
Realizing Flexible Broadcast Encryption:
How to Broadcast to a Public-Key Directory

Rachit Garg

UT Austin

Austin, TX, USA

rachg96@cs.utexas.edu

George Lu

UT Austin

Austin, TX, USA

gclu@cs.utexas.edu

Brent Waters

UT Austin

Austin, TX, USA

NTT Research

Sunnyvale, CA, USA

bwaters@cs.utexas.edu

David J. Wu

UT Austin

Austin, TX, USA

dwu4@cs.utexas.edu

ABSTRACT
Suppose a user wants to broadcast an encrypted message to 𝐾 re-

cipients. With public-key encryption, the sender would construct 𝐾

different ciphertexts, one for each recipient. The size of the broad-

casted message then scales linearly with 𝐾 . A natural question

is whether the sender can encrypt the message with a ciphertext

whose size scales sublinearly with the number of recipients.

Broadcast encryption offers one solution to this problem, but at

the cost of introducing a central trusted party who issues keys to

different users (and correspondingly, has the ability to decrypt all

ciphertexts). Recently, several works have introduced notions like

distributed broadcast encryption and flexible broadcast encryption,

which combine the decentralized, trustless model of traditional

public-key encryption with the efficiency guarantees of broadcast

encryption. In the specific case of a flexible broadcast encryption

scheme, users generate their own public/private keys and can then

post their public key in any public-key directory. Subsequently,

a user can encrypt to an arbitrary set of user public keys with a

ciphertext whose size scales polylogarithmically with the number of

public keys in the broadcast set. A distributed broadcast encryption

scheme is a more restrictive primitive where each public key is

also associated with an index, and one can only encrypt to a set of

public keys corresponding to different indices.

In this work, we introduce a generic compiler that takes any dis-

tributed broadcast encryption scheme and produces a flexible broad-

cast encryption scheme. Moreover, whereas existing concretely-

efficient constructions of distributed broadcast encryption have

public keys whose size scales with the maximum number of users

in the system, our resulting flexible broadcast encryption scheme

has the appealing property that the size of each public key scales

with the size of the maximum broadcast set.

We provide an implementation of the flexible broadcast encryp-

tion scheme obtained by applying our compiler to the distributed

This work is licensed under a Creative Commons Attribution

International 4.0 License.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0050-7/23/11.

https://doi.org/10.1145/3576915.3623168

broadcast encryption scheme of Kolonelos, Malavolta, and Wee

(ASIACRYPT 2023). With our scheme, a sender can encrypt a 128-

bit symmetric key to a set of over 1000 recipients (from a directory

with a million users) with a 2 KB ciphertext. This is 16× smaller

than separately encrypting to each user using standard ElGamal en-

cryption. The cost is that the user public keys in flexible broadcast

encryption are much larger (50 KB) compared to standard ElGamal

public keys (32 bytes). Compared to the similarly-instantiated dis-

tributed broadcast encryption scheme, we achieve a 32× reduction

in the user’s public key size (50 KB vs. 1.6 MB) without changing

the ciphertext size. Thus, flexible broadcast encryption provides an

efficient way to encrypt messages to large groups of users at the

cost of larger individual public keys (relative to vanilla public-key

encryption).

CCS CONCEPTS
• Security and privacy→ Public key encryption.

KEYWORDS
flexible broadcast encryption; distributed broadcast encryption;

trustless cryptography; pairing-based cryptography

ACM Reference Format:
Rachit Garg, George Lu, Brent Waters, and David J. Wu. 2023. Realizing

Flexible Broadcast Encryption: How to Broadcast to a Public-Key Directory.

In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS ’23), November 26–30, 2023, Copenhagen, Denmark.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3576915.3623168

1 INTRODUCTION
Suppose a user wants to send an encrypted message to 𝐾 different

recipients. The message could be an encrypted email to𝐾 recipients

or an end-to-end encrypted group chat with 𝐾 other participants.

Using vanilla public-key encryption, the user looks up each recipi-

ent’s public key in a public-key directory and separately encrypts

the message to each recipient. In this case, the encrypted broad-

cast contains 𝐾 ciphertexts and its size necessarily scales linearly

with the number of recipients 𝐾 . A natural question is whether

we can construct a system where a user can encrypt a message to

𝐾 different public keys with a single ciphertext whose size scales
sublinearly with 𝐾?

1093

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3576915.3623168
https://doi.org/10.1145/3576915.3623168
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576915.3623168&domain=pdf&date_stamp=2023-11-21

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Rachit Garg, George Lu, Brent Waters, & David J. Wu

Broadcast encryption. Broadcast encryption [21] provides one

approach to reduce communication. In a (public-key) broadcast

encryption scheme supporting up to 𝐿 users, each user has an

index 𝑖 ∈ [𝐿] and a secret key sk𝑖 associated with the index. The

encrypter can encrypt a message to a set 𝑆 ⊆ [𝐿] such that every

user 𝑖 ∈ 𝑆 can decrypt using their secret key sk𝑖 . Non-authorized
users associated with indices 𝑖 ∉ 𝑆 cannot decrypt even if they

collude. Moreover, the size of the ciphertext scales sublinearly with

the total number of recipients. Note that a description of the set

must be included as part of the ciphertext. In many cases, the set

is implicitly known (e.g., “all group members”) or admits a short

description (e.g., “all computer science students”).

While broadcast encryption provides an elegant way for users

to encrypt messages to multiple recipients, it comes at the cost of

centralization. In public-key encryption, users have the ability to

generate and manage their own keys, independently of all other

users. In contrast, broadcast encryption introduces a central au-

thority that is responsible for issuing keys to different users. The

central authority represents a central point of failure in a system,

and if its secret key is ever compromised, the adversary gains the

ability to decrypt all ciphertexts in the system. While one could

implement the key-generation process for broadcast encryption

under multiparty computation (MPC) as a way to avoid generating

and storing a long-term master decryption key, this requires all

users to join the system at once and jointly participate in the MPC

protocol. This is the approach taken in decentralized broadcast

encryption [36]. However, the high degree of coordination between

users makes such solutions difficult to realize in practice.

Distributed broadcast encryption. The notion of distributed broad-
cast encryption [12] or ad-hoc broadcast encryption [40] interpo-

lates between centralized broadcast encryption and public-key en-

cryption. In this model, each user is still associated with a slot index

𝑖 ∈ [𝐿], but the user generates their public/private keys individually
(and without coordinating with other users). Each user then posts

their public key in a public-key directory (e.g., a public bulletin

board). Thereafter, anyone can encrypt a message to any subset of

the users with a ciphertext whose size scales sublinearly with the

number of recipients.

To decrypt in a distributed broadcast encryption scheme, a user

needs to look up the public keys of all of the users in the broadcast

set. This is a one-time look-up, and in many schemes [23, 32], if

the broadcast set 𝑆 is fixed, it is possible to “precompute” a short

group-specific public key pk𝑆 associated with the broadcast set that

can be cached and reused for many broadcasts (c.f., Remark 4.3).

Boneh and Zhandry showed how to construct a distributed broad-

cast encryption using indistinguishability obfuscation (and one-way

functions) [12]. More recently, Kolonelos, Malatova, and Wee [32]

as well as Freitag, Waters, and Wu [23] gave constructions using

bilinear maps.
1
While these constructions are lightweight, they still

have several limitations:

• Large public keys: In the existing pairing-based constructions

of distributed broadcast encryption [23, 29, 32, 40], the size of

each user’s public key scales with the maximum number of users

1
The Freitag et al. [23] construction is obtained via a reduction of distributed broad-

cast encryption to registered attribute-based encryption (ABE) and instantiating the

registered ABE scheme with a recent pairing-based construction [29].

𝐿 supported by the scheme. As a result, the size of the public-key

directory scales quadratically with the total number of users 𝐿.

Storing even a modestly-sized public-key directory with a million

users would require tens of terabytes of storage. For context, the

OpenPGP key server currently includes around 3.5 million PGP

keys [15] while an encrypted messaging platform like WhatsApp

has over 2 billion active users [17].

• Coordination between users: While users in a distributed

broadcast encryption scheme generate their own public keys,

the scheme semantics still require some degree of coordination

between users. Namely, users should generate keys for distinct
indices. While nothing prevents multiple users from posting

a public key for the same index 𝑖 , the scheme only supports

broadcasting to a set of users whose keys occupy distinct indices.
While wemay try to mitigate the need for coordination by having

users choose their index randomly when generating the keys,

this incurs quadratic overhead. In particular, if𝑁 is the number of

possible slot indices and 𝐿 is the maximum size of the public-key

directory, we need to set |𝑁 | = Ω(𝐿2) to ensure that collisions

happen with small probability. In existing constructions, the size

of each user’s public key scales linearly with the number of

indices 𝑁 , so this strategy leads to a construction where user

public keys are 𝑂 (𝐿2) long and the overall size of the public-key

directory is 𝑂 (𝐿3).

Flexible broadcast encryption. Our starting observation in this

work is that in many settings (e.g., encrypted email or encrypted

end-to-end messaging), the size of the broadcast set is much smaller

than the total number of users in the public-key directory. Thus, we

seek a construction where the scheme parameters primarily scale

with an (a priori determined) bound on the maximum broadcast

size. Moreover, we aim for a construction that does not require any
coordination between users. Namely, users post their public key to

the public-key directory and subsequently, anyone can encrypt a

message to any subset of public keys in the directory. The size of

the ciphertext is polylogarithmic in the number of recipients.

This is the notion of flexible broadcast encryption introduced by

Freitag, Waters, and Wu [23]. In the same work, they also described

a construction from witness encryption. In this work, we describe

a general transformation that takes any distributed broadcast en-

cryption and generically transforms it into a flexible broadcast

encryption scheme. Combined with previous pairing-based con-

structions of distributed broadcast encryption [32], we obtain new

concretely-efficient flexible broadcast encryption schemes from stan-

dard pairing-based assumptions.

1.1 Our Contributions
In this work, we introduce a general compiler that takes any dis-

tributed broadcast encryption scheme and compiles it into a flex-

ible broadcast encryption scheme. While the parameters of a dis-

tributed broadcast encryption scheme can depend polynomially on

the bound on the total number of users 𝐿, the parameters of our

flexible broadcast encryption scheme only depends on the size of

the maximum broadcast set 𝐾 . While 𝐾 = 𝐿 in the worse case, in

settings where 𝐾 ≪ 𝐿, we achieve considerable savings.

1094

Realizing Flexible Broadcast Encryption: How to Broadcast to a Public-Key Directory CCS ’23, November 26–30, 2023, Copenhagen, Denmark

A B C D E

1 2 3

Users

Slots

(a) Key generation. To generate a fresh public key for the flexible

broadcast encryption scheme, a user chooses a (random) set of slots for

the distributed broadcast encryption scheme and generates a public key

for each of the slots. Here, an edge between a user 𝑖 and a slot 𝑗 denotes

that user 𝑖 generated a public key for slot index 𝑗 in the distributed

broadcast encryption scheme. In this example, each user generates a

key for exactly 2 slots.

A B C D E

1 2 3

Users

Slots

(b) Encryption. Consider the same bipartite graph as before where

the bottom nodes are associated with the users and the top nodes

are associated with the slots of the distributed broadcast encryption

scheme. An edge exists between user 𝑖 and slot 𝑗 if user 𝑖 generated

a public key pk for slot 𝑗 . To encrypt to a set of users (highlighted in

blue), the encrypter looks for a matching between the nodes associated

with the users and the slots of the distributed broadcast encryption

scheme. If the matching exists, then the user encrypts the message

using the distributed broadcast encryption with respect to the public

keys associated with the matched edges (shown in green).

Figure 1: An illustration of our generic transformation from a distributed broadcast encryption scheme to a flexible broadcast encryption scheme. In this

example, we consider a distributed broadcast encryption scheme with three slots and in this example, a maximum broadcast set size of 𝐾 = 3.

Construction overview. We begin with a high-level overview of

our compiler (see also Fig. 1) and refer to Section 3.2 for the full

details. For simplicity, we consider a setting with up to 𝐿 = 2
𝜆
users

and we want to support broadcasts to a maximum of 𝐾 ≤ 𝐿 users;

here, 𝜆 is a (computational) security parameter.

• Setup: To support broadcast sets of size at most 𝐾 , we start with

a distributed broadcast encryption scheme with 𝑁 = 𝑂 (𝐾) slots
(see Theorems 3.4 and 3.5 for the precise requirements).

• Key generation: To generate a public key (Fig. 1a), a user selects
a random set of 𝐷 = 𝑂 (𝜆) indices 𝑆 ⊆ [𝑁] and generates a

public key pk(𝑖) for each index 𝑖 ∈ 𝑆 in the underlying distributed
broadcast encryption scheme. The user’s public key is {pk(𝑖) }𝑖∈𝑆 .
• Encryption: To encrypt a message to a set 𝑇 of 𝐾 users, the

encrypter takes the set of public keys {pk𝑗 } 𝑗∈𝑇 where pk𝑗 =

{pk(𝑖)
𝑗
}𝑖∈𝑆 𝑗 for a set 𝑆 𝑗 ⊆ [𝑁] of size𝐷 . The encrypter associates

each user 𝑗 ∈ 𝑇 with a unique slot index 𝑖 𝑗 ∈ 𝑆 𝑗 ⊆ [𝑁] in the

underlying distributed broadcast encryption scheme (see Fig. 1b).

It constructs the ciphertext by encrypting to the slot indices

{𝑖 𝑗 } 𝑗∈𝑇 using the distributed broadcast encryption scheme. The

mapping from users 𝑗 to slot indices 𝑖 𝑗 can be computed using a

bipartite matching algorithm.

• Decryption: To decrypt a ciphertext encrypted to a set of public
keys {pk𝑗 } 𝑗∈𝑇 , the decrypter first derives the indices 𝑖 𝑗 ∈ 𝑆 𝑗 for
each 𝑗 ∈ [𝑇]. Importantly for correctness, we require that the

same set of slot indices is used for both encryption and decryp-

tion; we ensure this by using a deterministic bipartite matching al-

gorithm in our construction. The user then applies the decryption

algorithm for the underlying distributed broadcast encryption

scheme.

Implementation and evaluation. In this work, we provide a full

implementation and empirical evaluation of our approach.We apply

our generic compiler to the pairing-based distributed broadcast

encryption scheme by Kolonelos, Malavolta, and Wee [32] to obtain

a pairing-based flexible broadcast scheme. Like [32], our scheme

requires a one-time sampling of a structured reference string (see

Remark 4.1 for more discussion). Importantly, this trusted setup

is independent of the users and only needs to be performed once;

thereafter, the scheme maintains no long-term secrets (in contrast

to traditional centralized broadcast encryption).

We compare the computational and storage costs of implement-

ing a public-key directory based on flexible broadcast encryption

with a directory based on distributed broadcast encryption, cen-

tralized broadcast encryption, as well as one based on standard

ElGamal encryption (here, to encrypt a message to 𝐾 users, the

encrypter would concatenate together 𝐾 ciphertexts, one for each

user). We provide the full evaluation in Section 4, but highlight a

few key points here:

• For a public-key directory with 2
20

users, our scheme can broad-

cast an encapsulated key to a set of 2
10 = 1024 users with a

ciphertext of size 2 KB. Each user’s public key size is 50 KB in

this case. Using vanilla ElGamal encryption for the broadcast

would lead to a ciphertext that is 16× larger; however, the trade-

off is that each user’s public key is significantly shorter with

ElGamal (32 bytes vs. 50 KB). If we were to use distributed broad-

cast encryption for this setting, a scheme with 2 KB ciphertexts

would require user public keys that are over 32× larger (1.6 MB).

Using a centralized broadcast encryption [11] would require a

master public key that is 6.4 MB (and 2 KB ciphertexts). While

this substantially reduces the size of the public-key directory, it

comes at the cost of needing to trust a central authority.

• Flexible broadcast encryption supports fast encryption and de-

cryption. Encrypting to 2
10

users in a directory of 2
16

users takes

just 5.9 mswith our scheme.With traditional ElGamal encryption,

preparing 2
10

ciphertexts would require 94 ms. We incur only a

modest timing overhead over distributed (≈1.3×) and centralized

broadcast (≈2.6×). Moreover, when the broadcast set 𝑆 is known

in advance (e.g., group messaging applications where the set of

recipients is static), the encryption/decryption algorithms can

be decomposed into an offline phase that precomputes a public

key pk𝑆 for the set 𝑆 and a fast online phase that only operates

on the precomputed key pk𝑆 and the message/ciphertext (see

1095

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Rachit Garg, George Lu, Brent Waters, & David J. Wu

Remark 4.3). Using precomputed keys, the encryption and de-

cryption algorithms typically require just 1-2 ms of computation,

irrespective of the size of the broadcast set.

2 FLEXIBLE BROADCAST ENCRYPTION
Notation. Throughout this work, we write 𝜆 to denote the secu-

rity parameter. For a positive integer 𝑛 ∈ N, we write [𝑛] to denote
the set of integers [𝑛] = {1, . . . , 𝑛}. We say an algorithm is efficient

if it runs in probabilistic polynomial time in the length of its input.

We say a function 𝑓 (𝜆) is negligible if 𝑓 = 𝑜 (𝜆−𝑐) for all 𝑐 ∈ N; we
denote this by writing 𝑓 (𝜆) = negl(𝜆).

Flexible broadcast encryption. We now recall the notion of a flex-

ible broadcast encryption scheme from [23]. As described in Sec-

tion 1, in a flexible broadcast encryption scheme, users can generate

a public/private key-pair and post their public key in a public-key

directory or public bulletin board. Later on, any user can take any

arbitrary subset of public keys {pk𝑖 }𝑖∈𝑆 and encrypt a message that

can only be decrypted by the users whose public keys pk𝑖 are con-
tained in 𝑆 . Flexible broadcast encryption generalizes both broad-

cast encryption [21] where a central trusted authority is responsible
for issuing keys as well as distributed broadcast encryption [12, 32]

where every user is associated with a unique index and a central

untrusted authority is responsible for aggregating users’ public keys
into a single broadcast key. We give the formal definition below:

Definition 2.1 (Flexible Broadcast Encryption [23, adapted]). A

flexible broadcast encryption scheme is a tuple of efficient algo-

rithm ΠFBE = (Setup,KeyGen, IsValid, Encrypt,Decrypt) with the

following syntax:

• Setup(1𝜆, 1𝐾 , 𝐿) → pp: On input the security parameter 𝜆, a

bound 𝐾 on the maximum broadcast set size, and a bound 𝐿

on the maximum number of public keys, the setup algorithm

outputs a set of public parameters pp. We assume that the public

parameters pp include a description of the message spaceM for

the encryption scheme.

• KeyGen(pp) → (pk, sk): On input the public parameters pp, the
key-generation algorithm outputs a public key pk and a secret

key sk.
• IsValid(pp, pk) → 𝑏: On input the public parameters pp and

a public key pk, the validity-checking algorithm outputs a bit

𝑏 ∈ {0, 1}.
• Encrypt(pp, 𝑆,𝑚) → ct: On input the public parameters pp, a set
of public keys 𝑆 , and a message𝑚 ∈ M, the encryption algorithm

outputs a ciphertext ct.
• Decrypt(pp, 𝑆, sk, ct) → 𝑚/⊥: On input the public parameters

pp, the set of public keys 𝑆 associated with the ciphertext, a

secret key sk, and a ciphertext ct, the decryption algorithm either

outputs a message 𝑚 ∈ M or a special symbol ⊥ to denote a

decryption failure.

Correctness. The correctness requirement for a flexible broadcast

encryption scheme says that a user can encrypt a message to any
set 𝑆 of 𝐾 public keys (which may contain maliciously-chosen keys)

such that any user who holds an honestly-generated secret key for

one of the underlying public keys in 𝑆 is able to decrypt.

Definition 2.2 (Correctness). A flexible broadcast encryption

scheme ΠFBE = (Setup,KeyGen, IsValid, Encrypt,Decrypt) is cor-
rect if for all security parameters 𝜆 ∈ N, all bounds𝐾 ∈ N and 𝐿 ∈ N,
all public parameters pp in the support of Setup(1𝜆, 1𝐾 , 𝐿), all keys
(pk, sk) in the support of KeyGen(pp), and every collection of pub-

lic keys (pk
1
, . . . , pk𝑇) where 0 ≤ 𝑇 < 𝐾 and IsValid(pp, pk𝑖) = 1

for all 𝑖 ∈ [𝑇], every message 𝑚 ∈ M (where M is the mes-

sage space defined by pp), and setting ct← Encrypt(pp, 𝑆,𝑚) for
𝑆 = {pk𝑖 }𝑖∈𝑇 ∪ {pk},

Pr [Decrypt (pp, 𝑆, sk, ct) =𝑚] = 1,

where the probability is taken over the randomness of KeyGen
and Encrypt. We say the scheme is statistically correct if Defini-

tion 2.2 holds with probability 1 − negl(𝜆). In addition, for all pp
in the support of Setup(1𝜆, 1𝐾 , 𝐿) and all (pk, sk) in the support of

KeyGen(pp), we require

Pr[IsValid(pp, pk) = 1] = 1.

Security. We consider two notions of security for a flexible broad-

cast encryption scheme. The standard notion of adaptive security
says that semantic security holds for a ciphertext encrypted to a

set of users that is not under the control of the adversary. In this

game, we allow the adversary to learn the secret keys of users not

appearing in the challenge ciphertext. We also define a weaker

notion of semi-static security where we do not allow the adversary

to learn the secret keys of any user created by the challenger. Note

though that in a flexible broadcast encryption, the adversary can

always sample public/secret key-pairs itself. This is the analog of

semi-static security in the context of broadcast encryption [26] and

distributed broadcast encryption [12, 32].

Definition 2.3 (Adaptive Security). Let ΠFBE = (Setup,KeyGen,
IsValid, Encrypt,Decrypt) be a flexible broadcast encryption scheme

We define the following game which is parameterized by a security

parameter 𝜆 ∈ N and a bit 𝑏 ∈ {0, 1}:
• Setup phase:At the beginning of the game, the adversary chooses

the broadcast set size 1
𝐾

and the maximum number of pub-

lic keys 1
𝐿
. The challenger replies with the public parameters

pp← Setup(1𝜆, 1𝐾 , 𝐿). The challenger initializes a counter 𝑖 ← 0

to track the adversary’s key-generation queries and a set C ← ∅
to track the corrupted public keys.

• Query phase: The adversary can now issue two types of queries:

– Key-generation query: In a key-generation query, the chal-

lenger first increments the counter 𝑖 ← 𝑖 + 1. If 𝑖 > 𝐿, the

challenger replies with ⊥. Otherwise, the challenger samples

(pk𝑖 , sk𝑖) ← KeyGen(pp) and gives pk𝑖 to A.

– Corruption query: In a corruption query, the adversary spec-

ifies an index 𝑗 ≤ 𝑖 . In response, the challenger replies with

sk𝑗 and adds 𝑗 to C.
• Challenge phase: The adversary now specifies a set 𝑆 ⊆ [𝑖] of
size at most 𝐾 and two messages𝑚0,𝑚1 ∈ M (whereM is the

message space associated with pp). If 𝑆 ∩ C ≠ ∅, the experiment

halts with output 0. Otherwise, the challenger computes the

ciphertext ct𝑏 ← Encrypt(pp, {pk𝑗 } 𝑗∈𝑆 ,𝑚𝑏) and gives ct𝑏 to A.

• Output phase: The adversary outputs a bit 𝑏′ ∈ {0, 1}, which is

the output of the experiment.

1096

Realizing Flexible Broadcast Encryption: How to Broadcast to a Public-Key Directory CCS ’23, November 26–30, 2023, Copenhagen, Denmark

For an adversary A, we define the advantage AdvFBE,A (𝜆) of A
in the flexible broadcast encryption scheme to be

AdvFBE,A (𝜆) B
��
Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1]

��
in the above security game (with security parameter 𝜆). We say a

flexible broadcast encryption scheme is secure if for all efficient

adversaries A, AdvFBE,A (𝜆) ≤ negl(𝜆).

Definition 2.4 (Semi-Static Security). We say a flexible broadcast

encryption scheme ΠFBE satisfies semi-static security if it satisfies

Definition 2.3, except in the query phase, the adversary is only per-

mitted to issue key-generation queries. In particular, the adversary

does not make any corruption queries, so the challenge set 𝑆 ⊆ [𝑖]
is allowed to be any subset of the keys generated in response to the

challenger’s key-generation queries. The remainder of the security

experiment is unchanged.

Remark 2.5 (Semi-Static to Adaptive Security). A flexible broad-

cast encryption scheme that is semi-statically secure (Definition 2.4)

can be transformed into one that is adaptively secure (Definition 2.3)

in the random oracle model at the cost of a factor of 2× overhead in
the ciphertext length and number of public keys required by using

a “double encryption” technique [23]; this is the same technique

used in the context of centralized broadcast encryption [26] and

distributed broadcast encryption [12, 32].

Remark 2.6 (Post-Challenge Queries). The security definitions for

a flexible broadcast encryption scheme do not allow the adversary

to make post-challenge key-generation or corruption queries. This

is without loss of generality, since the adversary can simulate post-

challenge key-generation queries itself by running KeyGen(pp).
In the adaptive security game (Definition 2.3), the adversary can

“pre-corrupt” all of the keys that do not appear in the challenge

set 𝑆 before entering the challenge query. In this case, there are no

additional admissible corruption queries the adversary can make

in the post-challenge phase.

Remark 2.7 (Unbounded Public-Key Directory). We say that Defi-

nition 2.1 supports an arbitrary polynomial number of public keys

if the running time of the Setup algorithm is poly(log𝐿). In this

case, we can also implicitly define 𝐿 = 2
𝜆
. The scheme we construct

in this paper (Construction 3.3) supports an arbitrary polynomial of

public keys. However, for concrete efficiency, it will be convenient

to derive parameters for a more conservative upper bound on the

number of users (see Section 4).

Remark 2.8 (Correctness for Invalid Keys). Definition 2.1 requires

that a flexible broadcast encryption scheme have a validity-checking

algorithm IsValid and the correctness requirement (Definition 2.2)

only needs to hold when encrypting to a set of keys that satisfies the

IsValid predicate. We can consider an alternative definition where

there is no explicit IsValid predicate and correctness should hold

when encrypting to any set of public keys (or alternatively, a scheme

where IsValid always outputs 1). This is the definition from [23]. In

the full version of this paper, we note that any construction that

satisfies Definition 2.1 can be generically transformed into one that

satisfies the more general definition by essentially merging IsValid
with Encrypt.

Distributed broadcast encryption. In the full version of this paper,

we recall the related notion of distributed broadcast encryption [12].

Here, we provide an informal description. In a distributed broadcast

encryption scheme (for 𝐿 users), users join the system by gener-

ating a public/private key associated with a specific slot 𝑖 ∈ [𝐿];
correspondingly, we associate each user with a unique slot index

𝑖 ∈ [𝐿]. The master public key of the scheme is the list of the users’

public keys. The encrypter can encrypt a message to any subset

𝑆 ⊆ [𝐿] of the users with a ciphertext whose size scales sublinearly

with |𝑆 |. Like flexible broadcast encryption, there is no central au-

thority or long-term secret key in this system. The key distinction

in a flexible broadcast encryption scheme is that there is no notion

of slots. Users simply join the system by posting their public key.

3 CONSTRUCTING FLEXIBLE BROADCAST
In this section, we describe how to construct a flexible broadcast en-

cryption scheme from any distributed broadcast encryption scheme.

Instantiated with the pairing-based distributed broadcast encryp-

tion scheme from [32] (see the full version of this paper for a de-

scription of the scheme), this yields an efficient flexible broadcast

encryption scheme.

3.1 Graph Theory Background
Our construction relies on some basic combinatoric properties of

bipartite graphs. We begin with some basic definitions.

Bipartite graphs and matchings. A bipartite graph 𝐺 = (𝑈 ,𝑉 , 𝐸)
consists of two sets of vertices𝑈 and𝑉 and a set of edges 𝐸, where

each edge 𝑒 ∈ 𝐸 is a pair of nodes (𝑢, 𝑣) ∈ 𝑈 × 𝑉 . A matching

𝑀 = (𝑆, 𝜌) on𝐺 from𝑈 to𝑉 consists of a set of nodes 𝑆 ⊆ 𝑈 and an

injective labeling function 𝜌 : 𝑆 → 𝑉 such that for all𝑢 ∈ 𝑆 , we have
that (𝑢, 𝜌 (𝑢)) ∈ 𝐸. We say that𝑀 = (𝑆, 𝜌) is a complete matching

if 𝑆 = 𝑈 (i.e., every node is matched), and that it is maximal if

for every matching 𝑀′ = (𝑆 ′, 𝜌′) on 𝐺 from 𝑈 to 𝑉 , it holds that

|𝑆 | ≥ |𝑆 ′ |. Finally, for a set 𝑆 ⊆ 𝑈 , we write Γ(𝑆) ⊆ 𝑉 to denote the

neighborhood of 𝑆 : Γ(𝑆) = {𝑣 ∈ 𝑉 : ∃(𝑢, 𝑣) ∈ 𝐸 ∧ 𝑢 ∈ 𝑆}.
Theorem 3.1 (Hall’s Marriage Theorem [28]). Let 𝐺 = (𝑈 ,𝑉 , 𝐸)
be a bipartite graph. Then,𝐺 has a complete matching from𝑈 to𝑉

if and only if for every subset 𝑆 ⊆ 𝑈 , |Γ(𝑆) | ≥ |𝑆 |.
Theorem 3.2 (Hopcroft-Karp [30]). There exists a deterministic
algorithm FindMatch that takes as input a bipartite graph 𝐺 =

(𝑈 ,𝑉 , 𝐸) and outputs a maximal matching from 𝑈 to 𝑉 in time

𝑂
(
|𝐸 | · |𝑉 |1/2

)
.

3.2 Flexible Broadcast Encryption Compiler
We now describe our generic compiler that takes any distributed

broadcast encryption scheme and compiles it into a flexible broad-

cast encryption scheme. As described in Section 1.1, to support

broadcast sets of size up to 𝐾 and a maximum of 𝐿 users, we use

a distributed broadcast encryption scheme with 𝑁 = 𝑁 (𝜆, 𝐾, 𝐿)
slots, where 𝑁 is determined by the correctness and security re-

quirements. Each user’s public key is in turn associated with a

set of 𝐷 = 𝐷 (𝜆, 𝐾, 𝐿) slots of the underlying distributed broadcast

encryption scheme. We now give the formal description:

Construction 3.3 (Flexible Broadcast Encryption). Let 𝜆 be a

security parameter, 𝐾 = 𝐾 (𝜆) be a bound on the broadcast set size,

1097

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Rachit Garg, George Lu, Brent Waters, & David J. Wu

and 𝐿 = 𝐿(𝜆) be a bound on the maximum number of public keys

in the system. Our construction relies on the following building

blocks:

• LetΠDBE = (DBE.Setup,DBE.KeyGen,DBE.IsValid,DBE.Encrypt,
DBE.Decrypt) be a distributed broadcast encryption scheme.

• Let FindMatch be a deterministic matching algorithm (c.f., Theo-

rem 3.2).

Let 𝑁 = 𝑁 (𝜆, 𝐾, 𝐿) be a slot parameter and 𝐷 = 𝐷 (𝜆, 𝐾, 𝐿) be a

degree parameter (whose values will be determined in the security

analysis). We construct a flexible broadcast encryption scheme

ΠFBE = (Setup,KeyGen, IsValid, Encrypt,Decrypt) as follows:
• Setup

(
1
𝜆, 1𝐾 , 𝐿

)
: On input the security parameter 𝜆, a bound on

the broadcast set size 𝐾 , and a bound on the maximum number

of public keys in the system 𝐿, compute the number of slots 𝑁 =

𝑁 (𝜆, 𝐾, 𝐿) and the degree 𝐷 = 𝐷 (𝜆, 𝐾, 𝐿). Sample public parame-

ters DBE.pp← Setup(1𝜆, 1𝑁) and output pp = (DBE.pp, 𝑁 , 𝐷).
The message spaceM is that associated with DBE.pp.
• KeyGen(pp): On input the parameters pp = (DBE.pp, 𝑁 , 𝐷),
sample a set 𝑆 ⊆ [𝑁] of |𝑆 | = 𝐷 distinct elements. For each

𝑖 ∈ 𝑆 , sample a key (pk(𝑖) , sk(𝑖)) ← DBE.KeyGen(DBE.pp, 𝑖).
Output

pk =

{
(𝑖, pk(𝑖))

}
𝑖∈𝑆

and sk =

{
(𝑖, sk(𝑖))

}
𝑖∈𝑆

.

• IsValid(pp, pk): On input the parameters pp = (DBE.pp, 𝑁 , 𝐷)
and a public key pk = {(𝑖, pk(𝑖))}𝑖∈𝑆 , the validity-check algo-

rithm verifies that DBE.IsValid(DBE.pp, pk(𝑖) , 𝑖) = 1 for all 𝑖 ∈ 𝑆 .
It additionally checks that |𝑆 | = 𝐷 and outputs 1 if all checks

pass. Otherwise, it outputs 0.

• Encrypt(pp, 𝑆,𝑚): On input pp = (DBE.pp, 𝑁 , 𝐷), a set of public
keys 𝑆 = {pk𝑗 } 𝑗∈[𝑇] , where pk𝑗 = {(𝑖, pk

(𝑖)
𝑗
)}𝑖∈𝑆 𝑗 for some set

𝑆 𝑗 ⊆ [𝑁], and a message 𝑚 ∈ M, the encryption algorithm

constructs a bipartite graph 𝐺 = (𝑈 ,𝑉 , 𝐸) as follows:
– Let𝑈 = [𝑇] and 𝑉 = [𝑁].
– For each 𝑗 ∈ [𝑇], let𝐸 𝑗 =

{
(𝑗, 𝑣) : 𝑣 ∈ 𝑆 𝑗

}
and let𝐸 =

⋃
𝑗∈[𝑇] 𝐸 𝑗 .

In particular, for all 𝑗 ∈ [𝑇], Γ(𝑗) = 𝑆 𝑗 .
Let (𝑀, 𝜌) ← FindMatch(𝐺). If |𝑀 | ≠ 𝑇 , output ct′ = (0,𝑚).
Otherwise, output the ciphertext ct′ = (1, ct′) where

ct′ ← DBE.Encrypt
(
DBE.pp,

{
pk(𝜌 (𝑗))
𝑗

}
𝑗∈[𝑇] , 𝜌 (𝑆),𝑚

)
,

and 𝜌 ([𝑇]) = {𝜌 (𝑡) : 𝑡 ∈ [𝑇]}.
• Decrypt(pp, 𝑆, sk, ct): On input pp = (DBE.pp, 𝑁 , 𝐷), a set of

public keys 𝑆 = {pk𝑗 } 𝑗∈[𝑇] where pk𝑗 = {(𝑖, pk(𝑖)
𝑗
)}𝑖∈𝑆 𝑗 for

some set 𝑆 𝑗 ⊆ [𝑁], a secret key sk =
{(
𝑖, sk(𝑖)

𝑘

)}
𝑖∈𝑆𝑘 , and a

ciphertext ct = (𝛽, ct′), the decryption algorithm outputs ct′ if
𝛽 = 0. Otherwise, it constructs the graph 𝐺 = (𝑈 ,𝑉 , 𝐸) from
{pk𝑗 } 𝑗∈[𝑇] as described in the Encrypt algorithm. It computes

(𝑀, 𝜌) ← FindMatch(𝐺) and outputs

DBE.Decrypt
(
DBE.pp,

{
pk(𝜌 (𝑗))
𝑗

}
𝑗∈[𝑇] , sk

𝜌 (𝑘)
𝑘

, ct′, 𝜌 ([𝑇]), 𝜌 (𝑘)
)
.

Theorem 3.4 (Correctness). If ΠDBE is correct, then Construc-

tion 3.3 is correct.

Proof. Take any security parameter 𝜆 ∈ N, broadcast set size
𝐾 ∈ N, and bound 𝐿 ∈ N on the number of public keys. Take any

pp in the support of Setup(1𝜆, 1𝐾 , 𝐿) and any key-pair (pk, sk) in

the support of KeyGen(pp). Let (pk
1
, . . . , pk𝑇) be a collection of

0 ≤ 𝑇 < 𝐾 public keys where IsValid(pp, pk𝑖) = 1 for all 𝑖 ∈ [𝑇].
Take any message𝑚 ∈ M (whereM is the message associated with

pp) and let ct← Encrypt(pp, 𝑆,𝑚) for 𝑆 = {pk𝑖 }𝑖∈[𝑇] ∪ {pk}. We

can write ct = (𝛽, ct′). Consider the output ofDecrypt(pp, 𝑆, sk, ct).
We consider two cases:

• If 𝛽 = 0, then ct′ =𝑚 and the output of Decrypt is ct′ =𝑚.

• If 𝛽 = 1, then the output of Decrypt is

DBE.Decrypt
(
DBE.pp,

{
pk(𝜌 (𝑗))
𝑗

}
𝑗∈[𝑇] , sk

𝜌 (𝑘)
𝑘

, ct′, 𝜌 ([𝑇]), 𝜌 (𝑘)
)
.

Since 𝜌 is a deterministic function of the set 𝑆 and FindMatch
is also deterministic, we can appeal to correctness of ΠDBE to

conclude that Decrypt also outputs𝑚 in this case. □

Theorem 3.5 (Security). Let 𝜆 be a computational security param-

eter. For every efficient semi-static (resp., adaptive) adversary A
for ΠFBE that makes up to 𝐿 = 𝐿(𝜆) key-generation queries, there

exists an efficient semi-static (resp., adaptive) adversaryB for ΠDBE
such that

AdvFBE,A (𝜆) ≤ AdvDBE,B (𝜆) + 2 ·
∑︁
𝑘≤𝐾

𝑝𝑘 (𝐿, 𝑁, 𝐷), (3.1)

where

𝑝𝑘 (𝐿, 𝑁, 𝐷) = 𝐶 (𝐿, 𝑘) ·𝐶 (𝑁,𝑘) ·
[
𝐶 (𝑘, 𝐷)
𝐶 (𝑁, 𝐷)

]𝑘
. (3.2)

Here we write 𝐶 (𝑛, 𝑘) to denote the binomial coefficient

(𝑛
𝑘

)
. In

particular, when 𝑁 ≥ 2𝑒𝐾 = 𝑂 (𝐾) and 𝐷 = min(𝑁,𝜔 (log𝜅) +
log(𝑒2𝐿𝑁)), where 𝜅 is a statistical security parameter, we have

AdvFBE,A (𝜆) ≤ AdvDBE,B (𝜆) + 𝐾 · negl(𝜅) .

Proof. We show the claim for the semi-static case. The adaptive

case follows analogously. We start by proving the following claim

regarding the existence of a matching in a “random” bipartite graph

defined by the KeyGen and Encrypt algorithms. A similar analysis

was present in [20] for the setting of batching time-lock puzzles.

Claim 3.6. Let 𝜅 be a (statistical) security parameter. Let 𝐾 = 𝐾 (𝜅)
and 𝐿 = 𝐿(𝜅) be arbitrary functions. Let 𝑁 ≥ 2𝑒𝐾 and 𝑁 ≥ 𝐷 ≥
𝜔 (log𝜅) + log(𝑒2𝐿𝑁). Define a distribution on bipartite graphs

𝐺 = (𝑈 ,𝑉 , 𝐸) as follows:
• Set𝑈 = [𝐿] and 𝑉 = [𝑁].
• For each 𝑢 ∈ 𝑈 , sample a random set 𝑆𝑢 ⊆ 𝑉 of 𝐷 distinct edges

(i.e., 𝑆𝑢
r← 2

𝑉
subject to |𝑆𝑢 | = 𝐷). Let 𝐸𝑢 = {(𝑢, 𝑣) : 𝑣 ∈ 𝑆𝑢 } and

let 𝐸 =
⋃
𝑢∈𝑈 𝐸𝑢 .

Then,

Pr[∀𝑆 ⊆ 𝑈 , |𝑆 | ≤ 𝐾 : Γ(𝑆) ≥ |𝑆 |] ≥ 1 −
∑︁
𝑘≤𝐾

𝑝𝑘 (𝐿, 𝑁, 𝐷),

where 𝑝𝑘 (𝐿, 𝑁, 𝐷) is as defined in Eq. (3.2). Moreover, when 𝑁 ≥
2𝑒𝐾 and 𝐷 ≥ 𝜔 (log𝜅) + log(𝑒2𝐿𝑁), then

Pr[∀𝑆 ⊆ 𝑈 , |𝑆 | ≤ 𝐾 : Γ(𝑆) ≥ |𝑆 |] ≥ 1 − 𝐾 · negl(𝜅) .

In words, with overwhelming probability over the choice of the

random bipartite graph (𝑈 ,𝑉 , 𝐸), the size of the neighborhood for

every subset 𝑆 ⊆ 𝑈 with up to 𝐾 nodes is at least |𝑆 |.

1098

Realizing Flexible Broadcast Encryption: How to Broadcast to a Public-Key Directory CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Proof. We use a union bound. Let 𝑘 ≤ 𝐾 be a size parameter.

Fix a subset 𝑆 ⊆ 𝑈 of size 𝑘 , and a subset 𝑇 ⊆ 𝑉 of size 𝑘 . We

bound the probability that over the random choice of the edges 𝐸,

Γ(𝑆) ⊆ 𝑇 . Since each 𝑆𝑢 is sampled independently, we have that

Pr[Γ(𝑆) ⊆ 𝑇] = Pr[∀𝑢 ∈ 𝑆 : 𝑆𝑢 ⊆ 𝑇] =
∏
𝑢∈𝑆

𝐶 (𝑘, 𝐷)
𝐶 (𝑁, 𝐷) =

[
𝐶 (𝑘, 𝐷)
𝐶 (𝑁, 𝐷)

]𝑘
By a union bound over all sets 𝑆 and 𝑇 of size 𝑘 , we have that

Pr[∃𝑆 ⊆ 𝑈 , |𝑆 | = 𝑘 : Γ(𝑆) ≤ |𝑆 |] ≤ 𝐶 (𝐿, 𝑘) ·𝐶 (𝑁,𝑘) ·
[
𝐶 (𝑘, 𝐷)
𝐶 (𝑁, 𝐷)

]𝑘
= 𝑝𝑘 (𝐿, 𝑁, 𝐷) .

The concrete bound is then obtained by union bounding over each

value of 𝑘 ≤ 𝐾 . For the asymptotic statement, we use the fact that

for positive integers 1 ≤ 𝑘 ≤ 𝑛, it holds that
(
𝑛
𝑘

)𝑘
≤ 𝐶 (𝑛, 𝑘) ≤(

𝑒𝑛
𝑘

)𝑘
. Then Eq. (3.2) becomes

𝑝𝑘 (𝐿, 𝑁, 𝐷) = 𝐶 (𝐿, 𝑘)𝐶 (𝑁,𝑘)
[
𝐶 (𝑘, 𝐷)
𝐶 (𝑁, 𝐷)

]𝑘
≤ 𝐶 (𝐿, 𝑘) ·𝐶 (𝑁,𝑘) ·

(
𝑒𝑘

𝑁

)𝐷𝑘
≤

(
𝑒2𝐿𝑁

𝑘2

)𝑘 (
𝑒𝑘

𝑁

)𝐷𝑘
.

Since 𝑘 ≥ 1, 𝑁 ≥ 2𝑒𝐾 and 𝐷 ≥ 𝜔 (log𝜅) + log(𝑒2𝐿𝑁) we now have

𝑝𝑘 (𝐿, 𝑁, 𝐷) ≤
(
𝑒2𝐿𝑁

2
𝐷

)𝑘
≤ 2
−𝜔 (log𝜅) = negl(𝜅) .

The claim now holds by union bounding over all 𝐾 values of 𝑘 . □

We now return to the proof of Theorem 3.5. We begin by defining

two hybrid experiments, each parameterized by a security parame-

ter 𝜆, and adversary A, and a bit 𝑏 ∈ {0, 1}:
• Hyb(𝑏)

0
(A, 𝜆): This is the semi-static security experiment (Defi-

nitions 2.3 and 2.4).

• Hyb(𝑏)
1
(A, 𝜆): Same as Hyb(𝑏)

0
(A, 𝜆), except in the challenge

phase, after the challenger computes (𝑀, 𝜌) ← FindMatch(𝐺),
if𝑀 ≠ 𝑇 , the challenger halts and the output of the experiment

is 0. If𝑀 = 𝑇 , then the challenger proceeds as in Hyb(𝑏)
0

.

To complete the proof, we bound the statistical distance between

Hyb(𝑏)
0
(A, 𝜆) and Hyb(𝑏)

1
(A, 𝜆) and then show that the distribu-

tions Hyb(0)
1
(A, 𝜆) and Hyb(1)

1
(A, 𝜆) are computationally indis-

tinguishable when ΠDBE is secure.

Claim 3.7. For all 𝑏 ∈ {0, 1} and all adversaries A,���Pr [Hyb(𝑏)
0
(A, 𝜆) = 1

]
− Pr

[
Hyb(𝑏)

1
(A, 𝜆) = 1

] ��� =∑︁
𝑘∈[𝐾]

𝑝𝑘 (𝐿, 𝑁, 𝐷).

Proof. Suppose adversary A makes 𝑄 ≤ 𝐿 key-generation

queries inHyb(𝑏)
0

andHyb(𝑏)
1

. Recall that we set𝐷 = min(𝑁,𝜔 (log(𝜅))+
log(𝑒2𝐿𝑁)) We consider two cases:

• First, suppose that 𝐷 = 𝜔 (log𝜅) + log(𝑒2𝐿𝑁). By definition,

this means that 𝐷 ≤ 𝑁 . Then, consider the following graph

𝐺 = (𝑈 ,𝑉 , 𝐸):
– Let𝑈 = [𝑄] and 𝑉 = [𝑁].

– For each 𝑗 ∈ [𝑄], let 𝑆 𝑗 ⊆ [𝑁] be the slot indices the challenger
sampled when answering the 𝑗 th key-generation query. By

construction, 𝑆 𝑗
r← 2
[𝑁]

subject to the requirement that |𝑆 | =
𝐷 . Let 𝐸 𝑗 =

{
(𝑗, 𝑣) : 𝑣 ∈ 𝑆 𝑗

}
and let 𝐸 = ∪𝑗∈[𝑄]𝑆 𝑗 .

The graph𝐺 = (𝑈 ,𝑉 , 𝐸) is distributed according to the distribu-

tion of Claim 3.6 sowith probability at least 1−∑𝑘∈𝐾 𝑝𝑘 (𝑄, 𝑁, 𝐷),
it holds for all subsets𝑈 ′ ⊆ 𝑈 , |Γ(𝑈 ′) | ≥ |𝑈 ′ |. Consider now the

graph𝐺∗ = (𝑈 ∗,𝑉 ∗, 𝐸∗) the challenger constructs when prepar-

ing the challenge ciphertext. By construction, 𝐺∗ is a subgraph
of 𝐺 . Therefore, with at least the same probability as before,

for all subsets 𝑈 ′ ⊆ 𝑈 ∗, |Γ(𝑈 ′) | ≥ |𝑈 ′ | in 𝐺∗. By Theorem 3.1,

we conclude that with probability 1 −∑𝑘∈𝐾 𝑝𝑘 (𝑄, 𝑁, 𝐷), there
exists a perfect matching in the graph associated with the chal-

lenge ciphertext. In this case, the challenger’s behavior in the

two experiments is identical. Finally, since 𝑄 ≤ 𝐿, it holds that
𝑝𝑘 (𝐿, 𝑁, 𝐷) ≥ 𝑝𝑘 (𝑄, 𝑁, 𝐷), and the claim follows.

• Alternatively, suppose that 𝐷 = 𝑁 . In this case, the graph 𝐺∗ =
(𝑈 ∗,𝑉 ∗, 𝐸∗) the challenger constructs when preparing the chal-

lenge ciphertext is a complete bipartite graph. This means amatch-

ing exists with probability 1 and the claim holds. □

Claim 3.8. For all efficient adversaries A, there exists an efficient

adversary B such that

AdvDBE,B (𝜆) =
���Pr [Hyb(0)

1
(A, 𝜆) = 1

]
− Pr

[
Hyb(1)

1
(A, 𝜆) = 1

] ��� .
Proof. Suppose there exists an efficient adversary A where���Pr [Hyb(0)

1
(A, 𝜆) = 1

]
− Pr

[
Hyb(1)

1
(A, 𝜆) = 1

] ��� = 𝜀.
We use A to construct an efficient adversary B for the distributed

broadcast encryption game:

(1) Algorithm B runs algorithm A to receive the bound on the

maximum broadcast size 𝐾 and the maximum number of public

keys 𝐿. Algorithm B uses 𝐾 and 𝐿 to compute the number of

slots 𝑁 = 𝑁 (𝜆, 𝐾, 𝐿) and the degree 𝐷 = 𝐷 (𝜆, 𝐾, 𝐿).
(2) Algorithm B forwards the number of slots to the distributed

broadcast encryption challenger and receives the public pa-

rameters DBE.pp. Algorithm B gives pp = (DBE.pp, 𝑁 , 𝐷) to
A.

(3) Whenever algorithm A issues a key-generation query, algo-

rithm B samples the set 𝑆 as described in KeyGen, and for each
𝑖 ∈ 𝑆 , makes a key-generation query to its challenger on slot 𝑖

to obtain pk𝑖 . It replies to A with {(𝑖, pk𝑖)}.
(4) When algorithmA makes a challenge query on a set 𝑆 and mes-

sages𝑚0,𝑚1, algorithmB constructs the graph𝐺 = (𝑈 ,𝑉 , 𝐸) as
described in Encrypt and then constructs thematching (𝑀, 𝜌) ←
FindMatch(𝐺). If𝑀 ≠ 𝑈 , algorithm B outputs 0 exactly as in

Hyb(0)
1

and Hyb(1)
1

. Otherwise, it makes a challenge query to

the distributed broadcast encryption challenger on the same

messages 𝑚0,𝑚1 and the set of keys identified by 𝜌 (𝑆). The
distributed broadcast encryption challenger replies with a ci-

phertext ct𝑏 which algorithm B forwards to A.

(5) At the end of the experiment, algorithm A outputs a bit 𝑏′ ∈
{0, 1}, which algorithm B also outputs.

By construction if 𝑏 = 0, then the output of B is distributed accord-

ing to Hyb(0)
1

and if 𝑏 = 1, the output of B is distributed according

1099

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Rachit Garg, George Lu, Brent Waters, & David J. Wu

to Hyb(1)
1

. Correspondingly, this means that

AdvDBE,B (𝜆) =
���Pr [Hyb(0)

1
(A, 𝜆) = 1

]
− Pr

[
Hyb(1)

1
(A, 𝜆) = 1

] ��� ,
and the claim holds. □

Security now follows from Claims 3.7 and 3.8. In particular, recall

from Claim 3.6 that 𝑝𝑘 (𝐿, 𝑁, 𝐷) is negligible for the asymptotic

setting of the parameters in Theorem 3.5. □

Remark 3.9 (On Outputting the Message in the Clear). It may

seem unusual that the encryption algorithm in Construction 3.3

outputs the message in the clear if it fails to find a matching in the

graph𝐺 . However, as shown in Theorem 3.5 (specifically, Claim 3.6),

the probability that no matching exists when encrypting to a set of

honest keys is negligible (for suitably-chosen parameters). Thus,

this does not impact security of the scheme.

It is possible to adapt our construction in the random oracle

model to never broadcast the message in the clear (i.e., if no match-

ing exists, then the encryption algorithm simply outputs ⊥). While

there is no reason to do this if we focus on the correctness and secu-

rity definitions we consider in this work (and which coincide with

the traditional requirements on a centralized broadcast encryption

scheme), it is plausible that a future application of flexible broadcast

encryption might have security requirements which preclude this

behavior. We describe this in the full version of this paper. However,

in the rest of this work, we focus exclusively on Construction 3.3

which satisfies the standard correctness and security properties of

(flexible) broadcast encryption.

4 IMPLEMENTATION AND EVALUATION
In this section, we describe the implementation and evaluation

of our flexible broadcast encryption scheme. We obtain our flexi-

ble broadcast encryption by applying the generic transformation

fromConstruction 3.3 to the distributed broadcast encryption scheme

of Kolonelos, Malavolta, Wee [32]. In our experiments, we provide

a comparison of flexible broadcast encryption with the following

alternative approaches for broadcasting encrypted messages to a

group of 𝐾 users:

• Public-key encryption: The most direct way to encrypt a mes-

sage to 𝐾 different users is to encrypt the message under each

user’s public key. In this case, the encrypted broadcast consists

of 𝐾 ciphertexts. In our comparison, we consider the standard

version of elliptic-curve ElGamal public-key encryption [24].
2

When using ElGamal encryption to encrypt a message tomultiple
public keys, we reuse the encryption randomness for efficiency;

by a hybrid argument, this does not impact security. Reusing

the encryption randomness reduces the size of the encrypted

broadcast by a factor of 2. Very briefly, let G be a group of prime

order 𝑝 and generated by 𝑔. In ElGamal encryption, the secret

key is a random exponent 𝑠
r← Z𝑝 and the public key is a group

element ℎ = 𝑔𝑠 . To encrypt a message 𝜇 ∈ G to a collection

of public keys (ℎ1, . . . , ℎ𝐾), the encrypter samples 𝑟
r← Z𝑝 and

2
While RSA-OAEP [10, 37] is also a common choice for public-key encryption (e.g., in

systems like PGP), elliptic curve ElGamal is both faster and has shorter ciphertexts

and public keys. Thus, we exclusively use ElGamal encryption as our public-key

encryption baseline.

outputs the ciphertext (𝑔𝑠 , 𝜇 · ℎ𝑠
1
, . . . , 𝜇 · ℎ𝑠

𝐾
). Security relies on

the decisional Diffie-Hellman (DDH) assumption in G.
• Centralized broadcast encryption: In a centralized broadcast

encryption scheme [21], a central authority issues secret keys to

each user. In this work, we compare against the pairing-based

broadcast encryption scheme of Boneh, Gentry, and Waters [11]

which has constant-size ciphertexts (i.e., each ciphertext con-

sists of two group elements). We specifically consider the in-

stantiation of [11] over asymmetric (Type-III) pairing groups

from [14, §3.3]. Following the analysis by Chhatrapati, Hohen-

berger, Trombo, and Vusirikala [14, §3.6.5], this is the centralized

broadcast scheme with the best concrete efficiency. Security of

this construction is based on an asymmetric variant of the bilinear

Diffie-Hellman Exponent assumption.

• Distributed broadcast encryption: Finally, we also compare

the performance against the pairing-based distributed broadcast

encryption scheme from [32]. As described in the full version of

this paper, we make small adjustments to the scheme for better

concrete efficiency (i.e., adjusting how ciphertext and secret key

components are assigned to the base groupsG1 andG2). Security
of this construction is also based on an asymmetric bilinear Diffie-

Hellman Exponent assumption.

Throughout this section, we assume the use of “hybrid encryption”

where the broadcast mechanism is used to encrypt a symmetric

key and the payload (i.e., the message) is encrypted with the sym-

metric key using an authenticated encryption scheme. For our

comparisons, we thus focus exclusively on the key-encapsulation

mechanism (KEM). We provide a summary of the asymptotic pa-

rameter sizes and the running times for the different approaches in

Table 1.

Alternative constructions of flexible broadcast encryption. In Sec-

tion 5, we describe two previous approaches for constructing flexi-

ble broadcast encryption based on general-purpose witness encryp-
tion [23, 25] or indistinguishability obfuscation [6, 16, 22, 23, 29, 31].

Both of these techniques require extremely heavyweight crypto-

graphic primitives and have not previously been implemented (ex-

cept in the setting of certain restricted functionalities [13, 33]). Since
our focus in this work is on concrete efficiency, we do not provide

comparisons against these schemes in our experimental evaluation.

Remark 4.1 (Structured Reference String). Construction 3.3 inher-

its many of the properties of the underlying distributed broadcast

encryption scheme. Notably, if the underlying distributed broadcast

encryption scheme requires a structured reference string, the same

is true for our scheme. As noted above, we instantiate our compiler

with the Kolonelos, Malavolta, andWee [32] construction which has

a linear-size structured reference string. The structured reference

string can be sampled using multiparty computation [35]. Once

the reference string has been sampled, we do not make additional

trust assumptions (i.e., a flexible broadcast encryption does not re-

quire persistent, long-term secrets). Moreover, the sampling of the

reference string is entirely user-independent (unlike decentralized

broadcast encryption [36]). The same reference string can also be

reused across multiple independent public-key directories.

Still, a natural question to ask is whether we can construct a

distributed broadcast encryption scheme with a transparent setup

(i.e., a uniform reference string) or even no reference string at

1100

Realizing Flexible Broadcast Encryption: How to Broadcast to a Public-Key Directory CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Broadcast Encryption
Flexible Distributed Centralized PKE

CRS size 𝑂 (𝐾) 𝑂 (𝐿) – –

Directory size 𝑂̃ (𝐿𝐾) 𝑂 (𝐿2) 𝑂 (𝐾) 𝑂 (𝐿)
Ciphertext size 𝑂 (1) 𝑂 (1) 𝑂 (1) 𝑂 (𝐾)

Setup time 𝑂̃ (𝐾) 𝑂 (𝐿) 𝑂 (𝐿) –

KeyGen time 𝑂̃ (𝐾) 𝑂 (𝐿) 𝑂 (1) 𝑂 (1)
Encrypt time 𝑂̃ (𝐾)† 𝑂 (𝐾) 𝑂 (𝐾) 𝑂 (𝐾)
Decrypt time 𝑂̃ (𝐾)† 𝑂 (𝐾) 𝑂 (𝐾) 𝑂 (1)
†
Encryption and decryption rely on computing a perfect matching in the bipartite

graph induced by key-generation. While the Hopcroft-Karp algorithm (Theorem 3.2)

would yield a worst-case performance of 𝑂̃ (𝐾1.5) for encryption and decryption, we

note that when the underlying graph is random (as in our setting), the running time

is quasilinear in the size of the graph [9, 34] in expectation (where the expectation is

taken over the randomness for sampling the graph).

Table 1: Asymptotic comparison of different approaches for broadcasting

an encrypted message to a public-key directory. We consider approaches

based on our flexible broadcast encryption scheme (Construction 3.3), the

distributed broadcast encryption of [32], and the centralized broadcast en-

cryption of [11], as well as the “trivial” broadcast scheme using a vanilla

public-key encryption (PKE) scheme. Here, 𝐿 is the number of users in the

public-key directory and 𝐾 is the size of the broadcast set. We suppress all

polynomials in the security parameter, and write 𝑂̃ (·) to suppress poly-

logarithmic factors. For the running-time comparisons, we assume that

the algorithms have random access to their inputs (i.e., the key-generation,

encryption, and decryption algorithms do not necessarily have to read the

full input).

all. This is possible from strong tools like witness encryption [23]

and indistinguishability obfuscation [12]. Wu, Qin, Zhang, and

Domingo-Ferrer [40] propose a construction from pairings, albeit

without a proof of security; the length of the public keys is also

quadratic in the number of users (as opposed to linear in the case

of [32]). It is an interesting question to construct distributed (or

flexible) broadcast encryption with efficiency comparable to our

current construction with a transparent setup.

4.1 Implementation and Experimental Setup
We instantiate the cryptographic building blocks underlying our

construction as follows:

• Pairing group:We instantiate the pairing-based broadcast en-

cryption schemes over the BLS-381 pairing group [8] and use

the implementation from the Python petrelic library (version

0.1.5) [27]. The petrelic library is a Python wrapper around

the RELIC library [5], which is written in C. The BLS-381 pairing

group is asymmetric, and the (serialized) representations of an

element of the base groups G1, G2, and the target group G𝑇 are

49 bytes, 97 bytes, and 384 bytes, respectively.

• ElGamal: For elliptic-curve ElGamal, we use the libsodium
library (version 1.0.18) [19], which uses Curve25519 for the un-
derlying curve.

3
The size of each group element is 32 bytes.

In all cases, the underlying cryptographic building blocks provide

an estimated 128 bits of security.

3
Note that libsodium is a C library while petrelic is a Python library, so some

amount of variation in the benchmarks may be due to language-level performance

differences. However, we note that petrelic is a Python wrapper around a C imple-

mentation of the pairing curves, which should reduce some of the variability.

Parameter selection for flexible broadcast. To construct a flexible

broadcast encryption scheme that supports a maximum broadcast

size 𝐾 and up to 𝐿 registered users, Construction 3.3 relies on a

distributed broadcast encryption scheme with 𝑁 slots and where

each user generates public keys for𝐷 different slots. The parameters

𝑁 and 𝐷 are chosen so as to provide security (Theorem 3.5). In our

setting, we choose 𝑁 and 𝐷 to provide 𝜅 = 40 bits of statistical
security and 𝜆 = 128 bits of computational security. Specifically, we

choose the parameters 𝑁 and 𝐷 so that for every adversary A for

our flexible broadcast encryption scheme, there exists an adversary

B for the underlying distributed broadcast encryption scheme such

that Eq. (3.1) in Theorem 3.5 satisfies

AdvFBE (A) ≤ AdvDBE (B) + 2−𝜅 .
Concretely, we appeal to Eq. (3.2) and choose 𝑁 , 𝐷 such that∑︁

𝑘≤𝐾
𝑝𝑘 ≤

∑︁
𝑘≤𝐾

𝐶 (𝐿, 𝑘)𝐶 (𝑁,𝑘)
[
𝐶 (𝑘, 𝐷)
𝐶 (𝑁, 𝐷)

]𝑘
≤ 2
−𝜅 .

We exhaustively search over values of 𝑁, 𝐷 that satisfy Section 4.1

and choose the configuration that minimizes the size of each user’s

public key (and correspondingly, the size of the public-key direc-

tory). When we instantiate Construction 3.3 with the distributed

broadcast encryption from [32] (see the full version of this paper for

more details), the size of each user’s public key scales with 𝑂 (𝑁𝐷).

Bipartite matching. We used the bipartite matching function in

SciPy (version 1.11.1). The function implements the Hopcroft–Karp

algorithm (Theorem 3.2).

Experimental setup. Our implementation of flexible broadcast

encryption scheme (based on the distributed broadcast encryp-

tion scheme of [32]) consists of 800 lines of code.
4
We collect our

benchmarks on an Amazon EC2 c6i.xlarge instance running

Ubuntu 22.04. The machine has a 4-core Intel Xeon Platinum 8375C

CPU@ 2.90GHz and 8 GB of RAM. We use a single-threaded execu-

tion environment for all measurements. We run our code using the

Python 3.10.6 interpreter. For our running time measurements, we

run each experiment 100 times and report the average running time.

When reporting parameter sizes (e.g., public key size and ciphertext

size), we compute them analytically based on the number of group

elements and the measured size of each group element.

Simulated public keys. When measuring the encryption and de-

cryption costs for our flexible broadcast encryption scheme for

large broadcast sets (i.e., large values of 𝐾), a bottleneck is the

cost of generating the 𝐾 public keys. Since each public key in our

scheme has size 𝑂̃ (𝐾), generating 𝐾 public keys requires 𝑂̃ (𝐾2)
work and storage. This becomes infeasible on our test machine for

large values of 𝐾 .5 To benchmark the encryption/decryption costs

for large values of 𝐾 , we replace the actual public keys with sim-

ulated keys. Specifically, the public keys in our flexible broadcast

encryption consists of a set of public keys for the underlying dis-

tributed broadcast encryption scheme, and each of these underlying

public keys consist of a vector of 𝑂 (𝐾) structured group elements.

4
The complete implementation is available here:

https://github.com/RachitG54/FlexBroadcast.
5
In practice, users only need to generate and post their own key, so this is not a

problem. The challenge in benchmarking is we need to simulate the keys for all 𝐾

users, which results in the quadratic dependence on 𝐾 .

1101

https://github.com/RachitG54/FlexBroadcast

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Rachit Garg, George Lu, Brent Waters, & David J. Wu

Instead of computing these group elements individually, we simu-

late the public key by replacing the group elements with random
group elements. The running time of the encryption/decryption al-

gorithms only depends on the size of the broadcast set𝐾 , so the cost

of encryption/decryption with respect to a simulated key should be

comparable to the cost with respect to an honestly-generated key.

More precisely, for a fixed value of 𝐾 , the encryption/decryption

algorithms always performs the same number of group operations.

Using simulated keys allows us to provide measurements for con-

siderably larger broadcast sets without having to generate and store

public keys for all 𝐾 users.

To validate the use of simulated keys, we measure the running

time of the encryption and decryption algorithms using simulated

keys as well as honestly-generated keys. For a directory with 𝐿 =

2
10

users, and broadcast sets of size 𝐾 ranging from 𝐾 = 2
5
to

𝐾 = 2
10
, we observe that the difference between the running time

with real keys and that with simulated keys is at most 2%. For the

largest case we compared (𝐿 = 𝐾 = 2
10
), encryption and decryption

with real keys required 6.08 ms and 8.26 ms, respectively; using

simulated keys, encryption and decryption required 5.99 ms and

8.20 ms, respectively. As mentioned previously, all running times

are averaged over a minimum of 100 iterations.

Remark 4.2 (User KeyManagement). While individual public keys

in our system scale quasi-linearly with the size of the broadcast

set 𝐾 , users of the systems do not necessarily need to download

and store the full public keys of other users. This can yield signifi-

cant reductions in the communication and storage requirements of

the system at the user level. This optimization relies on two spe-

cial properties of the underlying distributed broadcast encryption

scheme [32] we use. We refer to the full version of this paper for

the full details.

4.2 Benchmarks
In this section, we describe the main benchmarks (in terms of run-

ning time and parameter size) for our flexible broadcast encryption

scheme and provide a comparison with the alternative approaches

for broadcast encryption described at the beginning of Section 4.

Computational cost. Fig. 2 shows the running times of the dif-

ferent cryptographic operations underlying our flexible broadcast

scheme as a function of the bound 𝐾 on the size of the broadcast

set. We consider public-key directories with 2
16

users and 2
20

users,

and measure the performance of each of the cryptographic opera-

tions. To support a public-key directory with over a million users,

the most expensive operation is user key generation. For broad-

cast sets with up to 2
12

users, key generation requires about 12

seconds of computation. While key generation is expensive, this

cost is amortized over the lifetime of the key. More importantly,

both encryption and decryption are fast. Encrypting to 2
12

users

from a public-key directory with over a million entries requires just

20 ms of computation. For smaller broadcast sets (e.g., 32 users),

encryption requires just 2 ms. The decryption time in all of these

cases are comparable to the encryption time (since they perform a

similar set of operations). Moreover, as we discuss in Remark 4.3, if

users send/receive encrypted broadcasts to/from the same group of

users, they can precompute a group-dependent key to enable even

faster encryption and decryption.

In Fig. 3, we compare the computational costs of key genera-

tion, encryption, and decryption of flexible broadcast encryption

to distributed and centralized broadcast encryption, as well as to

that of vanilla ElGamal. Compared to the broadcast encryption

schemes, ElGamal encryption has the fastest key generation (over

34000× faster than flexible broadcast) and decryption times (85×
faster than flexible broadcast). This is because key-generation and

decryption in ElGamal both require a constant number of group

operations over a pairing-free curve. Broadcast encryption schemes

all require pairing curves, which incur additional computational

overhead. Moreover, the decryption cost for the broadcast encryp-

tion schemes all scale linearly with the size of the broadcast set,

whereas with ElGamal, a user only has to decrypt the ciphertext

encrypted to her public key (see Table 1).

Flexible broadcast encryption yields a 16× reduction in encryp-

tion time when encrypting to 2
10

users. The encryption times

among the broadcast encryption schemes are comparable. While

the encryption cost for all of the schemes scale linearly (or quasilin-

early) with the size of the broadcast set𝐾 , the concrete improvement

over ElGamal encryption is primarily due to the fact that using

ElGamal encryption to encrypt 𝐾 messages requires 𝑂 (𝐾) expo-
nentiations. In contrast, encryption in the broadcast encryption

schemes only require 𝑂 (𝐾) multiplications and a constant number

of exponentiations.

When the size of the public key directory coincides with the size

of the broadcast set (i.e., 𝐿 = 𝐾 = 2
10
), flexible broadcast encryption

is 1.3× slower for encryption and 1.2× slower for decryption (resp.,

2.7× and 2.5× slower) compared to distributed (resp., centralized)

broadcast encryption. The slowdown relative to distributed broad-

cast encryption is because our construction (Construction 3.3) in-

stantiates the underlying distributed broadcast encryption scheme

with slightly more than 𝐾 slots in order to reduce the size of each

individual public key (see Section 4.1 for details on how we choose

the scheme parameters). For instance, for the case of 2
10

users,

our construction initializes the underlying distributed broadcast

encryption scheme with 1226 slots and each user generates 4 keys

for the underlying scheme.

A key advantage of flexible broadcast over distributed broadcast

is the lower key-generation times. Whereas key-generation scales

linearly with the size of the public-key directory in distributed

broadcast, it scales with the size of the broadcast set in the case

of flexible broadcast. When the number of users 𝐿 is much larger

than the size of the broadcast set 𝐾 (e.g., 𝐿 = 2
24

and 𝐾 = 2
10
), we

estimate the key-generation time in flexible broadcast encryption

to be 420× faster (7.0 seconds vs. 49 minutes). When the size of

the broadcast set is comparable to the total number of users (e.g.,

𝐾 ≈ 𝐿), then distributed broadcast encryption is more efficient.

This is because each public key in our flexible broadcast encryption

scheme consists of multiple keys for the underlying distributed

broadcast encryption scheme; this is what allows us to decouple

keys from slot indices. We observe that when the number of users

is roughly 16× greater than the size of the broadcast set, flexible

broadcast encryption yields faster key generation (see Fig. 3) and

shorter public keys.

Setup costs. Each of the broadcast encryption schemes requires

an initial setup phase. For centralized broadcast, this corresponds to

1102

Realizing Flexible Broadcast Encryption: How to Broadcast to a Public-Key Directory CCS ’23, November 26–30, 2023, Copenhagen, Denmark

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

10
−3

10
−2

10
−1

10
0

10
1

Maximum Broadcast Set Size 𝐾

T
i
m
e
(
s
)

𝐿 = 2
16

Total Users

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

10
−3

10
−2

10
−1

10
0

10
1

Maximum Broadcast Set Size 𝐾

T
i
m
e
(
s
)

𝐿 = 2
20

Total Users

Setup KeyGen Encrypt Decrypt

Figure 2: Running time of the primary algorithms for our flexible broadcast encryption scheme (Construction 3.3). We measure the running time of each of

the underlying cryptographic algorithms for a public-key directory with 𝐿 = 2
16

and 𝐿 = 2
20

users and capable of supporting a maximum broadcast set size

ranging from 𝐾 = 2
5
to 𝐾 = 2

12
.

the central authority generating themaster public key and the secret

keys for each user. In distributed and flexible broadcast encryption,

this is the one-time sampling of a (reusable) common reference

string. The advantage of flexible broadcast encryption over the

other two schemes is the fact that the setup cost scales with the

size of the broadcast set rather than the total number of users in

the system (see Table 1).

As a concrete example, when the size of the broadcast set is

comparable to the size of the public-key directory, the setup time

for flexible broadcast encryption is slightly slower than that for

centralized and distributed broadcast (when 𝐾 = 𝐿 = 2
10
, the setup

for flexible broadcast encryption takes 0.64 s, which is 1.2× slower

than that for centralized and distributed broadcast). As the number

of users grows (i.e., when 𝐿 ≫ 𝐾), the setup costs for centralized

and distributed broadcast far exceed those for distributed broadcast.

For instance, when 𝐿 = 2
14

and 𝐾 = 2
10
, setup for flexible broad-

cast takes 1.2 s, which is over 7× faster than both distributed and

centralized broadcast. This gap further widens as the size of the

public-key directory widens.

Public-key directory size. In Fig. 4, we consider the size of the pub-
lic key directory as a function of the number of users 𝐿. As shown

in Fig. 4, when 𝐿 is large, flexible broadcast encryption yields sig-

nificant savings in the size of the public-key directory compared to

distributed broadcast encryption. For instance, to support broadcast

sets with up to 64 users, a public-key directory with 𝐿 = 2
16

users

would require 210 GB of storage with distributed broadcast (i.e.,

3.2 MB for a single key). The size of the corresponding directory

using flexible broadcast scheme is 5.5 GB (i.e., 83.6 KB for a single

key); this is a 38× reduction in storage. This gap widens as the

number of users increases as the size of the public-key directory

scales quadratically with the number of users in the case of dis-

tributed broadcast encryption whereas it scales linearly in the case

of flexible broadcast encryption (see Table 1).

Both flexible and distributed broadcast require significantly larger

public-key directories compared to using a centralized broadcast

encryption scheme or vanilla ElGamal encryption. For a public-key

directory with the same number of users (𝐿 = 2
16
), the size of

the public-key directory is just 19 MB in a centralized broadcast

encryption scheme and 2.1 MB with vanilla ElGamal public keys. It

is an interesting question to design concretely-efficient distributed

and flexible broadcast encryption schemes with shorter public keys.

For flexible and distributed broadcast encryption, the public-key

directory includes both the CRS as well as the user public keys.

The CRS typically constitutes a small fraction of the directory size.

For instance, for a directory with 𝐿 = 2
12

users and supporting

broadcast sets of size 𝐾 = 2
6
, the size of the CRS is just 0.018% the

size of the public key directory in flexible broadcast encryption.

This proportion decreases as the number of users increase.

Ciphertext size. In Fig. 5, we compare the ciphertext size as a

function of the size of the broadcast set. The key advantage of all of

the broadcast encryption schemes is that the size of the ciphertext

is independent of the number of users in the broadcast set (530

bytes). In contrast, if we have to separately encrypt the message

to each user using ElGamal encryption, the size of the ciphertext

scales linearly with the number of users. While broadcasting to a

single user using ElGamal just requires 64 bytes (8× smaller than

broadcast encryption ciphertexts), encrypting to even a modest set

of 1024 users already leads to a 33 KB ciphertext. This is over 600×
larger than broadcast encryption ciphertexts.

Microbenchmarks. In Fig. 6, we provide a fine-grained break-

down of the computational costs of the encryption and decryption

algorithms in our flexible broadcast encryption scheme. Specifi-

cally, the encryption and decryption algorithm in Construction 3.3

decomposes into a combinatoric step corresponding to finding a

matching in a bipartite graph induced by the broadcast set and

a cryptographic step corresponding to constructing a ciphertext

(in the case of encryption) or recovering a message (in the case of

decryption). As illustrated in Fig. 6, the encryption and decryption

costs in our scheme are dominated by the cost of the cryptographic

group operations. For example, for a public-key directory with a

million users and broadcasting to 64 users, the cryptographic group

operations in encryption take 1.3 ms while finding the matching

1103

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Rachit Garg, George Lu, Brent Waters, & David J. Wu

2
10

2
12

2
14

2
16

2
18

2
20

2
22

2
24

10
−5

10
−3

10
−1

10
1

10
3

Total Users 𝐿

K
e
y
G
e
n
e
r
a
t
i
o
n
T
i
m
e
(
s
)

2
10

2
12

2
14

2
16

2
18

2
20

2
22

2
24

10
0

10
1

10
2

Total Users 𝐿

E
n
c
r
y
p
t
i
o
n
T
i
m
e
(
m
s
)

Flexible Broadcast Distributed Broadcast Centralized Broadcast ElGamal

2
10

2
12

2
14

2
16

2
18

2
20

2
22

2
24

10
−1

10
0

10
1

Total Users 𝐿

D
e
c
r
y
p
t
i
o
n
T
i
m
e
(
m
s
)

Figure 3: Key-generation (for an individual user), encryption, and decryption times for a broadcast set of size 𝐾 = 2
10

in public-key directories of varying

sizes 𝐿. The solid lines denote empirically-measured running times while the dotted lines denote extrapolated values based on the measured running times and

the asymptotic characterization of the algorithm. We use extrapolated values for distributed broadcast and centralized broadcast in settings where generating

the full public-key directory is too expensive. Namely, the generation of the public parameters in centralized broadcast and individual public keys in distributed

broadcast both scale linearly with the number of users rather than the size of the broadcast set, making them infeasible to measure for large 𝐿. For centralized

broadcast encryption, the central authority generates the public/secret key-pairs for the users during setup, so we do not report a user key-generation cost.

in the bipartite graph requires just 17.2 𝜇s (over 75× faster). How-

ever, as the size of the broadcast set increases, the fraction of time

taken to compute the matching also increases. When broadcasting

to 𝐾 = 2
12

users, the combinatoric step accounts for 0.6 ms of the

24 ms required for encryption.

Asymptotically, the number of cryptographic operations in our

construction scale linearly with the size 𝐾 of the broadcast set,

whereas the cost of computing the matching scales with 𝑂̃ (𝐾1.5)
in the worst case. For random graphs, such as those induced by

Construction 3.3, the (expected) performance of the matching al-

gorithms is quasilinear in the size of the graph [9, 34]. Ultimately,

for the parameter regimes we considered, the running time was

dominated by the cryptographic group operations.

Remark 4.3 (Precomputation for Fixed Sets). The distributed

broadcast encryption scheme by Kolonelos et al. [32] has an appeal-

ing property that the encryption algorithm can be decomposed into

two components: (1) a message-independent procedure that only de-

pends on the broadcast set 𝑆 and outputs a short key pk𝑆 ; and (2) a

message-dependent procedure that takes the message𝑚 and the pre-

computed key pk𝑆 , and outputs the ciphertext ct. Critically, given
the precomputed key pk𝑆 , the encryption algorithm only needs to

perform a constant number of group operations, independent of the
size of the broadcast set. The decryption algorithm admits a similar

decomposition. This means that when encrypting or decrypting to

the same set of users (e.g., in a group messaging application), users

can precompute the public key pk𝑆 for the group members. In this

case, the cost of encryption and decryption become independent of
the size of the broadcast set.

Since our flexible broadcast encryption scheme is built on [32],

our scheme also supports precomputing group-dependent public

keys to accelerate encryption and decryption. We provide some

microbenchmarks in Table 2. Namely, by precomputing the group-

dependent public keys, we can reduce the cost of encryption and

decryption by 97% and 94%, respectively, when the broadcast set

size is 𝐾 = 4096 (i.e., from 23.8 ms to 0.8 ms for encryption and 28.7

2
12

2
14

2
16

2
18

2
20

2
22

2
24

2
26

2
28

2
30

2
32

10
−2
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

Total Users 𝐿

P
u
b
l
i
c
K
e
y
D
i
r
e
c
t
o
r
y
S
i
z
e
(
M
B
)

Flexible Distributed

Centralized ElGamal

Figure 4: Public-key directory size (computed analytically) needed for

different schemes to support broadcasting to a maximum of 2
6
users. We

compare the three broadcast encryption schemes: flexible broadcast encryp-

tion (Construction 3.3), distributed broadcast encryption [32], and central-

ized broadcast encryption [11], as well as against a baseline approach of a

standard public-key directory with ElGamal public keys. The public-key

directory includes the total length of all individual public keys (or the master

public key in the case of centralized broadcast) as well as the CRS when

applicable. For the settings illustrated here, the CRS for the distributed

broadcast encryption constitutes at most 0.2% of the total directory size and

0.02% in the case of flexible broadcast encryption.

ms to 1.7 ms for decryption). This size of the precomputed key is

16.4 KB in this case. Moreover, the improvement increases as the

size of the broadcast set increases.

4.3 Ciphertext vs. Directory Size Tradeoff
A limitation of distributed and flexible broadcast encryption is the

large size of the users’ public keys (and correspondingly, the size

of the public-key directory). Whereas a standard ElGamal public

1104

Realizing Flexible Broadcast Encryption: How to Broadcast to a Public-Key Directory CCS ’23, November 26–30, 2023, Copenhagen, Denmark

2
12

2
14

2
16

2
18

2
20

2
22

2
24

2
26

2
28

2
30

2
32

10
−1

10
1

10
3

10
5

10
7

Maximum Broadcast Set Size 𝐾

C
i
p
h
e
r
t
e
x
t
S
i
z
e
(
K
B
)

Broadcast ElGamal

Figure 5: Size of an encrypted broadcast to 𝐾 users (computed analyti-

cally). We compare the ciphertext size using broadcast encryption against

the basline approach of separately encrypting to each user using ElGamal

encryption. The size of the ciphertext is the same for the centralized broad-

cast [11], distributed broadcast [32], and our flexible broadcast encryption

scheme, so we do not distinguish between these.

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

10
−3

10
−2

10
−1

10
0

10
1

10
2

Maximum Broadcast Set Size 𝐾

T
i
m
e
(
m
s
)

Matching Encrypt Decrypt

Figure 6: Computational cost breakdown for the encryption and decryp-

tion algorithms of our flexible broadcast encryption scheme (Construc-

tion 3.3). Both encryption and decryption decompose into (1) a combinatoric

step (finding a matching in the bipartite graph induced by the broadcast

set); and (2) a cryptographic step for computing the ciphertext (in the case

of encryption) or recovering the message (in the case of decryption). We

measure the computational costs of constructing the bipartite graph and

finding the matching (“Matching”) and the cryptographic cost for the en-

cryption (“Encrypt”) and decryption algorithms (“Decrypt”). We report the

running times as a function of the maximum broadcast set size 𝐾 . We use a

public-key directory with 𝐿 = 2
20

users and always assume we are broad-

casting to the maximum number of users 𝐾 .

key is just 32 bytes, the size of a public key in our flexible broadcast

encryption scheme is 14.9 MB (for supporting broadcasts to 2
14

users). With 2
20

users, the size of the public-key directory is already

15.6 TB, which can be infeasible to store.

Using a standard rebalancing technique (e.g., [11, §3.2]) we can

obtain a tradeoff between the public key size and the ciphertext

size in broadcast encryption schemes. For the broadcast encryption

schemes we consider in this work, rebalancing allows us to reduce

the public parameter size by a factor of 𝑁 while increasing the

No Precomputation With Precomputation
𝑲 Encryption Online Offline Size

1024 6 ms 0.8 ms 5.2 ms 4.1 KB

2048 12.1 ms 0.8 ms 11.4 ms 8.2 KB

4096 24.7 ms 0.8 ms 23.8 ms 16.4 KB

Decryption Online Offline Size

1024 8.1 ms 1.7 ms 6.4 ms 4.1 KB

2048 15.5 ms 1.7 ms 13.8 ms 8.2 KB

4096 30.4 ms 1.7 ms 28.7 ms 16.4 KB

Table 2: Encryption and decryption costs of flexible broadcast encryption

with precomputation (Remark 4.3) as a function of the size of the broadcast

set 𝐾 (and a directory with 𝐿 = 2
20

users). We report the running time

without precomputation, the “online time” of encryption/decryption given

the group-dependent key, the “offline time” needed to compute the group-

dependent key, and the size of the group-dependent key.

ciphertext size by the same factor. We describe the rebalancing

approach for each scheme in more detail below:

• Centralized broadcast: The size of the public parameters in

the centralized broadcast scheme from [11] scale linearly with

the number of users 𝐿. However, the scheme has the appealing

property that the same public parameters can essentially be reused
across multiple instantiations (at the cost of publishing one re-

randomizing group element for each instantiation) [11, §3.2].

In the rebalanced scheme, to support 𝐿 users, we partition the

𝐿 users into 𝑁 different buckets, where each bucket contains

𝐿/𝑁 users. We instantiate 𝑁 copies of the centralized broadcast

encryption scheme on 𝐿/𝑁 users (with a common set of public

parameters). Each ciphertext consists of 𝑁 ciphertexts for the

underlying centralized broadcast encryption schemes (where the

𝑖th ciphertext is for the 𝐿/𝑁 users associated with bucket 𝑖).

• Distributed broadcast: In distributed broadcast, we rebalance

by initializing 𝑁 copies of the distributed broadcast scheme. Each

copy supports 𝐿/𝑁 users and we use the same CRS across all of
the instantiations. Like in the setting of centralized broadcast

encryption, each ciphertext consists of 𝑁 ciphertexts for the

underlying distributed broadcast encryption scheme.

• Flexible broadcast: In our flexible scheme, we run 𝑁 instances

of our scheme, where each scheme supports broadcasting to a

maximum of 𝐾/𝑁 users. The same CRS is used in all instanti-

ations. Each ciphertext now consists of 𝑁 ciphertexts for the

underlying flexible broadcast encryption scheme, where each

ciphertext is used to broadcast to 𝐾/𝑁 users.

For the rebalanced schemes, the same encryption randomness can

be shared across all 𝑁 ciphertexts (similar to using ElGamal to

encrypt the same message to multiple users). We provide an asymp-

totic comparison of the rebalanced schemes in Table 3.

We illustrate these tradeoffs in Fig. 7. Without rebalancing, the

size of a public-key directory with 𝐿 = 2
20

users implemented

using a flexible broadcast encryption with a maximum broadcast

set size 𝐾 = 2
10

is 1.3 TB (1.3 MB per key) and each ciphertext is

530 bytes. With rebalancing (i.e., setting 𝑁 = 2
5
), we obtain a public

key directory of 52 GB (52 KB per key) and a ciphertext size of 2

1105

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Rachit Garg, George Lu, Brent Waters, & David J. Wu

10
3

10
6

10
9

10
12

10
0

EGEGEGEGEGEGEG

Public Key Directory Size (KB)

C
i
p
h
e
r
t
e
x
t
S
i
z
e
(
K
B
)

𝐿 = 2
20 , 𝐾 = 2

6

10
3

10
6

10
9

10
12

10
0

10
1

EGEGEGEGEGEGEGEGEGEGEG

Public Key Directory Size (KB)

C
i
p
h
e
r
t
e
x
t
S
i
z
e
(
K
B
)

𝐿 = 2
20 , 𝐾 = 2

10

10
3

10
6

10
9

10
12

10
0

10
1

10
2

10
3

10
4

EGEGEGEGEGEGEGEGEGEGEGEGEGEGEGEGEG

Public Key Directory Size (KB)

C
i
p
h
e
r
t
e
x
t
S
i
z
e
(
K
B
)

𝐿 = 2
20 , 𝐾 = 2

16

Flexible Distributed Centralized

Figure 7: Tradeoff between ciphertext size and public-key directory size (computed analytically) for a public-key directory containing 𝐿 users and supporting

broadcasts to up to 𝐾 users. We compare our flexible broadcast encryption scheme (“Flexible”) against the centralized broadcast encryption scheme of Boneh,

Gentry, and Waters [11] (“Centralized”) as well as the distributed broadcast encryption scheme of Kolonelos, Malavolta, and Wee [32] (“Distributed”). We

instantiate the centralized and distributed broadcast encryption schemes for 𝐿 users (in order to support broadcasting to an arbitrary subset of 𝐾 users); as

such, both the centralized and the distributed schemes also support broadcasting to more than 𝐾 users. We also compare against a baseline solutions where

the public-key directory consists of ElGamal public keys (“EG”) for each user and a broadcast to 𝐾 users consists of 𝐾 ElGamal ciphertexts. We showcase

these tradeoffs for small (𝐾 = 2
6
), medium (𝐾 = 2

10
), and large (𝐾 = 2

16
) broadcast sets.

Broadcast Encryption
Flexible Distributed Centralized PKE

CRS size 𝑂 (𝐾/𝑁) 𝑂 (𝐿/𝑁) – –

Directory size 𝑂̃ (𝐿𝐾/𝑁) 𝑂 (𝐿2/𝑁) 𝑂 (𝑁 +𝐾/𝑁) 𝑂 (𝐿)
Ciphertext size 𝑂 (𝑁) 𝑂 (𝑁) 𝑂 (𝑁) 𝑂 (𝐾)

Table 3: Asymptotic comparison of different approaches for broadcasting

an encrypted message to a public-key directory with rebalancing. Here, 𝐿 is

the number of users in the public-key directory,𝐾 is the size of the broadcast

set, and 𝑁 is the rebalancing factor. We suppress all polynomials in the

security parameter, and write 𝑂̃ (·) to suppress polylogarithmic factors.

KB. This represents a 26× reduction in the public key size over the

unbalanced scheme at the cost of a 4× increase in the ciphertext

size. With rebalancing, the size of the ciphertext is still 16× shorter

than using vanilla ElGamal encryption.

5 RELATEDWORK
In this section, we survey some related approaches for construct-

ing flexible broadcast encryption and similar primitives, as well

as connections between flexible broadcast encryption and other

cryptographic protocols.

Theoretical approaches for constructing flexible broadcast encryp-
tion. Flexible broadcast encryption was first introduced by Freitag,

Waters, and Wu [23]. In their work, they describe how to realize

it by combining witness encryption [25] with function-binding

hash functions. While there have been several recent advance-

ments for constructing witness encryption from new lattice-based

assumptions [38, 39], these existing constructions are primarily of

theoretical interest currently. To our knowledge, no implementa-

tions of these schemes currently exist, and moreover, using them

to realize the [23] compiler requires composing witness encryption

on top of fully homomorphic encryption (needed to instantiate the

function-binding hash function).

In the same work, Freitag et al. also show a generic transforma-

tion from a registered attribute-based encryption (registered ABE)

scheme [29] to either a distributed or flexible broadcast encryp-

tion scheme, depending on whether the key-generation algorithm

in the underlying registered ABE scheme is stateful or stateless.

Existing constructions of registered ABE from pairings have a state-

ful key-generation process [29] and thus, only yield distributed

broadcast encryption, whereas registered ABE schemes based on

indistinguishability obfuscation [16, 22, 29] are stateless. These lat-

ter schemes can be used to construct flexible broadcast encryption,

but the reliance on general-purpose indistinguishability obfuscation

makes these schemes concretely inefficient.

Dynamic broadcast encryption. The notion of dynamic broad-

cast encryption [18] was defined as a strengthening of centralized

broadcast that allows a (trusted) group manager to dynamically

add or remove users to the system while minimally changing the

encryption key and without changing users’ decryption keys. Sub-

sequently, Phan, Pointcheval, and Strefler [36] extended the notion

to a decentralized setting that removes the need for a central author-

ity. However, their scheme requires an interactive setup between

all of the users in the system. Flexible broadcast encryption only

requires a one-time (reusable) and user-independent sampling of

the public parameters (see Remark 4.1).

Secure group messaging. Secure group messaging (SGM) proto-

cols [1, 2, 7] and more formally, continuous group key agreement

(CGKA) protocols [3, 4] are cryptographic protocols that facilitate

encrypted asynchronous communication between groups of users.

The security goals in these protocols are to achieve notions like

forward secrecy and post-compromise security. The focus of these

works is on supporting end-to-end encrypted messaging among

1106

Realizing Flexible Broadcast Encryption: How to Broadcast to a Public-Key Directory CCS ’23, November 26–30, 2023, Copenhagen, Denmark

persistent long-lived, and possibly dynamic, groups of users. On

the other hand, flexible broadcast encryption is a cryptographic

primitive for facilitating short encrypted broadcasts to arbitrary

sets of users (and without a priori coordination between users).
6

We view the difference between flexible broadcast encryption

and continuous group key agreement to be akin to the difference

between vanilla public key encryption and vanilla key agreement.

The former allows a user to send an encrypted message without

any prior interaction with a recipient whereas the latter allows

persistent, long-lived state and may require additional security

properties such as forward secrecy.Much like public-key encryption

is a useful building block for realizing key agreement and encrypted

messaging, we believe flexible broadcast encryption can be a useful

cryptographic building block for improving the efficiency of secure

group messaging protocols.

6 CONCLUSION
Flexible broadcast encryption provides a mechanism to encrypt a

broadcast to a set of 𝐾 users with a ciphertext whose size is sub-

linear in 𝐾 . Compared to traditional public-key directories built

on vanilla public-key encryption, a flexible broadcast encryption

scheme enables succinct broadcasts at the cost of larger individual

user keys. This work provides the first concretely-efficient construc-

tion of flexible broadcast encryption. With our scheme, a sender

can encrypt a 128-bit symmetric key to a set of 2
10

recipients (from

a public-key directory with 2
20

keys) with a 2 KB ciphertext. This is

16× smaller than separately encrypting to each user using standard

ElGamal encryption. This gap widens as the size of the broadcast

set increases. The tradeoff is that each user’s public key is now

50 KB. While this is relatively short in absolute terms, it is still over

1500× longer than a standard ElGamal public key (32 bytes).

ACKNOWLEDGMENTS
We thank Jesko Dujmovic, Giulio Malavolta, and Hoeteck Wee

for helpful discussions on this work. We thank the anonymous

reviewers for helpful comments on the presentation. Brent Waters

is supported by NSF CNS-1908611, CNS-2318701, and a Simons

Investigator award. David J. Wu is supported by NSF CNS-2151131,

CNS-2140975, CNS-2318701, a Microsoft Research Faculty Fellow-

ship, and a Google Research Scholar award.

REFERENCES
[1] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. 2020. Secu-

rity Analysis and Improvements for the IETF MLS Standard for Group Messaging.

In CRYPTO.
[2] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. 2021. Mod-

ular Design of Secure Group Messaging Protocols and the Security of MLS. In

ACM CCS.
[3] Joël Alwen, Sandro Coretti, Daniel Jost, and Marta Mularczyk. 2020. Continuous

Group Key Agreement with Active Security. In TCC.
[4] Joël Alwen, Marta Mularczyk, and Yiannis Tselekounis. 2023. Fork-Resilient

Continuous Group Key Agreement. IACR Cryptol. ePrint Arch. (2023).
[5] D. F. Aranha, C. P. L. Gouvêa, T. Markmann, R. S. Wahby, and K. Liao. 2022. RELIC

is an Efficient LIbrary for Cryptography. https://github.com/relic-toolkit/relic.

[6] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,

Salil P. Vadhan, and Ke Yang. 2001. On the (Im)possibility of Obfuscating Pro-

grams. In CRYPTO.

6
Our construction does require a trusted sampling of a structured reference string (e.g.,

using a multiparty computation protocol [35]). However, this sampling procedure

is user-independent and the same reference string could be reused across many

independent systems. We refer to Remark 4.1 for more discussion.

[7] Richard Barnes, Benjamin Beurdouche, Raphael Robert, Jon Millican, Emad

Omara, and Katriel Cohn-Gordon. 2023. The Messaging Layer Security (MLS)
Protocol. Technical Report. IETF. https://datatracker.ietf.org/doc/rfc9420/

[8] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. 2002. Constructing Elliptic

Curves with Prescribed Embedding Degrees. In SCN.
[9] Hannah Bast, Kurt Mehlhorn, Guido Schäfer, and Hisao Tamaki. 2006. Matching

Algorithms Are Fast in Sparse Random Graphs. Theory Comput. Syst. (2006).
[10] Mihir Bellare and Phillip Rogaway. 1994. Optimal Asymmetric Encryption. In

EUROCRYPT.
[11] Dan Boneh, Craig Gentry, and Brent Waters. 2005. Collusion Resistant Broadcast

Encryption with Short Ciphertexts and Private Keys. In CRYPTO.
[12] Dan Boneh and Mark Zhandry. 2014. Multiparty Key Exchange, Efficient Traitor

Tracing, and More from Indistinguishability Obfuscation. In CRYPTO.
[13] Brent Carmer, Alex J. Malozemoff, and Mariana Raykova. 2017. 5Gen-C: Multi-

input Functional Encryption and Program Obfuscation for Arithmetic Circuits.

In ACM CCS.
[14] Arush Chhatrapati, Susan Hohenberger, James Trombo, and Satyanarayana

Vusirikala. 2022. A Performance Evaluation of Pairing-Based Broadcast En-

cryption Systems. In ACNS.
[15] Simone Colombo, Kirill Nikitin, Henry Corrigan-Gibbs, David J. Wu, and Bryan

Ford. 2023. Authenticated Private Information Retrieval. In USENIX Security
Symposium.

[16] Pratish Datta and Tapas Pal. 2023. Registration-Based Functional Encryption.

IACR Cryptol. ePrint Arch. (2023).
[17] Brian Dean. 2023. WhatsApp 2023 User Statistics: How Many People Use What-

sApp?

[18] Cécile Delerablée, Pascal Paillier, and David Pointcheval. 2007. Fully Collu-

sion Secure Dynamic Broadcast Encryption with Constant-Size Ciphertexts or

Decryption Keys. In Pairing.
[19] Frank Denis. 2023. The Sodium cryptography library. https://download.

libsodium.org/doc/

[20] Jesko Dujmovic, Rachit Garg, and Giulio Malavolta. 2023. Efficient Batchable

Time-Lock Puzzles. Manuscript.

[21] Amos Fiat and Moni Naor. 1993. Broadcast Encryption. In CRYPTO.
[22] Danilo Francati, Daniele Friolo, Monosij Maitra, Giulio Malavolta, Ahmadreza

Rahimi, and Daniele Venturi. 2023. Registered (Inner-Product) Functional En-

cryption. IACR Cryptol. ePrint Arch. (2023).
[23] Cody Freitag, Brent Waters, and David J. Wu. 2023. How to Use (Plain) Witness

Encryption: Registered ABE, Distributed Broadcast, and More. In CRYPTO.
[24] Taher El Gamal. 1984. A Public Key Cryptosystem and a Signature Scheme Based

on Discrete Logarithms. In CRYPTO.
[25] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. 2013. Witness en-

cryption and its applications. In STOC.
[26] Craig Gentry and Brent Waters. 2009. Adaptive Security in Broadcast Encryption

Systems (with Short Ciphertexts). In EUROCRYPT.
[27] Laurent Girod and Wouter Lueks. 2020. petrelic. https://petrelic.readthedocs.

io/en/latest/.

[28] Peter Hall. 1935. On Representatives of Subsets. Journal of The London Mathe-
matical Society (1935).

[29] Susan Hohenberger, George Lu, Brent Waters, and David J. Wu. 2023. Registered

Attribute-Based Encryption. In EUROCRYPT.
[30] John E. Hopcroft and Richard M. Karp. 1971. A nˆ5/2 Algorithm for Maximum

Matchings in Bipartite Graphs. In SWAT.
[31] Aayush Jain, Huijia Lin, and Amit Sahai. 2021. Indistinguishability obfuscation

from well-founded assumptions. In STOC.
[32] Dimitris Kolonelos, Giulio Malavolta, and Hoeteck Wee. 2023. Distributed Broad-

cast Encryption from Bilinear Groups. In ASIACRYPT.
[33] Kevin Lewi, Alex J. Malozemoff, Daniel Apon, Brent Carmer, Adam Foltzer, Daniel

Wagner, David W. Archer, Dan Boneh, Jonathan Katz, and Mariana Raykova.

2016. 5Gen: A Framework for Prototyping Applications Using Multilinear Maps

and Matrix Branching Programs. In ACM CCS.
[34] Rajeev Motwani. 1994. Average-Case Analysis of Algorithms for Matchings and

Related Problems. J. ACM 41, 6 (nov 1994). https://doi.org/10.1145/195613.195663

[35] Valeria Nikolaenko, Sam Ragsdale, Joseph Bonneau, and Dan Boneh. 2022.

Powers-of-Tau to the People: Decentralizing Setup Ceremonies. IACR Cryp-
tol. ePrint Arch. (2022).

[36] Duong Hieu Phan, David Pointcheval, and Mario Strefler. 2012. Decentralized

Dynamic Broadcast Encryption. In SCN.
[37] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. 1978. A Method for

Obtaining Digital Signatures and Public-Key Cryptosystems. Commun. ACM 21,

2 (1978).

[38] Rotem Tsabary. 2022. Candidate Witness Encryption from Lattice Techniques. In

CRYPTO.
[39] Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. 2022. Witness Encryp-

tion and Null-IO from Evasive LWE. In ASIACRYPT.
[40] Qianhong Wu, Bo Qin, Lei Zhang, and Josep Domingo-Ferrer. 2010. Ad hoc

broadcast encryption. In ACM CCS.

1107

https://github.com/relic-toolkit/relic
https://datatracker.ietf.org/doc/rfc9420/
https://download.libsodium.org/doc/
https://download.libsodium.org/doc/
https://petrelic.readthedocs.io/en/latest/
https://petrelic.readthedocs.io/en/latest/
https://doi.org/10.1145/195613.195663

	Abstract
	1 Introduction
	1.1 Our Contributions

	2 Flexible Broadcast Encryption
	3 Constructing Flexible Broadcast
	3.1 Graph Theory Background
	3.2 Flexible Broadcast Encryption Compiler

	4 Implementation and Evaluation
	4.1 Implementation and Experimental Setup
	4.2 Benchmarks
	4.3 Ciphertext vs. Directory Size Tradeoff

	5 Related Work
	6 Conclusion
	References

