
Turning Privacy-preserving Mechanisms against Federated
Learning

Marco Arazzi

University of Pavia

Pavia, Italy

marco.arazzi01@universitadipavia.it

Mauro Conti

University of Padua

Padova, Italy

conti@math.unipd.it

Antonino Nocera

University of Pavia

Pavia, Italy

antonino.nocera@unipv.it

Stjepan Picek

Radboud University & Delft University of Technology

Nijmegen, The Netherlands

stjepan.picek@ru.nl

ABSTRACT
Recently, researchers have successfully employed Graph Neural

Networks (GNNs) to build enhanced recommender systems due

to their capability to learn patterns from the interaction between

involved entities. In addition, previous studies have investigated

federated learning as the main solution to enable a native privacy-

preserving mechanism for the construction of global GNN models

without collecting sensitive data into a single computation unit.

Still, privacy issues may arise as the analysis of local model updates

produced by the federated clients can return information related

to sensitive local data. For this reason, experts proposed solutions

that combine federated learning with Differential Privacy strategies

and community-driven approaches, which involve combining data

from neighbor clients to make the individual local updates less

dependent on local sensitive data.

In this paper, we identify a crucial security flaw in such a configu-

ration, and we design an attack capable of deceiving state-of-the-art

defenses for federated learning. The proposed attack includes two

operating modes, the first one focusing on convergence inhibition

(Adversarial Mode), and the second one aiming at building a decep-

tive rating injection on the global federated model (Backdoor Mode).
The experimental results show the effectiveness of our attack in

both its modes, returning on average 60% performance detriment

in all the tests on Adversarial Mode and fully effective backdoors

in 93% of cases for the tests performed on Backdoor Mode.

KEYWORDS
Federated Learning, Graph Neural Network, Model Poisoning, Pri-

vacy, Recommender Systems

1 INTRODUCTION
In the last few years, federated learning has gained growing at-

tention from the research community thanks to its capability of

supporting privacy-preserving approaches for the construction of

machine learning and deep learning models. Indeed, with the mas-

sive availability of data that characterizes the current information

technology realm, complex Artificial Intelligence (AI) solutions

have been brought to life just by leveraging that data availability

and the most recent technological advancements. However, one of

the baseline factors of the aforementioned data era is the diffused,

user-level data production and collection. On the one hand, this sit-

uation enables the design and realization of advanced AI products,

but the user-level granularity of usable information has raised im-

portant privacy and security concerns on the other hand. Moreover,

in line with the technological advancements, the legal aspects and

regulations have received increasing attention [28], imposing, in

some cases, even a firm limit to AI progress, driving researchers to

work on solutions where privacy protection becomes the main con-

straint. This is precisely one of the objectives of federated learning,

whose design allows for the training of deep learning models avoid-

ing the need to centralize the collection of possible sensitive data

into a single computation unit. Indeed, according to this learning

paradigm, the computation is distributed, and each involved client

is responsible for the independent training of a local model using

a private, non-shareable set of data. A super node, which acts as

an aggregation server, coordinates the training task by collecting,

at each training epoch, the updates of the local models from the

clients and by applying a suitable aggregation strategy to build the

final global model. Previous studies have proven the successfulness

of his technology, mainly in its horizontal variant [35], applying it

in many application contexts. This is especially true in scenarios

in which social collaboration among users can provide important

contributions to obtain improved sophisticated AI solutions. For

instance, very recently, researchers have adopted deep learning

approaches in the context of recommender systems to refine the

recommendation strategy. In this context, they demonstrated that

graph neural networks (GNNs) are very promising due to their

ability to learn patterns from the interactions between the mod-

eled entities [33, 37]. However, an open issue concerning the use

of GNNs refers to the so-called cold-start, for which freshly in-

volved users do not have enough interaction history so that the

model can learn adequate representations of their profiles. To over-

come this limitation, some recent studies have leveraged additional

social information of involved users [8, 19, 32]. In this way, the

representation of a user can also be learned by analyzing his/her

social neighborhood. According to this strategy, the underlying

GNN of such a recommender system will model both the classical

user-item interactions and the social user-user ones. Of course, the

introduction of additional sensitive data related to the social life of

users has urged even more researchers to rapidly define and adopt

privacy-preserving strategies, with federated learning being the

most prominent choice.

ar
X

iv
:2

30
5.

05
35

5v
1

 [
cs

.L
G

]
 9

 M
ay

 2
02

3

However, despite its distributed design representing a native

privacy solution, researchers have shown that federated learning

is vulnerable to attacks. Thus, an adversary could infer sensitive

information related to the original private data of local clients based

on the local model variations recorded during consecutive learn-

ing epochs [4, 16, 17]. To address this vulnerability, several recent

studies have combined federated learning with Differential Privacy

techniques [18]. This ensures that the rating assigned by users to

items cannot be inferred by analyzing the local model updates of

consecutive epochs. However, as stated above, to face the cold-start

issue, also social information can be included, thus adding a higher

complexity level to the whole solution. Leveraging this informa-

tion, some authors have proposed to exploit the social nature of the

underlying scenario to create an additional collaborative privacy-

preserving mechanism [16, 30]. In practice, the idea underlying

these strategies is to augment the training of the local models with

information derived from the surrounding social neighborhood so

that the produced updates will not be dependent only on the local

data. Interestingly, as shown in [16], such an augmentation mecha-

nism not only addresses the privacy concerns discussed above but

ultimately leads to the improved general performance of the global

model.

The proposal described in this paper starts from these recent

research efforts. Our intuition is that although the additional social

collaborative solutions can help both in improving the performance

of considered systems and in building strong privacy-preserving

approaches, this paradigm can be maliciously exploited to craft

very impactful cyber attacks. In general, the decentralized nature of

federated learning makes it a very interesting target environment

for attackers. Indeed, each involved client, as well as the aggregating

server, can become potential adversaries to the system [1, 9, 34].

For this reason, the research community has developed several

countermeasures and advanced protection solutions that can be

successfully exploited to protect this complex environment [3, 12,

21]. However, by analyzing the behavior of themost recent defenses,

we can see that the main strategy adopted therein is basically to

detect and isolate from the system any action that differs from

the average behavior of the community composing the federated

scenario. By contrast, the collaborative strategy introduced by the

novel privacy-preserving mechanisms tries to protect the local

contributions of single clients. To do so, these strategies suitably

combine local updates with those of the surrounding community

members. From an attacker’s point of view, this configuration can

become an opportunity to spread the attack to its neighbors. Thus,

obtaining a novel threat possibly capable of even deceiving the

state-of-the-art protections.

In this paper, we leverage this intuition to design a novel AI-

based attack strategy for a scenario characterized by a social rec-

ommender system equipped with the privacy protection measures

introduced above. Borrowing some ideas from the related litera-

ture [2], we include two modes for the attack in our design, namely:

a convergence inhibition strategy (Adversarial Mode) and a decep-

tive rating injection solution (Backdoor Mode). More precisely, we

implemented our proposal by focusing on the system described

in [16], in which a GNN model is trained with a federated learning

approach to build a social recommender system. To achieve a strong

privacy protection level, the target system includes both a Local

Differential Privacy module and a community-based mechanism,

according to which pseudo-items derived from the community are

included in the local model training. We argue that, although the

attack described in this paper is specifically tailored to the features

of such a system, the underlying intuition and methodology can

be generalized to other similar scenarios. The contributions of this

paper can be summarized as follows:

• We identify the main vulnerabilities of community-based

privacy protection mechanisms for federated learning, fo-

cusing on approaches targeting Graph Neural Networks as

underlying deep learning models.

• To deceive state-of-the-art security solutions for federated

learning, we propose a model poisoning attack leveraging

the features of the considered scenario.

• We adapt our attack to work in two modes: Adversarial Mode
aiming at inhibiting the convergence of the federated learn-

ing model, and Backdoor Mode focusing on the creation of a

backdoor in the learned model.

• To assess the performance of our attack, we adopt the Root

Mean Squared Error, the Mean Absolute Error, and a newly

defined metric, called Favorable Case Rate specific to estimate

the success rate of our backdoor attack against the regressor

that powers the recommender system.

• We test the effectiveness of our attack against a real-life

recommender system based on the approach of [16]. More-

over, we carried out an experimental campaign leveraging

three very popular datasets for recommender systems. The

obtained results show that our attack can cause very strong

effects in both operating modes. In particular, in Adversarial
Mode, it is capable of causing a 60% detriment in the per-

formance of the target GNN model, on average, whereas, in

Backdoor Mode, it allows the construction of fully effective

backdoors in about 93% of cases, also in the presence of the

most recent federated learning defenses.

The remainder of this paper is organized as follows. In Section 2,

we describe some background concepts related to our reference

scenario. Section 3 describes the system model and the intuition

underlying our attack. The technical details of our attack are dis-

cussed in Section 4. In Section 5, we report the experiments carried

out to assess the effectiveness of our attack. The related literature

is surveyed in Section 6. Finally, in Section 7, we draw conclusions

and discuss potential future work directions.

2 BACKGROUND
This section is devoted to the description of background concepts

for our study. In particular, we begin by introducing existing feder-

ated learning solutions that focus on privacy-preserving applica-

tions, with particular emphasis on recommender systems based on

Graph Neural Networks. After that, we describe model poisoning

attacks in this context and introduce the most popular and effective

countermeasures.

2.1 Privacy-preserving Federated Learning
Federated learning exploits decentralized parties, which own pri-

vate sets of data to build global models through the suitable aggre-

gation of learning information derived from the local training of

2

individual models. This infrastructure ensures the construction of

global models without sharing data between the involved parties.

In any case, this scenario opens possible threats to the privacy of

involved actors, including the possibility of inferring the private

original data based on the model updates during the training phase

or by observing the output produced subsequently.

In this context, solutions like Local Differential Privacy (LDP) [7]

allow basic protection of the privacy of the federated learning

clients by limiting the influence of the single datasets. Generally

speaking, Local Differential Privacy achieves privacy protection by

norm clipping and adding noise to the updates of the local models

from the clients. Some effective solutions apply Local Differential

Privacy by adding Gaussian or Laplacian noise [16]:

𝑔𝑐 = 𝑐𝑙𝑖𝑝 (𝑔𝑐 , 𝛾) + 𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛(0, 𝜆), (1)

where 𝑔𝑛 are the updates of a client 𝑐 ∈ 𝐶 ,𝐶 is the set of clients, 𝛾 is

the clipping limit, and 𝜆 is the standard deviation of the Laplacian

noise. As an example, in the approach of [23], a Graph Convolu-

tional Neural Network is trained in a federated way, and the privacy

of the clients is preserved by using a Local Differential Privacy solu-

tion. Specifically, the involved clients protect their real updates from

a potentially malicious data aggregator by providing a perturbed

version of their updates that is not meaningful individually, which,

however, guarantees the same training capability as the real ones

when aggregated with the other contributions. In addition, they

also proposed a simple but effective Graph Convolutional Layer

called 𝐾 − 𝑃𝑟𝑜𝑝 . This layer aggregates messages from an extended

neighborhood set, which includes neighbor nodes with a distance

of 𝐾 hops at maximum. In this way, the proposed solution not only

enhances client privacy by adding noise derived from real data

but also improves the robustness of the global model because it is

trained on an augmented dataset.

2.2 Graph Neural Networks-based
Recommender Systems

By introducing links between users, social recommender systems

compensate for the data sparsity problem. As typically done in

Social Network Analysis, a very promising strategy in this setting

is to model data through graphs, and then, ad-hoc Deep Learning

algorithms, such as Graph Neural Networks, can be adapted to

identify complex recommendation patterns. Practically speaking,

Graph Neural Networks are used to learn user and item embeddings

from the graph to predict additional links between them.Works like

the one proposed by Fan et al. [8] exploit Graph Neural Networks,

particularly Graph Attention Networks, to learn the embeddings

of users and items for recommendation purposes. In particular,

this paper showed how using a GNN as an underlying model for a

recommender system can be effective and efficient. The advantage

of such models is the ability to aggregate high-order structural

information that is important for learning embeddings from users

and items. Of course, due to the sensitivity of involved training data,

this type of solution could also be implemented through a federated

learning approach, in which data concerning the links between

users and items remain locally private. For instance, Wu et al. [30]

proposed a federated learning approach to build a recommender

system based on a GNN model collectively trained with highly

decentralized user data. This solution builds a robust model while

preserving the privacy of the involved parties via Local Differential

Privacy and user graph expansion, obtained by randomly sampling

items from the neighbors.

2.3 Model Poisoning on Federated Learning
Due to its decentralized nature, federated learning introduces im-

portant security issues in scenarios where the involved clients

cannot be assumed to be honest. In such a case, local model updates

can be orchestrated by attackers to cause a detriment in the global

model performance or, even worse, to drive the model behavior

maliciously. As described in Section 2.4, to overcome these flaws,

the aggregator entity of the federated learning solution can apply

different robust aggregation strategies to limit the impact of such

attacks. These defense methods are, typically, Byzantine-robust

algorithms that filter possibly malicious updates returned by the

clients using statistical approaches.

For instance, a baseline strategy could be to exclude gradient

updates too distant from the mean (outside the interval confidence)

of the distribution of the updates of all the clients. However, the

recent scientific literature has demonstrated that these methods are

still vulnerable to model poisoning attacks.

In this setting, Baruch et al. [2] proposed one of the most well-

known attacks trying to circumvent these defense strategies. There,

the authors defined two attack variations, namely Convergence
Prevention and Backdooring. In the first version of the attack, the

attacker controls a small set of clients and tries to perturb their

updates, within a statistically admissible range, with the objective

of preventing the convergence of the model. Gradients are per-

turbed by finding a deviation range from the mean that cannot be

detected by defense methods based on statistical heuristics. Specifi-

cally, the attack identifies the updates from local models with the

maximum distance from the mean of the update distribution. Then

it boosts this edge signal by replicating it in all the updates sent

by the attacked clients. Instead, the second attack they proposed is

a backdoor attack in which the attacker poisons the model during

the training phase to force the prediction of a specific target class

against a controlled input pattern. In practice, the attacker seeks a

range of parameters that, if attacked, force the model to produce

the desired label. A successful configuration must not affect the

model’s performance on benign inputs. In our paper, we follow a

similar strategy and design two different variants of our attack. In

particular, our attack leverages the vulnerabilities introduced by the

recent privacy-preserving techniques for GNN-based recommender

systems trained through federated learning. As we show in our

experiments, our attack proved to be more effective than the one

presented in [2] also against the defense mechanisms described in

the next section.

Still, in this context, Fang et al. [9] proposed another relevant

example of a model poisoning attack. In this case, the authors

have defined two versions of the attack, the former referring to

a situation in which the attacker has partial knowledge of the

clients (i.e., the attacker knows only the controlled clients), and the

latter, instead focusing on a condition in which the attacker has

full knowledge of the federated learning scenario. In both cases,

the attacker crafts compromised local updates by maximizing or

3

minimizing the parameters in such a way as to skew the global

model in the reverse of the expected gradient direction; that is,

the direction along which the global model would converge in a

favorable situation.

2.4 Defenses against Model Poisoning
According to the basic implementation of a federated learning solu-

tion, the global model training is obtained by aggregating the local

model updates returned by involved clients. However, as explained

above, this strategy introduces many security issues in general sce-

narios where the clients cannot be assumed fully secure. Among

the other security threats, model poisoning, either in the form of

convergence prevention or backdooring, is, for sure, one of the most

critical. Over the years, researchers have proposed several counter-

measures for this reason. In particular, Yin et al. [36] proposed an

enhanced version of the basic gradient aggregation strategy called

TrimmedMean. According to this solution, the server aggregates the
gradients in the 𝑖𝑡ℎ position independently. Specifically, given the

gradients of all the clients in the 𝑖𝑡ℎ position, the aggregator sorts

them according to their distance from the median. Then, only the

𝑡𝑜𝑝 − 𝑘 parameters are considered benign, where 𝑘 = 𝑛 −𝑚, 𝑛 is

the number of clients, and𝑚 is the corrupted portion of them.

Blanchard et al. [3] proposed a solution called Krum that updates
the global model by choosing the best candidates between the

gradients returned by the clients. The chosen gradients are those

returned by the clients whose updates are the closest to the group of

𝑛−𝑚−2 presumably honest workers. Themain intuition behind this

approach is that, even if the selected updates are from malicious

clients, they would still be close to the group of honest clients.

According to this mechanism, all the outliers that differ significantly

from the average will be discarded. Both TrimmedMean and Krum
are designed to work in a scenario with up to𝑚 = (𝑛

2
+1) malicious

clients.

Recently, Nguyen et al. [20] proposed an advanced defense mech-

anism for backdoor attacks, named FLAME, which combines a clus-

tering algorithm with an adaptive differential privacy strategy. The

workflow of FLAME consists of three main steps, namely: filtering,

clipping, and noising. The objective of the first step is to filter mali-

cious clients and select only those with the highest probability of

being honest. To do so, the authors perform a clustering over the

pairwise cosine similarity distances among the updates received

from the clients using HDBSCAN. Specifically, they configured it

to return a cluster that includes at least 50% of the batch of clients.

With this setting, the candidate cluster will contain the majority

of clients, and all the remaining updates, possibly poisoned, are

marked as outliers. The second and third steps are dedicated to an

adaptive differential privacy approach that estimates an effective

clipping bound and a sufficient level of noise, such that the effect

of the backdoor attack is removed while preserving the original

performance of the model. The clipping bound should be dynami-

cally adapted to the decreasing trend of the gradients’ 𝐿2 − 𝑛𝑜𝑟𝑚.

It is performed by scaling the updates of the clients so that the

𝐿2 − 𝑛𝑜𝑟𝑚 of the updates becomes smaller or equal to the chosen

threshold. The clipped updates are then aggregated to obtain the

new global model. The third step adds a certain amount of noise to

the aggregated updates. This amount is determined by estimating a

sensitivity value based on the distance between the clients’ updates.

In this way, the proposed strategy can override the contribution of

the attack on the global model.

Recently, Fung et al. [12] proposed another defense solution

with the name of FoolsGold. In any iteration, FoolsGold adapts

the learning rate of each client based on the similarity distance

of the updates, also considering information derived from past

iterations. To measure the distance between the updates, as done by

FLAME, the cosine similarity is used. Poisoning attacks usually affect

specific features of the model, which can be identified by measuring

the magnitude of model parameters in the output layer of the global

model. Hence, themalicious updates can be removed or re-weighted.

Another key point of FoolsGold is the exploitation of the history of
the previous updates. Indeed, as stated above, the similarity distance

among the updates is computed by considering the current values

returned by the clients and the values of the historical updates

produced in the previous iterations. This additional feature allows

more accurate identification of malicious attempts to corrupt the

federated learning task.

3 SYSTEM MODEL AND ATTACK INTUITION
This section is devoted to describing the reference scenario of our

attack. In particular, in Section 3.1, we present the essential concepts

and definitions necessary to understand the scenario. In Section 3.2,

we describe the main characteristics that introduce important ad-

vantages to the referring scenario but, at the same time, can be

exploited by an attacker to perform an even more powerful exploit.

3.1 The System Model
The scenario for our approach is a privacy-aware social recom-

mender system built through a federated learning solution. To

make our strategy concrete, we focus on a recent solution in this

setting proposed in [16]. It is worth observing that, although, in our

approach, we make explicit reference to such a scenario, the main

feature we are focusing on is a common strategy of social systems.

Indeed, in such contexts, collaboration is generally leveraged to

obtain joint advantages among peers. Our strategy relies just on

the fact that, if the common objective of the social system is to

achieve privacy protection, such collaboration is typically “blind”,

and, even better, includes a Local Differential Privacy strategy, in

such a way as to ensure non-disclosure of sensitive information.

We argue that, if properly handled, this condition can be exploitable

to craft critical security menaces for social scenarios.

With that said, our target scenario, proposed by Liu et al. [16]

with the name FeSoG, shown in Figure 1, is a federated social rec-

ommendation system (FSRS) designed to predict users’ ratings for

items using a Graph Neural Network model. In this scenario, let

𝑈 = {𝑢1, . . . , 𝑢𝑛} be the set of users and 𝐼 = {𝑖1, . . . , 𝑖𝑚} be the set of
items, where𝑁 = |𝑈 | and𝑀 = |𝐼 | are the number of users and items,

respectively. FeSoG is composed of a set of clients 𝐶 = 𝑐1, . . . , 𝑐𝑛
such that each client 𝑐𝑛 is associated with a user 𝑢𝑛 . Due to this

direct association, in the following, we shall use the terms user and

client interchangeably.

The coordination of the federated training is delegated to a cen-

tral unit, which receives the updated gradients from the clients and

builds a global model by suitably aggregating them. By design, each

4

u1

u3

u2

i2

i1

eu2 eu3

ei1 ei2

G
A
T

G
A
T

eu1 e*u1

ei1

ei2

ei3

ei4

Loss

Embedding
Gradients

Model
Gradients

LDP

LDP

Client 1

Server

A
ggregation

Embedding

Model
Parameters

Ĩ(𝑛)

Client 1 Graph

un

u4

u1

i4

i3

eu1 eu4

ei3 ei4

G
A
T

G
A
T

eun e*un

ei3

ei4

ei1

ei2

Loss

Embedding
Gradients

Model
Gradients

LDP

LDP

Client n

Ĩ(𝑛)

Client n Graph

Figure 1: Main Scenario.

client owns a local graph that contains the first-order neighbors

and the information about the items of interest for the correspond-

ing user along with their ratings. Therefore, the local graph 𝐺𝑛

of a client 𝑐𝑛 consists of both user nodes and item nodes. 𝐺𝑛 is

characterized by two types of edge, namely the user-item weighted

edges, in which the weights represent the ratings assigned to the

items by the corresponding users, and the user-user edges denoting
the interactions between users.

For each client, the set of rated items is denoted as 𝐼 (𝑛) =

{𝑖1, . . . , 𝑖𝑧 }, whereas the set of neighbors is denoted as 𝑈 (𝑛) =

{𝑢1, . . . , 𝑢𝑘 }. Users and items are associated with their embeddings

respectively 𝐸𝑢𝑛 ∈ R𝑑𝑥𝑁 and 𝐸𝑖𝑚 ∈ R𝑑𝑥𝑁 , where 𝑑 is the di-

mension size of the embeddings. A complete embedding table is

maintained by the server and the clients can request access to this

table.

By downloading the complete embedding table, a client can

access the embeddings of the users and items that are part of its local

graph 𝐺𝑛 . Such embeddings are, then, used as input for the local

GNN model and, in particular, a GAT layer, to learn the embedding

of the user associated with the client and predict the item scores.

In particular, the client embedding is an aggregation of both the

embeddings of its neighbors and the embeddings of the rated items.

At this point, to predict the local item ratings for a specific user, the

authors adopt a dot-product between the inferred user embedding

and the item embeddings:

𝑅𝑢𝑛,𝑖𝑚 = 𝐸𝑢𝑛 · 𝐸𝑖𝑚 .

One of the specifics of FeSoG is the particular attention given to

the privacy of the produced embeddings. In particular, two tech-

niques are implemented to protect the updates of the local user-item

gradients, namely: Local Differential Privacy and pseudo-item la-

beling. The Local Differential Privacy solution prevents the user’s

rating information to be inferred, given the gradients uploaded by

a user during two consecutive steps. To protect the gradients, each

client clips its updates based on their 𝐿2 − 𝑛𝑜𝑟𝑚 with a threshold 𝛾

and adds a zero-mean Laplacian noise to achieve privacy protec-

tion. The local differential privacy process is applied to the item

embedding gradients 𝑔
(𝑛)
𝑖

, the user embedding gradients 𝑔
(𝑛)
𝑢 , and

the model gradients 𝑔
(𝑛)
𝑚 for each client 𝑐𝑛 . This process can be

formalized as follows:

𝑔 (𝑛) = 𝑐𝑙𝑖𝑝 (𝑔 (𝑛) , 𝛾) + 𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛(0, 𝜆 ·𝑚𝑒𝑎𝑛(𝑔 (𝑛))), (2)

where 𝑔 (𝑛) = {𝑔 (𝑛)
𝑖
, 𝑔
(𝑛)
𝑢 , 𝑔

(𝑛)
𝑚 } is the combination of the gradients

of the three different embeddings considered above. Observe that

because the involved gradients can be of a different magnitude,

instead of applying a constant noise with strength 𝜆, in this scenario,

a dynamic noise is applied by multiplying 𝜆 by the mean of the

gradients themselves.

The second privacy-preserving technique introduced in this ap-

proach, instead, consists of the inclusion of pseudo-items in the

training process of each local model. This guarantees an enhance-

ment of user privacy, and, at the same time, an improvement of

the robustness of the aggregated global model. In practice, before

the computation of the training loss on the local model, each client

samples 𝑝 items 𝐼 (𝑛) = {𝑖 (𝑛)
1

. . . 𝑖
(𝑛)
𝑝 }, not already included in their

local items. Of course, for these additional pseudo-items only the

corresponding embeddings are available to the client (through the

embedding table available from the server). As for the correspond-

ing ratings, a semi-supervised strategy is adopted, according to

which the client uses its current local model to predict them for

each pseudo-items. At this point, such pseudo-items are included

in the local loss computation as follows:

𝐿𝑢𝑛 =

√√√∑
𝑖𝑚 ∈𝐼 (𝑛)∪𝐼 (𝑛) (𝑅𝑢𝑛,𝑖𝑚 − 𝑅𝑢𝑛,𝑖𝑚)��𝐼 (𝑛) ∪ 𝐼 (𝑛) �� , (3)

where the adopted loss is the Root Mean Squared Error between

the predicted ratings 𝑅𝑢𝑖 and the ground-truth rating scores 𝑅𝑢𝑖 .

The pseudo-item sampling provides additional rating information,

similar to data augmentation, which, in addition to improving the

protection against data leakage, enhances the robustness of the

local model.

5

3.2 Attack Intuition and Challenges
By design, the referring scenario introduces two main techniques

that aim to improve the privacy protection of clients’ data, while

ensuring greater robustness of the global model built through feder-

ated learning. Among them, the design choice of including pseudo-

items in the local embeddings of clients plays a crucial role. Indeed,

as stated in Section 3.1, because the adopted pseudo-items are gen-

erated from real-data embeddings gathered from other clients, the

introduced noise is informative and resembles a data augmentation

solution. On the other hand, in the case in which the assumption

of the trustworthiness of clients does not hold, such an approach

could lead to exploit opportunities for attackers.

The goal of this paper is to demonstrate that by leveraging this

privacy-preserving social collaboration mechanism, it is possible to

design a very powerful poisoning attack. As will be shown in the

experiments described in this paper, the social nature of such an

attack allows the achievement of considerable performance also in

the presence of cutting-edge defense solutions.

More in detail, the social mechanism of sampling pseudo-elements

of peer clients to improve privacy protection, allows the possibil-

ity of involving such peers in prearranged attacks and, therefore,

forcing them to include poisoned elements in their local training

process, unknowingly. Our attack aims, therefore, at performing

a model poisoning by forging a malicious set of item embeddings.

Our objective is to deceive the target recommender system and

make it act as intended by the attacker, either by inhibiting conver-

gence of the underlying GNN model or by performing a backdoor
attack to force the system to predict specific ratings for items in

relation to a target user. In such a context, not only pseudo-items

could be exploited, but also the Local Differential Privacy strategy

could play a key role in the attack process. As a matter of fact, many

countermeasures, like for example the one proposed by Nguyen et

al. [20], make use of Differential Privacy to override or erase the

contribution of an attack, thus filtering malicious gradients updates

in a federated learning solution. In our case, the Local Differen-

tial Privacy module, which is included in the privacy-aware social

recommender system, acts as a regulator of the attack so that the

poisoned changes to updates are the most similar to benign ones,

while still guaranteeing the effectiveness of the attack.

4 ATTACK DESCRIPTION
This section is devoted to the design of an attack strategy against

the target scenario introduced in the previous section, a schematic

representation of which is shown in Figure 2.

Similarly to the work proposed by Baruch et al. [2], our design

includes two attack modes. The former aims at the convergence

of the aggregated model and attempts to significantly reduce its

general performance. The latter, instead, focuses on a more refined

model poisoning goal, which is the construction of a backdoor. In
practice, it aims at forcing the model to predict specific ratings

for items in relation to a target user. Both attacks try to exploit

vulnerabilities exposed by the strategy adopted to enhance the

privacy and the robustness of the federated learning model, as

described in detail in Section 3.1.

In the next sections, we shall report all the details related to

the two attack types mentioned above. In particular, the former is

presented in Section 4.1, and the latter is described in Section 4.2.

4.1 Adversarial Mode - Convergence Inhibition
As presented in Section 3.1, according to the target scenario, each

client involved in the privacy-aware social recommender system

can sample a set of 𝑝 items, namely 𝐼 (𝑛) , from the pool of other

clients in their neighborhood (according to the graph underlying the

GNN), and assign them a pseudo-label. This strategy allows them to

add an informative noise to their local updates, thus producing two

important effects: a higher privacy protection level and improved

robustness of the final model.

The intuition behind our attack is that an attacker can exploit

such a community-driven privacy-preserving mechanism, based on

the sampled item set 𝐼 (𝑛) , to poison the federated learning model.

We assume that the adversary can control a set, even small, of clients,

hereafter referred to as malicious clients. We argue that, by suitably

crafting a poisoned item set, say 𝐼
(𝑛)

, it might be possible to coerce

the community around a malicious node to unwittingly participate

in the attack, thus producing a hardly-detectable community attack.

To do so, instead of sampling the items randomly from the other

users, a malicious client tries to generate a set of fake embeddings

𝐸𝑖𝑓 ∈ (𝑅)𝑑𝑥𝑁 having the same shape 𝑑𝑥𝑁 obtained by sampling

real items in normal conditions and, hence, corresponding to an

implicit set of fake pseudo-items 𝐼
(𝑛)

. In particular, to undermine

the convergence of the federated learning model, according to our

strategy, starting from random Gaussian noise, at each training

epoch 𝑡 , the attacker trains malicious embeddings 𝐸𝑖𝑓 to maximize

the loss of the global model. For this purpose, it uses the model

parameters obtained from the server after the previous epoch 𝑡 − 1.
Then, it performs a gradient descent optimization on the local

model by keeping all the parameters frozen, with the exception

of malicious embeddings. In practice, to obtain effective malicious

embeddings, an attacked client 𝑐𝑛 associated with a user𝑢𝑛 pursues

the following objective:

min

𝐼
(𝑛)

©­­«−
√√√√√√∑

𝑖𝑚 ∈𝐼 (𝑛)∪𝐼
(𝑛) (𝑅𝑢𝑛,𝑖𝑚 − 𝑅𝑢𝑛,𝑖𝑚)���𝐼 (𝑛) ∪ 𝐼 (𝑛) ��� ª®®¬ ,

where, once again, the ratings of the fake pseudo-items are derived

through a semi-supervised approach using the version of the lo-

cal model obtained after epoch 𝑡 − 1. Figure 3 shows a graphical
representation of the strategy above.

Once the malicious fake pseudo-items have been crafted, the

attacker trains the local model, as done by any other client in

the scenario, using the crafted embeddings 𝐸𝑖𝑓 instead of the real

embeddings 𝐸𝑖 of the sampled items 𝐼 (𝑛) . It is worth observing that

a domino effect is triggered by this strategy. Indeed, in doing so,

the attacker poisons not only the updates of the local model but

also the embeddings of the corresponding user, its neighbors, and

the associated items. Moreover, the pseudo-item sampling task of

the subsequent training epoch (𝑡 + 1) of the federated learning will

also include the current malicious embeddings introduced by the

6

um

u3

u2

i4

i2

eu2 eu3

ei2 ei4

G
A
T

G
A
T

eum e*um

ei2

ei4

Loss

Embedding
Gradients

Model
Gradients

LDP

LDP

Client m

Malicious
Embedding

Crafting

Random
Noise

Server

A
ggregation

Embedding

Model
Parameters

Client m Graph

Figure 2: Attack Scenario.

attacker. This will boost the exploit even more by involving other

clients as unaware but still effective attackers.

eu2eu3

ei2 ei4

G
A
T

G
A
T

e*um
ei4

Loss
M

axim
ization

eum

ei2Freezed
Model and Embedding parameters

Trainable
Random
Noise

Backpropagation
on Malicious
Embeddings

Figure 3: A schematic view of the proposedConvergence Pre-
vention attack.

4.2 Backdoor Mode - Deceptive Rating
Injection

The objective of the second attack mode is to poison the federated

learning model in such a way that, given a target user𝑢𝑡 and a set of

target items 𝐼
(𝑛)
𝑥 not belonging to the local item set of𝑢𝑡 , a backdoor

is created on the prediction of the ratings. In practice, the attacker

aims to perform a backdoor attack that will force the recommender

system to predict for the target user a specific (false) rating for

these items. Thus, the adversary can even force the recommender

system to always or never propose a specific item to a user based

on the rating predicted by the model. To carry out this attack, all

the malicious clients controlled by the attacker must agree on the

same target user 𝑢𝑡 , a set of items 𝐼
(𝑛)
𝑥 , and the target fake ratings

to associate with them as a result of the poisoning action. As for the

considered scenario, the high-level objective of the attacker might

be to force the inclusion (resp. exclusion) of the target items in the

recommendation set.

To do so, instead of sampling a random set of pseudo-items

𝐼 (𝑛) , all the malicious clients use the same target set of pseudo-

items 𝐼
(𝑛)
𝑥 and include it in the training of their local models. As

presented in Section 3.1, in our scenario, each client corresponding

to a single user concatenates the embeddings of the local items

(the items related to the underlying user) to the embeddings of

the pseudo-items (sampled from the items related to the neighbor

users) and, then, computes the corresponding ratings by combining

them (i.e., applying a dot-product) with the trained user embedding.

To perform our attack instead of concatenating the local items 𝐼 (𝑛)

with a set of pseudo-items 𝐼 (𝑛) sampled at random, a malicious

client 𝑐𝑛 performs the following steps:

• First, it combines the local items embeddings 𝐼 (𝑛) with the

embedding of the underlying user 𝑢𝑛 , to obtain a rating

prediction for such items according to 𝑢𝑛 .

• Then, it combines the embeddings of the target items 𝐼
(𝑛)
𝑥

with the embedding of the target user 𝑢𝑡 to obtain a rating

prediction for the items of 𝐼
(𝑛)
𝑥 according to 𝑢𝑡 .

• Finally, it concatenates all the predicted ratings (of both the

local items and the target ones) and uses them to calculate

the loss (see Eq. (3)), which is, hence, modified as follows:

𝐿𝑢𝑛 =

√√√√√√∑
𝑖𝑚 ∈𝐼 (𝑛) (𝑅𝑢𝑛,𝑖𝑚 − 𝑅𝑢𝑛,𝑖𝑚) +

∑
𝑖𝑓 ∈𝐼 (𝑛)𝑥

(𝑅𝑢𝑡 ,𝑖𝑓 − 𝑅𝑢𝑡 ,𝑖𝑓)���𝐼 (𝑛) ∪ 𝐼 (𝑛)𝑥

��� .

As for the last point above, the value of the ground-truth rating

score𝑅𝑢𝑡 ,𝑖𝑓 of Eq. (3) for each target item, say 𝑖 𝑓 , of 𝐼
(𝑛)
𝑥 , is forged by

the attacker to obtain the desired effect on the final prediction (e.g.,

obtaining the maximum/minimum rate or setting it to a specific

value). In this way, the backpropagation on the model will include

both the real signal from the local graphs of the clients controlled

by the attacker and the additional poisoned knowledge designed to

control only the rating scores for the items of 𝐼
(𝑛)
𝑥 for the target 𝑢𝑡 .

Figure 4 shows a representation of the steps described above.

5 ATTACK EVALUATION
In this section, we present the experiments carried out to assess the

performance of both our attack modes on the referring scenario.

In particular, in Section 5.1, we describe the reference testbeds for

our experiments. Sections 5.2 and 5.3 are devoted to analyzing the

results and performance of our attacks against different settings

and defense mechanisms.

7

G
A
T

G
A
T

e*um

Loss

eum

ei3

ei1

𝐼𝑥
(𝑛): Target items

eu1
ut: Target User

Minimum/Maximum
Ratings

Real
Ratings

Backpropagation

eu2eu3

ei2 ei4 ei4

ei2

Figure 4: A schematic view of the proposed Backdoor attack.

5.1 The Considered Testbeds
To assess the performance of our attack, we define some reference

testbeds, including the adopted evaluation metrics and the under-

lying datasets. Moreover, we identify the experimental setup by

selecting the most promising configurations to properly test our

solution.

EvaluationMetrics. To evaluate the effectiveness of our attack,
we adopt the Mean Absolute Error and the Root Mean Squared

Error and compare the performance of the target scenario in normal

conditions and under our attack. For bothmetrics, smaller values are

associated with better performance. For our Convergence Prevention
attack, the exploit is successful when both the metrics above return

higher values for the underlying GNN model (the deep model at

the basis of the reference social recommender system) than in a

condition with no attacks.

As for the second attack type proposed in this paper, a successful

backdoor must not affect the general performance of the target

GNN model. Moreover, to further assess the effectiveness of the

obtained backdoor, we define a metric called 𝐹𝑎𝑣𝑎𝑟𝑎𝑏𝑙𝑒 𝐶𝑎𝑠𝑒 𝑅𝑎𝑡𝑒

(𝐹𝐶𝑅). As visible in Algorithm 1, this metric returns the percentage

of target items whose residuals are lower than the Standard Error

of the estimate function for good items. The objective of this metric

is to assess whether the error produced by the model on the target

items, with respect to the rating value aimed by the attacker, is

comparable to the average baseline error rate obtained for good

items (we require that this error is even lower than the average to

declare an attack success). Indeed, such a condition would imply

that the built backdoor successfully changes the behavior of the

attacked model, forcing it to predict, for the target items, the ratings

imposed by the attacker.

Datasets. To validate our proposal, we adopt the same datasets

used in [16] to test the performance of the reference social rec-

ommender system (see Section 3.1). In particular, we use three

popular recommendation system datasets, namely: Ciao [25], Epin-

ions [24, 26, 27], and Filmtrust [13]. Ciao and Epinions have been

collected by crawling shopping websites, and both of them are

characterized by items rated with integers in the interval (0, 5) and
social trust links among users. Similarly, Filmtrust is composed

Algorithm 1 Favorable Cases Rate Function.

Input:
1: 𝑅𝑒𝑠 (Residuals of real data)

2: 𝑅𝑒𝑠𝑡𝑟 (Residuals of the targeted ratings)

3: 𝑆𝐸𝐸 () (Standard error of estimate function)

Output:
4: 𝐹𝐶𝑅 (Favorable Cases Rate)

5: function success_rate(𝑅𝑒𝑠, 𝑅𝑒𝑠𝑡𝑟)
6: 𝐹𝐶𝑅← 0

7: 𝑁 ← 𝑙𝑒𝑛𝑔𝑡ℎ (𝑅𝑒𝑠𝑡𝑟)
8: for 𝑟 in 𝑅𝑒𝑠𝑡𝑟 do
9: if 𝑟 < 𝑆𝐸𝐸 (𝑅𝑒𝑠) then
10: 𝐹𝐶𝑅← 𝐹𝐶𝑅 + 1
11: end if
12: end for
13: return 𝐹𝐶𝑅/𝑁
14: end function

of a set of users connected by trust links and a set of items, each

associated with a rating score ranging in the interval (1, 8).
For our experiments, each user of the previous datasets is associ-

ated with a client, and the corresponding local graph is generated

using the items that they have rated and the users with whom they

have trust links to build their neighborhood. The statistics of the

obtained datasets are reported in Table 1.

Table 1: Statistics of the reference datasets

Dataset Ciao Epinions Filmtrust

Users 7,317 18,069 874

Items 104,975 261,246 1,957

of ratings 283,320 762,938 18,662

Rating density 0.0369% 0.0162% 1.0911%

of social connections 111,781 355,530 1,853

Social connection density 0.2088% 0.1089% 0.2426%

Experimental Setup. The reference datasets are randomly split

into three subsets: training set (60%), validation test (20%), and test-

ing set (20%). As for the validation set, it is used to evaluate the

performance of the model during the training phase. In our config-

uration, the policy for the training early stopping, the learning rate,

the initialization of the embeddings, and the strength of the Lapla-

cian noise, are set as proposed in the reference scenario originally

described in [16]. Specifically, the training process is stopped when

the model does not improve on the validation set for more than 5

successive validation steps. When the training phase is completed,

the model is evaluated on the testing set. For the backdoor mode

of our attack, at each validation step, we also assess the effective-

ness of the attack on the target items. For all our experiments, the

learning rate of the model is set to 0.01, the embeddings are initial-

ized with standard Gaussian distribution. Moreover, the gradient

clipping threshold is set to 0.3, and the strength of Laplacian noise

is set to 0.1. Finally, we tested our attack for different numbers of

items sampled, specifically {10, 20, 30, 40, 50, 100}, and different

percentages of attackers, namely, {10%, 20%, 30%, 40%, 50%}.

5.2 Results: Adversarial Mode
In this section, we analyze the performance of our attack in Con-

vergence Prevention mode against the scenario introduced in Sec-

tion 3.1 (Main Scenario, for short). In our experiment, as an initial

configuration, we set the percentage of attackers to 30% of the to-

tal number of clients and the maximum number of pseudo-items

8

sampled equal to 10. Moreover, as commonly done in this con-

text, we also consider different protection configurations based

on the most common and effective Federated Learning defenses,

namely: Krum, TrimmedMean, FoolsGold, and Flame (see Section 2.4
for background on these defenses). Moreover, to provide a compar-

ison baseline for the assessment of the effectiveness of our solu-

tion, we report: (i) the basic performance of the considered GNN

model without the additional privacy-aware social mechanism pro-

posed in [16] based on pseudo-items (Baseline Scenario), (ii) the
performance obtained in the same configuration when the system

is attacked by a reference state-of-the-art attack, i.e., the Little Is

Enough attack (LIE) (Section 2.3), (iii) the performance obtained by

the complete solution of [16] in the absence of attacks, and (iv) the
performance obtained in the same configuration when the attack

on the pseudo-items is performed using a naive strategy based on

the generation of Gaussian noise. The results on the three datasets

introduced above are reported in Table 2.

By analyzing this table, it is possible to see that our attack is

capable of significantly decreasing the performance of the GNN

model, with a performance reduction spanning from 39% to 76%

with respect to the scenario in the absence of attacks. This result

is even more astounding when we consider that, for the Baseline

Scenario, the state-of-the-art LIE attack produces a maximum per-

formance penalty of 10.2%. The obtained result also confirms that

the use of community-derived pseudo-items and, in general, col-

laborative strategies to achieve privacy protection improves the

robustness of the federated learning model (as originally shown

in [16]) but, at the same time, provides an adversary with the means

to perform possibly stronger attack. As presented in Section 4.1, our

attack crafts the embeddings of the pseudo-item by maximizing the

loss of the model at each epoch. To assess the reasoning behind our

strategy, in Table 2, we report the results obtained by a basic attack

in which, instead of learning optimal embeddings at each iteration,

they are initialized with Gaussian noise. As we can clearly see from

this table, the attack on pseudo-items using Gaussian noise does

not affect the performance of the model, thus confirming that only

an AI-driven attack can suitably exploit this scenario.

As a final remark on these first results, we observe that our attack

proved to be resistant to all the different countermeasureswe consid-

ered. In fact, as expected, the use of Local Differential Privacy gives

boundaries to the adversary, allowing for a controlled impact of the

attack on gradients, thus keeping them quite similar to benign ones

and, therefore, very complex to detect. The underlying assumption

of the aforementioned defenses is that such a limited impact on the

gradients, in principle, would completely prevent the effectiveness

of the attack. However, the additional community-based privacy

solution of the attacked scenario provides an opportunity to boost

this malicious signal.

To have a confirmation of our intuition, in Figure 5, we show the

variation of the performance metrics of the GNN model during the

training phase. We can see at the very beginning of the training

phase, the performances of the federated model on the validation

set, with and without attacks, are almost identical. As the training

continues, the difference between the normal and the attacked

model increases, reaching high values by the end of it. Indeed, after

the first epoch, the clients surrounding the nodes controlled by

the attacker begin to sample the malicious pseudo-items forged

0 200 400 600
Training Step

0

1

2

3

4

5

6

7

Rm
se

Filmtrust
No Attack
Our Attack

0 1000 2000 3000 4000 5000
Training Step

0

1

2

3

4

5

6

7

Rm
se

Ciao
No Attack
Our Attack

0 2000 4000 6000 8000
Training Step

0

1

2

3

4

5

6

7

Rm
se

Epinions
No Attack
Our Attack

0 200 400 600
Training Step

0

1

2

3

4

5

6

7

M
ae

Filmtrust
No Attack
Our Attack

0 1000 2000 3000 4000 5000
Training Step

0

1

2

3

4

5

6

7

M
ae

Ciao
No Attack
Our Attack

0 2000 4000 6000 8000
Training Step

0

1

2

3

4

5

6

7

M
ae

Epinions
No Attack
Our Attack

Figure 5: Performance of the federated learning model on
the validation set with and without our attack.

10 20 30 40 50
% Attackers

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Filmtrust
Mae
Rmse

10 20 30 40 50
% Attackers

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Ciao
Mae
Rmse

10 20 30 40 50
% Attackers

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Epinions
Mae
Rmse

Figure 6: Performance of the federated learning model with
different percentages of malicious clients.

by them, thus permanently poisoning their local models. Such a

mechanism continues, epoch by epoch, expanding the malicious

signal to a growing neighborhood. In the end, all the poisoned

clients will contribute to the attack boosting the negligible original

signal produced by the attacker.

To deepen the analysis of this aspect, we tested our solution with

both different percentages of malicious clients and several configu-

rations of the number of pseudo-items sampled by the clients.

In particular, in Figure 6, we show the impact of our attack on

the performance of the federated learning GNN model underlying

the Main Scenario with a percentage of clients controlled by the

attacker spanning from 10% to 50%.

As expected, from this figure, we can see that the increasing

number of malicious clients causes a linearly related detriment to

the model performance. However, the variation is not very steep

and, sometimes, almost stable, proving that the attack strength

does not depend only on the number of controlled malicious clients.

In Figure 7, we show the variation of the model performance for

different configurations of the number of sampled pseudo-items

(i.e., {10, 20, 30, 40, 50, 100}). Here, we can see how changing the

number of sampled items does not significantly affect the perfor-

mance of the attack. This indicates that, at least for the considered

datasets, a small number of pseudo-items is enough to spread the

malicious payload to a sufficiently large set of clients, which, then,

will unknowingly act as additional collaborators of the attacker.

9

Table 2: Results of the convergence inhibition attack

Scenario Attack Defense

Filmtrust Ciao Epinions

RMSE MAE RMSE MAE RMSE MAE

Baseline Scenario None None 2.19 1.60 2.54 1.87 2.17 1.52

Baseline Scenario LIE [2] None 2.37 1.69 2.80 2.04 2.36 1.66

Main Scenario None None 2.08 1.56 2.18 1.55 1.79 1.35

Main Scenario Gaussian Noise None 2.06 1.57 2.20 1.59 1.78 1.36

Main Scenario Our attack (Adversarial Mode) FoolsGold 3.21 2.69 3.07 2.45 2.79 2.51

Main Scenario Our attack (Adversarial Mode) Flame 3.01 2.30 3.05 2.45 2.69 2.34

Main Scenario Our attack (Adversarial Mode) Krum 3.03 2.44 3.02 2.42 2.71 2.35

Main Scenario Our attack (Adversarial Mode) TrimmedMean 3.23 2.60 3.00 2.42 2.66 2.31

Average Performance Detriment -50% -60% -39% -57% -51% -76%

10 20 30 40 50 100
Sampled Items

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Filmtrust
Mae
Rmse

10 20 30 40 50 100
Sampled Items

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Ciao
Mae
Rmse

10 20 30 40 50 100
Sampled Items

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Epinions
Mae
Rmse

Figure 7: Performance of the federated learning model un-
der our attack with different numbers of sampled pseudo-
items per client.

5.3 Results: Backdoor Mode
This section is devoted to presenting the results of the experiments

carried out to validate the performance of the Backdoor Mode of

our attack (see Section 4.2 for details).

In this experiment, we randomly selected a target user 𝑢𝑡 from

the set of users of each of our datasets and randomly sampled

groups of 10 items from the whole item pool, excluding those al-

ready belonging to the local graph of 𝑢𝑡 . At this point, we carried

out our attack on the referring scenario to force the system to learn

a backdoor for this set of items so that, for the only user 𝑢𝑡 , the

ratings associated with these items are controlled by the attacker. In

the scenario, we included again the state-of-the-art defense mecha-

nisms for federated learning presented in Section 5.2. To measure

the effectiveness of our backdoor attack on this setting, we used

the 𝐹𝐶𝑅 metric defined in Section 5.1. This metric estimates how

close the ratings of the selected items predicted for the target user

are with respect to the values proposed by the attacker. To return

a reliable estimation, it also considers the general error of the re-

gressor (standard error of estimate) to purge the evaluation from

possibly wrong predictions related to the accuracy of the model.

The results of this experiment are reported in Table 3.

As visible in this table, our attack is capable of achieving an

average 𝐹𝐶𝑅 score higher than 80%with amaximumof 100% against

all the defenses. Another important result is, as expected that the

performance (assessed with RMSE and MAE metrics) of the model

on benign items is preserved for all three datasets.

To have a ground truth to compare the obtained results with, we

also measured the 𝐹𝐶𝑅 score in the case of no attack to exclude any

success case related to the data distribution and not to the attack

effect. As we can see from the results, the maximum 𝐹𝐶𝑅 value in

the absence of an attack (implying a situation in which, by chance,

the real ratings are in-line with the attacker selection) is around

20% on average, thus showing, once more, the effectiveness of our

attack.

5.4 Evaluation on a Real Recommender System
As a final experiment, we proceed by testing our Backdoor Mode

attack against a real-life recommendation system. To do so, first of

all, we designed a recommender system on top of the GNN-based

model described in the previous sections. Such a model includes

the embedding of users and items according to their interactions,

which are described in the datasets of reference in this paper (see

Section 5.1). Moreover, as stated in Section 3.1, given the embed-

dings of a user and an item, an estimate of the rating that the given

user would assign to the target item can be obtained through the

dot-product between their embeddings. With this information, it

is possible to build a recommender system capable of suggesting

an item to a user if the estimated rating, according to the strategy

above, is higher than a recommendation threshold 𝛿 . A possible

strategy to set a value for 𝛿 could be to consider that, usually, an

item is recommendable to a user if its estimated rating is close to the

upper bound of the rating range (i.e., it is higher than the median

value of the range). As such, 𝛿 should be a value equal to a fraction

of the rating score range (e.g., for a maximum rating score equal

to 10, 𝛿 = 0.5 indicates that the recommendable items must have a

rating score higher than half of the maximum rating score, that is

a rating higher than 5).

The objective of this experiment is to demonstrate that our back-

door attack can force a recommender system to suggest to a target

user any item (also those that would normally receive a minimum

rating score). Of course, it can even be used in the opposite direc-

tion, that is, to force the removal of a good item from the set of

recommendable ones for a target user.

To properly configure our test, we started by selecting a target

user and training the model in a safe configuration without attacks.

Then, using the trained model, we estimated the rating of all the

items available in relation to the target user. After this, we sorted

them and created a ranking of items for the target user. As stated

above, the goal of the attacker can be either to force the recommen-

dation of a specific item to a target user or to remove a good item

from the user recommendation list. In both cases, we considered the

worst-case situation, in which the specific item has originally an

extremely low rating for the former objective, or an extremely high

one, for the latter. To obtain this configuration, as for the former

objective, we selected the bottom 10 items of the ranking above, and

for the latter attack objective, we selected the top 10 items as targets.

At this point, in our experiment, we tested the effectiveness of our

10

Table 3: Results of the deceptive rating injection attack

Attack Defense

Filmtrust Ciao Epinions

RMSE MAE FCR RMSE MAE FCR RMSE MAE FCR

No Attack None 2.06 1.56 20% 2.16 1.56 20% 1.79 1.36 30%

Our Attack (Backdoor Mode) FoolsGold 2.07 1.55 80% 2.19 1.56 100% 1.78 1.34 100%

Our Attack (Backdoor Mode) Flame 2.05 1.57 80% 2.18 1.55 100% 1.79 1.39 100%

Our Attack (Backdoor Mode) Krum 2.03 1.54 80% 2.15 1.54 100% 1.79 1.34 100%

Our Attack (Backdoor Mode) Trimmed Mean 2.05 1.56 80% 2.19 1.56 100% 1.79 1.34 100%

Backdoor Mode attack against the above-introduced recommender

system with different values of the recommendation threshold. In

particular, to measure the obtained attack performances, we started

with the former objective and counted the percentage of attacked

items whose rating was higher than the recommendation thresh-

old 𝛿 . In this case, we considered different values of 𝛿 , namely

{0.5, 0.6, 0.7, 0.8, 0.9}, implying ratings for the recommendable

items always above the median of the rating range and up to a

value really close to the upper bound (i.e., 𝛿 = 0.9). As for the

latter objective, instead, we defined an additional negative thresh-

old, called 𝛾 , to evaluate the attack strength. The objective of this

second threshold is the exact opposite of 𝛿 , that is, to verify the

percentage of items that have a lower rating than this negative

threshold. Of course, the lower the negative threshold, the more

complex the attack goal. Also in this case, 𝛾 ≤ 𝛿 is obtained as a

fraction of the maximum possible rating; in particular, we set it

to {0.1, 0.2, 0.3, 0.4, 0.5}, respectively. We reported the obtained

results in Figure 8.

The first row of this figure shows the attack performance for the

first objective, whereas the second row concerns the performance

obtained for the second attack objective. By analyzing this figure,

we can see that, for both the Ciao and Epinions datasets, our attack

is successful with all the possible threshold configurations for both

objectives above. As for the Filmtrust dataset, we can notice how

the performance of our attack degrades to 30% in the edge cases (i.e.,

the cases in which 𝛿 is equal to 0.9, for the first objective, and 𝛾 is

0.1, for the second objective) while preserving its full effectiveness

for the other configurations of the thresholds. This behavior could

be because this dataset has a fewer number of items concerning

the others, thus increasing the probability for a single item to be

sampled by multiple clients. In this way, the contribution of the

attack could be partially overwritten by the benign clients’ updates,

which implies a slight reduction of the attack performance.

6 RELATEDWORK
Federated recommender systems are becoming popular due to reg-

ulation on data and privacy of the users, like GDPR in the European

Union [16, 30]. This solution allows social media platforms to build

effective recommender systems useful to produce high-quality sug-

gestions while preserving the privacy of the final user. However,

this kind of collaborative strategy might be affected by malicious

users that take part in the training of the federated recommender

system [5, 14, 38].

Christakopoulou et al. [5], proposed to use a Generative Ad-

versarial Network (GAN) that generates fake users to be injected

during the federated training to control the top-𝐾 recommenda-

tions produced by the target recommender system. The proposed

solution is designed to preserve the main characteristics of the

0.5 0.6 0.7 0.8 0.9
Rating Threshold

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f S
uc

ce
ss

Filmtrust

Target Max >
Recommendation Threshold

0.5 0.6 0.7 0.8 0.9
Rating Threshold

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f S
uc

ce
ss

Ciao

Target Max >
Recommendation Threshold

0.5 0.6 0.7 0.8 0.9
Rating Threshold

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f S
uc

ce
ss

Epinions

Target Max >
Recommendation Threshold

0.1 0.2 0.3 0.4 0.5
Rating Threshold

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f S
uc

ce
ss

Filmtrust

Target Min <
Recommendation Threshold

0.1 0.2 0.3 0.4 0.5
Rating Threshold

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f S
uc

ce
ss

Ciao

Target Min <
Recommendation Threshold

0.1 0.2 0.3 0.4 0.5
Rating Threshold

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f S
uc

ce
ss

Epinions

Target Min <
Recommendation Threshold

Figure 8: The recommendation system recommends an item
if the rating is higher than the given threshold 𝛿 . As a first
possible objective, the attacker tries to force the model to
predict an item of minimum rating as an item of maximum
rating. We have a success when the rating exceeds a recom-
mendation threshold 𝛿 . Ex. 𝛿 = 0.5: rating > 𝛿 ·𝑚𝑎𝑥_𝑟𝑎𝑡𝑖𝑛𝑔. As
a second objective, the attacker tries to remove a good item
from the list of recommendable items. The goal is hence to
reduce the rating for a target item under a negative thresh-
old 𝛾 ≤ 𝛿 . Therefore, we count the percentage of items with
ratings lower than𝛾 . Ex.𝛾 = 0.4: rating < 𝛾 ·𝑚𝑎𝑥_𝑟𝑎𝑡𝑖𝑛𝑔.Worst
case scenario: change the rating score of an item from amin-
imum to a maximum value and vice versa.

data, thus ensuring unnoticeable changes. Generative Adversarial

Networks not only can be used to attack the systems in an adversar-

ial way, but they are also effective in stealing private information

from other users. An example of that has been proposed by Hitaj et

al. [14] in which the attacker runs the collaborative learning algo-

rithm and reconstructs sensitive information stored on the victim’s

device. The attacker also influences the training process inducing

the victim to disclose more detailed information.

The conventional poisoning attacks on recommender systems,

known as shilling attacks [15], are not targeted to a specific type

of recommender system. Therefore, the performance that they can

achieve is sub-optimal to an attack targeted at a specific recom-

mender system. Fang et al. [10] proposed a series of techniques

that optimize the attack to be more effective and achieve better

performances compared to general shilling attacks. Wu et al. [31]

proposed another optimized attack on recommender systems. In

this paper, the authors proposed to use globally hardest sampling as

11

a poisoning technique. In particular, they retrieve pseudo “hardest

positive samples” that are farthest from user embeddings to replace

the original positive samples. The obtained gradients significantly

impact the model convergence while being difficult to be perceived

as malicious updates from the server. Fang et al. [11] presented a

poisoning attack optimized for graph-based recommender systems,

like the attack we are proposing. More in detail, in this poisoning

attack, the authors’ goal is to deceive the graph-based recommender

systemmaking it promote a target item to as many users as possible

injecting fake users that give fake ratings to a subset of the items.

The superior ability of graph neural networks to learn graph-

structured data makes them ideal for recommender systems [22].

Considering this, Nguyen et al. [21] proposed an attack that lever-

ages both the representations of items and users to learn an optimal

attack on a surrogate model. The proposed framework, similar to

the one described above, synthesizes new users and associated

edges to be added into a heterogeneous graph between real users

and items before feeding the poisoned graph as input for optimiza-

tion. Graph-based recommender systems are also vulnerable to

optimized backdoor attacks such as the one proposed by Zheng

et al. [40]. In particular, the authors designed a backdoor attack

against link prediction that injects nodes and uses gradient informa-

tion to generate optimized triggers building a relationship between

any two nodes in the graph to construct a general attack.

The GNNmodels are also prone to attacks that aim at the privacy

of the model and the data. These vulnerabilities could be exploited

to infer group properties that are defined over the distribution of

nodes and links, as proposed by Wang et al. [29]. In particular, the

authors designed six different attacks considering a comprehensive

taxonomy of the threat model with various types of adversary

knowledge. They analyzed the main factors that contribute to group

property inference attacks’ success and they found that it is possible

to infer the existence of a target property by using the correlation

between the property feature and a label in the target model. Duddu

et al. [6] designed three different attacks: the first infers if a nodewas

included in the training graph, the second recreates the target graph,

and the third infers sensitive attributes of the graph. Considering

attacks against the model instead, Zhang et al. [39] proposed a

property inference attack that aims to infer the basic properties of

the graph given the graph embeddings.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we described an AI-based attack against a scenario

composed of a privacy-preserving social recommender system

leveraging Graph Neural Networks and federated learning to pro-

duce item recommendations. Our attack design starts by analyzing

the security of recent approaches aiming at building such recom-

mender systems, including Differential Privacy and community-

based strategies to improve sensitive data protection in federated

learning contexts. As a matter of fact, although, by design, one

of the main features of federated learning is privacy protection,

researchers have shown that, by analyzing local model updates

produced by federated clients, it is possible to infer sensitive in-

formation concerning the local datasets. For this reason, recent

studies have included additional privacy protection strategies to

face the above-mentioned issue. This is the case of recent investi-

gations in the context of social recommender systems, in which

federated learning and Graph Neural Networks are adopted to

build a predictive model to estimate item ratings to be fed to an

underlying recommendation engine. In such a scenario, some au-

thors have proposed combining Differential Privacy modules with

novel privacy-preserving strategies based on the main character-

istics of the underlying scenario. Indeed, in the context of social

recommender systems, user interactions play a crucial role; this

additional information allows the identification of communities of

users related to each other. Leveraging these communities for each

client, it is possible to augment the training of their local model

with knowledge derived from the other community members, thus

creating an additional separation between the local updates and the

training-sensitive data. However, our intuition is that, if properly

exploited, these additional privacy-preserving mechanisms can be

used to produce a very impacting model poisoning attack against

federated learning.

In this paper, we demonstrated this concept by designing a

novel AI-based model poisoning attack with two operating modes,

namely: Adversarial Mode producing a convergence inhibition ef-

fect and Backdoor Mode creating a deceptive rating injection attack

on the federated model. We tested our solution against a target so-

cial recommender system proposed by [16] in a federated learning

scenario equipped with the most effective state-of-the-art defenses.

The experimental results have shown how our attack is effective in

all the considered cases. Moreover, to further show the significance

of our achievements, we built a real-life recommender system to

demonstrate that, with our attack operating in Backdoor Mode,

an adversary can fully control the recommendations produced for

specific target users.

The proposal described in this paper must not be intended as con-

clusive. Indeed, to demonstrate the general validity of our method,

we are planning to extend our investigation by adapting the pro-

posed attack strategy to other possible scenarios. Moreover, the

vulnerability we discovered is based on the collaborative nature

of some privacy-preserving approaches for federated learning. For

this reason, we intend to work on designing possible extensions of

existing defenses to cope with the identified flaw. Finally, we made

explicit reference to a horizontal federated learning scenario. In the

future, we plan to extend our research to vertical federated learn-

ing. Of course, due to the specificities of this variant, a thorough

investigation must be carried out to understand how our attack

methodology can be adapted to it.

REFERENCES
[1] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly

Shmatikov. How to backdoor federated learning. In International Conference on
Artificial Intelligence and Statistics, pages 2938–2948. PMLR, 2020.

[2] Gilad Baruch, Moran Baruch, and Yoav Goldberg. A little is enough: Circumvent-

ing defenses for distributed learning. Advances in Neural Information Processing
Systems, 32, 2019.

[3] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer.

Machine learningwith adversaries: Byzantine tolerant gradient descent. Advances
in neural information processing systems, 30, 2017.

[4] Di Chai, Leye Wang, Kai Chen, and Qiang Yang. Secure federated matrix factor-

ization. IEEE Intelligent Systems, 36(5):11–20, 2020.
[5] Konstantina Christakopoulou and Arindam Banerjee. Adversarial attacks on an

oblivious recommender. In Proceedings of the 13th ACM Conference on Recom-
mender Systems, pages 322–330, 2019.

12

[6] Vasisht Duddu, Antoine Boutet, and Virat Shejwalkar. Quantifying privacy leak-

age in graph embedding. In MobiQuitous 2020-17th EAI International Conference
on Mobile and Ubiquitous Systems: Computing, Networking and Services, pages
76–85, 2020.

[7] Cynthia Dwork. Differential privacy: A survey of results. In Theory and Applica-
tions of Models of Computation: 5th International Conference, TAMC 2008, Xi’an,
China, April 25-29, 2008. Proceedings 5, pages 1–19. Springer, 2008.

[8] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.

Graph neural networks for social recommendation. In The world wide web
conference, pages 417–426, 2019.

[9] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. Local model

poisoning attacks to byzantine-robust federated learning. In Proceedings of the
29th USENIX Conference on Security Symposium, pages 1623–1640, 2020.

[10] Minghong Fang, Neil Zhenqiang Gong, and Jia Liu. Influence function based

data poisoning attacks to top-n recommender systems. In Proceedings of The Web
Conference 2020, pages 3019–3025, 2020.

[11] Minghong Fang, Guolei Yang, Neil Zhenqiang Gong, and Jia Liu. Poisoning

attacks to graph-based recommender systems. In Proceedings of the 34th annual
computer security applications conference, pages 381–392, 2018.

[12] Clement Fung, Chris JMYoon, and Ivan Beschastnikh. The limitations of federated

learning in sybil settings. In RAID, pages 301–316, 2020.
[13] G. Guo, J. Zhang, and N. Yorke-Smith. A novel bayesian similarity measure for

recommender systems. In Proceedings of the 23rd International Joint Conference
on Artificial Intelligence (IJCAI), pages 2619–2625, 2013.

[14] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. Deep models under

the gan: information leakage from collaborative deep learning. In Proceedings
of the 2017 ACM SIGSAC conference on computer and communications security,
pages 603–618, 2017.

[15] Shyong K Lam and John Riedl. Shilling recommender systems for fun and profit.

In Proceedings of the 13th international conference on World Wide Web, pages
393–402, 2004.

[16] Zhiwei Liu, Liangwei Yang, Ziwei Fan, Hao Peng, and Philip S Yu. Federated social

recommendation with graph neural network. ACM Transactions on Intelligent
Systems and Technology (TIST), 13(4):1–24, 2022.

[17] Lingjuan Lyu, Han Yu, and Qiang Yang. Threats to federated learning: A survey.

arXiv preprint arXiv:2003.02133, 2020.
[18] Frank McSherry and Ilya Mironov. Differentially private recommender systems:

Building privacy into the netflix prize contenders. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
627–636, 2009.

[19] Nan Mu, Daren Zha, Yuanye He, and Zhihao Tang. Graph attention networks

for neural social recommendation. In 2019 IEEE 31st international conference on
tools with artificial intelligence (ICTAI), pages 1320–1327. IEEE, 2019.

[20] Thien Duc Nguyen, Phillip Rieger, Huili Chen, Hossein Yalame, Helen Möller-

ing, Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini,

Shaza Zeitouni, Farinaz Koushanfar, Ahmad-Reza Sadeghi, and Thomas Schnei-

der. FLAME: Taming backdoors in federated learning. In 31st USENIX Security
Symposium (USENIX Security 22), pages 1415–1432, Boston, MA, August 2022.

USENIX Association.

[21] Toan Nguyen Thanh, Nguyen Duc Khang Quach, Thanh Tam Nguyen,

Thanh Trung Huynh, Viet Hung Vu, Phi Le Nguyen, Jun Jo, and Quoc Viet Hung

Nguyen. Poisoning gnn-based recommender systems with generative surrogate-

based attacks. ACM Transactions on Information Systems, 41(3):1–24, 2023.
[22] Ruihong Qiu, Zi Huang, Jingjing Li, and Hongzhi Yin. Exploiting cross-session

information for session-based recommendation with graph neural networks.

ACM Transactions on Information Systems (TOIS), 38(3):1–23, 2020.
[23] Sina Sajadmanesh and Daniel Gatica-Perez. Locally private graph neural net-

works. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, pages 2130–2145, 2021.

[24] Jiliang Tang, Huiji Gao, Xia Hu, and Huan Liu. Exploiting homophily effect for

trust prediction. In WSDM, 2013.

[25] Jiliang Tang, Huiji Gao, and Huan Liu. mtrust: Discerning multi-faceted trust in

a connected world. In Proceedings of the fifth ACM international conference on
Web search and data mining, pages 93–102, 2012.

[26] Jiliang Tang, Huiji Gao, and Huan Liu. mTrust: Discerning multi-faceted trust in

a connected world. In the 5th ACM International Conference on Web Search and
Data Mining, 2012.

[27] Jiliang Tang, Huiji Gao, Huan Liu, and Atish Das Sarma. eTrust: Understanding

trust evolution in an online world. In KDD, 2012.
[28] Paul Voigt and Axel Von dem Bussche. The eu general data protection regula-

tion (gdpr). A Practical Guide, 1st Ed., Cham: Springer International Publishing,
10(3152676):10–5555, 2017.

[29] Xiuling Wang and Wendy Hui Wang. Group property inference attacks against

graph neural networks. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, pages 2871–2884, 2022.

[30] Chuhan Wu, Fangzhao Wu, Yang Cao, Yongfeng Huang, and Xing Xie. Fedgnn:

Federated graph neural network for privacy-preserving recommendation. arXiv
preprint arXiv:2102.04925, 2021.

[31] Chuhan Wu, Fangzhao Wu, Tao Qi, Yongfeng Huang, and Xing Xie. Fedattack:

Effective and covert poisoning attack on federated recommendation via hard

sampling. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 4164–4172, 2022.

[32] Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang, and Meng Wang.

A neural influence diffusion model for social recommendation. In Proceedings
of the 42nd international ACM SIGIR conference on research and development in
information retrieval, pages 235–244, 2019.

[33] ShiwenWu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks

in recommender systems: a survey. ACM Computing Surveys, 55(5):1–37, 2022.
[34] Ming Yang, Hang Cheng, Fei Chen, Ximeng Liu, Meiqing Wang, and Xibin

Li. Model poisoning attack in differential privacy-based federated learning.

Information Sciences, 630:158–172, 2023.
[35] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine

learning: Concept and applications. ACM Transactions on Intelligent Systems and
Technology (TIST), 10(2):1–19, 2019.

[36] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-

robust distributed learning: Towards optimal statistical rates. In International
Conference on Machine Learning, pages 5650–5659. PMLR, 2018.

[37] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,

and Jure Leskovec. Graph convolutional neural networks for web-scale recom-

mender systems. In Proceedings of the 24th ACM SIGKDD international conference
on knowledge discovery & data mining, pages 974–983, 2018.

[38] Shijie Zhang, Hongzhi Yin, Tong Chen, Zi Huang, Quoc Viet Hung Nguyen, and

Lizhen Cui. Pipattack: Poisoning federated recommender systems for manipulat-

ing item promotion. In Proceedings of the Fifteenth ACM International Conference
on Web Search and Data Mining, pages 1415–1423, 2022.

[39] Zhikun Zhang, Min Chen, Michael Backes, Yun Shen, and Yang Zhang. Inference

attacks against graph neural networks. In 31st USENIX Security Symposium
(USENIX Security 22), pages 4543–4560, 2022.

[40] Haibin Zheng, Haiyang Xiong, Haonan Ma, Guohan Huang, and Jinyin Chen.

Link-backdoor: Backdoor attack on link prediction via node injection. IEEE
Transactions on Computational Social Systems, 2023.

13

	Abstract
	1 Introduction
	2 Background
	2.1 Privacy-preserving Federated Learning
	2.2 Graph Neural Networks-based Recommender Systems
	2.3 Model Poisoning on Federated Learning
	2.4 Defenses against Model Poisoning

	3 System Model and Attack Intuition
	3.1 The System Model
	3.2 Attack Intuition and Challenges

	4 Attack Description
	4.1 Adversarial Mode - Convergence Inhibition
	4.2 Backdoor Mode - Deceptive Rating Injection

	5 Attack Evaluation
	5.1 The Considered Testbeds
	5.2 Results: Adversarial Mode
	5.3 Results: Backdoor Mode
	5.4 Evaluation on a Real Recommender System

	6 Related Work
	7 Conclusions and Future Work
	References

