915.3623095
https://doi.org/10.1145/3576915.3623095

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

requiring levelled homomorphic encryption select parameters that
depend on the comparison’s precision. This limits the scalability
of the solution significantly [29, 40]. Solutions using fully homo-
morphic encryption do not suffer the same issue, but individual
operations are inefficient due to the expensive bootstrapping pro-
cedure. The efficiency problem is exacerbated because some fully
homomorphic schemes do not support SIMD operations, so infer-
ring multiple samples in parallel is not possible.

This work proposes two non-interactive PDTE protocols using
levelled homomorphic encryption schemes. We propose a protocol
where the multiplicative depth of the entire PDTE protocol does
not depend on the tree’s structure or the number of client attributes,
making it more scalable and practical. Our solution can scale to trees
with over 1000 decision nodes and 100 client attributes. At the heart
of our proposed protocols are efficient non-interactive comparison
operators. First, an extension of XCMP by Lu et al. [29], which
we denote as Extended XCMP (XXCMP). This extension supports
arbitrary precision and is implemented using automorphisms in
the SEAL library. Second, is a comparison operator based on the
concept of range covers [24, 35], combined with constant-weight
equality operators proposed by Mahdavi and Kerschbaum [30].
We denote this comparison operator as Range Cover Comparison
(RCC). Both operators are implemented with FV, an RLWE-based
cryptosystem, but in different modes of operation [18]. Comparison
operators are the core building block in all non-interactive PDTE
protocols [6, 8, 15, 29, 40]. Our proposed comparison operators can
efficiently compare numbers with arbitrary precision. In contrast,
previous work is limited in precision due to efficiency. XCMP is
limited to 13 bits, while the operator used by Cong et al. [15] can
only compare 11-bit numbers. The comparison operator of Tueno
et al. [39] can compare numbers with arbitrary precision. However,
the parameters of the levelled FHE scheme grow with bit precision,
limiting the solution’s efficiency for high-precision inputs. Our
evaluation shows that XXCMP and RCC are up to 100 times faster
than the operators proposed by Tueno et al. Since our comparison
operators perform comparisons with arbitrary precision, models
such as decision trees need not be retrained with low precision to
enable private inference.

We use the SumPath algorithm described in Section 2.4 to eval-
uate the paths in the decision tree. SumPath requires no multiplica-
tions and hence does not increase the multiplicative depth of the
circuit. By combining SumPath with XXCMP and RCC, we propose
two new PDTE protocols, XXCMP-PDTE | and RCC-PDTE |, which
use RLWE-based cryptosystems in two different modes of operation.
While using RLWE-based cryptosystems with SIMD support has
previously been proposed [39], it was only to infer multiple samples
in parallel and reduce amortized time. In contrast, our work uses
SIMD operations to not only perform multiple inferences but also
to speed up even a single inference, which reduces client latency.
This approach also allows the client to pack more information into
fewer ciphertexts, reducing the overall communication between
the client and server when only one inference is performed.

In our evaluation, we train decision trees with different bit preci-
sion over commonly used UCI datasets [16]. Our evaluation shows
that XXCMP-PDTE and | RCC-PDTE | are up to 5 times faster than
SortingHats [15], which is a state-of-the-art solution for PDTE. This

Mahdavi et al.

advantage increases when inferring many samples in parallel. The
performance of PDTE, i.e., the communication and computation
cost, depends mainly on three factors: precision, the number of
decision nodes, and the number of client attributes. We perform
an ablation study over these parameters using synthetic decision
trees to demonstrate the dependency between these parameters
and the performance. Our experiments show that the number of
client attributes affects communication and the number of decision
nodes affects computation, while bit precision influences both met-
rics. Moreover, our experiments show that RCC-PDTE | is the most
scalable solution. It outperforms all other solutions when the num-
ber of decision nodes grows, and the number of client attributes
increases. Specifically, it can infer decision trees with over 1000
decision nodes and 16-bit precision in under 2 seconds. SortingHats
requires more than 10 seconds to evaluate such a decision tree with
only 11 bits of precision.
In summary, our contributions are as follows:

e Two non-interactive comparison protocols which we denote
as XXCMP and RCC, that can compare numbers with arbi-
trary precision using levelled homomorphic encryption.

e Two non-interactive PDTE protocols | XXCMP-PDTE | and

RCC-PDTE .

e Evaluation of proposed comparison operators with state-of-
the-art protocols.

o Ablation of PDTE over the number of client attributes and
the size of the decision tree, which shows RCC-PDTE to
be the most scalable solution. Our experiments show that

RCC-PDTE can evaluate decision trees with up to 1000
nodes in less than 2 seconds.

In Section 2, we review necessary background material such as
homomorphic encryption, decision trees and private decision tree
evaluation, range covers and tree traversal algorithms. We also com-
pare the properties of related work on non-interactive comparison
and non-interactive PDTE in this section. We describe our construc-
tions, XXCMP and RCC, two non-interactive private comparison
protocols in Section 6.1. In Section 5, we describe our PDTE proto-
cols, XXCMP-PDTE | and RCC-PDTE . In Section 6.2, we compare
XXCMP and RCC with other non-interactive comparison proto-
cols and then compare PDTE protocols with our constructions. We
conclude in Section 7 with a discussion on limitations and future
work.

2 BACKGROUND & RELATED WORK

Table 2 summarizes the notation used in the background section
and throughout the paper. Throughout the paper, we use [n] to
refer to the set {0,1,--- ,n—1},forn € N.

2.1 Homomorphic Encryption

Homomorphic Encryption (HE) is a form of encryption that per-
mits computation on the data while in encrypted form. Levelled
homomorphic encryption (LHE) schemes permit computation of
circuits with a limited multiplicative depth [11, 18]. The parameters
of the cryptosystem are chosen based on the multiplicative depth.
Hence, we try to design algorithms with a lower multiplicative
depth to enhance performance. A fully homomorphic encryption
(FHE) scheme permits an unlimited amount of operations with the

Level Up: Private Non-Interactive Decision Tree Evaluation using Levelled Homomorphic Encryption CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Encoding ‘ Plaintext Space ‘ Operation
Polynomial Add c1(x),c2(x) €C mi(x) + ma(x)
. _ Z,[X] Plain Polynomial Mult. c1(x) € C, ma(x) € Ry my (x)ma(x)
Polynomial Rp =53 Polynomial Mult. c1(x),c2(x) € C my(x)ma(x)
Oblivion Expansion [7, 13] | ¢1(x) € C,k e NU {0} | Coefficient of xK in my(x)
SIMD Add c1(x),c2(x) € C mi(x) ® ma(x)
Batched 2N/ Plain SIMD Mult. c1(x) € Comy(x) € 2y m1(x) ® ma(x)
SIMD Mult. c1(x),c2(x) € C mi(x) @ ma(x)
Circular (Right) Rotation c1(x) eC,keN Rotatey (m1(x))

Table 1: Different encodings for the FV cryptosystem. In all operations, we have c;(x),c2(x) € C that encrypt mq(x), ma(x),
respectively. Operations over plaintext polynomials happen in R,. ® and ® denote element-wise addition and multiplication
modulo p between two vectors. Rotate; denotes the circular right rotation of a vector by k slots.

help of bootstrapping [14, 17]. However, FHE is more computation-
ally expensive and requires large cryptographic keys for setup.

Fan—-Vercauteren (FV) Cryptosystem. The Fan—Vercauteren (FV)
cryptosystem [18] is a lattice-based homomorphic cryptosystem.
An FV ciphertext is an array of polynomials, each from Ry =
Zg[X] /(XN +1), where q is called the coefficient modulus. In the
simplest case, the ciphertext is only two polynomials. Let C denote
the ciphertext space. N and g determine both the security parame-
ter and how many homomorphic operations can be performed on
ciphertexts before decryption is necessary. Inputs in this cryptosys-
tem can be encoded in two formats. Table 1 shows the two encoding
types and the corresponding operations that can be performed.

Symbol Description

Security parameter
Polynomial modulus degree
Plaintext modulus
Encryption of x

(T,a,t,v)

Decision tree nodes

Set of internal decision nodes in 7~
Set of leaf nodes in 7~

Number of decision nodes (|D|)
Client attribute vector

Node to attribute mapping
Threshold value function

Leaf value function

Depth of the decision tree
Number of classification labels

WS

SeF(madan XIS v 2>

[}

Hamming weight
Constant-weight code length
Bit Precision

{0,1,---,n—1}

{0,1}

Table 2: Summary of notation

Microsoft SEAL [34] implements the FV cryptosystem and sup-
ports all the operations mentioned in Table 1. We use the SEAL
library for our implementations in this work.

2.2 Non-interactive Private Comparison

A comparison operator is a function f : D + {0, 1} such that for
x,y €D,

floy) =[x < y] (1

A private comparison is a protocol where two inputs, x and vy,
are provided, such that one or both of them are encrypted. The
output of the protocol is f(x,y) in encrypted form.

In this work, we are particularly interested in non-interactive
solutions to this problem. This is useful in protocols where the
encrypted input is provided by a lightweight client which may
go offline after providing the input. Below we describe three non-
interactive private comparison protocols from the literature.

Folklore Private Comparison. The folklore comparison algorithm
compares two n-bit numbers in binary format. This is identical to
how binary numbers are compared in the clear, with some adap-
tations to make it easier to compute using HE. The multiplicative
depth of the algorithm is 1 + log, (n + 1), which poses a burden to
compute efficiently using HE. Algorithm 1 shows this algorithm.
The inputs are binary vectors and all operations are element-wise.
We also use the RIGHTSHIFT function, which logically shifts the
contents of any vector or bitstring by k positions. Additions and
multiplications can also be replaced with XOR and AND operations.

Algorithm 1 FoLkLoRE ComPaRISON(I[a < b])
Input: a,b € {0,1}"
1: Qeq — l—(a—b)z
2: Qgt (—(1—a)-b
3 Oprefixiq = Ogr - [172) RightShifty(feq)
40— 9PreﬁxEq[i]
Output: 6 € {0,1}

Variations of folklore comparison have been implemented in
many works using levelled homomorphic encryption [19, 39].

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

XCMP. Lu et al. [29] proposed a comparison operator called
XCMP which compares two encrypted numbers using levelled HE.
Cong et al. introduced a variation using TFHE where one operand
is unencrypted [15]. This relaxation reduces the runtime of the com-
parison. Algorithm 2 shows this variant of XCMP which compares
an encrypted input, a, provided by the client with an unencrypted b
provided by the server. The output is I[a < b]. Inputs are encoded
as RLWE ciphertexts, i.e., Polynomial encoding from Table 1.

Algorithm 2 XCMP(I[a < b]) [29]

1: procedure XCMP(A, b)
2 Teix b q+Xx++xN

>A=X%abe [N]

3 RiRp and R[0] = 1/2 mod p

4: C=A-T+R
return C

The result of the comparison is in the constant term of C.

Iliashenko and Zucca [21]. The comparison function of x,y € Z,
can be represented as either a bivariate polynomial of the two in-
puts or a univariate function of the difference. Iliashenko and Zucca
showed how to exploit the structure of these polynomials to effi-
ciently evaluate the comparison function. Their main observation
was that these polynomials have many zero coefficients which can
be ignored.

Based on this observation, they showed that comparison using
FHE schemes that operate over arithmetic circuits can be efficient.

2.3 Decision Trees and PDTE

Decision Trees. A decision tree is a classification algorithm which
classifies input data by sequentially checking a series of criteria.
The simplest form of a decision tree is represented by a binary tree
where each internal node compares an attribute with a threshold.
Each leaf is assigned a classification value (or simply a class). To
classify a data point, we start at the root of the tree, perform a
comparison and move to the right or left child, depending on the
result of the comparison. We continue until we reach a leaf and
output the class of that leaf.

More formally, a decision tree consists of a set of nodes 7~ =
D U L, where D and L are the set of decision nodes and leaf
nodes, respectively. There also exists an attribute vector, x, and
three functions:

e a: D — [|x|] maps decision nodes to attribute indices.
e t: D — Z maps internal nodes to threshold values.
e v: L — Z maps leaf nodes to classification values.

We denote the tuple M = (7, a, t, v) as the decision tree model.

Private Decision Tree Evaluation (PDTE). Private Decision Tree
Evaluation (PDTE) is a protocol between a server and a client where
the server holds the model, M, and the client holds the attribute
vector, x. The goal is to infer the tree on the client’s attribute vector
such that the server does not learn anything about the client’s input.
Moreover, the client should not learn anything about the server’s
private decision tree other than the classification result and some
hyperparameters.

Mahdavi et al.

(N)

Path Conjugation SumPath

Figure 1: Labelling of edges in two tree traversal methods,
Path Conjugation and SumPath. x is the client attribute vec-
tor. a, and t are the attribute index and threshold for the
parent node, respectively. In SumPath, r is either a random
number or 1.

The client may try to steal the model with black-box access to an
API through carefully crafted queries to the server [22, 23, 32, 36, 38].
Such an attack is outside the scope of this work, but defences against
such attacks is an active area of research [22, 38].

2.4 Tree Traversal

One of the main steps in all private decision tree evaluation proto-
cols is traversing the tree from the root to the leaves, as discussed
by Kiss et al. [25]. We denote the leaf holding the result of the
prediction as the result leaf and the value of that leaf as the result
value. If all comparisons in the decision nodes are computed as a
binary output, there are two methods to aggregate the results and
compute the result leaf and value. We denote these two methods
as Path Conjugation and SumPath. For each method, the edges in a
tree are annotated as shown in Figure 1.

In Path Conjugation, for each leaf in the tree, all values on the
edges between the root and that leaf are conjugated. Consequently,
the result leaf will have a value of one, and all other leaves will have
a value of zero. This process can be computationally optimized by
reusing computations in inner nodes [39]. Some works, such as
those by Sortinghats and Tueno, utilize this approach with fully
homomorphic encryption and the CMux gate in TFHE [15, 40].
However, this approach is not practical when using levelled ho-
momorphic encryption, given that the multiplicative depth of the
circuit will depend on the depth of the tree.

On the other hand, the SumPath method has been proposed
previously for use with additive encryption [25, 37] or levelled
homomorphic encryption in an arithmetic field [40]. Edges are an-
notated as indicated in Figure 1. For each leaf in the tree, the sum of
all the edges in the tree from the root to that leaf is assigned to that
leaf. Only the result leaf will have a sum of zero, and all others will
be non-zero. By returning the sum on each leaf, plus the masked
value on each leaf, the client can infer the correct result value. The
advantage of this approach is that no multiplications or conjuga-
tions are required, which makes it computationally inexpensive
and does not increase the multiplicative depth.

Level Up: Private Non-Interactive Decision Tree Evaluation using Levelled Homomorphic Encryption

2.5 Range Covers & Point Encoding

Range covers are a method to represent intervals in a manner that
is concise and easy to use in secure computation [24, 35]. Let T be
a binary tree of internal nodes of prefixes numbers in [2"] and leaf
nodes of the elements in [2"]. The children of a prefix p are p|0
and p|1, and the root is the empty prefix. A range cover RCp(a, b) is
a set of nodes in T, such that its set of children at the leaf level are
all elements in the range [a, b], where a,b € [2"]. The best range
cover contains at most 2log n nodes with at most 2 nodes at each
level of T (excluding the root level). A uniform range cover is a
modification of the best range cover such that each level of the tree
contains exactly 2 nodes [24, 35]. This is achieved by padding the
best range cover with dummy nodes at all levels if fewer than two
nodes are chosen. The advantage of a uniform range cover is that
the size is independent of the interval, which is a requirement in
private protocols. For every range [a, b] there exists a best range
cover and uniform range cover.

A point encoding PEp(c) of an element ¢ € [2"] is the set of nodes
from the leaf ¢ to the root (except the root itself). A point encoding
consists of n nodes with one node at each level of T (except the root
level). We denote as RCp,(a, b)[i] and PE, (c)|[i] the i-th element of
a range cover or encoding, respectively.

We can test the relationship ¢ € [a,b] given RC,(a,b) and
PE, (c) by checking to see if there are any common prefix nodes
between the range cover and point encoding. We give the full algo-
rithm on how to do this check in Algorithm 12 in the appendix.

Figure 2 shows an example: the prefix tree for [0, 23 — 1] with
the range cover for [0, 4], indicated by the shaded boxes, and point
encodings for 2 and 6. We can see that RC3(0, 4) and PE3(2) have
the prefix node corresponding to 0 in common whereas RC3(0, 4)
and PE3(6) have no prefix node in common.

RC5(0,4)

Figure 2: Range cover for [0,4] (shaded boxes) and point
encoding of 2 and 6 in domain [0,2% — 1]. In this example,
RC5(0,4) and PE3(2) have a prefix node in common, given
that 2 € [0, 4] but RC3(0,4) and PE3(6) have no prefix node in
common since 6 ¢ [0,4].

2.6 Constant-weight Equality Operators

Constant-weight equality operators, proposed by Mahdavi and
Kerschbaum, are equality operators with a constant multiplicative
depth, independent of the bitlength of the operands [30]. To use
the constant-weight equality operator, numbers are represented
as constant-weight codes with Hamming weight h. We make an

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

adjustment to the encoding algorithm to encode null values as
well. Null values are encoded as the all-zero string. We include the
adjusted algorithm from the work of Mahdavi and Kerschbaum in
Appendix A. To compare constant-weight codewords, we use the
arithmetic constant-weight equality operator in this work, which
has a multiplicative depth of 1 + log, h. We use this operator to be
able to compare many pairs of numbers simultaneously, and in a
SIMD fashion. This operator is shown in Algorithm 3.

Algorithm 3 Arithmetic Constant-weight Equality Operator [30]

1: procedure ARITH-CW-EQ-Op(x, 1) » x,y € CW (¢, h) U {0}
2 K =X xli] - ylil
3 ezl/h!'nie[h](h,_i)

return e >e€B

3 RELATED WORK ON PDTE
3.1 Interactive PDTE

Decision trees can be privately evaluated using two-party com-
putation (2PC) or using a combination of 2PC and homomorphic
encryption. There are also solutions which use tools such as se-
cret sharing, garbled circuits, and oblivious transfer [9, 12, 25, 28].
Unlike homomorphic encryption, 2PC is usually communication-
bound, i.e., reducing the communication complexity or rounds is
necessary to increase efficiency. However, since this work focuses
on non-interactive decision tree evaluation, we provide only a few
selected examples of the work in private decision trees using 2PC.

2PC, e.g., using Yao’s garbled circuit, implements a constant-
round protocol. Brickell et al. [12] present an improved constant-
round protocol using 2PC and homomorphic encryption. Kiss et
al. [25] later surveyed this and a number of other protocols and
identified several design options and new combinations of these
protocols systematizing the protocols.

However, 2PC usually leads to communication complexity which
is exponential in the tree depth since all branches need to be eval-
uated. Using different techniques, one can also reduce the com-
munication complexity. Tueno et al. [40] propose to use oblivious
RAM (ORAM). Bai et al. [9] propose to use additive homomorphic
encryption or pseudo-random functions.

Given enough network capacity, it is possible to train decision
tree classifiers using 2PC or in general multi-party computation
(MPC). Lindell and Pinkas [27] present a theoretic design of a 2PC
protocol for computing the logarithm in the ID3 training algorithm.
Since then, many proposals for practical systems have been made,
e.g., by Wu et al. [41], by Zheng et al. [42] and by Lu et al. [28].

3.2 Non-Interactive PDTE

Interactive protocols are great for computational efficiency but usu-
ally require high network activity. Moreover, they require several
rounds of interaction between the client and server. This is not a
good solution if the client is not strong or has a limited network
connection. The client may wish to go offline while waiting for the
result in many use cases. Non-interactive approaches to private deci-
sion tree evaluation primarily use homomorphic encryption. Some

CCS ’23, November 26-30, 2023, Copenhagen, Denmark Mahdavi et al.
| PROBONITE [8] | PDT-Bin [39] | PDT-Int [39] | SortingHats [15] | (XXCMP-PDTE| | (RCC-PDTE
Supports Unbalanced X v v v v v
Attribute Selection PIR Clear Clear Clear Clear Clear
Comparison PBS (CT-CT) Folklore Lin-Tzeng [26] | XCMP-CT-PT XXCMP RCC
Path Evaluation CMux AND SumPath CMux SumPath SumPath
Batchable X v v X Vv v
Bit Precision < 8" n n 11 n n
Levelled or FHE FHE LHE or FHE | LHE(BGV) FHE(TFHE) LHE(FV) LHE(FV)
of Comparisons 0(d) |D| |D| |D| |D| |D|
Query Complexity o(|x|) O(n|x|) O(n|x|) O(N|x]) O(N|x]) O(¢n|x|)
Mult. Depth N/A log, n log, n N/A [log2 (n/log, N)] 1+logy h

Table 3: Properties of Non-interactive Private Decision Tree Evaluation Protocols. a is the number of client attributes, d is the
depth of the tree, D is the set of internal decision nodes, and x is the client attribute vector. * The precision of PROBONITE

depends on the choice of parameters for the LWE scheme but is typically less than 8 bits.

works used levelled homomorphic encryption [6, 29, 40] while oth-
ers require a fully homomorphic scheme [8, 15, 40]. A decision tree
is comprised of many comparisons between client attributes and
thresholds, so at the heart of all protocols is an efficient comparison
operation. The primary approach in many works is to reduce the
precision of the comparison to make it efficient [15, 29]. For this
to be possible, the decision tree evaluation has to be fine-tuned for
low precision. Quantization-aware training is one approach to this.
If a model already exists with high precision, it can not be used
as it is and has to be retrained. Table 3 summarizes the properties
of related work. We also provide a short description of how each
protocol works.

XCMP PDTE [29]. Lu et al. proposed a non-interactive PDTE
protocol based on XCMP, described in Section 2.2. All comparisons
are performed using XCMP, and all paths are evaluated using the
same method as the work of Tai et al. [37]. This protocol’s main
limitation is that the precision of the comparison which they use is
limited to 13 bits, i.e., log, N. The protocol’s design was such that
the model holder could also encrypt the thresholds of the model
and delegate the evaluation to a third-party server. In this case, the
third party would learn the tree’s structure but not the thresholds.

PDT-Bin & PDT-Int [39]. Tueno, Boev, and Kerschbaum proposed
two PDTE protocols using a binary and arithmetic circuit. In their
first construction, denoted as PDT-Bin, In this construction, num-
bers are represented using binary encoding and compared using a
Folklore comparison. Traversal of the decision tree in PDT-Bin is
performed using homomorphic AND operations, ultimately yield-
ing a single result that represents the outcome of the classification.

In addition to PDT-Bin, Tueno, Boev, and Kerschbaum introduced
another protocol, PDT-Int, which is based on levelled homomor-
phic encryption, specifically employing the BGV scheme. For the
comparison operator in PDT-Int, they adopted a variation of the Lin-
Tzeng [26] protocol, which outputs zero in the case of a match and
a random number otherwise. To traverse paths in the decision tree,
the SumPath technique is employed, and one value corresponding
to each leaf node is returned.

PROBONITE [8]. Azogagh et al. proposed a PDTE protocol named
PROBONITE which evaluates only one path of the tree [8]. In
contrast to other non-interactive protocols, which perform one
comparison for each node in the decision tree and evaluate all
paths, PROBONITE only evaluates one path. The protocol starts
at the root and traverses one path down the tree. This is done
by using two subprocedures: 1) Blind Array Access, which is used
to select the next attribute with which to compare 2) Blind Node
Selection, which selects the next node to traverse to based on the
result of the comparison. The entire protocol is performed using
HE, and the comparison is also performed using the functional
bootstrapping capability of TFHE. Given that only one comparison
is performed at each level, this greatly improves performance by
not performing unnecessary comparisons. The drawback is that
since the server does not know which threshold to compare with,
it must blindly find the correct threshold with the Blind Array
Access subprocedure, which can be computationally expensive.
Moreover, the comparison happens between two ciphertexts, as
opposed to other approaches which compare encrypted attributes
with cleartext thresholds [15, 40]. For privacy, imbalanced trees are
padded with redundant nodes to a full, balanced tree so that all
queries are equally expensive. The protocol only leaks the depth of
the tree and not the number of leaves or any other properties of
the tree. There is no public implementation of this work available,
so we only resort to the theoretical comparison provided in the
Table 3.

SortingHats [15]. Cong et al. expanded on the idea of XCMP-style
comparisons [29]. XCMP focused on comparing two encrypted
numbers, but in PDTE, one operand is usually in the clear, making
the comparison operation simpler. Cong et al. proposed a faster
comparison operation based on XCMP where only one operand is
encrypted and the other is in the clear [15]. We describe this proto-
col in Algorithm 2. The operation is done with only two polynomial
multiplications, which is much cheaper than comparing two en-
crypted numbers which requires 16 polynomial multiplications [29].
Using their proposed operand, they designed a non-interactive pri-
vate decision tree evaluation protocol called SortingHats. The au-
thors used TFHE-based FHE to implement their protocol. They also

Level Up: Private Non-Interactive Decision Tree Evaluation using Levelled Homomorphic Encryption

proposed using transciphering to reduce communication between
the client and server, a method orthogonal to this work to reduce
communication costs. The main limitation of SortingHats is the bit
precision, which is currently capped at 11 bits.

4 OUR COMPARISON OPERATORS

In this section, we propose two operators for non-interactive private
comparison. First is an extension of the XCMP protocol mentioned
in Section 2 for larger bit precision. Second, is a novel protocol
based on range covers in combination with constant-weight codes.

4.1 XXCMP: Extended XCMP Operator

XCMP only supports the comparison of numbers smaller than N.
We propose an extension based on XCMP which can support num-
bers of arbitrary size. We denote this as XXCMP. The idea is to
represent large numbers in base N. High-order digits are compared
first and if they are equal, the next digits are compared. For example,
leta = a1N +ag and b = b1 N + by where aj, b; € [N]. Then we use
the following identity:

I[a > b] =1[a; > b1] +I[a1 = b1] - I[ao > bo]. @)

For this, we need an equality operator over numbers encoded
as XCMP ciphertexts. Within that algorithm, we use another sub-
protocol which checks the equality of two numbers in the XCMP
format. This protocol uses the oblivious expansion technique pro-
posed by Angel et al. [7]. Algorithm 4 shows the extension of XCMP
for numbers smaller than N2. This algorithm requires one homo-
morphic multiplication. This can be extended to numbers with
arbitrary length. We have included the algorithm for numbers of
arbitrary size in the appendix. In the general case, to compare num-
bers smaller than n = N, the multiplicative depth of the circuit is
[logz k] and requires k(k — 1) /2 homomorphic multiplications.

Algorithm 4 Computing I[a > b] using Extended XCMP (XXCMP)
for a,b € [N?] such that a = a1N + ag and b = b1 N + by where
ai,bi € [N]

1: procedure XCMPy(X4, b)

2 Te—(1+X+---+XN-b-1)
3: RiRP and R[0] =0 mod p
4 Co=X*-T+R

return Cy

>a,b e [N]

5. procedure XXCMP2(4, b) >A€ Rf,, b e [N?]
6: XU X% — A
7: gty < XCMPy(X%, bg)
8 gt1 «— XCMPo(X*, by)
9 eq1 < Oblivious-Expansion(X?, by)
10: C =gty +eq1 - gio
return C

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

4.2 Range-Cover Comparison (RCC) Operator

Assume we have a, b € [2"] and we want to compute I[a < b]. At
a high level, the idea is to use the following statement:

a<b & bela2"-1] (3)

which is similar to the RC/PE inclusion problem. However, one
end of the interval is always the maximum value. Using this con-
straint, we define a restricted version of a range cover called the
One-sided Uniform Range Cover (OURC). The main difference be-
tween a typical range cover and OURC is that an OURC consists of
only one prefix node in each level of the prefix tree (including the
root level). Hence, the inclusion check requires only n + 1 equality
checks instead of 2n. This results in a major performance improve-
ment when running the circuit using HE. Algorithm 5 shows the
procedure for computing the OURC. The modified OURC/PE inclu-
sion procedure is shown in Algorithm 5. We include the procedure
for calculating the point encoding as well.

Algorithm 5 CarcuraTing OURC AND PE

1: procedure OURC(x, n) > x € [2"]
2: Oourc < [Null] = (n+1)
3: if x = 0 then
4 Oourcln] =0
return Opyre

5: s=2"-1
6: K « {}
7: while s > x do) ‘
8: Find j such that 2/ < s < 2/+1
9 Oourclil = 2" = 1= Fyex 287
10: se—s—2/
11: Add jtoK

return Opyre
12: procedure PE(y, n) >y € [2"]

return [y, |y/2], [y/2?],---, ly/2"]]

13: procedure PE-RC-INncLusioN(OpuRre, OpE)
14: O0in=0
15: forie [n+1] do
16: Oin = 0in + I[OURC(a, n)[i] == PE(b,n)][i]]

return 0;,

As shown in Algorithm 5, n + 1 equality checks are required
for one RCC comparison. We replace the equality checks in each
iteration of the for loop with a constant-weight equality operator
of Hamming weight h. All other operations are additions so the
total multiplicative depth of the inequality operator only depends
on h. Note that the multiplicative depth does not depend on n, the
bit precision of the numbers.

OURC Inclusion using Homomorphic Encryption. In our private
comparison protocol, the client, which holds a, sends an encryption
of OURC(a, n) to the server. The input is encoded and encrypted
such that the comparison is performed efficiently. More specifically,
if OURC(a, n) = {ag, a1, -, an}, then constant-weight encoding
of a; is spread across ¢ ciphertexts. Figure 3 shows a visualization

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

of how the packing happens. Each blue box contains all the bits
of information about OURC(a, n). Using this encoding, each prefix
node, a; occupies exactly n slots in each ciphertext. The number of
occupied slots does not depend on the parameters of the constant-
weight code, i.e., the Hamming weight. Multiple pairs of numbers
from the client and server can be compared in parallel.

Algorithm 6 details the procedure to encode OURC(a, n) across
multiple FV ciphertexts in batched mode. We provide the packing
method for the point encoding as well, which is used in the compar-
ison protocol. We note that this is not the only method to encode
values in FV ciphertexts. We elaborate on other packing methods
and why we chose this method in Section 7.

Algorithm 6 OURC and PE Encoding

1: procedure OURC-ENCODE(q, h, £, n) >a € [2"]
2 [ag,a1,---,an] < OURC(a,n)
3 forie [n+1] do
4: a} = CWENCODE(aj, h, £) >aj € Bf
5 fori € [£] do
6 ptourclil = [aplil, a|[il, ... ap[i]]
return ptoyre
7: procedure PE-ENCODE(b, h, ¢, n) >b e [27]
8: [b(), bl, e, bn] — PE(b, Yl)
9 forie [n+1] do
10: b; = CWENCODE(b;, h, £) > b} € Bf

e
[

foric [f] do
ptlil = [by [, b [il, ... b]
return ptpg

OUCR(a) = {ay,ay, ..., a,}

<+—— Buffer ——

o [T T FL T
) NERERIRREARERERINE

CW-Encode(ag)

ciesal[| [[-[QL[ITT-[T]

Figure 3: Packing OURC in FV ciphertexts in batched mode.

Given the encryption of OURC(a, n), we can now outline the
procedure for comparison. Algorithm 7 shows this procedure. The
red symbols show the values that are encrypted when the procedure
is performed between a client and server.

5 PDTE USING LEVELED HE

This section describes our two proposed protocols, | XXCMP-PDTE
and [RCC-PDTE . We describe the setup, security model, and details
about the two protocols.

Mahdavi et al.

Algorithm 7 RCC COMPARISON

1: procedure RCC-COMPARE(a, b)
2 acy < OURC-ENCODE(q, h, £, n) > Done by client
3 byt < PE-ENCODE(b, h, £, n)
4: 0 = ARITH-CW-EQ-OP(act, bpt)
5 Osum < X1, Rotate;(6)
6 M—oN, M0] =1
7 ecmp — Osum ® M

return Ocyp

> Mask

5.1 Setup and Security Model

Our PDTE protocols work in the client/server model. The server
holds a decision tree model, and the client holds a vector of at-
tributes. The goal is for the client to learn nothing about the server’s
model other than the inference result. The server should learn noth-
ing from the protocol. Our protocol is non-interactive, i.e., the client
uploads its query to the server and waits for a response. The client
need not be online while the server processes the query.

Similar to prior work, we work in the semi-honest model, where
both the client and server follow the protocol but may try to infer
extra information.

Both protocols use homomorphic encryption and assume cryp-
tographic keys such as public keys, evaluation keys, and relin-
earization keys have been exchanged between the client and server,
similar to previous works.

5.2 XXCMP-PDTE: XXCMP + SumPath

In | XXCMP-PDTE |, we combine the XXCMP comparison with the
SumPath algorithm. This protocol is implemented using FV cipher-
texts in polynomial mode. The protocol has two main parts 1) For
each node, compare the correct client attribute to the corresponding
node threshold. 2) Run SumPath and get one encrypted result per
leaf. Algorithm 8 depicts this algorithm. d.left and d.right denote
the left and right exiting edge from d, respectively. The final result
can be compressing the leaves into the same ciphertext. Each leaf
can occupy one of the coefficients of the final ciphertext.

Variables that are coloured red are encrypted when running the
procedure between a server and client.

Algorithm 8 XXCMP-PDTE | : PDTE using XXCMP

1: procedure XXCMP-PDTE(x, M)

2 (T,a,tv) M

3 ford € D do

4 ¢ «— XXCMP(x[a[d]], t[d])
5

6

dleft ¢
d.right «— 1-¢

7: for ¢ € L do

8: s(£) = Sum of edges from root to ¢
$

9: Fx; Ty < Zp

10: x(€) « ry - s(?)

11: y(€) «—ry-s(6) +o(f)

return {(x(¢),y(¢))}re s

Level Up: Private Non-Interactive Decision Tree Evaluation using Levelled Homomorphic Encryption

5.3 RCC-PDTE: RCC + SumPath

In (RCC-PDTE , comparisons are performed using RCC and the
tree is traversed using SumPath. One important difference between
this protocol and [XXCMP-PDTE is that all comparisons happen
in parallel using the batched mode of FV. The results of the com-
parisons will occupy different slots of the ciphertext. Algorithm 9
outlines this procedure. In the implementation, we also batched the
final result into one ciphertext to reduce communication costs.

Algorithm 9 [RCC-PDTE | : PDTE using RCC

1: procedure RCC-PDTE(x, M)

2 T,atve—M

3 t’ « array of thresholds, aligned with client attributes

4 ¢ « RCC-CoMPARE(x, t)

5 ford € D do

6 ¢’ « Rotate c to get d to first slot

7 dleft —1-¢'

8 d.right « ¢/

9: for¢ e L do

10: s(¢) = Sum of edges from root to ¢
$

11: e, Ty < Zp

12: x(£) «— ry - s(f)

13: y(£) e ry-s(f) +o()

return {(x(£),y(£)) }re £

Choosing the Hamming weight. The Hamming weight used for
the constant-weight code directly affects the code length. More
specifically, the code length is the smallest ¢ such that

(2) > 2" (4)

For 1 < h < n/2, the code length decreases as the Hamming
weight increases. But for h > n/2, the code length increases as the
Hamming weight increases. So we do not choose the Hamming
weight to be larger than half the bit precision. Given that analy-
sis, the choice of the Hamming weight requires consideration of
the trade-off between runtime and communication costs. In our
evaluation, we plot several Hamming weights to show the effect.

6 EVALUATION

In this section, we present our evaluation in two parts. In Section 6.1
we benchmark the runtime of our proposed non-interactive pri-
vate comparison operators in comparison with existing operators.
In Section 6.2, we evaluate PDTE algorithms over decision trees
trained over UCI datasets. We perform ablation studies to measure
the performance of different algorithms with respect to precision,
the number of client attributes and the size of the decision tree.

6.1 Benchmarking Private Comparison

In this experiment scenario, we assume a client wants to compare
its input values with that of the server using a private comparison
operator. We measure the computation time for the operators pro-
posed in Section 4. Specifically, we benchmark 1) RCC 2) Folklore

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Comparison 3) XXCMP 4) SortingHats Comparison and 5) the work
of Iliashenko et al. [21]. The first three are implemented using Mi-
crosoft SEAL [34]. In Figure 4 we plot the amortized runtime and
communication as a function of the bitlength of the values. RCC is
parameterized by the Hamming weight h which has a significant
effect on the performance. We plot RCC for multiple Hamming
weights to show the effect of the parameter.

All experiments are performed 10 times and the average results
are reported. The shaded areas show one standard deviation of
error.

Amortized Runtime for Comparison

—— Folklore
RCC (h=2)
601 — Rcc(h=4)
—— RCC (h=8) 41
504 — RCC (h=16)
—— RCC (h=32) 2]
XXCMP
ﬁ 401 e SortingHats /
S lliashenko et al. 01
(7] -
£ 304
g
20 A
10 A
0

T T
10 20 30 40 50 60
Bit Precision

Figure 4: Amortized Time for Comparison. The shaded areas
indicate one standard deviation of error. Time for a Sorting-
Hats comparison is measured by using the benchmarks in
their repository. For RCC, at each point, we use the Ham-
ming weight which has the smallest runtime.

XCMP and SortingHats perform one comparison at a time, whereas
Folklore and RCC are batched and perform the comparison in a
SIMD fashion. The input is encoded in the same format as that
described in Figure 3. In this encoding, the number of parallel com-
parisons is a function of the precision and the parameters of the
encryption scheme. Table 4 shows the number of comparisons for
different precisions. The number of parallel comparisons decreases
as the precision increases. Due to our encoding method, the number
of parallel comparisons does not depend on the Hamming weight,
in the case of RCC. The work of Iliashenko et al. also performs
comparison in a batched manner. We use the univariate variant
of their protocol which, per their experiments, produces the best
results.

Bitlength | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36
of
Comps

‘ 963 ‘ 655 ‘ 496 ‘ 399 | 334 224

287 ‘ 252

Table 4: Number of parallel comparisons in RCC and Folklore
comparison as a function of the bit precision.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Figure 4 shows that RCC has the smallest amortized runtime for
a private comparison for any bit precision. For a bit precision of 11,
SortingHats and RCC have an approximately similar runtime, but
SortingHats can not extend to higher bit precision.

6.2 Benchmarking PDTE

In this subsection, we compare the proposed private decision tree
evaluation protocols in terms of server computation time and com-
munication between the client and server. We first benchmark the
performance whilst inferring decision trees trained on common UCI
datasets and measure the communication and computation over-
head. Our experiments over datasets show that the performance
of these algorithms is tied to the number of client attributes and
the size of the decision tree. Hence, we ablate with respect to these
two parameters to understand the effect.

6.2.1 Implementation & Experimental Details. | XXCMP-PDTE and
RCC-PDTE are implemented as described in Section 5. We paral-
lelized some steps in both protocols to enhance performance. Partic-
ularly, in [RCC-PDTE |, the constant-weight equality operator was
shown to be highly parallelizable by Mahdavi and Kerschbaum [30].
We also implement a baseline solution which we denote as Folklore-
PDTE. Folklore-PDTE is implemented similarly to [RCC-PDTE |,
with only the comparison replaced with the Folklore comparison
from Section 2.2. All three algorithms are implemented using Mi-
crosoft SEAL version 4.0', which implements the FV cryptosystem
in polynomial and batching mode [34]. Our implementation is pub-
licly available on Github.?

For SortingHats, we use the implementation provided by the
authors3. We activate the parallelization flag and use artificial input.
Experiments are conducted on an Intel(R) Xeon(R) Platinum 8368
CPU @ 2.40GHz server running Ubuntu 22.02 with 32 cores. All
experiments are repeated 10 times and the average is reported. The
shaded areas indicate the standard deviation of the measurements.

6.2.2 Evaluation over Datasets. We train decision trees over four
datasets from the UCI repository [16], Heart, Breast, Spam, and Steel,
which are also used in related work [15, 40]. We train decision trees
with the desired precision using the Concrete-ML framework [31].
Table 5 shows the properties of the datasets. The structure of the de-
cision tree changes as the precision increases. In general, a decision
tree with higher precision has fewer nodes.

#of # of
Name D ‘ Classes ‘ Attributes
Breast | 1510 2 30
Steel 1504 2 33
Heart | 1565 5 13
Spam | 44 2 57

Table 5: Characteristics of UCI datasets used in our evaluation

!https://github.com/microsoft/SEAL
Zhttps://github.com/Rasoul AM/private- decision- tree-evaluation
3https://github.com/KULeuven-COSIC/SortingHat

Mahdavi et al.

In Figure 5, communication and computation are plotted as a

function of the precision for Folklore-PDTE, XXCMP-PDTE |, and
RCC-PDTE|. SortingHats does not permit arbitrary precision, so
we plot it as one point in the graphs.

Figure 5 shows the results for four datasets. Folklore-PDTE
is consistently the slowest of all solutions. None of the bench-
marked approaches is consistently better, but in all cases, it is ei-
ther | XXCMP-PDTE | or RCC-PDTE |. In communication, Folklore-
PDTE is dominant given that it has the most compact representation
for a number, but given its impractical runtime, we can dismiss that.
Hence, if we disregard that, SortingHats has the least communica-
tion overhead compared to | XXCMP-PDTE and [RCC-PDTE |.

These experiments show that there is not a dominant solution
that wins in all cases for all metrics. Communication and computa-
tion are a function of many factors, such as the number of client
attributes and the number of decision nodes. We perform ablations
to better understand the effect of each of these parameters.

6.2.3 Ablation over Number of Attributes. In this experiment, we
benchmark PDTE over a synthetic decision tree with a varying
number of client attributes. Specifically, we generate a synthetic
balanced tree of depth 6 (with 31 decision nodes) with three different
bit precision, n = 8, 16, 26. Note that the same results hold for trees
of other sizes and shapes (balanced or unbalanced). We plot the
communication complexity of [RCC-PDTE | and | XXCMP-PDTE as
we vary the number of client attributes from 5 to 100.

Commmunication versus Number of Attributes

PPt
-~ —"
/’ /”’
4] .
10 e
wn /, ’/
g 7 —==
> 2 -
I
_____ R
- —
~ -
it
103 4 R
// R
e
7
J 7 BN n=8 —— RCC-PDTE
v/ E n=16 --- XXCMP-PDTE
/ B n=26 —-- SortingHats
y T v v T
20 40 60 80 100

Number of Attributes

Figure 6: Communication cost of PDTE as a function of the
number of attributes.

SortingHats and | XXCMP-PDTE | encrypt each client attribute
in a separate RLWE ciphertext. Hence, the communication com-
plexity scales linearly with the number of client attributes (notice
the logarithmic vertical axis). For a given precision, RCC-PDTE
has constant communication cost due to the use of batch encoding.
When the number of client attributes is small, RCC-PDTE has a
higher communication cost compared to other solutions. Sorting-
Hats has the smallest communication overhead when precision is
less than 11 bits. For precision higher than 11 bits, XXCMP-PDTE
is the best solution in terms of communication. While RCC-PDTE
has the highest communication cost when the number of attributes

https://github.com/microsoft/SEAL
https://github.com/RasoulAM/private-decision-tree-evaluation
https://github.com/KULeuven-COSIC/SortingHat

Level Up: Private Non-Interactive Decision Tree Evaluation using Levelled Homomorphic Encryption

Inference Time for Heart dataset (13 attributes) Inference Time for Breast dataset (30 attributes)

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Inference Time for Steel dataset (33 attributes) Inference Time for Spam dataset (57 attributes)

1200 — Folkiore-poTE — FollorePOTE
RCC-PDTE (h=2) 600 RCC-PDTE (h=2)
—— RCC-PDTE (h=4) ~—— RCC-PDTE (h=4)
10001 — xxcwp-poTE 500 —— XXCMP-PDTE
® Ssortinghats o sortingHats
E £ 400
L Lo
B E
400 200 .
100
200
o

Milliseconds

8000
—— Folklore-PDTE

7000 RCC-PDTE (h=2)
200 —— RCCPDTE (h=4)
6000 —— XXCMP-PDTE
® SortingHats

— Folklore-PDTE
RCC-PDTE (h=2)

—— RCC-PDTE (h=4)

100{ — XXCMP-PDTE

® SortingHats
) j

5000

4000

Milliseconds

3000

2000

1000

2 4 6 12 14 16 2 4 6 8 10 12 14 16

8 10
Bit Precision Bit Precision

Communication for Heart dataset (13 attributes) Communication for Breast dataset (30 attributes)

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Bit Precision Bit Precision

Communication for Steel dataset (33 Communication for Spam dataset (57 attributes)

— Folklore-PDTE
RCC-PDTE (h=2)

—— RCC-PDTE (h=4)

—— XXCMP-PDTE

@ SortingHats (Approx.)

— Folklore-PDTE
. RCC-PDTE (h=2)
10%4 — RCC-PDTE (h=4) 100
—— XXCMP-PDTE
® SortingHats (Approx.)

108

Kytes
KBytes

KBytes

— Folklore-PDTE
RCC-PDTE (h=2)

—— RCC-PDTE (h=4)

—— XXCMP-PDTE

® SortingHats (Approx.)

— Folklore-PDTE
RCC-PDTE (h=2)
—— RCC-PDTE (h=4)
—— XXCMP-PDTE 100
® SortingHats (Approx.)

° 10 .

2 4 6 [10 12 14
Bit Precision

-

[10 12 14 16
Bit Precision

(a) Heart Dataset (b) Breast Dataset

2 a 6 [10 12 14 16 2 4 6 8 10 12 14 16
Bit Precision Bit Precision

(c) Steel Dataset (d) Spam Dataset

Figure 5: Runtime and Communication for Private Decision Tree Evaluation over four datasets. For each dataset, the left graph
plots the runtime, and the right graph plots the communication. The shaded area shows one standard deviation of error.

is small, this high overhead shrinks as the number of attributes
grows and in some cases, it becomes the dominant solution. For
example, at 16-bit precision, [RCC-PDTE has the least communica-
tion overhead once the number of client attributes exceeds 40.

Note that the runtime of both algorithms does not have a notice-
able change as the number of attributes changes. Hence, we only
report the approximate runtimes of each approach in Table 6. Simi-
lar to the results shown in Figure 5, XXCMP-PDTE | is the fastest
for a low bit precision, but RCC-PDTE | overtakes it for higher bit
precision. SortingHats is only applicable for low precision and is
slower in that case.

Precision (bits) ‘ Runtime (ms)

SortingHats | (XXCMP-PDTE| | (RCC-PDTE
8 648 - 662 133 - 155 149 - 170
16 - 673 - 753 187 - 234
26 - 752 - 845 747 - 966

Table 6: Approximate runtime for private evaluation of bal-
anced decision tree of depth 6 (with 31 decision nodes). The
number of attributes varies from 7-100

6.2.4 Ablation over Number of Nodes. In this experiment, we bench-
mark PDTE over synthetic trees as we vary the number of decision
nodes. We fix the number of attributes to 32, but the same results
hold for a different number of attributes. We generate balanced
trees with depths up to 10, but the results do not depend on the
shape of the tree, and the same results hold if the tree is unbalanced.
This is because the tree traversal algorithm, SumPath, only takes
up at most 10% of the total runtime. Hence, a change in the shape of
the tree does not significantly impact the runtime. Figure 7 shows
the runtime as a function of the number of nodes for n = 8, 16, 26.
Note that the horizontal axis is logarithmic.

0000 Inference Time versus Number of Decision Nodes
1 T
I}

—— RCC-PDTE 0o
——- XXCMP-PDTE no!
—-- SortingHats ol
8000 1 I
. =8 /g
- =16 i
. n=26
2 6000
2
o
3
@
S 4000 |
2000 4
0 *

T T T T T T ™ T
4 8 16 32 64 128 256 512 1024

Number of Decision Nodes

Figure 7: Runtime as a function of the number of nodes.

As expected, the runtime of | XXCMP-PDTE increases linearly
with the number of decision nodes, given that one comparison
is performed for each decision node in the tree. Due to batched
computations, the runtime of [RCC-PDTE only increases if more
ciphertexts are required for the comparisons. For low precision,
XXCMP-PDTE | has better runtime compared to [RCC-PDTE .. How-
ever, for larger decision trees, RCC-PDTE | is faster.

In all the reported protocols, the communication cost is a func-
tion of the precision and number of client attributes (and the Ham-
ming weight, in the case of | RCC-PDTE)). Communication cost
does not depend on the size of the decision tree. Hence, we only
report the communication cost of each protocol in Table 7.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Precision Communication (KB)
(bits) SortingHats | [XXCMP-PDTE ‘ RCC-PDTE
8 2342 1486 4757
16 - 13847 16001
26 - 20770 53795

Table 7: Communication cost for private evaluation of bal-
anced tree over an input with 32 attributes. The depth of the
tree to evaluate is up to 7.

6.3 Summary of Results

For non-interactive private comparison, XXCMP and RCC can be
utilized for arbitrary precision, while SortingHats has limited pre-
cision. If a single comparison with arbitrary precision is required,
XXCMP is a good option; however, RCC offers a significantly better
amortized time for comparing numerous pairs.

In the context of PDTE, for low precision, either SortingHats,
XXCMP-PDTE, or [RCC-PDTE may be faster. The optimal solu-
tion is contingent on a combination of factors, including bit pre-
cision, the number of decision nodes, and the number of client
attributes. For low precision, SortingHats is superior in terms of
communication, but [RCC-PDTE | and | XXCMP-PDTE | are gener-
ally faster.

When dealing with bit precision higher than 11, XXCMP-PDTE
and [RCC-PDTE/ are the only practical available options, with
RCC-PDTE proving to be faster, particularly as the number of
decision nodes increases.

7 DISCUSSION AND FUTURE WORK

High-precision Applications. While decision trees may be achiev-
able with smaller precision and quantization-aware training, there
are other cases where the precision can not be sacrificed. For exam-
ple, in the case of intrusion detection, servers may want to check to
see if an IP, which is a 32-bit number, is in a specific range or not.

Extension of SortingHats. Other protocols such as SortingHats
can also be modified to accommodate larger precision. This can
be done using a similar algorithm to XXCMP but with a fully ho-
momorphic scheme such as TFHE. Specifically, the equality check
that is performed in line 9 of Algorithm 4 can be performed with
functional bootstrapping instead.

Other Packing Methods. Homomorphic encryption in the batched
setting offers a lot of flexibility to choose the packing method.
Other packing methods can improve communication, particularly
when trying to reduce the time for one inference. Tools such as
HELayers [5] can help find the other packing strategies.

Comparison with PROBONITE. There is currently no public im-
plementation for PROBONITE available. We conducted a theoretical
comparison of PROBONOTE with other PDTE protocols in Table 3,
but a practical comparison would also be interesting as part of
future work.

Mahdavi et al.

8 CONCLUSION

In this work, we propose two protocols for non-interactive private
decision tree evaluation leveraging levelled homomorphic encryp-
tion, XXCMP-PDTE | and |RCC-PDTE |. These protocols are based
on XXCMP and RCC, two non-interactive comparison protocols
which can efficiently compare numbers of arbitrary precision with
a constant multiplicative depth.

Our experimental analysis demonstrates that several protocols
can be used when the client’s input features a small number of
attributes, the decision tree remains small, and lower precision is
acceptable. However, when faced with many client attributes, large
decision trees or the necessity for high precision, XXCMP-PDTE
and [RCC-PDTE emerge as better options compared to SortingHats.
In some cases, these two protocols are up to 5 times faster than
SortingHats. In very large decision trees, RCC-PDTE is the best
solution and can infer a decision tree with over 1000 nodes and 16
bits of precision in under 2 seconds.

REFERENCES

[1] [n.d.]. Amazon Machine Learning. https://aws.amazon.com/machine-learning.
Accessed May 2, 2023.

[2] [n.d.]. Azure Machine Learning. https://azure.microsoft.com/products/machine-
learning/. Accessed May 2, 2023.

[3] [n.d.]. BigML. https://bigml.com/. Accessed May 2, 2023.

[4] [n.d.]. Google Cloud Vertex AL https://cloud.google.com/vertex-ai. Accessed
May 2, 2023.

[5] Ehud Aharoni, Allon Adir, Moran Baruch, Nir Drucker, Gilad Ezov, Ariel Farkash,
Lev Greenberg, Ramy Masalha, Guy Moshkowich, Dov Murik, Hayim Shaul, and
Omri Soceanu. 2023. HeLayers: A Tile Tensors Framework for Large Neural
Networks on Encrypted Data. Privacy Enhancing Technology Symposium (PETs)
2023 (2023). https://petsymposium.org/2023/paperlist.php

[6] Adi Akavia, Max Leibovich, Yehezkel S. Resheff, Roey Ron, Moni Shahar, and

Margarita Vald. 2022. Privacy-Preserving Decision Trees Training and Prediction.

ACM Trans. Priv. Secur. 25, 3, Article 24 (may 2022), 30 pages. https://doi.org/10

.1145/3517197

Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. 2018. PIR with Com-

pressed Queries and Amortized Query Processing. In 2018 IEEE Symposium on

Security and Privacy (SP). 962-979. https://doi.org/10.1109/SP.2018.00062

[8] Sofiane Azogagh, Victor Delfour, Sébastien Gambs, and Marc-Olivier Killijian.

2022. PROBONITE: PRivate One-Branch-Only Non-Interactive Decision Tree

Evaluation. In Proceedings of the 10th Workshop on Encrypted Computing & Applied

Homomorphic Cryptography (Los Angeles, CA, USA) (WAHC’22). Association for

Computing Machinery, New York, NY, USA, 23-33. https://doi.org/10.1145/3560

827.3563377

Jianli Bai, Xiangfu Song, Shujie Cui, Ee-Chien Chang, and Giovanni Russello. 2022.

Scalable Private Decision Tree Evaluation with Sublinear Communication. In

Proceedings of the 2022 ACM on Asia Conference on Computer and Communications

Security (Nagasaki, Japan) (ASIA CCS ’22). Association for Computing Machinery,

New York, NY, USA, 843-857. https://doi.org/10.1145/3488932.3517413

Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. 2014. Machine

Learning Classification over Encrypted Data. Cryptology ePrint Archive (2014).

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2012. (Leveled) Fully

Homomorphic Encryption without Bootstrapping. In Proceedings of the 3rd Inno-

vations in Theoretical Computer Science Conference (Cambridge, Massachusetts)

(ITCS °12). Association for Computing Machinery, New York, NY, USA, 309-325.

https://doi.org/10.1145/2090236.2090262

Justin Brickell, Donald E. Porter, Vitaly Shmatikov, and Emmett Witchel. 2007.

Privacy-Preserving Remote Diagnostics. Association for Computing Machinery,

New York, NY, USA, 498-507. https://doi.org/10.1145/1315245.1315307

Hao Chen, Ilaria Chillotti, and Ling Ren. 2019. Onion Ring ORAM: Efficient

Constant Bandwidth Oblivious RAM from (Leveled) TFHE. In Proceedings of

the 2019 ACM SIGSAC Conference on Computer and Communications Security

(CCS ’19). Association for Computing Machinery, New York, NY, USA, 345-360.

https://doi.org/10.1145/3319535.3354226

Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachéne. 2020.

TFHE: Fast Fully Homomorphic Encryption over the Torus. Journal of Cryptology

33,1 (2020), 34-91.

—
)

—_
2

[10

[11

[12

=
&

(14

https://aws.amazon.com/machine-learning
https://azure.microsoft.com/products/machine-learning/
https://azure.microsoft.com/products/machine-learning/
https://bigml.com/
https://cloud.google.com/vertex-ai
https://petsymposium.org/2023/paperlist.php
https://doi.org/10.1145/3517197
https://doi.org/10.1145/3517197
https://doi.org/10.1109/SP.2018.00062
https://doi.org/10.1145/3560827.3563377
https://doi.org/10.1145/3560827.3563377
https://doi.org/10.1145/3488932.3517413
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/1315245.1315307
https://doi.org/10.1145/3319535.3354226

Level Up: Private Non-Interactive Decision Tree Evaluation using Levelled Homomorphic Encryption CCS ’23, November 26-30, 2023, Copenhagen, Denmark

[15] Kelong Cong, Debajyoti Das, Jeongeun Park, and Hilder V.L. Pereira. 2022.

[16]

[17]

(18]

[19

[20

[21

[22]

[23

[24

[25]

[26

[27

[28

]

[29]

[30]

[32]

[33

[34

SortingHat: Efficient Private Decision Tree Evaluation via Homomorphic En-
cryption and Transciphering. In Proceedings of the 2022 ACM SIGSAC Con-
ference on Computer and Communications Security (Los Angeles, CA, USA)
(CCS °22). Association for Computing Machinery, New York, NY, USA, 563-577.
https://doi.org/10.1145/3548606.3560702

Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:
//archive.ics.uci.edu/ml

Léo Ducas and Daniele Micciancio. 2015. FHEW: bootstrapping homomorphic
encryption in less than a second. In Advances in Cryptology-EUROCRYPT 2015:
34th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I 34.
Springer, 617-640.

Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Ho-
momorphic Encryption. Proceedings of the 15th international conference on
Practice and Theory in Public Key Cryptography 2012 (2012), 1-16. https:
//eprint.iacr.org/2012/144

Yidi Hao, Baodong Qin, and Yitian Sun. 2023. Privacy-Preserving Decision-Tree
Evaluation with Low Complexity for Communication. Sensors 23, 5 (2023), 2624.
Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman.
2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction.
Vol. 2. Springer.

Ilia Iliashenko and Vincent Zucca. 2021. Faster Homomorphic Comparison
Operations for BGV and BFV. Proceedings on Privacy Enhancing Technologies
2021, 3 (2021), 246-264. https://doi.org/10.2478/popets-2021-0046

Mika Juuti, Sebastian Szyller, Samuel Marchal, and N Asokan. 2019. PRADA:
protecting against DNN model stealing attacks. In 2019 IEEE European Symposium
on Security and Privacy (EuroS&P). IEEE, 512-527.

Manish Kesarwani, Bhaskar Mukhoty, Vijay Arya, and Sameep Mehta. 2018.
Model Extraction Warning in MLaa$S Paradigm. In Proceedings of the 34th Annual
Computer Security Applications Conference (San Juan, PR, USA) (ACSAC ’18).
Association for Computing Machinery, New York, NY, USA, 371-380. https:
//doi.org/10.1145/3274694.3274740

Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas
Zacharias. 2013. Delegatable Pseudorandom Functions and Applications. In
Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communica-
tions Security (Berlin, Germany) (CCS ’'13). Association for Computing Machinery,
New York, NY, USA, 669-684. https://doi.org/10.1145/2508859.2516668

Agnes Kiss, Masoud Naderpour, Jian Liu, N Asokan, and Thomas Schneider. 2019.
SoK: Modular and Efficient Private Decision Tree Evaluation. Proceedings on
Privacy Enhancing Technologies 2 (2019), 187-208.

Hsiao-Ying Lin and Wen-Guey Tzeng. 2005. An Efficient Solution to the
Millionaires’ Problem Based on Homomorphic Encryption. In Proceedings of
the Third International Conference on Applied Cryptography and Network Secu-
rity (New York, NY) (ACNS’05). Springer-Verlag, Berlin, Heidelberg, 456-466.
https://doi.org/10.1007/11496137_31

Yehuda Lindell and Benny Pinkas. 2000. Privacy preserving data mining. In
Advances in Cryptology—CRYPTO 2000: 20th Annual International Cryptology Con-
ference Santa Barbara, California, USA, August 20-24, 2000 Proceedings. Springer,
36-54.

Wen-jie Lu, Zhicong Huang, Qizhi Zhang, Yuchen Wang, and Cheng Hong. 2023.
Squirrel: A Scalable Secure Two-Party Computation Framework for Training
Gradient Boosting Decision Tree. USENIX Security Symposium (2023).

Wen-jie Lu, Jun-jie Zhou, and Jun Sakuma. 2018. Non-Interactive and Output
Expressive Private Comparison from Homomorphic Encryption. In Proceedings of
the 2018 on Asia Conference on Computer and Communications Security (Incheon,
Republic of Korea) (ASIACCS ’18). Association for Computing Machinery, New
York, NY, USA, 67-74. https://doi.org/10.1145/3196494.3196503

Rasoul Akhavan Mahdavi and Florian Kerschbaum. 2022. Constant-weight
PIR: Single-round Keyword PIR via Constant-weight Equality Operators. In 31st
USENIX Security Symposium (USENIX Security 22). USENIX Association, Boston,
MA, 1723-1740. https://www.usenix.org/conference/usenixsecurity22/present
ation/mahdavi

Arthur Meyre, Benoit Chevallier-Mames, Jordan Frery, Andrei Stoian, Roman
Bredehoft, Luis Montero, and Celia Kherfallah. 2022. Concrete-ML: a Privacy-
Preserving Machine Learning Library using Fully Homomorphic Encryption for
Data Scientists. https://github.com/zama-ai/concrete-ml.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay
Celik, and Ananthram Swami. 2017. Practical Black-Box Attacks against Machine
Learning. In Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security (Abu Dhabi, United Arab Emirates) (ASIA CCS ’17).
Association for Computing Machinery, New York, NY, USA, 506-519. https:
//doi.org/10.1145/3052973.3053009

J. Ross Quinlan. 1986. Induction of Decision Trees. Machine learning 1 (1986),
81-106.

SEAL 2022. Microsoft SEAL (release 4.0). https://github.com/Microsoft/SEAL.
Microsoft Research, Redmond, WA..

[35

Elaine Shi, John Bethencourt, T-H. Hubert Chan, Dawn Song, and Adrian Per-
rig. 2007. Multi-Dimensional Range Query over Encrypted Data. In 2007 IEEE
Symposium on Security and Privacy (SP 07). Oakland, California, USA, 350-364.
https://doi.org/10.1109/SP.2007.29

R. Shokri, M. Stronati, C. Song, and V. Shmatikov. 2017. Membership Inference
Attacks Against Machine Learning Models. In 2017 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA, 3-18. https:
//doi.org/10.1109/SP.2017.41

Raymond KH Tai, Jack PK Ma, Yongjun Zhao, and Sherman SM Chow. 2017.
Privacy-Preserving Decision Trees Evaluation via Linear Functions. In Computer
Security-ESORICS 2017: 22nd European Symposium on Research in Computer
Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part II 22. Springer,
494-512.

Florian Tramer, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
2016. Stealing Machine Learning Models via Prediction APIs. In Proceedings of
the 25th USENIX Conference on Security Symposium (Austin, TX, USA) (SEC’16).
USENIX Association, USA, 601-618.

Anselme Tueno, Yordan Boev, and Florian Kerschbaum. 2019. Non-Interactive
Private Decision Tree Evaluation. In Database Security. Springer International
Publishing, 174-194.

Anselme Tueno, Florian Kerschbaum, Stefan Katzenbeisser, and Privacy Enhanc-
ing Technologies Symposium. 2019-01-01. Private Evaluation of Decision Trees
using Sublinear Cost. Proceedings on Privacy Enhancing Technologies 2019, 1
(2019-01-01).

Yuncheng Wu, Shaofeng Cai, Xiaokui Xiao, Gang Chen, and Beng Chin Ooi.
2020. Privacy Preserving Vertical Federated Learning for Tree-based Models.
Proceedings of the VLDB Endowment 13, 11 (2020).

Wenting Zheng, Ryan Deng, Weikeng Chen, Raluca Ada Popa, Aurojit Panda, and
Ion Stoica. 2021. Cerebro: A Platform for Multi-Party Cryptographic Collaborative
Learning. In 30th USENIX Security Symposium (USENIX Security 21). USENIX
Association, Online, 2723-2740. https://www.usenix.org/conference/usenixsecu
rity21/presentation/zheng

[36

[37

[38

[39

[40

[41

[42

A ARITHMETIC CONSTANT-WEIGHT
EQUALITY

Mahdavi and Kerschbaum proposed constant-weight equality op-
erators, which were equality operators used to compare constant-
weight codes with a constant multiplicative depth. We use these
operators as a building block in our work to achieve a PDTE pro-
tocol that has a multiplicative depth independent of precision and
the depth of the tree.

Mahdavi and Kerschbaum offer a function for encoding numbers
as constant-weight codes. We use this function with the added
option of encoding a null value. This is useful in our case since
we may need to encode null elements as well. Null elements are
encoded as the all-zero string.

Algorithm 10 shows this algorithm. CW (¢, h) denotes the set of
constant-weight codes with length £ and Hamming weight A.

Algorithm 10 CW-Encode [30]

Input: x € [2"] U {Null}, £, h € N such that (f;) > 2"
1: if x==Null then
2 return 0°
3 re—xh —hyeof
4 fort/ =¢-1,..,1,0do
5 if r > (,{;/,) then
6 y[']=1
o rer=(f)
8: W=H-1
9: if h = 0 then break
10: returny
Output: y € CW (¢, h) U {0}

https://doi.org/10.1145/3548606.3560702
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://doi.org/10.2478/popets-2021-0046
https://doi.org/10.1145/3274694.3274740
https://doi.org/10.1145/3274694.3274740
https://doi.org/10.1145/2508859.2516668
https://doi.org/10.1007/11496137_31
https://doi.org/10.1145/3196494.3196503
https://www.usenix.org/conference/usenixsecurity22/presentation/mahdavi
https://www.usenix.org/conference/usenixsecurity22/presentation/mahdavi
https://github.com/zama-ai/concrete-ml
https://doi.org/10.1145/3052973.3053009
https://doi.org/10.1145/3052973.3053009
https://github.com/Microsoft/SEAL
https://doi.org/10.1109/SP.2007.29
https://doi.org/10.1109/SP.2017.41
https://doi.org/10.1109/SP.2017.41
https://www.usenix.org/conference/usenixsecurity21/presentation/zheng
https://www.usenix.org/conference/usenixsecurity21/presentation/zheng

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

The arithmetic constant-weight equality operator is the same
as proposed by Mahdavi and Kerschbaum. The input can now be
the all-zero string as well. Comparing anything with the null string
will yield a non-match.

B XXCMP FOR ARBITRARY-LENGTH
NUMBERS

XXCMP can compare numbers of arbitrary size. Algorithm 11 shows
the general XXCMP algorithm which compares two number a, b €
[N*], for some known parameter k. The output of the comparison
is in the constant

Algorithm 11 Computing I[a > b] using Extended XCMP
(XXCMP) for a,b € [N*] such that a = (ag_1,--+,a1,a0)N and
b= (bk—l) s, bl, bO)N where aij, bi S [N]

1: procedure XXCMP(A, b)

> A€RS,be [N

2. (Xﬂk—l’...’Xm’tho) — A

3 for i € [k] do

& gti — XCMPy(X%, b;)

5 for i € [k] do

6: eq; < Oblivious-Expansion(X %, b;)

_ vk-1 k-1
7 C=2i gti- 5 eq)
return C

Mahdavi et al.

C RC/PE INCLUSION

We can test the relationship between a range cover and point en-
coding using Algorithm 12. Assume we want to check ¢ € [a,]
using RCp,(a, b) and PEy(c).

In this notation, RCy,(a, b) contains 2n prefix nodes and we as-
sume the prefix nodes from level i of the prefix tree are in RCp, (g, b) [2i]
and RCp,(a, b)[2i + 1] (and some levels may be empty). PE,(c) con-
tains n prefix nodes and the prefix node from level i of the prefix
tree is in PE,(c)[i]. The inclusion algorithm requires 2n equality
check at most.

Algorithm 12 RC/PE INCLUSION
Input: RC,(a, b), PE(c, n)

: Oincluded =0

2: fori € [n] do

3: Oincluded = Oincluded +1[RCn(a, b)[2i] == PE,(c)[i]]

4 Oincluded = Oincluded + 1 [RCn(a, b)[2i + 1] == PE,(c)[i]]

Output: [[c € [a,]]]

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Homomorphic Encryption
	2.2 Non-interactive Private Comparison
	2.3 Decision Trees and PDTE
	2.4 Tree Traversal
	2.5 Range Covers & Point Encoding
	2.6 Constant-weight Equality Operators

	3 Related Work on PDTE
	3.1 Interactive PDTE
	3.2 Non-Interactive PDTE

	4 Our Comparison Operators
	4.1 XXCMP: Extended XCMP Operator
	4.2 Range-Cover Comparison (RCC) Operator

	5 PDTE using Leveled HE
	5.1 Setup and Security Model
	5.2 XXCMP-PDTE: XXCMP + SumPath
	5.3 RCC-PDTE: RCC + SumPath

	6 Evaluation
	6.1 Benchmarking Private Comparison
	6.2 Benchmarking PDTE
	6.3 Summary of Results

	7 Discussion and Future Work
	8 Conclusion
	References
	A Arithmetic Constant-weight Equality
	B XXCMP for Arbitrary-length Numbers
	C RC/PE Inclusion

