
Deciding Differential Privacy of Online Algorithms with Multiple
Variables

Rohit Chadha

chadhar@missouri.edu

University of Missouri

Columbia, Missouri, USA

A. Prasad Sistla

sistla@uic.edu

University of Illinois at Chicago

Chicago, Illinois, USA

Mahesh Viswanathan

vmahesh@illinois.edu

University of Illinois at Urbana-Champaign

Urbana, Illinois, USA

Bishnu Bhusal

bhusalb@mail.missouri.edu

University of Missouri

Columbia, Missouri, USA

ABSTRACT

We consider the problem of checking the differential privacy of

online randomized algorithms that process a stream of inputs and

produce outputs corresponding to each input. This paper general-

izes an automaton model called DiP automata [10] to describe such

algorithms by allowing multiple real-valued storage variables. A

DiP automaton is a parametric automaton whose behavior depends

on the privacy budget 𝜖 . An automaton A will be said to be differ-

entially private if, for some𝔇, the automaton is𝔇𝜖-differentially

private for all values of 𝜖 > 0. We identify a precise characterization

of the class of all differentially private DiP automata. We show that

the problem of determining if a given DiP automaton belongs to this

class is PSPACE-complete. Our PSPACE algorithm also computes a

value for𝔇 when the given automaton is differentially private. The

algorithm has been implemented, and experiments demonstrating

its effectiveness are presented.
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• Security and privacy→ Logic and verification; Formal secu-

rity models.
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1 INTRODUCTION

Differential privacy [18, 20] is a popular requirement that is de-

manded of algortihms that analyze data containing sensitive per-

sonal information of individuals. A data analysis that meets the high

bar of differential privacy guarantees the privacy of individuals.

However, ensuring differential privacy is difficult, subtle and error-

prone — relatively minor tweaks to correct algorithms can lead to

the loss of privacy as demonstrated by the examples in [19, 26].

Though the problem of checking the differential privacy of a pro-

gram is in general undecidable [2], the importance of the problem

has led to extensive investigation in the last 15 years; see Section 8

for a short overview of work in this space.

In this paper, we look at the problem of verifying the differen-

tial privacy of online algorithms. An online algorithm is one that

processes an unbounded (but finite) stream of inputs, samples from

distributions, and produces outputs in response to the inputs. The

stream of inputs is a sequence of real numbers that are answers to

queries to a database. A novel approach using automata to describe

and study such algorithms was proposed in [10]. It was shown

that checking differential privacy of algorithms described by such

automaton is in linear time. Remarkably the verification proce-

dure in [10] checks some properties of the underlying graph of the

automaton and does not explicitly reason about probabilities. How-

ever, the automaton model in [10] has one serious limitation — only

one storage variable is available, and hence only one previously

sampled value can be remembered.

Contributions. We extend the line of research initiated in [10] by

generalizing the automata model in [10] to allow for multiple real-

valued storage variables. A DiP automaton (DiPA for short)
1
is a

parametric automaton (depending on privacy budget 𝜖) with finitely

many control states that process an unbounded (but finite) stream

of real values that represent answers to queries asked of a database.

A DiPA can sample real values from Laplace distributions whose

mean may depend on the value read, and DiPA has finitely many

real-valued variables in which they can store values they sample

in each step (which in turn depend on the input read). Transitions

depend on the current control state, the values stored, and the input

read, which influences the values sampled. In response to an input,

1
Even though the automata model in this paper has the same name as the one in [10],

the generalization significantly extends the expressive power of the model.
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they produce an output that is either a symbol from a finite set or

a real number.

We show that, even in the case of automata with multiple storage

variables, the problem of determining whether a given DiPA A is

𝔇𝜖-differentially private for some constant𝔇 > 0 (independent of

𝜖) and all 𝜖 > 0, can be reduced to checking graph-theoretic condi-

tions. These conditions demand the absence of certain paths, cycles,

and interactions among them. However, unlike the single variable

automata case [10], these paths and cycles cannot be captured only

by considering the underlying graph of the automata. Instead, we

use an auxiliary graph to capture these undesirable paths and cy-

cles precisely. This is a non-trivial extension of [10]; for a more

detailed comparison with [10], see Section 8. An automaton A is

said to be well-formed if it does not have any of these undesirable

paths or cycles. We show that a well-formed DiPA is differentially

private; thus, well-formedness is a sufficient condition to guarantee

privacy. Conversely, we show that if additionally, for every state

of A, the transitions of A from that state have distinct outputs

(called output distinct), then well-formedness is also necessary to

guarantee differential privacy. In other words, a DiPA A, having

distinct outputs on transitions from any state, that is differentially

private is well-formed. These proofs of necessity and sufficiency

require novel ideas that are a significant extension of the techniques

presented in [10]; once again see Section 8 for more details.

Next, we show that there is a PSPACE algorithm that checks if

a DiPA A is well-formed. This algorithm additionally computes

a value for 𝔇 that shows that A is 𝔇𝜖-differentially private for

all 𝜖 . We also show that checking differential privacy of output-

distinct DiPA is PSPACE-hard, thus establishing the optimality of

our verification algorithm.

We have implemented our algorithm in a tool called DiPAut. Our
experiments show that the approach scales and that our algorithm

produces known estimates for𝔇. It successfully proves differential

privacy and identifies violations of privacy in various examples.

The tool is evaluated for scalability with respect to both the number

of states and variables. Despite the PSPACE-hardness, the tool is
able to perform well in our experiments. We compare DiPAut with
CheckDP [29], a state-of-the-art tool to check differential privacy.

DiPAut significantly outperforms CheckDP in all our experiments.

The tool DiPAut is available to download at [7].

Organization. The rest of the paper is organized as follows. Sec-

tion 2 introduces basic notation and definitions used in the paper.

Our model of DiP automaton extended with multiple variables

is introduced in Section 3. Section 4 defines well-formed DiPA,

which is a (almost) precise characterization of differentially private

automata. We show that well-formed automata are differentially

private in Section 5; and show that checking well-formedness is

PSPACE-complete. Section 6 shows that differentially private au-

tomata that have distinct outputs on transitions are well-formed.

PSPACE-hardness of checking differential privacy is also presented

in this section. Experimental results are presented in Section 7.

Closely related work is discussed in Section 8. We discuss on the

restrictions placed on the automata and the adjacency relations

used in the paper. Finally we present our conclusions (Section 10).

The missing proofs are in the accompanying Appendix. This is

the author’s version of the paper. It is posted here for your per-

sonal use. Not for redistribution. The definitive version will be

published in the Proceedings of the annual ACM Computer and

Communications Security Conference (CCS’ 2023).

2 PRELIMINARIES

The definitions and notations in this section are borrowed from [10].

LetN,Z,Q,Q≥0,R,R>0 denote the set of natural numbers, integers,

rational numbers, non-negative rationals, real numbers, and pos-

itive real numbers, respectively. In addition, R∞ will denote the

set R ∪ {−∞,∞}, where −∞ is the smallest and ∞ is the largest

element in R∞. For a real number 𝑥 ∈ R, |𝑥 | denotes its absolute
value.

Sequences. For a set Σ, Σ∗ denotes the set of all finite se-

quences/strings over Σ. We use 𝜆 to denote the empty se-

quence/string over Σ. For two sequences/strings 𝜌, 𝜎 ∈ Σ∗, we
use their juxtaposition 𝜌𝜎 to indicate the sequence/string obtained

by concatenating them in order. Consider 𝜎 = 𝑎0𝑎1 · · ·𝑎𝑛−1 ∈ Σ∗
(where 𝑎𝑖 ∈ Σ). We use |𝜎 | to denote its length 𝑛 and use 𝜎 [𝑖] to
denote its 𝑖th symbol 𝑎𝑖 . The substring 𝑎𝑖𝑎𝑖+1 · · ·𝑎 𝑗−1 from posi-

tion 𝑖 (inclusive) to 𝑗 (not inclusive) will be denoted as 𝜎 [𝑖 : 𝑗]; if
𝑗 ≤ 𝑖 then 𝜎 [𝑖 : 𝑗] = 𝜆. Thus, 𝜎 [0 : |𝜎 |] = 𝜎 . The suffix starting

at position 𝑗 will be denoted as 𝜎 [ 𝑗 :], i.e., 𝜎 [ 𝑗 :] = 𝜎 [ 𝑗 : |𝜎 |]. For
any partial function 𝑓 : 𝐴 ↩→ 𝐵, where 𝐴, 𝐵 are some sets, we let

dom(𝑓 ) be the set of 𝑥 ∈ 𝐴 such that 𝑓 (𝑥) is defined.

Laplace Distribution. Differential privacy mechanisms often add

noise by sampling values from the Laplace distribution. The distri-
bution, denoted Lap(𝑘, 𝜇), is parameterized by two values: 𝑘 ≥ 0

which is called the scaling parameter, and 𝜇 which is the mean. The

probability density function of Lap(𝑘, 𝜇), denoted 𝑓𝑘,𝜇 , is given by

𝑓𝑘,𝜇 (𝑥) = 𝑘
2
𝑒−𝑘 |𝑥−𝜇 | , where 𝑒 is the Euler constant.

Differential Privacy. Differential privacy [18] is a framework that

enables statistical analysis of databases containing sensitive, per-

sonal information of individuals while ensuring that the privacy of

individuals is not adversely affected by the results of the analysis.

In the differential privacy framework, a randomized algorithm, 𝑀 ,

called the differential privacy mechanism, mediates the interaction

between a (possibly dishonest) data analyst asking queries and a

database 𝐷 responding with answers. Queries are deterministic

functions and typically include aggregate questions about the data,

like the mean etc. In response to such a sequence of queries, 𝑀

responds with a series of answers computed using the actual an-

swers from the database and random sampling, resulting in “noisy”

answers. Thus,𝑀 provides privacy at the cost of accuracy. Typically,

𝑀’s noisy response depends on a privacy budget 𝜖 > 0.

Differential privacy captures the privacy guarantees for individ-

uals whose information is in the database 𝐷 . For an individual 𝑖 , let

𝐷 \{𝑖} denote the database where 𝑖’s information has been removed.

A secure mechanism𝑀 ensures that for any individual 𝑖 in 𝐷 , and

any sequence of possible outputs 𝑜 , the probability that𝑀 outputs

𝑜 on a sequence of queries is approximately the same whether the

interaction is with the database 𝐷 or with 𝐷 \ {𝑖}. To capture this

definition formally, we need to characterize the inputs on which

𝑀 is required to behave similarly. Inputs to a differential privacy
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mechanism can be seen as answers from the database to a sequence

of queries asked by the data analyst. If queries are aggregate queries,

then answers to 𝑞 on 𝐷 and 𝐷 \ {𝑖} (for individual 𝑖) are likely to

be away by at most 1.
2
This intuition leads to the following often-

used definition of adjacency that characterizes inputs on which the

differential privacy mechanism𝑀 is expected to behave similarly;

for example this definition is used in SVT [1, 17, 19, 20, 26] and

NumericSparse [20].
3
We assume that at each step, the differential

privacy mechanism either gets a real number as input (answer to

an aggregate query) or is asked to respond without an answer from

the database which is encoded as 𝜏 .

Definition 1. Sequences 𝜌, 𝜎 ∈ (R∪ {𝜏})∗ are adjacent if |𝜌 | = |𝜎 |
and for each 𝑖 ≤ |𝜌 | (a) 𝜌 [𝑖] ∈ R iff 𝜎 [𝑖] ∈ R and (b) if 𝜌 [𝑖] ∈ R
then |𝜌 [𝑖] − 𝜎 [𝑖] | ≤ 1.

We are now ready to formally define the notion of privacy which

uses Definition 1. In response to a sequence of inputs, a differential

privacy mechanism produces a sequence of outputs from the set

(say) Γ. Since a differential privacy mechanism𝑀 is a randomized

algorithm, it will induce a probability distribution on Γ∗.

Definition 2 (𝜖-differential privacy). A randomized algorithm𝑀

with input in (R∪{𝜏})∗ and output in Γ∗ is said to be 𝜖-differentially
private if for all measurable sets 𝑆 ⊆ Γ∗ and adjacent 𝜌, 𝜎 ∈ R∗
(Definition 1),

Prob[𝑀 (𝜌) ∈ 𝑆] ≤ 𝑒𝜖 Prob[𝑀 (𝜎) ∈ 𝑆] .

Input: 𝑞 [1 : 𝑁 ]
Output: 𝑜𝑢𝑡 [1 : 𝑁 ]

low← Lap( 𝜖
4
,𝑇ℓ )

high← Lap( 𝜖
4
,𝑇𝑢 )

for 𝑖 ← 1 to 𝑁 do

r← Lap( 𝜖
4
, 𝑞[𝑖])

if (r ≥ low) ∧ (r < high) then
𝑜𝑢𝑡 [𝑖] ← ⊥

else if (r ≥ low) ∧ (r ≥ high) then
𝑜𝑢𝑡 [𝑖] ← ⊤1
exit

else if (r < low) ∧ (r < high) then
𝑜𝑢𝑡 [𝑖] ← ⊤2
exit

end

end

Algorithm 1: Range query algorithm

Example 1. Consider the following problem. Given a sequence of

answers to queries (array 𝑞 [1 : 𝑁 ]) and an interval [𝑇ℓ ,𝑇𝑢 ) given
by thresholds 𝑇ℓ and 𝑇𝑢 , determine the first time a query answer

lies outside this interval; indicate (through the output) whether

the query answer is ≥ 𝑇𝑢 or ≤ 𝑇ℓ at this point. A differentially

2
The difference in general can be bounded by a constant Δ.

3
Please see the discussion of SVT on pages 56 and 57 of [20] and its description on

pages 58, 62, and 64. For simplicity, it is assumed that these queries are 1-sensitive.

So, by considering SVT as an algorithm that works directly on the sequence of the

outputs of queries, we get naturally the adjacency relation used here.

private algorithm to solve this problem is shown as Algorithm 1.

The algorithm starts by adding noise to both 𝑇ℓ and 𝑇𝑢 to get a

perturbed interval defined by numbers low and high. After that the
algorithm perturbs each query answer and stores the result in r, and
then checks if r lies between low and high. If it does, the algorithm
outputs ⊥ and processes the next query answer. Otherwise, if r is
larger than both low and high it outputs ⊤1 and stops. On the other

hand, if r is less than both low and high then it outputs ⊤2 and

halts. The algorithm’s behavior depends on the value of 𝜖 . It can be

shown that for each value of 𝜖 , the algorithm for that value of 𝜖 is

𝜖-differentially private.

3 DIPA

DiP (Differentially Private) automata (DiPAs for short) are an

automata-based model introduced in [10] to describe some dif-

ferential privacy mechanisms. They process an input string 𝜎 ∈
(R ∪ {𝜏})∗ by sampling values from the Laplace distribution, using

real variables to store information during the computation, and

producing a sequence of outputs. The model introduced in [10] had

only one storage variable. In this paper, we generalize this model

naturally to allow multiple real-valued storage variables. However,

as discussed in Section 8, both the characterization of differentially

private algorithms described by them and the proofs of decidability

are a non-trivial extension of the single variable model.

3.1 Syntax

A DiP automaton is a parametric automaton whose behavior de-

pends on a parameter 𝜖 (the privacy budget). It has finitely many

control states and finitely many real-valued variables x1, x2, . . . x𝑘
that are used to store information during the computation. At each

step, the automaton freshly samples two real values from Laplace

distributions whose parameters depend on 𝜖 , and these sampled val-

ues are stored in the (additional) variables insample and insample′.
Given an input 𝜎 ∈ (R ∪ {𝜏})∗, a DiPA does the following in each

step.

(1) Two values are drawn from the distributions Lap(𝑑𝜖, 𝜇)
and Lap(𝑑′𝜖, 𝜇′) and stored in the variables insample and
insample′, respectively. The scaling factors 𝑑, 𝑑′ and means

𝜇, 𝜇′ of these distributions depend on the current state.

(2) The states of the automaton are partitioned into input states
and non-input states. At a non-input state, the automaton

expects to read 𝜏 from the input. On the other hand, at an

input state, it expects to read a real number, say 𝑎, and it

updates insample and insample′ by adding 𝑎 to them. The

properties of the Laplacian distribution imply that the dis-

tribution of insample + 𝑎 (insample′ + 𝑎) is the same as the

distribution of Lap(𝑑𝜖, 𝜇 + 𝑎) (Lap(𝑑𝜖, 𝜇′ + 𝑎) respectively).
(3) A transition changes the control state and outputs a value.

The value output could either be a symbol from a finite set

or one of the two real numbers insample and insample′ that
are sampled in this step. At an input state, the transition is

guarded by a Boolean condition that depends on the result

of comparing the sampled value insample with the stored

values x𝑖 (1 ≤ 𝑖 ≤ 𝑘). It is possible that for certain values of

x𝑖 (1 ≤ 𝑖 ≤ 𝑘) and insample, no transition is enabled from

the current state. In such a case, the computation ends.
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(4) Finally, the automaton may choose to store the sampled

value insample in any of the variables x𝑖 (1 ≤ 𝑖 ≤ 𝑘).

We now formally define DiP automaton capturing the above in-

tuition. First, some necessary notation. Let G′ be the set of con-
straints defined as G′ = {insample ≥ x𝑖 | 1 ≤ 𝑖 ≤ 𝑘} ∪ {insample <

x𝑖 | 1 ≤ 𝑖 ≤ 𝑘}. Let G′′ be the set of conditions formed by tak-

ing conjunctions of two or more constraints in G′ such that both

insample ≥ x𝑖 and insample < x𝑖 don’t appear for any 1 ≤ 𝑖 ≤ 𝑘 .

Finally, let G = {true} ∪ G′ ∪ G′′; these are the constraints that
guard transitions in a DiPA.

4

Definition 3 (DiPA). A DiP automaton A = (𝑄, Γ, 𝑞init, 𝑋, 𝑃, 𝛿)
where

• 𝑄 is a finite set of states partitioned into two sets: the set of

input states 𝑄in and the set of non-input states 𝑄non,

• Γ is a finite output alphabet,

• 𝑞init ∈ 𝑄 is the initial state,

• 𝑋 = {insample, insample′} ∪ {x𝑖 | 1 ≤ 𝑖 ≤ 𝑘} is the set of
variables; we will use stor = {x𝑖 | 1 ≤ 𝑖 ≤ 𝑘} to denote the

storage variables,
• 𝑃 : 𝑄 → Q≥0 × Q × Q≥0 × Q is the parameter function that

assigns to each state a 4-tuple (𝑑, 𝜇, 𝑑′, 𝜇′), where insample
is sampled from Lap(𝑑𝜖, 𝜇) and insample′ is sampled from

Lap(𝑑′𝜖, 𝜇′),
• and 𝛿 : (𝑄 × G) ↩→ (𝑄 × (Γ ∪ {insample, insample′}) ×
{true, false}𝑘 ) is the transition (partial) function that given a

current state and the result of comparing each x𝑖 (1 ≤ 𝑖 ≤ 𝑘)

with insample, determines the next state, the output, and

whether the variables x𝑖 should be updated to store insample.
The output could either be a symbol from Γ or the values

insample and insample′ that were sampled.

In addition, the transition function 𝛿 satisfies the following two

conditions.

Determinism: For any state𝑞 ∈ 𝑄 , if𝛿 (𝑞, 𝑐) and𝛿 (𝑞, 𝑐′) are defined
for 𝑐, 𝑐′ ∈ G then either 𝑐 = 𝑐′ or 𝑐 ∧ 𝑐′ is unsatisfiable. That is,
from any state, at most one transition is enabled at any time.

Non-input transitions: From any 𝑞 ∈ 𝑄non, if 𝛿 (𝑞, 𝑐) is defined,
then 𝑐 = true; that is, there is at most one transition from a non-

input state which is always enabled.

Remark. Although insample′ is never used in comparisons, it is nev-

ertheless needed to model examples such as Num-Sparse (See [20]).

insample′ is often used in algorithms when we want to output the

noisy input value in a differentially private fashion. Outputting

insample instead of insample′ can violate differential privacy, as

insample may have been used in other comparisons: See the defini-

tion of privacy violating path (Definition 11 in Section 4); also [26].

Before concluding this section, it is useful to introduce some no-

tation and terminology for transitions. A quintuple 𝑡 = (𝑞, 𝑐, 𝑞′, 𝑜, 𝑏)
denotes a transition of A if 𝛿 (𝑞, 𝑐) = (𝑞′, 𝑜, 𝑏), where 𝑏 =

(𝑏1, 𝑏2, . . . 𝑏𝑘 ) ∈ {true, false}𝑘 . For such a transition, src(𝑡) = 𝑞

denotes the source, trg(𝑡) = 𝑞′ the target, out(𝑡) = 𝑜 ∈ Γ ∪
{insample, insample′} the output, and guard(𝑡) = 𝑐 the guard.

4
We could also allow guards of the form insample > x𝑖 and insample ≤ x𝑖 . However,
we chose to keep the presentation simple. As all random variables in a DiPA are noisy,

the equality happens with probability 0.

𝑞0

1

4
, 0

𝑞1

1

4
, 1

𝑞2

1

4
, 0

𝑞3

1

4
, 0

true, ⊥
(true, false)

true, ⊥
(false, true)

𝑔1, ⊥
(false, false)

𝑔2, ⊤1
(false, false)

𝑔3, ⊤2
(false, false)

Figure 1: DiPA Arange modeling Algorithm 1. Threshold𝑇ℓ is set to 0 (sampling

mean of insample in 𝑞0) and 𝑇𝑢 is set to 1 (sampling mean of insample in

𝑞1). The guards 𝑔1 = (insample ≥ x1 ) ∧ (insample < x2 ) , 𝑔2 = (insample ≥
x1 ) ∧ (insample ≥ x2 ) , and 𝑔3 = (insample < x1 ) ∧ (insample < x2 ) .

Based on the guard 𝑐 and the Booleans 𝑏, we can associate the

following sets of variables with transition 𝑡 .

smallv(𝑡) = {x ∈ stor | insample ≥ x is a conjunct of 𝑐}
largev(𝑡) = {x ∈ stor | insample < x is a conjunct of 𝑐}
usedv(𝑡) = smallv(𝑡) ∪ largev(𝑡)

assignv(𝑡) = {x𝑖 | 𝑏𝑖 = true}
nonassignv(𝑡) = {x𝑖 | 𝑏𝑖 = false}

Intuitively, smallv(𝑡) (largev(𝑡)) are the storage variables that lower
bound (upper bound) insample if the guard is satisfied; usedv(𝑡) are
the storage variables that are referenced in the guard of 𝑡 ; assignv(𝑡)
are the variables that are set by 𝑡 ; and nonassignv(𝑡) are the vari-
ables that are left unchanged by 𝑡 . For any 𝑖 , if x𝑖 ∈ assignv(𝑡) then
𝑡 sets x𝑖 = insample during the transition and hence 𝑡 is an assign-
ment transition for variable x𝑖 . Finally, if src(𝑡) = 𝑞 ∈ 𝑄in then 𝑡

is said to be input transition and if 𝑞 ∈ 𝑄non then 𝑡 is a non-input
transition.

Example 2. The differential privacy mechanism in Example 1

can be modeled as a DiPA. This is shown in Figure 1. We will use

these conventions when drawing DiPAs in this paper. Input states

will be represented as circles, while non-input states will be drawn

as rectangles. The name of each state is written above the line,

while the scaling factor 𝑑 and mean 𝜇 of the distribution used to

sample insample is written below the line. The parameters 𝑑′ and
𝜇′ for sampling insample′ are not shown in the figures, but will

be mentioned in the caption and text when they are important;

they are relevant only when insample′ is output on a transition.

Edges will be labeled with the guard of the transition, followed by

the output, and a vector of Booleans to indicate which variables

insample is stored in.

Theworking ofArange in Fig. 1 can be explained as follows. Since

insample′ is not output in any step, the parameters associated with

sampling insample′ are not reported. The thresholds 𝑇ℓ and 𝑇𝑢 are

hard-coded as 0 and 1, respectively, as the distribution means for

the non-input states 𝑞0 and 𝑞1. The transition from 𝑞0 to 𝑞1 perturbs

𝑇ℓ (= 0) and sets this to variable x1; thus, x1 corresponds to the
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variable low in Algorithm 1. The transition from 𝑞1 to 𝑞2 perturbs

𝑇𝑢 (= 1) and stores it in x2. Thus, x2 corresponds to variable high in

Algorithm 1. State 𝑞2 is an input state. Transitions from 𝑞2 perturb

the query answer given as input storing it in insample, compare

insample to the values stored in x1 and x2, and output the right

value accordingly. State 𝑞3 is a halting state where no transitions

are enabled.

We conclude this example by illustrating the definitions as-

sociated with transitions. The transition 𝑡 from 𝑞0 to 𝑞1 can be

denoted by the quintuple (𝑞0, true, 𝑞1,⊥, (true, false)). For 𝑡 , we
have src(𝑡) = 𝑞0, trg(𝑡) = 𝑞1, out(𝑡) = ⊥, guard(𝑡) = true,
smallv(𝑡) = largev(𝑡) = usedv(𝑡) = ∅, assignv(𝑡) = {x1}, and
nonassignv(𝑡) = {x2}. In this case 𝑡 is a non-input, assignment

transition for variable x1. In contrast, the transition 𝑡 ′ from 𝑞2 to

itself, is an input transition that is not an assignment transition for

any variable. Here we have smallv(𝑡 ′) = {x1}, largev(𝑡 ′) = {x2},
and usedv(𝑡 ′) = {x1, x2}.

3.2 Semantics

An execution/run of a DiPA A = (𝑄, Γ, 𝑞init, 𝑋, 𝑃, 𝛿), 𝜌 =

𝑡0𝑡1 · · · 𝑡𝑛−1, is a sequence of transitions 𝑡𝑖 such that for every

0 < 𝑖 < 𝑛, trg(𝑡𝑖−1) = src(𝑡𝑖 ) (i.e., the sequence 𝜌 corresponds to a

path in the “graph” ofA). We extend the notation of length, the 𝑖th

transition, sub-sequence and suffix from (general) sequences: thus,

|𝜌 | = 𝑛, 𝜌 [𝑖] = 𝑡𝑖 , 𝜌 [𝑖 : 𝑗] = 𝑡𝑖 · · · 𝑡 𝑗−1 and 𝜌 [ 𝑗 :] = 𝑡 𝑗 𝑡 𝑗+1 · · · 𝑡𝑛−1.
We also extend the notion for source and target from transitions

to a run — src(𝜌) = src(𝑡0) and trg(𝜌) = trg(𝑡𝑛−1). Using the no-

tation developed for transitions, guard(𝜌 [𝑖]) is the guard of the

𝑖th transition 𝑡𝑖 of 𝜌 . A run 𝜌 is a cycle if src(𝜌) = trg(𝜌), i.e., the
run begins and ends in the same state. Finally, given two runs 𝜌1
and 𝜌2 such that trg(𝜌1) = src(𝜌2), 𝜌1𝜌2 is the run which is the

concatenation of 𝜌1 followed by 𝜌2.

Recall that transitions of DiPA A compare values stored in the

variables x𝑖 (1 ≤ 𝑖 ≤ 𝑘) and insample. Thus, to define the semantics

of the DiPA, we need to make sure that the value of variable x𝑖 is
defined before it is used in a comparison in the guard of a transition.

Therefore, we make the technical assumption that on every run

starting from the initial state 𝑞init, a variable is assigned a value

before it is referenced in a guard. We assume that all DiPA A
considered in this paper are initialized as defined formally below.

Initialization: We say that a DiPA A = (𝑄, Γ, 𝑞init, 𝑋, 𝑃, 𝛿) is
initialized if for any run 𝜌 starting from the initial state 𝑞init
(i.e., src(𝜌) = 𝑞init), if guard(𝜌 [𝑖]) references variable xℓ (i.e.,

xℓ ∈ usedv(𝜌 [𝑖])) then there is 𝑗 < 𝑖 such that 𝜌 [ 𝑗] is an assignment

transition for xℓ (i.e., xℓ ∈ assignv(𝜌 [ 𝑗])).
We need to define one more concept associated with a run 𝜌 .

For any storage variable x and position 𝑗 ∈ {0, 1, . . . | 𝜌 |}, the last
position when x was assigned before 𝑗 is the maximum index 𝑖 < 𝑗

such that x was assigned on transition 𝜌 [𝑖]. More precisely,

lastassign𝜌 (x, 𝑗) = max{𝑖 | 𝑖 < 𝑗, x ∈ assignv(𝜌 [𝑖])}. 5

When the run 𝜌 is clear from the context, we will drop the subscript

and simply refer to the last assigned position before 𝑗 for x as

lastassign(x, 𝑗).

5
As always max ∅ = −∞ and min ∅ = ∞.

To define the semantics of a DiPA A, we need to define the

probability of “executions”. But runs, as defined above, do not have

all the information we need. For example, the real numbers read

as input determine the values of insample and insample′, which in

turn determine whether a transition is enabled and what is stored

in the variables. Next, on transitions where either insample or

insample′ are output, to define a meaningful measure space, we

need to associate an interval (𝑣,𝑤) in which the output value lies.

Thus, we define when a run corresponds to a certain sequence of

inputs and outputs.

Definition 4 (Computation). Consider DiPA A =

(𝑄, Γ, 𝑞init, 𝑋, 𝑃, 𝛿) and a run 𝜌 of A. Let 𝜎 ∈ (R ∪ {𝜏})∗ be

an input sequence and 𝛾 ∈ (Γ ∪ (R∞ ×R∞))∗ be an output sequence.
We say that 𝜌 is a run on 𝜎 producing output 𝛾 if the following

conditions hold.

(1) |𝜌 | = |𝜎 | = |𝛾 |.
(2) For any 𝑖 , 𝜎 [𝑖] = 𝜏 iff src(𝜌 [𝑖]) ∈ 𝑄non. That is, symbol 𝜏 is

only read in non-input states.

(3) For any 𝑖 , 𝛾 [𝑖] ∈ Γ iff out(𝜌 [𝑖]) ∈ Γ. Further for such 𝑖 ,

out(𝜌 [𝑖]) = 𝛾 [𝑖]. That is, outputs in 𝜌 “match” outputs in

𝛾 , with the only difference being that when insample or

insample′ is output in 𝜌 , the corresponding position in 𝛾 is

an interval (𝑣,𝑤) ∈ R2∞.
When 𝜌 is a run on 𝜎 producing 𝛾 , the tuple 𝜅 = (𝜌, 𝜎,𝛾) will be
called a computation.

For a computation 𝜅 = (𝜌, 𝜎,𝛾) of DiPA A, the suffix starting at

position 𝑗 is 𝜅 [ 𝑗 :] = (𝜌 [ 𝑗 :], 𝜎 [ 𝑗 :], 𝛾 [ 𝑗 :]). Notice that 𝜅 [ 𝑗 :] (for
any 𝑗 ) is also a computation of A since 𝜌 [ 𝑗 :] is a run on 𝜎 [ 𝑗 :]
producing 𝛾 [ 𝑗 :]. Also, we use length of 𝜅 , |𝜅 | to be |𝜌 | (= |𝜎 | = |𝛾 |),
the length of the run 𝜌 .

Probability of Computations. We will now define what the probabil-

ity of each computation is. Recall that in each step, the automaton

samples two values from Laplace distributions, and if the transition

is from an input state, it adds the read input value to the sampled

values and compares the result with the values stored in the vari-

ables x𝑖 , 1 ≤ 𝑖 ≤ 𝑘 . The step also outputs a value, and if the value

output is one of the two sampled values, the computation requires

it to belong to the interval that appears in the output sequence. The

probability of such a transition thus is the probability of drawing a

sample that satisfies the guard of the transition and (if the output

is a real value) producing a number that lies in the interval in the

output label. This intuition is formalized in a precise definition.

Let us fix a computation 𝜅 = (𝜌, 𝜎,𝛾) of DiPA A =

(𝑄, Γ, 𝑞init, 𝑋, 𝑃, 𝛿). Recall that stor = {x𝑖 | 1 ≤ 𝑖 ≤ 𝑘}. Since the pa-
rameters of the Laplace distribution that is used to sample insample
and insample′ depend on the privacy budget 𝜖 , the probability of 𝜅

will also depend on 𝜖 . In addition, the values stored in the variables

x𝑖 ∈ stor at the start of the computation also influence the behavior

of A. Let 𝜂 : stor→ R be the evaluation that defines the values of

x𝑖 , 1 ≤ 𝑖 ≤ 𝑘 , initially. The probability of 𝜅 depends on both 𝜖 and 𝜂

and is denoted as Pr[𝜖, 𝜂, 𝜅]. We define this inductively on |𝜅 |. For
any 𝜖 and any computation 𝜅 with |𝜅 | = 0, Pr[𝜖, 𝜂, 𝜅] = 1.

Let us now consider the case when |𝜅 | > 0. Before defining the

probability in this case, we define the parameters that we will need.

Let 𝑃 (src(𝜅 [0])) = (𝑑, 𝜇, 𝑑′, 𝜇′). Define the value 𝑎0 as follows —
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if 𝜎 [0] ∈ R then 𝑎0 = 𝜎 [0], and if 𝜎 [0] = 𝜏 then 𝑎0 = 0. Next, let

us define the values ℓ and 𝑢. If 𝛾 [0] ∈ Γ then ℓ = −∞ and 𝑢 = ∞.
Otherwise, if 𝛾 [0] = (𝑣,𝑤) then ℓ = 𝑣 and 𝑢 = 𝑤 . Finally, for a

parameter 𝑧, let 𝜂𝑧 be the evaluation that modifies 𝜂 by setting all

the variables assigned by 𝜌 [0] to 𝑧. In other words,

𝜂𝑧 (x) =
{
𝜂 (x) if x ∈ nonassignv(𝜌 [0])
𝑧 if x ∈ assignv(𝜌 [0])

We are now ready to define Pr[𝜖, 𝜂, 𝜅] based on whether

out(𝜌 [0]) = insample′ or not.

Case out(𝜌 [0]) = insample′: Set ℓ′ = max{𝜂 (x) |x ∈ smallv(𝜌 [0])}
and 𝑢′ = min{𝜂 (x) | x ∈ largev(𝜌 [0])}. Also define 𝑝 to be the

probability that insample′ ∈ (ℓ,𝑢) = (𝑣,𝑤) = 𝛾 [0], i.e.,

𝑝 =

∫ 𝑢

ℓ

𝑑′𝜖
2

𝑒−𝑑
′𝜖 |𝑧−𝜇′−𝑎0 |𝑑𝑧

Then,

Pr[𝜖, 𝜂, 𝜅] = 𝑝

∫ 𝑢′

ℓ ′

(
𝑑𝜖

2

𝑒−𝑑𝜖 |𝑧−𝜇−𝑎0 |
)
Pr[𝜖, 𝜂𝑧 , 𝜅 [1 :]]𝑑𝑧.

Case out(𝜌 [0]) ≠ insample′: In other words, either out(𝜌 [0]) ∈ Γ
or out(𝜌 [0]) = insample. In this case set ℓ′ = max({𝜂 (x) | x ∈
smallv(𝜌 [0])}∪{ℓ}) and𝑢′ = min({𝜂 (x) |x ∈ largev(𝜌 [0])}∪{𝑢}).

Pr[𝜖, 𝜂, 𝜅] =
∫ 𝑢′

ℓ ′

(
𝑑𝜖

2

𝑒−𝑑𝜖 |𝑧−𝜇−𝑎0 |
)
Pr[𝜖, 𝜂𝑧 , 𝜅 [1 :]]𝑑𝑧.

In the special case when assignv(𝜌 [0]) = ∅ (i.e., the first transi-
tion of the run does not change the assignment to any variable),

observe that 𝜂𝑧 = 𝜂. Hence, Pr[𝜖, 𝜂𝑧 , 𝜅 [1 :]]-term on the right hand

side of both equations can be pulled out of the integral, and the

expression can be simplified. We will abuse notation and use Pr[·]
to also refer to the function Pr[𝜂, 𝜅] B 𝜖 ↦→ Pr[𝜖, 𝜂, 𝜅]. Notice that
when 𝜌 starts from 𝑞init, because of the initialization condition of

DiPA, the value of Pr[·] does not depend on the valuation 𝜂. For

such computations, we may drop the valuation 𝜂 from the argument

list of Pr[·] to reduce notational overhead. Even though we plan to

use the same function name, the number of arguments to Pr[·] will
disambiguate what we mean.

In this paper we study the computational problem of checking

differential privacy for DiPAs.We conclude with a precise definition

of this problem.We start by specializing the definition of differential

privacy to the setting of DiPA. For a DiPA A, an input sequence

𝜎 ∈ (R ∪ {𝜏})∗ and an output sequence 𝛾 ∈ (Γ ∪ (R∞ × R∞))∗,
let Runs(𝜎,𝛾) be the set of all runs 𝜌 of A starting from the initial

state 𝑞init such that 𝜌 is a run on 𝜎 producing 𝛾 .

Definition 5. A DiPA A is𝔇𝜖-differentially private (for𝔇 > 0,

𝜖 > 0) iff for every 𝜎1, 𝜎2 ∈ (R ∪ {𝜏})∗ and 𝛾 ∈ (Γ ∪ (R∞ × R∞))∗
such that 𝜎1 and 𝜎2 are adjacent 6,∑︁
𝜌∈Runs(𝜎1,𝛾 )

Pr[𝜖, (𝜌, 𝜎1, 𝛾)] ≤ 𝑒𝔇𝜖
∑︁

𝜌∈Runs(𝜎2,𝛾 )
Pr[𝜖, (𝜌, 𝜎2, 𝛾)] .

Differential Privacy Problem: A DiPA A is said to be differen-
tially private if there exists a constant 𝔇 > 0 (independent of 𝜖)

such that A is 𝔇𝜖-differentially private, ∀𝜖 > 0. The differential

6
See Definition 1 on Page 3.

privacy problem is the problem of determining if a given DiPA A
is differentially private.

Remark. A DiPA A is a parametric automaton (with parameter 𝜖),

and the probability of each of its executions on a sequence of input

varies with 𝜖. Thus, considering its semantics, using A(𝜖) to refer

to the automaton may be more appropriate. However, we shall use

A to reduce the notational overhead.

4 WELL FORMED DIPA

The main goal of the paper is to solve the differential privacy prob-

lem described in Section 3: Given a DiPA A determine if there is a

𝔇 > 0 such that for all 𝜖 > 0, A is𝔇𝜖-differentially private. In this

section, we define the sub-class of well-formed DiPA that help char-

acterize precisely the class of DiPA that are differentially private.

Well-formed DiPA are automata that don’t have four properties

that lead to the violation of privacy: (a) leaking cycles, (b) leaking
pairs, (c) disclosing cycles, and (d) privacy violating paths. We will

define what these types of cycles and paths are in this section.

Dependency Graph of a Run. Consider a run 𝜌 of a DiPAA. Guards

on transitions and decisions to store insample in storage variables,

demand that if A follows the run 𝜌 , then the values sampled as

insample at different steps must be ordered in a certain way to

ensure that guards are satisfied. This partial order on the sampled

values demanded by a run is conveniently captured as a directed

graph that we call the dependency graph.

Definition 6 (Dependency Graph). Let A = (𝑄, Γ, 𝑞init, 𝑋, 𝑃, 𝛿)
be a DiPA and let 𝜌 = 𝑡0𝑡1 · · · 𝑡𝑛−1 be a run of A. The dependency
graph of 𝜌 is the directed graph 𝐺𝜌 = (𝑉 , 𝐸) where
• 𝑉 = {𝑖 | 0 ≤ 𝑖 < 𝑛}, and
• 𝐸 is defined as 𝐸′ ∩ (𝑉 ×𝑉 ) where
𝐸′ ={( 𝑗, lastassign𝜌 (x, 𝑗)) | 𝑗 ∈ 𝑉 , x ∈ largev(𝑡 𝑗 )}
∪ {(lastassign𝜌 (x, 𝑗), 𝑗) | 𝑗 ∈ 𝑉 , x ∈ smallv(𝑡 𝑗 )}.

Notice that 𝐸 = 𝐸′ ∩ (𝑉 × 𝑉 ) ensures that an edge

( 𝑗, lastassign𝜌 (x, 𝑗)) (or (lastassign𝜌 (x, 𝑗), 𝑗)) is present only when
lastassign𝜌 (x, 𝑗) ≠ −∞ (i.e., when x is assigned before position

𝑗 ). Also observe that an edge (𝑖, 𝑗) in 𝐺𝜌 means that, to satisfy

the guards, insample at position 𝑖 in the run 𝜌 must be less than

insample at position 𝑗 .

Given the intuition that the dependency graph 𝐺𝜌 captures the

ordering constraints imposed by the guards in 𝜌 , one can conclude

that a cycle in 𝐺𝜌 means that 𝜌 places contradictory demands

on the values sampled and is therefore not a valid execution of

the DiPA. We define a run 𝜌 of DiPA A to be feasible iff 𝐺𝜌 is

acyclic. Feasibility is consistent with our semantic intuitions — if 𝜌

is feasible then there is some evaluation 𝜂 such that for any 𝜖 > 0,

any input sequence 𝜎 and any output sequence𝛾 in which all output

intervals are given by the interval (−∞,∞), for which 𝜌 is a run on

𝜎 that produces 𝛾 , Pr[𝜖, 𝜂, (𝜌, 𝜎,𝛾)] > 0.

Let us consider a feasible run 𝜌 = 𝑡0𝑡1 · · · 𝑡𝑛−1 of DiPA A. Let

𝑞𝑖 = src(𝑡𝑖 ) and let 𝑃 (src(𝑡𝑖 )) = (𝑑𝑖 , 𝜇𝑖 , 𝑑′𝑖 , 𝜇
′
𝑖
). We say that 𝜌 is

strongly feasible if in addition whenever there is a path from 𝑖

to 𝑗 in 𝐺𝜌 and 𝑞𝑖 , 𝑞 𝑗 ∈ 𝑄non then 𝜇𝑖 < 𝜇 𝑗 . Thus, 𝜌 is strongly

feasible if whenever guards require two insample values on non-

input transitions to be ordered, the corresponding means of the
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Figure 2: Dependency graphs for runs 𝜌1 and 𝜌2 from Example 3.𝐺𝜌
1
is on the

left and𝐺𝜌
2
is on the right.

Laplace distributions are ordered in the same way. We only consider

DiPA that satisfy the following strong feasibility assumption.

Strong Feasibility: All feasible runs from the initial state 𝑞init are

strongly feasible.

Example 3. Let us look at two example runs of length 3.

𝜌1 =(𝑞0, true, 𝑞1,⊥, (true, false) ) (𝑞1, insample < x1, 𝑞2,⊥, (false, true) )
(𝑞2, insample ≥ x1 ∧ insample < x2, 𝑞3,⊥, (false, false) )

𝜌2 =(𝑞0, true, 𝑞1,⊥, (true, false) ) (𝑞1, insample ≥ x1, 𝑞2,⊥, (false, true) )
(𝑞2, insample ≥ x1 ∧ insample < x2, 𝑞3,⊥, (false, false) )

The only difference between 𝜌1 and 𝜌2 is the guard on the second

transition, which goes from state 𝑞1 to 𝑞2. Their dependency graphs

are shown in Figure 2. 𝐺𝜌1 is on the left and can be explained as

follows. Transition 0 sets variable x1 and transition 1 sets variable

x2. The guard insample < x1 in transition 1 results in the edge from

1 to 0. The conjunct insample ≥ x1 in transition 2 results in an edge

from 0 to 2, and the conjunct insample < x2 results in the edge

from 2 to 1.𝐺𝜌1 is cyclic which means that 𝜌1 is not feasible. Graph

𝐺𝜌2 on the right in Figure 2 is similar but the guard insample ≥ x1
in transition 1 results in an edge from 0 to 1 (instead of from 1 to 0

in 𝐺𝜌2 ) which removes the cycle. Thus, 𝜌2 is feasible.

Leaking cycle. We are now ready to present the first graph theoretic

condition on DiPA that demonstrates a violation of differential

privacy.

Definition 7 (Leaking cycle). A run 𝜌 of A = (𝑄, Γ, 𝑞init, 𝑋, 𝑃, 𝛿)
from the initial state 𝑞init (i.e., src(𝜌) = 𝑞init) is said to be a leaking
cycle if there is an index 0 ≤ 𝑗 < |𝜌 | and a storage variable x ∈ stor
such that the following conditions hold.

Cycle: 𝐶 = 𝜌 [ 𝑗 :] is a cycle.
Leak: There are indices 𝑖1 and 𝑖2 in 𝐶 (i.e., 𝑗 ≤ 𝑖1, 𝑖2) such that

x ∈ assignv(𝜌 [𝑖1]) and x ∈ usedv(𝜌 [𝑖2]).
Repeatability: 𝐶 can be repeated arbitrarily many times. That is,

for every𝑚 ≥ 0, the run 𝜌𝐶𝑚
is feasible.

7

Intuitively, the condition Leak in Definition 7 is to ensure that

variable x is assigned a value in the cycle𝐶 that is later tested against

in a guard.
8
The main effect of the 3 conditions in Definition 7, is to

identify two transitions (namely, those corresponding to assignment

and test) that can be taken arbitrarily many times (since they are on

a repeatable cycle) such that the insample values sampled in the two

transitions are ordered in the same way each time the transitions

are taken. This property leads to a “leaking” of the privacy budget,

as shall be explained when we sketch the proof.

7𝐶𝑚
denotes the𝑚-fold concatenation of𝐶 with𝐶0 = 𝜆.

8
Definition 7 does not require 𝑖1 < 𝑖2 . Therefore, strictly speaking the assignment

in 𝑖1 may not be before the test in 𝑖2 . But this can be easily addressed by taking𝐶2

instead of𝐶 as the cycle.

A cycle𝐶 that does not satisfy the condition Leak will be said to

be non-leaking.

Definition 8 (Non-leaking cycle). A run𝐶 is a non-leaking cycle if
𝐶 is a cycle and for every x ∈ stor and 𝑖 , if x ∈ usedv(𝐶2 [𝑖]) then
lastassign𝐶2 (x, 𝑖) = −∞, i.e, x is not assigned a value in 𝐶 . Here 𝐶2

is the concatenation of 𝐶 with itself.

In Definition 8, we use the run𝐶2
to ensure that we also account

for the case when x is assigned after it is used in 𝐶 . One important

property about non-leaking cycle is that it is always repeatable;

this is the content of the next proposition. Thus repeatability is a

non-trivial requirement only for cycles that have a leak.

Proposition 1. Let 𝜌 be a feasible run of A = (𝑄, Γ, 𝑞init, 𝑋, 𝑃, 𝛿)
from the initial state 𝑞init such that 𝐶 = 𝜌 [𝑖 : 𝑗] (for some 0 ≤ 𝑖 <

𝑗 ≤ |𝜌 |) is a non-leaking cycle. Then for every𝑚 > 0, 𝜌 [0 : 𝑖] (𝜌 [𝑖 :
𝑗])𝑚𝜌 [ 𝑗 :] is feasible.

Leaking pair. Recall that the key property of a leaking cycle that

leads to the violation of differential privacy is finding two tran-

sitions that can be repeated arbitrarily many times such that the

insample value sampled in the two transitions is ordered every time

they are taken. Leaking cycles achieve this by finding both transi-

tions on a cycle that can be repeated. However, that is not the only

way such a pair of transitions can arise — the two transitions could

be on two different cycles that can each be repeated. This leads to

the definition of a leaking pair. The definition of a leaking pair is

subtle and we will discuss its details after presenting it formally.

Definition 9 (Leaking pair). A feasible run 𝜌 of A =

(𝑄, Γ, 𝑞init, 𝑋, 𝑃, 𝛿) from the initial state 𝑞init is a leaking pair if

there are indices 0 ≤ 𝑖1 < 𝑗1 ≤ |𝜌 | and 0 ≤ 𝑖2 < 𝑗2 ≤ |𝜌 | such that

the following conditions hold.

Cycles: 𝐶1 = 𝜌 [𝑖1 : 𝑗1] and 𝐶2 = 𝜌 [𝑖2 : 𝑗2] are both non-leaking

cycles.

Disjointness: Either 𝑗1 ≤ 𝑖2 or 𝑗2 ≤ 𝑖1. That is, 𝐶1 and 𝐶2 are

non-overlapping subsequences of 𝜌 .

Order: There is a path 𝑘1, 𝑘2, . . . 𝑘𝑚 in the dependency graph 𝐺𝜌

such that 𝑖1 ≤ 𝑘1 < 𝑗1 (𝑘1 is on 𝐶1), 𝑖2 ≤ 𝑘𝑚 < 𝑗2 (𝑘𝑚 is on

𝐶2), 𝑘2 < 𝑘1 and 𝑘𝑚−1 < 𝑘𝑚 .

As mentioned before Definition 9, the motivation behind leaking

pairs is to identify a pair of transitions 𝑡 and 𝑡 ′ that can be executed

multiple times and such that the insample value each time 𝑡 is taken

is smaller than the insample value each time 𝑡 ′ is taken. Such a

pair of transitions represents a “leak” of the privacy budget that

can be exploited to prove that DiPA is not differentially private.

Definition 9 achieves this goal in the following manner. The desired

transitions 𝑡 and 𝑡 ′ are 𝜌 [𝑘1] and 𝜌 [𝑘𝑚], respectively. The fact that
𝑡 and 𝑡 ′ are on cycles 𝐶1 and 𝐶2 which are disjoint (in 𝜌) and non-

leaking, ensures that they can be repeated thanks to Proposition 1.

The condition Order in Definition 9 is the most subtle. The fact that

𝑘2 < 𝑘1 and (𝑘1, 𝑘2) is an edge in 𝐺𝜌 means that there is a storage

variable x ∈ stor such that x is assigned in 𝜌 [𝑘2] and insample < x
is one of the conjuncts in guard(𝜌 [𝑘1]). Further since 𝐶1 is non-

leaking, x is not updated within 𝐶1 and hence 𝜌 [𝑘2] is taken before
𝐶1. Similar conclusions can be drawn about 𝑘𝑚−1 and 𝑘𝑚 — there

is a variable y ∈ stor that is assigned in 𝜌 [𝑘𝑚−1] which is taken

before𝐶2, and insample ≥ y is a conjunct in guard(𝜌 [𝑘𝑚]). Finally,



CCS ’23, November 26–30, 2023, Copenhagen, Denmark Rohit Chadha, A. Prasad Sistla, Mahesh Viswanathan, and Bishnu Bhusal

𝑞0

1

4
, 1

𝑞1

1

4
, 0

𝑞2

1

4
, 0

𝑞3

1

4
, 0

𝑞4

1

4
, 0

true, ⊥
(true, false)

true, ⊥
(false, true)

𝑔1, ⊤
(false, false)

𝑔2, ⊥
(false, false)

𝑔3, ⊤
(false, false)

𝑔4, ⊥
(false, false)

Figure 3:DiPA Aleakp from Example 4. Aleakp has two variables, x1 and x2,
assigned in the first and the second transition, respectively. The guards

𝑔1 = (insample ≥ x1 ) , 𝑔2 = (insample < x1 ) , 𝑔3 = (insample < x2 ) ,
𝑔4 = (insample < x1 ) ∧ (insample ≥ x2 ) .
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Figure 4: Dependency graphs for runs 𝜌1 and 𝜌2 from Example 4.𝐺𝜌
1
is

on the top and𝐺𝜌
2
is on the bottom. The nodes are numbered according

to the order in which the corresponding transition appears in the run.

the path from 𝑘1 to 𝑘𝑚 means that the insample value sampled in

𝜌 [𝑘1] is less than the value assigned to x in 𝜌 [𝑘2], which in turn is

less than the value assigned to y in 𝜌 [𝑘𝑚−1] and that is less than

the insample value sampled in 𝜌 [𝑘𝑚]. 𝜌 [𝑘2] is before 𝐶1 which

means that the value assigned to x in 𝜌 [𝑘2] does not change no
matter how many times 𝐶1 and 𝐶2 are repeated. Next, 𝜌 [𝑘𝑚−1] is
before 𝐶2. It is possible that 𝜌 [𝑘𝑚−1] is on 𝐶1, in which case the

value assigned to y changes when𝐶1 is repeated. However, one can

show by induction, that the presence of a path in the dependency

graph from 𝜌 [𝑘2] to 𝜌 [𝑘𝑚−1] and an edge from 𝜌 [𝑘𝑚−1] to 𝜌 [𝑘𝑚]
means that when 𝐶1 and 𝐶2 are repeated, there will be a path from

𝜌 [𝑘2] and the last instance of 𝜌 [𝑘𝑚−1] and the last value assigned

to y in 𝜌 [𝑘𝑚−1] will be less than every insample value sampled in

𝜌 [𝑘𝑚]. Thus, every insample value sampled in 𝜌 [𝑘1] will be less
than every insample value sampled in 𝜌 [𝑘𝑚], no matter how many

times 𝐶1 and 𝐶2 are repeated.

Example 4. Consider the automaton Aleakp in Figure 3. The au-

tomaton is drawn following the convention outlined in Example

2. The automaton has two real variables x1 and x2, assigned in

the first and the second transition, respectively. For states 𝑞𝑖 , 𝑞 𝑗
of Aleakp, let 𝑡𝑖 𝑗 denote the unique transition of Aleakp from state

𝑞𝑖 to 𝑞 𝑗 . Observe that 𝑡22 and 𝑡33 are cycles. Consider the run

𝜌1 = 𝑡01𝑡12𝑡22𝑡23𝑡33 that visits both the cycles 𝑡22 and 𝑡33 and its

extension 𝜌2 = 𝜌1𝑡34 . Their dependency graphs for these runs are

shown in Figure 4. The nodes 2 and 4 correspond to the cycle tran-

sitions 𝑡22 and 𝑡33 respectively. Considering just the run 𝜌1, these

cycles do not constitute a leaking pair. However, when we consider

the extended run, 𝜌2, we see that these cycles form a leaking pair

via the path 4→ 1→ 5→ 0→ 2.

Before moving onto the other two properties needed to define

well-formed DiPA, it is useful to remark that the cycles 𝐶1 and

𝐶2 in Definition 9 may be the “same cycle”, i.e., 𝐶1 and 𝐶2 could,

respectively, be the first and second iterations of the same sequence

of A transitions.

Disclosing cycle. Real valued outputs present another avenue

through which private information in the input can be leaked. The

condition identified by leaking cycles and leaking pairs do not ac-

count for such violations because they are agnostic to the type of

output produced by the DiPA. Our next condition disclosing cycle,
identifies a transition that can be executed repeatedly, and which

outputs a pertubed input.

Definition 10 (Disclosing cycle). A feasible run 𝜌 of A =

(𝑄, Γ, 𝑞init, 𝑋, 𝑃, 𝛿) from the initial state 𝑞init is a disclosing cycle
if there are indices 0 ≤ 𝑗 ≤ 𝑖 < |𝜌 | such that the following condi-

tions hold.

Cycle: 𝐶 = 𝜌 [ 𝑗 :] is a non-leaking cycle.
Disclosing: 𝜌 [𝑖] is an input transition that outputs a real value, i.e.,

src(𝜌 [𝑖]) ∈ 𝑄in with out(𝜌 [𝑖]) ∈ {insample, insample′}.
Observe that in Definition 10, 𝜌 [𝑖] is a transition that is on cycle

𝐶 . Moreover, since𝐶 is non-leaking cycle, by Proposition 1, the run

𝜌𝐶𝑚
is feasible for every𝑚 ≥ 0. Thus, the transition 𝜌 [𝑖] can be

executed repeatedly. Since 𝜌 [𝑖] is an input transition that outputs

a real-value, each time it is executed it reveals some information

about the input which results in a loss of privacy.

Privacy violating path. We now present the last property needed to

define well formed DiPA. This last property also concerns privacy

violations that arise from real valued outputs. Leaking cycles and

leaking pairs identify a transition that is executed arbitrarily many

times where the sampled insample value is bounded by values

sampled in another transition (that is also executed many times) on

the same run. However, with real valued outputs, we could have a

situation where this bound is revealed once, explicitly in an output.

This is captured in our next definition.

Definition 11 (Privacy violating path). A feasible run 𝜌 of A =

(𝑄, Γ, 𝑞init, 𝑋, 𝑃, 𝛿) from the initial state 𝑞init is a privacy violating
path if there are indices 0 ≤ 𝑖 ≤ 𝑗 ≤ |𝜌 | such that the following

conditions hold.

Cycle: 𝐶 = 𝜌 [𝑖 : 𝑗] is a non-leaking cycle.
Privacy Violation: There is a path 𝑘1, 𝑘2, . . . 𝑘𝑚 in the depen-

dency graph 𝐺𝜌 such that either (a) out(𝜌 [𝑘1]) = insample,
𝑘𝑚−1 < 𝑘𝑚 , and 𝑖 ≤ 𝑘𝑚 < 𝑗 , i.e., 𝜌 [𝑘𝑚] is on cycle 𝐶 ,

or (b) 𝑖 ≤ 𝑘1 < 𝑗 (𝜌 [𝑘1] is on cycle 𝐶), 𝑘2 < 𝑘1, and

out(𝜌 [𝑘𝑚]) = insample.

It is useful to see how Definition 11 captures the intuitions laid

out before. The path from 𝑘1 to 𝑘𝑚 in𝐺𝜌 ensures that the insample
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value sampled in 𝜌 [𝑘1] is less than the insample value sampled

in 𝜌 [𝑘𝑚]. Moreover, since 𝐶 is non-leaking, by Proposition 1, it

is repeatable. Condition (a) in (Privacy Violation) says that 𝜌 [𝑘𝑚]
is a transition on 𝐶 , and the edge (𝑘𝑚−1, 𝑘𝑚) in 𝐺𝜌 along with

𝑘𝑚−1 < 𝑘𝑚 means that there is a variable x ∈ stor that is set in
𝜌 [𝑘𝑚−1] and insample ≥ x is in guard(𝜌 [𝑘𝑚]). Moreover, since

𝐶 is non-leaking, x is not updated in 𝐶 and hence 𝑘𝑚−1 is before
𝐶 . Thus, the presence of the path means that the value output in

𝜌 [𝑘1] is less than the insample value sampled in 𝜌 [𝑘𝑚−1] which in

turn is less than the insample value sampled in 𝜌 [𝑘𝑚] every time

𝐶 is repeated. Therefore, there is a lower bound, which is output

in 𝜌 [𝑘1], for arbitrary many insample values that are generated
in 𝜌 [𝑘𝑚]. Condition (b) in (Privacy Violation) is similar but dual.
Here 𝜌 [𝑘1] is on 𝐶 , 𝜌 [𝑘2] is before 𝐶 and sets a variable x that is
an upper bound on the values sampled in 𝜌 [𝑘1], and finally, 𝜌 [𝑘𝑚]
outputs a value that upper bounds all these values, no matter how

many times 𝜌 [𝑘1] is executed by repeating 𝐶 .

Well-formed DiPA. The properties defined in this section identify

witnesses for the violation of privacy. The class of well-formed
automata are those that do not suffer from these deficiencies.

Definition 12 (Well-formed DiPA). A DiPA A is said to be well-
formed if A does not have any leaking cycles, leaking pairs, dis-

closing cycles, and privacy violating paths.

Our main results are: (i) a well-formed DiPA is differentially

private; (ii) if a DiPA satisfying the output distinction property (see

Definition 13) is differentially private then it must be well-formed.

We will also show that there is an effective procedure for checking

if a DiPA is well-formed. These observations together will provide

a decidability result for solving the differential privacy problem for

DiPA that satisfy output distinction property.

5 WELL-FORMED DIPA ARE

DIFFERENTIALLY PRIVATE

One of our main results, which we call the sufficiency theorem, is

that well-formed DiPAs are differentially private. The proof of this

Theorem is involved and carried out in Appendix A.

Theorem 2. Let A be a DiPA. If A is well-formed then there is
a 𝔇 > 0 such that for every 𝜖 > 0, A is 𝔇𝜖-differentially private.
Further, such a𝔇 can be computed in time exponential in the size of
the automaton A .

Proof Sketch. Let A be a well-formed DiPA. Given a feasible

run 𝜌 = 𝑡0 · · · 𝑡𝑛 of A from the initial state, fix computations 𝜅𝑖 =

(𝜌, 𝜎𝑖 , 𝛾) for 𝑖 = 1, 2 such that 𝜎1 and 𝜎2 are adjacent. For each

𝑗, let lt𝑗 be the “less than” relation on stor imposed by the prefix

𝜌 [0 : 𝑗 − 1] — (x, x′) ∈ lt𝑗 if there is a path of non-zero length from

lastassign𝜌 (x, 𝑗) to lastassign𝜌 (x′, 𝑗). Similarly, eq𝑗 is the “equality”
relation on stor imposed by the prefix 𝜌 [0 : 𝑗 − 1] — (x, x′) ∈ eq𝑗
if lastassign𝜌 (x, 𝑗) = lastassign𝜌 (x′, 𝑗).

We can show that there are numbers wt𝑗 and functions 𝑚 𝑗 :

stor→ {−1, 0, 1} such that
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1

4
, 0

𝑞1

1
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, 1

true, ⊤
true

𝑔1, ⊤
false

𝑔2, ⊤
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Figure 5: DiPA Anwf with one variable x is not well-formed but differentially

private. The guards 𝑔1 = (insample ≥ x) and 𝑔2 = (insample < x) .

(1) For any valuations 𝜂1, 𝜂2 such that 𝜂2 = 𝜂1 +𝑚 𝑗 ,
9

Prob[𝜖, 𝜂2, 𝜅2 [ 𝑗 :]] ≤ 𝑒
∑𝑛−1

ℓ=𝑗 wtℓ Prob[𝜖, 𝜂1, 𝜅1 [ 𝑗 :]] .
(2) If 𝑡 𝑗1 = 𝑡 𝑗2 , lt𝑗1 = lt𝑗2 and eq𝑗1 = eq𝑗2 for 𝑗1 ≤ 𝑗2 then

wt𝑗1 = 0

(3) wt𝑗 ≤ 2𝑑 𝑗 + 𝑑′𝑗 where 𝑑 𝑗 and 𝑑
′
𝑗
are such that 𝑃 (src(𝑡 𝑗 )) =

(𝑑 𝑗 , 𝜇 𝑗 , 𝑑′𝑗 , 𝜇
′
𝑗
).

Observe that the last two conditions imply that there is a number

𝔇 independent of 𝜌 such that

∑𝑛−1
ℓ=𝑗 wtℓ < 𝔇. Note that as 𝜌 is a

run from initial state then Prob[𝜖, 𝜂𝑖 , 𝜅𝑖 ] is independent of 𝜂𝑖 . The
above observations imply that

Prob[𝜖, 𝜅2] ≤ 𝑒𝔇Prob[𝜖, 𝜅1] .
This shows thatA is𝔇𝜖-differentially private. To carry out the for-

mal proof, we construct an augmented automaton aug(A), whose
states are triples of the form (𝑞, lt, eq) where 𝑞 is a state ofA, lt, and
eq are strict partial orders and equivalence relations on stor. The
value for𝔇 is also computed using the augmented automaton. □

The problem of checking well-formedness can be shown to be

in PSPACE. The proof is in Appendix A.

Theorem 3. The problem of checking whether a DiPA is well-formed
is in PSPACE. When the number of variables is taken to be a constant
𝑘 , then the problem of checking whether a DiPA is well-formed is
decidable in polynomial time.

6 DIFFERENTIALLY PRIVATE DIPA ARE

WELL-FORMED

While well-formedness is sufficient for ensuring differential privacy,

it is not a necessary condition for differential privacy as illustrated

by the following example.

Example 5. Consider the DiPA Anwf with one variable insample
given in Figure 5. The automaton is drawn following the convention

outlined in Example 2. As each transition outputs ⊤, Anwf , on any

input of length 𝑛, outputs the string ⊤𝑛 with probability 1. Thus,

Anwf is trivially differentially private. However, Anwf is not well-

formed as it has a leaking cycle, 𝑡𝑎𝑡𝑏 where 𝑡𝑎 is the transition from

𝑞0 to 𝑞1 and 𝑡𝑏 is the transition from 𝑞1 to 𝑞0 .

We show, however, that differentially private DiPA that satisfy an

additional technical property of output distinction are well-formed.

Thus, for DiPA satisfying this property, well-formedness is a precise

9
For functions 𝑓 , 𝑔 : 𝐴→ R, 𝑓 + 𝑔 is the function that adds the result of 𝑓 and 𝑔 for

each argument, i.e., (𝑓 + 𝑔) (𝑎) = 𝑓 (𝑎) + 𝑔 (𝑎) .
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characterization of when they are differentially private. Before

presenting this restricted necessity theorem and proof sketch, let us

define what it means for a DiPA to satisfy the condition of output

distinction.

Definition 13 (Output Distinction). A DiPA A =

(𝑄, Γ, 𝑞init, 𝑋, 𝑃, 𝛿) satisfies output distinction if the following holds:

If 𝑡1 and 𝑡2 are distinct transitions of A such that src(𝑡1) = src(𝑡2)
then out(𝑡1) ≠ out(𝑡2) and {out(𝑡1), out(𝑡2)} ∩ Γ ≠ ∅.

Output Distinction demands that distinct outgoing transitions

from a state have different outputs and at most one of the outgoing

transitions outputs a real value. In particular, there cannot be two

transitions out of a state 𝑞 that output insample and insample′.
Distinct outputs on transitions ensure that given a starting state 𝑞

and an output sequence 𝛾 , there is at most one run 𝜌 starting from 𝑞

that can produce𝛾 . Observe that the automaton of Figure 5 does not

satisfy output distinction property. The necessity proof proceeds

by showing that if A is not well-formed, then given𝔇, there are

computations (𝜌, 𝜎1, 𝛾) and (𝜌, 𝜎2, 𝛾) with the same run 𝜌 such that

𝜌 outputs 𝛾 , 𝜎1, 𝜎2 are adjacent and the ratio of the probability

measures of these computations is > 𝑒𝔇𝜖
for sufficiently large

𝜖 . Output distinction guarantees that 𝜌 is the only run on 𝜎1, 𝜎2
that outputs 𝛾 , allowing us to conclude that A is not differentially

private for non-well formed A. Without output distinction, the

deficit in probability measures of 𝛾 can be made up by other paths.

The output distinction property is also needed in [10] for the case

of a single variable. We are now ready to present the main result of

this section.

Theorem 4. Let A be a DiPA that satisfies the output distinction
property. If A is not well-formed, then it is not differentially private.

Proof Sketch. Let us fix a DiPA A = (𝑄, Γ, 𝑞init, 𝑋, 𝑃, 𝛿) that
satisfies the output distinction property. Recall that the output dis-

tinction property ensures that for any input sequence 𝜎 and output

sequence 𝛾 , |Runs(𝜎,𝛾) | ≤ 1. We sketch the main ideas behind the

proof; the full details can be found in Appendix B. Assume that

A is not well-formed. Now, for each value of 𝔇 and 𝜖 , the proof

identifies a run 𝜌 , an output sequence 𝛾 , and a pair of adjacent input

sequences 𝛼 and 𝛽 such that the computations (𝜌, 𝛼,𝛾) and (𝜌, 𝛽,𝛾)
demonstrate a violation of differential privacy (Definition 5). The

construction of witnesses is based on the following sequence of

observations.

(1) Let us fix a run 𝜌 from 𝑞init and an output sequence 𝛾 consistent

with 𝜌 . Observe that the number read in an input transition de-

termines the mean of the distributions from which insample and
insample′ are drawn in that step. Let us call an input sequence 𝜎

strongly compliant with 𝜌 and 𝛾 , if the sampling means satisfy the

constraints imposed by 𝜌 and 𝛾 . This has two requirements. First,

whenever there is a path from 𝑖 to 𝑗 in 𝐺𝜌 , the sample mean at

step 𝑖 is less than the sample mean at step 𝑗 . Notice that strong

feasibility ensures this when 𝑖 and 𝑗 are non-input transitions, and

here we are requiring this to hold when either 𝑖 or 𝑗 is an input

transition in which case the mean is determined by 𝜎 . Second,

if out(𝜌 [𝑖]) ∈ {insample, insample′} (real outputs), the sample

mean at step 𝑖 is in the interval𝛾 [𝑖]. Intuitively, for a strongly com-

pliant input sequence 𝜎 , the probability of computation (𝜌, 𝜎,𝛾) is
likely to be “high”. On the flip side, let us call an input sequence 𝜎

non-compliant at 𝑖 , if the sample mean set by 𝜎 at step 𝑖 either vio-

lates an order constraint or an output constraint. Again intuitively,

one can imagine that, as the number of non-compliant transitions

increase in𝜎 , the probability of the computation (𝜌, 𝜎,𝛾) decreases.
Now one can prove that if we consider two input sequences 𝜎1,

which is strongly compliant, and 𝜎2, which has non-compliant

transitions, then the ratio of the probabilities of (𝜌, 𝜎1, 𝛾) and
(𝜌, 𝜎2, 𝛾) grows as the number of non-compliant transitions in

(𝜌, 𝜎2, 𝛾) increases.
(2) Observations in (1) above provide a template for how to identify

witnesses for differential privacy violation: the presence of a leak-

ing cycle, leaking pair, disclosing cycle, or privacy violating path

help identify a run, and we then construct two input sequences 𝛼 ,

which is strongly compliant, and 𝛽 which has many non-compliant

steps. Observe that each witness to non-well-formedness is a run

containing a cycle that can be repeated arbitrarily many times

and contains a transition that will be made non-compliant in the

input sequence 𝛽 . The intuitions laid out in Section 4 for defining

well-formed DiPA will be used and we spell this out in each case.

A leaking cycle has a transition with index 𝑖1 (see Definition 7)

that sets a variable which is then used later in the transition in-

dexed 𝑖2. Since the guard of 𝑖2 is not true, it is an input transition.

We will construct the run 𝜌 by repeating the cycle as many times

as needed (based on𝔇 and 𝜖), and in 𝛽 the sample mean at step

𝑖2 will be in the wrong order with respect to 𝑖1 in each repeti-

tion, making it non-compliant. In a leaking pair (Definition 9)

there is a pair of transitions indexed 𝑘1 and 𝑘𝑚 on cycles that can

be repeated, and whose sampled values need to be ordered each

time they are executed. Moreover, transitions 𝑘1 and 𝑘𝑚 are input

transitions because their guards are not true (see discussion after

Definition 9). Thus, in 𝛽 we will flip the order of the sample means

at these steps to create an arbitrary number of non-compliant

steps. The transition indexed 𝑖 in a disclosing cycle (Definition 10)

is an input transition on a cycle that can be repeated. To create

non-compliant steps in 𝛽 we will set the mean of these transitions

to not be in the output interval given for this step. Finally, in a

privacy violating path (Definition 11) there is an input transition

with index 𝑘𝑚 for case (a) (or 𝑘1 for case (b)) that is on a repeatable

cycle whose sampled value is required to be larger than (smaller

than in case (b)) the value output in step 𝑘1 (step 𝑘𝑚 for case (b)).

To construct the input sequence 𝛽 , we set the input for each time

𝑘𝑚 (𝑘1 in case (b)) is taken to be smaller than the value output in

𝑘1, and thereby creating arbitrarily many non-compliant steps.

(3) The general principles behind constructing the input sequences

𝛼 and 𝛽 are laid out in (2). However, one key requirement for 𝛼

and 𝛽 to constitute a witness to privacy violation is that they be

adjacent (Definition 1) which demands that the values in 𝛼 and

𝛽 be not too far apart. One challenge is carrying this out is the

presence of non input transitions, where the sample means are

fixed. This can be overcome by carefully analyzing the dependency

graph 𝐺𝜌 and the parameters decorating the states appearing in

the run 𝜌 . □

The precise proof based on the above ideas is long and deferred to

Appendix B.

In Section 5, we showed that there is a PSPACE algorithm to

determine if an output-distinct DiPAA is well-formed (Theorem 3).
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This complexity bound is tight; we show that the problem of de-

termining if a DiPA is differentially private is PSPACE-hard. (See
Appendix C for the proof.)

Theorem 5. Given an output-distinct DiPAA, the problem of deter-
mining if there is a𝔇 > 0 such that for all 𝜖 , A is𝔇𝜖-differentially
private, is PSPACE-hard.

7 EXPERIMENTS

We implemented the algorithm that checks whether a DiPA A is

well-formed. In case A is well-formed, it computes a bound 𝔇,

which we call the weight of the automaton, such that A is 𝔇𝜖-

differentially private for all 𝜖 . The software tool, DiPAut, is built in
Python 3.9.5 and is available for download at [7]. It uses the PLY

package [6] for parsing the program and the igraph package [14]

to store the input automaton as a graph. The igraph package is also

used to perform graph-theoretic operations on the input automaton.

DiPAut has three major components. The first component, called

core, tokenizes and parses the input using PLY. The second compo-

nent, builders, constructs the augmentation of the input automaton.

The augmentation is built using a breadth-first-search of the (im-

plicit) graph of the augmentation. The relations lt and eq are stored

as dictionaries during augmentation. To prepare for checking of

leaking pair and privacy violating path, the automaton also builds

an “enhanced” augmentation. For example, it also builds the graphs

that include assignments to the variables 𝑉1 and 𝑉2 in the algo-

rithm for checking leaking pair (See the proof of Theorem 3). The

third component DP tests, implements the finals checks for leak-

ing cycle, leaking pair, privacy violating path and disclosing cycle

from the augmentations. If the automaton is well-formed, it also

computes the weight of the automaton. If it is not well-formed, it

further checks if it is output-distinct. In that case, we report that

the automaton is not differentially private.

DiPAut was evaluated against a suite of examples (See Table 1),

which we describe briefly.

7.1 Description of Examples

The first examples we consider are the standard Sparse Vector

Technique (SVT) [19] and the Numeric Sparse (Num-Sparse) [20].

These algorithms use one variable. Detailed discussion of these

algorithms can be found in [19, 20]. Apart from SVT and Num-

Sparse, all other examples use more than one variable. The details

of these algorithms are also located in Appendix D.

We also designed new examples, described below. The first set of

examples was designed to ensure that the tests of well-formedness

were implemented correctly. A second set of examples were de-

signed to evaluate the scalability of our tool. They include 𝑘-Min-

Max (for each 𝑘 > 0) and𝑚-Range (for each𝑚 > 0). The 1-Range

is the range query algorithm given in Example 1.

Examples LC-Example and DC-Example. The algorithm LC-

Example and DC-Example are variants of 1-Range. The algorithm

LC-Example is designed to have a leaking cycle and DC-Example

is designed to have a disclosing cycle. A detailed description of the

algorithms can be found in Appendix D.

Examples Num-Range-1 and Num-Range-2. The algorithm Num-

Range-1 is the variant of 1-Range which outputs insample (instead

of ⊤) when the sampled value 𝑞 [𝑖] is greater than high. The algo-
rithm Num-Range-2 on the other hand outputs insample′ . Num-
Range-2 is well-formed, output-distinct and hence differentially

private but Num-Range-1 has a privacy-violating path. A detailed

description of the algorithms can be found in Appendix D.

Examples Two-Range-1 and Two-Range-2. Two-Range-1 is a vari-

ant of 1-Range. In both algorithms, at the beginning, three thresh-

olds, 𝑇ℓ , 𝑇𝑚 , and 𝑇𝑢 , are perturbed by adding noise sampled from

the Laplace distribution. The algorithms then proceed to process

the queries, checking if the remaining noisy queries are between

the noisy𝑇ℓ and𝑇𝑚 . If at some point the input noisy query exceeds

the noisy 𝑇𝑚 , Two-Range-1 checks that the remaining queries are

in between the noisy𝑇𝑚 and the noisy𝑇𝑢 . In contrast, the algorithm

Two-Range-2 resamples 𝑇𝑚 before checking that the remaining

queries are in between the noisy𝑇𝑚 and the noisy𝑇𝑢 . Two-Range-

1 has a leaking pair and is not differentially privacy. Two-Range-2,

on the other hand, is well-formed, output distinct, and hence differ-

entially private Two-Range-1 and Two-Range-2 are described in

detail in Appendix D.

Input: 𝑞 [1 : 𝑁 ]
Output: 𝑜𝑢𝑡 [1 : 𝑁 ]

min,max← Lap( 𝜖
4𝑘
, 𝑞[1]))

for 𝑖 ← 2 to 𝑘 do

r← Lap( 𝜖
4𝑘
, 𝑞[𝑖])

if (r > max) ∧ (r > min) then
max← r

else if (r < min) ∧ (r < max) then
min← r

end

𝑜𝑢𝑡 [𝑖] ← read
end

for 𝑖 ← 𝑘 + 1 to 𝑁 do

r← Lap( 𝜖
4
, 𝑞[𝑖])

if (r ≥ min) ∧ (r < max) then
𝑜𝑢𝑡 [𝑖] ← ⊥

else if (r ≥ min) ∧ (r ≥ max) then
𝑜𝑢𝑡 [𝑖] ← ⊤
exit

else if (r < min) ∧ (r < max) then
𝑜𝑢𝑡 [𝑖] ← ⊥
exit

end

end

Algorithm 2: 𝑘-Min-Max algorithm. 𝑘-Min-Max is differ-

entially private.

Example 𝑘-Min-Max. One set of examples designed to check scala-

bility of our algorithm is 𝑘-Min-Max (𝑘 ≥ 2). Initially, 𝑘-Min-Max

reads 𝑘-queries, adds noise from the Laplace distribution at each

step, remembering the maximum and minimum amongst the per-

turbed queries. During this phase, the outputs do not inform the

observer whether the noisy query being processed updates the

maximum or minimum.
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Benchmarks DiPAut CheckDP [29]

Example 𝑣 𝑠 𝑡𝑟𝑎𝑛𝑠 wt calc

time (s)

total

time (s)

differentially

private?

𝔇 time (s) Counterexample

Validated?

SVT 1 3 3 0.00046 0.238 ✓ 5/4 29.92 N.A.

Num-Sparse 1 3 3 0.00045 0.249 ✓ 7/4 52.43 N.A.

DC-Example 2 4 5 N.A. 0.237 ×, DC N.A. 43.59 T.O.

Num-Range-1 2 4 4 N.A. 0.234 ×, PV N.A. 316.05 T.O.

Num-Range-2 2 4 4 0.00078 0.231 ✓ 5/4 1909.43 T.O.

LC-Example 2 4 4 N.A. 0.231 ×, LC N.A. T.O.

Two-Range-1 3 6 10 N.A. 0.239 ×, LP N.A. T.O.

Two-Range-2 3 7 11 0.00258 0.277 ✓ 2 T.O.

2-Min-Max 2 4 7 0.00065 0.220 ✓ 1 T.O.

10-Min-Max 2 12 31 0.00221 0.230 ✓ 1 M.E.

20-Min-Max 2 22 61 0.00434 0.248 ✓ 1 M.E.

100-Min-Max 2 102 301 0.0291 0.409 ✓ 1 M.E.

200-Min-Max 2 202 601 0.0803 0.643 ✓ 1 M.E.

1-Range 2 4 5 0.00083 0.227 ✓ 1 T.O.

10-Range 20 31 50 0.00797 0.611 ✓ 1 M.E.

20-Range 40 61 100 0.0212 3.469 ✓ 1 M.E.

40-Range 80 121 200 0.06242 35.89 ✓ 1 M.E.

80-Range 160 241 400 0.25867 506.3 ✓ 1 M.E.

Table 1: Summary of experimental results for DiPAut and comparison with CheckDP. The columns in the table are as follows. 𝑣 is the number of variables in the

automaton. 𝑠 is the number of states in the automaton. 𝑡𝑟𝑎𝑛𝑠 is the number of transitions in the automaton. The weight calculation time and total time taken by

DiPAut averaged over six executions are reported next, and are measured in seconds. Differentially private indicates if the automaton is differentially private or not.

In case, it is not, we report the reason detected by the tool: DC/PV/LC/LP means that disclosing cycle/privacy-violating path/leaking cycle/leaking pair, respectively

is detected.𝔇 is the weight of the automaton computed by the algorithm in case it is differentially private. For CheckDP, the time column indicates the running

time for CheckDP measured in seconds. The last column indicates the time taken for counterexample validation by PSI in case a counterexample is generated. T.O.

denotes that the tool did not finish in 30minutes. M.E. indicates that CheckDP reported a memory error.

After reading the first 𝑘-queries, each subsequent query is per-

turbed by adding noise, and the algorithm checks if the noisy query

is between the maximum and minimum found in the first 𝑘-noisy

queries. It continues processing the queries as long as it is between

those two. Otherwise, it quits. Observe that 𝑘-Min-Max is a para-

metric set of examples, one for each value of 𝑘 . For each 𝑘 , the DiPA

modeling 𝑘-Min-Max has 𝑡𝑤𝑜 variables, has 𝑘 + 2 states and 3𝑘 + 1
transitions. Further, 𝑘-Min-Max does not satisfy output distinction

for any 𝑘 as the outputs do not distinguish whether maximum or

minimum is being updated in the first phase. However, it is well-

formed and 𝜖-differentially private. Psuedocode for 𝑘-Min-Max is

shown as Algorithm 2.

Examples𝑚-Range. Another set of examples for scalability is𝑚-

Range (for each 𝑚). 𝑚-Range is the 𝑚-dimensional version of

Range. It repeatedly checks whether a sequence of points in the

𝑚-dimensional space is contained in a 𝑚-dimensional rectangle.

The rectangle is specified by giving the upper and lower threshold

for each coordinate of the rectangle. The algorithm initially adds

Laplacian noise to each of these 2𝑚 thresholds, then processes the

points by adding noise to each coordinate and checking that each

noisy coordinate is within the noisy thresholds for that coordinate.

Observe that𝑚-Range is a set of examples, one for each𝑚. For

each𝑚, the DiPA modeling𝑚-Range has 2𝑚 variables, has 3𝑚 + 1
states and 5𝑚 transitions. For each 𝑚, 𝑚-Range satisfies output

distinction, is well-formed, and is 𝜖-differentially private.𝑚-Range

is given in Algorithm 3. Here the arrays 𝑇1 and 𝑇2 store the 𝑚-

lower and𝑚-upper thresholds, respectively. The arrays low and

high store the noisy version of the lower and upper thresholds. In

the experiments, 𝑇1 is taken to be all 0s, and 𝑇2 is taken to be all 1s.

7.2 Summary of experimental results

The experimental results are summarized in Table 1. All experi-

ments were run on a macOS computer with a 1.4 GHz Quad-Core

Input: 𝑞 [1 :𝑚]
Output: 𝑜𝑢𝑡 [1 : 𝑁𝑚]

for 𝑗 ← 1 to𝑚 do

low[j] ← Lap( 𝜖
4𝑚 ,𝑇1 [ 𝑗])

high[j] ← Lap( 𝜖
4𝑚 ,𝑇2 [ 𝑗])

𝑜𝑢𝑡 [ 𝑗] ← cont
end

for 𝑖 ← 1 to 𝑁 do

for 𝑗 ← 1 to𝑚 do

r← Lap( 𝜖
4
, 𝑞[𝑚(𝑖 − 1) + 𝑗])

if (r ≥ low[j]) ∧ (r < high[j]) then
𝑜𝑢𝑡 [𝑚(𝑖 − 1) + 𝑗] ← cont

else if ((r ≥ low[j]) ∧ (r > high[j])) then
𝑜𝑢𝑡 [𝑚(𝑖 − 1) + 𝑗] ← ⊤
exit

end

else if ((r < low[j]) ∧ (r < high[j])) then
𝑜𝑢𝑡 [𝑚(𝑖 − 1) + 𝑗] ← ⊥
exit

end

end

end

Algorithm 3:𝑚-Range algorithm.𝑚-Range is differentially

private.

Intel Core i5 CPU processor with 8GB RAM. The running time is

benchmarked using pyperf [21], which runs each example 6 times

and takes the average over the 6 instances. Figure 6 plots the run-

ning time of our implementation for 𝑘-Min-Max. As predicted, the

tool confirms that 𝑘-Min-Max is 𝜖-differentially private. A close

examination of the algorithm for checking well-formedness reveals
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Figure 6: Running time for 𝑘-Min-Max. The 𝑦-axis gives the running time

measured in seconds, while the 𝑥-axis gives 𝑘 . The size of the DiPA is linear

in 𝑘. 𝑘-Min-Max is differentially private with weight 1.

that the algorithm can check the well-formedness of 𝑘-Min-Max

in time that is linear in 𝑘 . This observation is confirmed by the

experimental results. Note that the size of the DiPA modeling 𝑘-

Min-Max is linear in 𝑘 , and hence the running time is also linear

in the size of DiPA. In contrast, a careful analysis reveals that the

algorithm checking well-formedness takes time that is cubic in

𝑚 for𝑚-Range. This observation is also confirmed by the experi-

mental results. (See Figure 7). As predicted, the tool confirms that

𝑚-Range is 𝜖-differentially private. Note that the number of vari-

ables in 𝑚-Range is 2𝑚, implying a quartic dependence on the

number of variables as well. Data used to generate the graphs is

given in Appendix D.

Salient observations about our tool are as follows:

(1) DiPAut is able to check whether the algorithm described by

a DiPA is well-formed in reasonable time.

(2) In case the automatonA is well-formed, it is able to compute

a weight𝔇 thatA is𝔇𝜖-differentially private. The computed

values match the theoretical values. Further, the computation

of weight has little overhead.

(3) As predicted by the theory, the number of variables plays a

crucial role in performance. While the theory predicts that

this dependence is exponential (since the augmentation can

be of exponential size), nevertheless, there are interesting

examples in which the dependence is polynomial and not

exponential.

(4) DiPAut is not only able to verify differential privacy for

examples but also find violations of privacy in a reasonable

time, as shown in Table 1.

Comparison with CheckDP. We compare the performance of our

tool, DiPAut with CheckDP [29]. CheckDP employs the random-

ness alignment technique and attempts to prove differential privacy.

If it fails to prove differential privacy, it generates a potential coun-

terexample that must be validated using the PSI probabilistic model

checker [24]. The key differences between CheckDP and DiPAut
are as follows: (1) CheckDP supports other arithmetic operations

besides comparison operators. (2) However, CheckDP is sound but

incomplete and may fail to prove or disprove differential privacy.

(3) CheckDP checks if a program is𝔇𝜖 differentially private for a

Figure 7: Running time for𝑚-Range. The 𝑦-axis gives the running time mea-

sured in seconds, while the 𝑥-axis gives𝑚. The size of the DiPA is linear in𝑚.

𝑚-Range is differentially private with weight 1.

given𝔇. DiPAut, on the other hand, computes a𝔇 for which the

program is𝔇𝜖 differentially private. (4) DiPAut operates as a stan-
dalone tool, assessing the differential privacy of a given mechanism.

The results of the comparison are summarized in Table 1. Apart

from SVT and Num-Sparse, CheckDP times out on all other ex-

amples. For those two examples, DiPAut significantly outperforms

CheckDP.

8 RELATEDWORK

Online Programs and Comparison with [10]. The results in this paper

are an extension of those presented in [10]. However, the automaton

model proposed in [10] has only one storage variable, whereas we

consider the generalization where the automaton has finitely many

real-valued storage variables. Even though we use the same name

for the automata model and for the conditions characterizing well-

formed DiPA, the generalization to handle multiple real-valued

storage variables is a significant extension. Defining leaking cycles,

leaking pairs, privacy violating paths and disclosing cycles, requires

a careful analysis of the ordering constraints imposed on values

sampled in a run based on what gets stored in variables and the

Boolean constraints that guard transitions. These concepts cannot

be defined using just the underlying graph of the DiPA as in [10];

they require introducing the notion of a dependency graph of a

run. Even with dependency graphs, the definition of these graph-

theoretic conditions is subtle. For example, two cycles contained in

a run may not form a leaking pair. However, they may become a

leaking pair in an extension of the run as the additional transitions

in the extension introduce new dependencies in the dependency

graph (see Example 4 on Page 8). In the case of a single variable [10],

such a situation does not arise.

Next, even though the proof showing that well-formedness is

necessary for an output-distinct DiPA to be differentially private

uses a strategy similar to the case for one variable [10], it is signifi-

cantly more involved. For example, in showing that a leaking cycle

is a witness to privacy violation, complications arise due to the need

to track the dependency between multiple storage variables and

the presence of non-input transitions. When constructing a pair

of adjacent inputs that witness the violation of privacy, intervals

of real numbers called bands need to be carefully identified, where
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the input of certain transitions is restricted to lie (see Appendix B

). The proof that a leaking pair is a witness to privacy violation

uses new ideas. In [10], the proof constructs, given𝔇, two adjacent

computations whose ratio is > 𝑒𝔇𝜖
for each 𝜖 > 0. In this paper,

the adjacent computations have a ratio > 𝑒𝔇𝜖
only for sufficiently

large 𝜖 .

The proof showing that a well-formed DiPA is differentially

private is also innovative. In [10], the proof is by induction on the

number of assignments to the stored variable in a run. In contrast,

here the induction is on the number of transitions in a run, and the

induction hypothesis is constructed by classifying the dependency

graph nodes as gcycle_node or lcycle_node. (See Appendix A).

Privacy proof construction. Techniques based on type systems have

been proposed in many papers [15, 16, 22, 27, 29, 31] for generating

proofs of differential privacy. Some of these methods such as [15, 16,

22, 27] employ linear dependent types, for which the type-checking

and type-inference may be challenging. In [1, 3–5] methods based

on probabilistic couplings and random alignment arguments have

been employed for proving differential privacy. Shadow execution-

based method was introduced in [30]. Probabilistic I/O automata are

used in [28] to model interactive differential privacy algorithms and

simulation-based methods are used to verify differential privacy,

but these methods have not been shown to be complete.

Counterexample generation. Automated techniques to search for

privacy violations by generating counter examples have been pro-

posed in [8, 17, 29]. Techniques include the use of statistical hy-

pothesis testing [17], optimization techniques and symbolic differ-

entiation [8] and program analysis [29]. These methods search over

a bounded number of inputs.

Model-checking/Markov Chain approaches. Probabilistic model

checking approach for verifying 𝜖-differential privacy is employed

in [12, 13, 25], where it is assumed that the program is given as a

finite Markov Chain. These approaches do not allow for sampling

from continuous random variables.

Decision Procedures. The decision problem of checking whether

a randomized program is differentially private is studied in [2],

where it is shown to be undecidable for programs with a single

input and single output, assuming that the program can sample

from Laplacian distributions. A decidable sub-class is identified

where the inputs and outputs are constrained to be from a finite

domain and have bounded length.

Complexity. Gaboardi et. al [23] study the complexity of deciding

differential privacy for randomized Boolean circuits, and show

that the problem is coNP#P-complete. The results are extended to

Boolean programs [9] for which the verification problem is PSPACE-
complete. In this line of work, programs have a finite number of

inputs, the only probabilistic choices are fair coin tosses, and 𝑒𝜖 is

taken to be a fixed rational number.

9 DISCUSSION

We discuss the restrictions used in various definitions in this paper.

Strong feasability. From the theoretical point of view, strong feasi-

bility is used only to prove the necessity of well-formedness (The-

orem 4). The sufficiency proof (Theorem 2) does not require the

condition of strong feasibility. Nevertheless, we believe that all

differential privacy mechanisms are strongly feasible. We have not

encountered examples that violate the strong feasibility condition.

Our intuition for this belief is as follows. First, any DiPA that does
not have any non-input states is, by definition, strongly feasible. For
DiPA with non-input states, the condition implies that the mean

of the distribution at any two non-input states respects the order

given by the dependency graph of a run. Let us consider the “de-

terministic” version of the automaton in which no noise is added.

Intuitively, the “deterministic” version captures the behavior of the

automaton in the limit as the privacy budget 𝜖 tends to infinity,

i.e., becomes unlimited. A strongly feasible run implies that we can

choose inputs such that the probability of that run tends to 1 as 𝜖

tends to∞ and is executable in the “deterministic” version. A path

that is not strongly feasible implies that the probability of this path

tends to 0 as 𝜖 tends to∞, irrespective of the choice of inputs, and
will never be executed in the "deterministic version" because the

insample values stored at the non-input states do not follow the

order given by the dependency graph. The deterministic version

of the automaton is relevant as a differentially private algorithm

is often the noisy version of a deterministic algorithm (with noise

added to make the automaton differentially private).

Output-distinction. Some examples do not meet the condition out-

put distinction. For example, the 𝑘-Min-Max (See Section 7.1) and

NoisyMax [20] are not output distinct. However, other examples

(m-Range, SVT, NumericSparse) are output distinct. The output

distinction condition is only needed to establish necessity but not

for sufficiency. In other words, if an automaton is well-formed, it is

differentially private, even if it is not output distinct. This is true for
the 𝑘-Min-Max examples. However, the traditional NoisyMax is

neither well-formed nor output distinct, and hence our technique

does not establish its differential privacy. Some variants of Noisy-

Max (like checking if the 𝑘th input is maximum) are well-formed

and hence can be handled by our techniques.

Adjaceny Relations. For algorithms working on a sequence of an-

swers to queries on a database like SVT and Num-Sparse (see [20],

pages 56 and 57), the assumption that queries are 1-sensitive is com-

mon; here 1-sensitive means that adding or removing a member

from a database can cause a difference of at most 1 in the output of

each query. This assumption is satisfied by all counting queries and

can be found in Algorithms 1, 2, 3 in [20] on pages 58, 62, 64, first

paragraph on page 5 of [1] and third paragraph of Section 4 in [17].

More generally, our results also apply to a sequence of queries

each of which is Δ-sensitive. The computation of𝔇will change, but

the theorems of the sufficiency of well-formedness and necessity

for well-formedness for output distinct DiPA remain true.

Boolean Guards on transitions in leaking cycle. In the definition of

a leaking cycle (see Definition 8), it is possible that the constraint

involving x in the guard of 𝜌 [𝑖2] is superfluous. When this happens,

there have to be other variables in the guard of 𝜌 [𝑖2]. However, we
can show that after removing all superfluous checks from 𝜌 [𝑖2],
either the original cycle will be a leaking cycle for some (possibly
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different) variable, or the leaking cycle gives rise to a leaking pair

when repeated twice. Therefore, in principle, even a superfluous

test does leak information (though indirectly).

The expressiveness of multi-variable DiPA vs one-variable DiPA. We

can prove that multi-variable DiPA are strictly more expressive

than one-variable DiPA. For example, we can formally show that

the DiPA ARange (See Figure 1) cannot be modeled using single-

variable DiPA.

10 CONCLUSIONS

We extended the DiP automaton model introduced in [10] for mod-

eling online algorithms that process a stream of unbounded real

values representing answers to queries and, in response, produce a

sequence of real or discrete output values. In the extended model, a

DiPAA may usemultiple storage variables to store noisy input val-
ues when executing transitions that are used in Boolean conditions

that guard transitions. Our main contribution is a precise charac-

terization of when DiPAs are differentially private using the notion

of well-formed automata. The definition of well-formed automata

is subtle and complicated, and requires the use of new graph struc-

tures associated with the runs of the automata, called dependency

graphs. Well-formed DiPAs are shown to be differentially private

and DiPAs satisfying the condition of output distinction that are

differentially private are necessarily well-formed. The problem of

checking well-formedness is PSPACE-complete. The algorithm for

checking differential privacy has been implemented in a tool called

DiPAut, and our experimental results demonstrate its promise.

As future work, it will be interesting to identify necessary condi-

tions for classes of automata that do not satisfy the output distinc-

tion property. Extending DiPAs to allow a richer class of compar-

isons in the guards and a richer class of assignments, like using ex-

pressions involving additions of storage variables and/or constants

in the guard conditions, is left for future exploration. Computing

the optimal weight𝔇 is another open problem.
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A SUFFICIENCY OF WELL-FORMEDNESS

Well-formed automata are differentially private

We shall now show that a well-formed DiPA is also differentially

private. We start by constructing for each DiP automaton A, an-

other automaton aug(A), which we shall call the augmentation of

A . Intuitively, aug(A) captures all the paths of A that occur with

non-zero probability (See Proposition 6).

In the augmented automaton, aug(A), each state will carry ad-

ditional information regarding the relationships that must hold

amongst the values stored in the real variables x𝑖 , 1 ≤ 𝑖 ≤ 𝑘. In

particular, each state will carry two binary relations over the set of

real variables stor = {x𝑖 , 1 ≤ 𝑖 ≤ 𝑘}; the first relation will capture

the “less-than” relation and the second relation shall capture the

“equals-to” relation.

Definition 14 (Augmentation of a DiPA). The augmentation

of a DiP automaton A = (𝑄, Γ, 𝑞init, 𝑋, 𝑃, 𝛿) is the automaton

aug(A) = (aug(𝑄), Γ, aug(𝑞init), 𝑋, aug(𝑃), aug(𝛿)) defined as fol-
lows. Let stor = 𝑋 \ {insample, insample′}.
• The set aug(𝑄) is the set of states (𝑞, lt, eq) such that 𝑞 ∈ 𝑄,
lt ⊆ stor × stor is a strict partial order, eq ⊆ stor × stor is
an equivalence relation, lt ∩ eq = ∅ and lt ∪ eq is transitive.

The state (𝑞, lt, eq) is an input state if and only if 𝑞 ∈ 𝑄in .

• aug(𝑞init) = (𝑞init, ∅, idstor) . where idstor = {(𝑥, 𝑥) | 𝑥 ∈
stor}.
• aug(𝑃) ((𝑞, lt, eq)) = 𝑃 (𝑞) for each (𝑞, lt, eq) ∈ aug(𝑄) .
• aug(𝛿) : (aug(𝑄) × G) ↩→ (aug(𝑄) × (Γ ∪
{insample, insample′})×{true, false}𝑘 ) is defined as follows.
– If 𝛿 ((𝑞, 𝑐)) is undefined, then so is aug(𝛿) ((𝑞, lt, eq), 𝑐) for
each possible lt and eq.

– Otherwise, assume that 𝛿 (𝑞, 𝑐) = (𝑞1, 𝑜, ®𝑏). Let lt be a strict
partial order, and let eq be an equivalence relation such

that lt ∩ eq = ∅ and lt ∪ eq is transitive. Consider the

following definitions:

sm_vars = {x𝑖 ∈ stor | ∃x𝑗 .(x𝑖 , x𝑗 ) ∈ lt ∪ eq,
insample ≥ x𝑗 is a conjunct of 𝑐}

lg_vars = {x𝑖 ∈ stor | ∃x𝑗 .(x𝑗 , x𝑖 ) ∈ lt ∪ eq,
insample < x𝑗 is a conjunct of 𝑐}

ltbefore = lt ∪ {(x𝑖 , x𝑗 ) | x𝑖 ∈ sm_vars, x𝑗 ∈ lg_vars}.

Now, 𝛿 ((𝑞, 𝑐)) is defined only if ltbefore ∩ eq = ∅. In
this case, aug(𝛿) ((𝑞, lt, eq), 𝑐) = ((𝑞1, ltafter, eqafter), 𝑜, ®𝑏)
where ltafter and eqafter are defined as follows:

assignv = {x𝑖 | 𝑏 [𝑖] = true}
nonassignv = {x𝑖 | 𝑏 [𝑖] = false}
ltafter = (ltbefore ∩ (nonassignv × nonassignv))
∪{(x𝑖 , x𝑗 ) | x𝑖 ∈ sm_vars ∩ nonassignv, x𝑗 ∈ assignv}
∪{(x𝑖 , x𝑗 ) | x𝑖 ∈ assignv, x𝑗 ∈ lg_vars ∩ nonassignv}

eqafter = (eq ∩ (nonassignv × nonassignv)) ∪
{(x𝑖 , x𝑗 ) | x𝑖 , x𝑗 ∈ assignv}.

Definition 15. We shall say that a valuation 𝜂 is compatible with

an augmented state (𝑞, lt, eq) if𝜂 (x𝑖 ) < 𝜂 (x𝑗 ) whenever (x𝑖 , x𝑗 ) ∈ lt
and 𝜂 (x𝑖 ) = 𝜂 (x𝑗 ) whenever (x𝑖 , x𝑗 ) ∈ eq.

For each transition 𝑡 = ((𝑞, lt, eq), 𝑐, (𝑞′, lt′, eq′), 𝑜, 𝑏), of

aug(A), there is a unique transition proj(𝑡) = (𝑞, 𝑐, 𝑞′, 𝑜, 𝑏) of
A . If 𝜌 = 𝑡0𝑡1 · · · 𝑡𝑛−1 is an execution of aug(A), the execution

proj(𝜌) = proj(𝑡0)proj(𝑡1) · · · proj(𝑡𝑛−1) is said to be the projec-

tion of 𝜌. Observe that if 𝜌 is a run of aug(A) on 𝜎 outputting 𝛾

then proj(𝜌) is a run of A on 𝜎 outputting 𝛾 . For a computation

𝜅 = (𝜌, 𝜎,𝛾) of aug(A) we write proj(𝜅) = (proj(𝜌), 𝜎,𝛾) . As al-
ways, a run 𝜌 is said to be a run from the initial state if src(𝜌) is
the initial state of aug(A) .

We have the following proposition:

Proposition 6. Let A be a DiP automaton and aug(A) be its aug-
mentation.

(1) Let 𝜌 = 𝑡0 · · · 𝑡𝑛−1 be a run of aug(A) from the initial state of
A. For each 0 < 𝑖 ≤ 𝑛, let 𝑞𝑖 , lt𝑖 , eq𝑖 be such that trg(𝑡𝑖−1) =
(𝑞𝑖 , lt𝑖 , eq𝑖 ). For each 0 < 𝑖 ≤ 𝑛, x1, x2 ∈ stor,
• x1lt𝑖x2 if and only if there is a path of non-zero length from
lastassign𝜌 (x1, 𝑖) to lastassign𝜌 (x2, 𝑖) in 𝐺𝜌 [0:𝑖 ] .
• x1eq𝑖x2 if and only lastassign𝜌 (x1, 𝑖) = lastassign𝜌 (x2, 𝑖) .
• 𝐺𝜌 is acyclic. Hence, every path of aug(A) from the initial
state is feasible.

(2) If 𝜅 = (𝜌, 𝜎,𝛾) is a computation of aug(A) and 𝜂 a valuation
compatible with first(𝜌), then
• Pr[𝜖, 𝜂, 𝜅] = Pr[𝜖, 𝜂, proj(𝜅)] .
• The dependency graph of 𝐺𝜌 is the same as the dependency
graph of 𝐺proj(𝜌 ) .

(3) If 𝜌 is a feasible run of A from the initial state of A, then
there is a unique run 𝜌† of aug(A) from the initial state of
aug(A) such that proj(𝜌†) = 𝜌 .

(4) aug(A) is well-formed if and only if A is well-formed.
(5) aug(A) is (𝑑, 𝜖)-differentially private if and only ifA is (𝑑, 𝜖)-

differentially private.

Thanks to Proposition 6, if we can show that if the augmentation

of a well-formed automaton A is (𝑑, 𝜖)-differentially private, then

so is A . For the rest of the section, without loss of generality, we

shall assume that all states of an augmented automaton, aug(A)
are reachable from the initial state of the aug(A). We start with

some useful definitions.

Definition 16. Let aug(A) be the augmented automaton of A .

• A transition 𝑡 of aug(A) is said to be a cycle transition if

there is a cycle𝐶 = 𝑡0 · · · 𝑡𝑛−1 of aug(A) such that 𝑡 = 𝑡𝑖 for

some 0 ≤ 𝑖 < 𝑛.

• Given a transition 𝑡 of aug(A), Let 𝑃 (src(𝑡)) = (𝑑, 𝜇, 𝑑′, 𝜇′) .
We define

𝑑 (𝑡) = 𝑑 𝜇 (𝑡) = 𝜇 𝑑′ (𝑡) = 𝑑′ 𝜇′ (𝑡) = 𝜇′ .

Definition 17. Let A be a DiP automaton and aug(A) be its

augmentation. Let 𝜌 = 𝑡0 · · · 𝑡𝑛−1 be a run from the initial state of

aug(A) . Let 𝐺𝜌 be the dependency graph of 𝜌. For 0 ≤ 𝑗 ≤ 𝑛, let

𝜌 𝑗 = 𝜌 [ 𝑗 :] .10

10
Recall, by convention (See Section 2), 𝜌𝑛 is the empty string.
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(1) The vertex 𝑗 of𝐺𝜌 is said to be a gcycle_node (lcycle_node)
if there is a path 𝑖1, . . . , 𝑖𝑘 in 𝐺𝜌 such that 𝑖1 = 𝑗 (𝑖𝑘 = 𝑗

resp.), 𝑖𝑘−1 < 𝑖𝑘 (𝑖2 < 𝑖1 resp.) and 𝑡𝑖𝑘 (𝑡𝑖1 resp.) is a cycle

transition.

(2) The sets usedv(𝜌 𝑗 ) for 0 ≤ 𝑗 < 𝑛 are defined by backward

induction on 𝑗 as follows:

usedv(𝜌𝑛) = ∅
usedv(𝜌 𝑗 ) = smallv(𝑡 𝑗 ) ∪ largev(𝑡 𝑗 )

∪(nonassignv(𝑡 𝑗 ) ∩ usedv(𝜌 𝑗+1))

(3) The transition 𝑡 𝑗 is said to be a quasi-cycle transition if the

following hold:

(a) 𝑡 𝑗 does not output insample, ie, insample ∉ out(𝑡 𝑗 ) .
(b) assignv(𝑡 𝑗 ) ∩ usedv(𝜌 𝑗+1) = ∅,
(c) if x ∈ smallv(𝑡 𝑗 ) then lastassign𝜌 ( 𝑗, x) is a gcycle_node

and

(d) if x ∈ largev(𝑡 𝑗 ) then lastassign𝜌 ( 𝑗, x) is a lcycle_node.

(4) The weight of transition 𝑡 𝑗 at position j, wt(𝑡 𝑗 )
def

= 𝑓𝑗 (𝑎 𝑗 +
𝑏 𝑗 )𝑑 (𝑡 𝑗 ) + 𝑐 𝑗𝑑′ (𝑡 𝑗 ) where

𝑓𝑗 =

{
1 if 𝑡 𝑗 is not quasi-cyclic
0 otherwise

𝑎 𝑗 =


1 if 𝑗 is a lcycle_node or a

gcycle_node of 𝐺𝜌

0 otherwise

𝑏 𝑗 =

{
1 if 𝑡 𝑗 is an input transition

0 otherwise

𝑐 𝑗 =


1 if insample′ ∈ out(𝑡 𝑗 )

and 𝑡 𝑗 is an input transition

0 otherwise

(5) The weight the run 𝜌 , wt(𝜌) = ∑
𝑗<𝑛 wt(𝑡 𝑗 ) .

Proposition 7. LetA be a well-formed DiP automaton and aug(A)
be its augmentation. Let 𝜌 = 𝑡0 · · · 𝑡𝑛−1 be a run from the initial state
of aug(A) and 𝐺𝜌 be the dependency graph of 𝜌. For each 𝑗, 𝑗 ′ We
consider each part of the Proposition.

(1) If x ∈ smallv(𝑡 𝑗 ) (x ∈ largev(𝑡 𝑗 ) resp.) is such that
lastassign𝜌 ( 𝑗, x) is a lcycle_node (gcycle_node resp.) then
𝑗 is a lcycle_node (gcycle_node resp.) also.

(2) A gcycle_node of 𝐺𝜌 cannot be a lcycle_node.
(3) If 𝑗 is a gcycle_node or a lcycle_node then the transition 𝑡 𝑗

cannot output insample.
(4) If 𝑗 < 𝑗 ′ and 𝑡 𝑗 = 𝑡 𝑗 ′ , then wt(𝑡 𝑗 ) = 0.

Proof. Thanks to Proposition 6 aug(A) is well-formed as A is.

(1) Immediate from the definitions of lcycle_node and

gcycle_node.
(2) Immediate from the fact that aug(A) is a well-formed DiP

automaton, and hence has no leaking pairs.

(3) Immediate from the fact that aug(A) is a well-formed DiP

automaton, and hence has no privacy-violating path.

(4) Follows from well-formedness: If 𝑡 𝑗 = 𝑡 𝑗 ′ , then 𝑡 𝑗 𝑡 𝑗+1 . . . 𝑡 𝑗 ′
is a cycle. As aug(A) is well-formed, 𝑡 𝑗 does not output

insample′ and is easily seen as a quasi-cycle transition. □

Proposition 8. For 𝑖 = 1, 2, let 𝜅 = (𝜌, 𝜎,𝛾) be a computation of
aug(A) . Let 𝜂1, 𝜂2 be valuations compatible with src(𝜌). If 𝜂1 (x) =
𝜂2 (x) for each x ∈ usedv(𝜌), then

Pr[𝜖, 𝜂1, 𝜅] = Pr[𝜖, 𝜂2, 𝜅] .

Proof. By induction on |𝜌 |. □

Theorem 9. Let A be a well-formed DiPA. For 𝑖 = 1, 2, let 𝜅𝑖 =

(𝜌, 𝜎𝑖 , 𝛾) be computations of aug(A) such that 𝜎1 and 𝜎2 are adjacent
and 𝜌 starts from the initial state of aug(A). Then

Pr[𝜖, 𝜅2] ≤ 𝑒wt(𝜌 )𝜖 Pr[𝜖, 𝜅1] .

Proof. Let 𝜌 = 𝑡0 · · · 𝑡𝑛−1 . Let 𝐺𝜌 be the dependency graph of

𝜌. For each 0 ≤ 𝑗 < 𝑛, define𝑚 𝑗 : stor→ {−1, 0, 1} as follows:

𝑚 𝑗 (x) =


1 if lastassign(x, 𝑗) is a gcycle_node
−1 if lastassign(x, 𝑗) is a lcycle_node
0 otherwise

For 0 ≤ 𝑗 ≤ 𝑛, 𝜌 𝑗 = 𝜌 [ 𝑗 :] . For 𝑖 = 1, 2, 0 ≤ 𝑗 ≤ 𝑛 let 𝜅𝑖, 𝑗 = 𝜅𝑖 [ 𝑗 :
] . 11 For 0 ≤ 𝑗 ≤ 𝑛, we shall say that a valuation 𝜂 is compatible

with 𝜌 𝑗 if 𝜂 is compatible src(𝜌 𝑗 ) if 𝑗 < 𝑛 and with trg(𝜌) otherwise.
The theorem follows from Proposition 8 and the following claim.

Claim 1. Let 0 ≤ 𝑗 ≤ 𝑛, and let 𝜂1, 𝜂2 be valuations such that 𝜂1, 𝜂2

are compatible with 𝜌 . If

𝜂2 |usedv(𝜌 ) = (𝜂1 +𝑚 𝑗 ) |usedv(𝜌 ) ,
then

Pr[𝜖, 𝜂1, 𝜅1, 𝑗 ] ≥ 𝑒−wt𝑗𝜖 Pr[𝜖, 𝜂2, 𝜅2, 𝑗 ]
where

wt𝑗 =
𝑛−1∑︁
𝑢=𝑗

wt(𝑡𝑢 ).

The proof is by induction on 𝑛 − 𝑗 .

Base Case: 𝑗 = 𝑛. The claim follows from the definitions.

Induction Hypothesis: 𝑗 < 𝑛. Assume that the claim is true for

𝑗 + 1. Fix 𝜂1, 𝜂2 .
For 𝑖 = 1, 2, 𝜖 > 0, and 𝑧 ∈ R let

inp𝑖 = first(𝜎𝑖 ( [ 𝑗]))

𝜈𝑖 =

{
𝜇 (𝑡 𝑗 ) + inp𝑖 if inp𝑖 ≠ 𝜏

𝜇 (𝑡 𝑗 ) otherwise

𝜈 ′
𝑖

=

{
𝜇′ (𝑡 𝑗 ) + inp𝑖 if inp𝑖 ≠ 𝜏

𝜇′ (𝑡 𝑗 ) otherwise

low𝑖 = maxx∈smallv(𝑡 𝑗 ) 𝜂
𝑖 (x)

ℓ𝑖 =

{
max(low𝑖 , 𝑟 ) if 𝛾 [ 𝑗] = (insample, 𝑟 , 𝑠)
low𝑖 otherwise

up𝑖 = minx∈largev(𝑡 𝑗 ) 𝜂
𝑖 (x)

𝑢𝑖 =

{
min(up𝑖 , 𝑠) if 𝛾 [ 𝑗] = (insample, 𝑟 , 𝑠)
up𝑖 otherwise

𝜂𝑖𝑧 (x) =

{
𝜂 (x) if x ∈ nonassignv(𝑡 𝑗 )
𝑧 if x ∈ assignv(𝑡 𝑗 )

11
By convention, (See Section 2), 𝜌𝑛 and 𝜅𝑛 is the empty string 𝜆.
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Now if ℓ2 ≥ 𝑢2 then Pr[𝜖, 𝜂2, 𝜌2, 𝑗 ] = 0 and the claim is trivially

true. Hence, without loss of generality, we assume that ℓ2 < 𝑢2 . We

will shortly argue that if ℓ2 < 𝑢2 then ℓ1 < 𝑢1 also. Assuming that

this is case, for 𝑖 = 1, 2 and 𝜖 > 0, let

𝑞𝑖 (𝜖) =
{
𝑑 ′ (𝑡 𝑗 )𝜖

2

∫ 𝑠

𝑟
𝑒−𝑑

′ (𝑡 𝑗 )𝜖 |𝑧−𝜈 ′𝑖 |𝑑𝑧 if 𝛾 [ 𝑗] = (insample′, 𝑟 , 𝑠)
1 otherwise

𝑝𝑖 (𝜖) =
𝑑 (𝑡 𝑗 )𝜖

2

∫ 𝑢𝑖

ℓ𝑖

𝑒−𝑑 (𝑡 𝑗 )𝜖 |𝑧−𝜈𝑖 |Pr[𝜖, 𝜂𝑖𝑧 , 𝜅𝑖, 𝑗+1]𝑑𝑧

By definition, we will then have

Pr[𝜖, 𝜂𝑖 , 𝜅𝑖, 𝑗 ] = 𝑞𝑖 (𝜖)𝑝𝑖 (𝜖).

Let

Δ = 𝜈2 − 𝜈1 = 𝜈 ′
2
− 𝜈 ′

1
.

We have that −1 ≤ Δ ≤ 1 and Δ = 0 if 𝑡 𝑗 is a non-input transition.

Let 𝑓𝑗 , 𝑎 𝑗 , 𝑏 𝑗 , 𝑐 𝑗 be as in the Definition 17. It is easy to see that

𝑞1 (𝜖) ≥ 𝑒−𝑐 𝑗𝑑
′ (𝑡 𝑗 )𝜖𝑞2 (𝜖).

Thus, we shall be done if we can show that

ℓ1 < 𝑢1 and 𝑝1 (𝜖) ≥ 𝑒𝜖 (−𝑓𝑗 (𝑎 𝑗+𝑏 𝑗 )𝑑 (𝑡 𝑗 )−wt𝑗+1 )𝑝2 (𝜖) .

We consider three mutually exclusive but exhaustive cases, depend-

ing on the values of 𝑓𝑗 and 𝑎 𝑗 .

(a) Let us consider the case when 𝑓𝑗 = 0. Thus, the transition 𝑡 𝑗
is a quasi-cycle transition.

By definition of a quasi-cycle transition, if x ∈ smallv(𝑡 𝑗 )
then lastassign(x) is a gcycle_node and if x ∈ largev(𝑡 𝑗 )
then lastassign(x) is a lcycle_node. Thus, we must have

𝑚 𝑗 (x) = 1 for each x ∈ smallv(𝑡 𝑗 ) and 𝑚 𝑗 (x) = −1 for

each x ∈ largev(𝑡 𝑗 ). Note that 𝑡 𝑗 does not output insample.
Thus,

ℓ2 = ℓ1 + 1 𝑢2 = 𝑢1 − 1.

Thus, from the assumption that ℓ2 < 𝑢2, it is easy to see that

ℓ1 < 𝑢1 .

Now, by definition of a quasi-cycle transition,

assignv(𝑡 𝑗 ) ∩ usedv(𝜌 𝑗+1) = ∅.

Fix 𝑏 such that ℓ2 < 𝑏 < 𝑢2 be some number. In this case, we

can write using Proposition 8

𝑝𝑖 (𝜖) =
𝑑 (𝑡 𝑗 )𝜖

2

∫ 𝑢𝑖

ℓ𝑖

𝑒−𝑑 (𝑡 𝑗 )𝜖 |𝑧−𝜈𝑖 |Pr[𝜖, 𝜂𝑖𝑧 , 𝜅𝑖, 𝑗+1]𝑑𝑧

= Pr[𝜖, 𝜂𝑖
𝑏
, 𝜅𝑖, 𝑗+1] (

𝑑 (𝑡 𝑗 )𝜖
2

∫ 𝑢𝑖

ℓ𝑖

𝑒−𝑑 (𝑡 𝑗 )𝜖 |𝑧−𝜈𝑖 |𝑑𝑧)

We have by construction, for all x ∈ usedv(𝜌 𝑗+1),

𝜂2
𝑏
(x) = 𝜂1

𝑏
(x) +𝑚 𝑗+1 (x).

It is also easy to see that 𝜂𝑖
𝑏
is compatible with 𝜌 𝑗+1 for each

𝑖 = 1, 2. Thus, by the induction hypothesis, we have that

Pr[𝜖, 𝜂1
𝑏
, 𝜅1, 𝑗+1] ≥ 𝑒−𝜖wt𝑗+1Pr[𝜖, 𝜂2

𝑏
, 𝜅2, 𝑗+1] .

The lemma, now follows in this case from the following

observation:∫ 𝑢1

ℓ1

𝑒−𝑑 (𝑡 𝑗 )𝜖 |𝑧−𝜈1 |𝑑𝑧 =

∫ 𝑢1

ℓ1

𝑒−𝑑 (𝑡 𝑗 )𝜖 |𝑧−𝜈2+Δ |𝑑𝑧

=

∫ 𝑢1+Δ

ℓ1+Δ
𝑒−𝑑 (𝑡 𝑗 )𝜖 |𝑧−𝜈2 |𝑑𝑧

≥
∫ 𝑢1−1

ℓ1+1
𝑒−𝑑 (𝑡 𝑗 )𝜖 |𝑧−𝜈2 |𝑑𝑧

=

∫ 𝑢2

ℓ2

𝑒−𝑑 (𝑡 𝑗 )𝜖 |𝑧−𝜈2 |𝑑𝑧

(b) Let us consider the case when 𝑓𝑗 = 1 and 𝑎 𝑗 = 0.

Please note that if 𝑎 𝑗 = 0 then 𝑗 is neither a lcycle_node
nor a gcycle_node. Thanks to Proposition 7, it follows that

𝑚 𝑗 (x) ≠ −1 for each x ∈ smallv(𝑡 𝑗 ) and𝑚 𝑗 (x) ≠ 1 for each

x ∈ largev(𝑡 𝑗 ). Thus ℓ1 ≤ ℓ2 and 𝑢2 ≤ 𝑢1, and hence ℓ1 < 𝑢1 .

Also, observe that we have by definition 𝑚 𝑗+1 (x) = 0 for

each x ∈ assignv(𝑡 𝑗 ) and 𝑚 𝑗+1 (x) = 𝑚 𝑗 (x) for each x ∈
nonassignv(𝑡 𝑗 ). From this it is easy to see that for each x ∈
usedv(𝜌 𝑗+1),

𝜂2𝑧 (x) = 𝜂1𝑧 (x) +𝑚 𝑗+1 (x) .

Furthermore, it is easy to see that for each ℓ𝑖 < 𝑧 < 𝑢𝑖 , 𝜂
𝑘
𝑧 is

compatible with 𝜂 𝑗+1 . As ℓ1 ≤ ℓ2 and 𝑢2 ≤ 𝑢1, we get that

for each ℓ2 < 𝑧 < 𝑢2, and 𝑘 = 1, 2 𝜂𝑘𝑧 is compatible with 𝜂 𝑗+1 .
By induction hypothesis, we get that for each ℓ2 < 𝑧 < 𝑢2,

Pr[𝜖, 𝜂1𝑧 , 𝜅1, 𝑗+1] ≥ 𝑒−𝜖wt𝑗+1Pr[𝜖, 𝜂2𝑧 , 𝜅2, 𝑗+1]

Thus, we have

𝑝1 (𝜖) =
𝑑 (𝑡 𝑗 )𝜖

2

∫ 𝑢1

ℓ1

𝑒−𝑑 (𝑡 𝑗 )𝜖 |𝑧−𝜈1 |Pr[𝜖, 𝜂1𝑧 , 𝜅1, 𝑗+1]𝑑𝑧

≥
𝑑 (𝑡 𝑗 )𝜖

2

∫ 𝑢2

ℓ2

𝑒−𝑑 (𝑡 𝑗 )𝜖 |𝑧−𝜈1 |Pr[𝜖, 𝜂1𝑧 , 𝜅1, 𝑗+1]𝑑𝑧

≥ 𝑒−𝜖wt𝑗+1
𝑑 (𝑡 𝑗 )𝜖

2∫ 𝑢2

ℓ2

𝑒−𝑑 (𝑡 𝑗 )𝜖 |𝑧−𝜈1 |Pr[𝜖, 𝜂2𝑧 , 𝜅2, 𝑗+1]𝑑𝑧

= 𝑒−𝜖wt𝑗+1
𝑑 (𝑡 𝑗 )𝜖

2∫ 𝑢2

ℓ2

𝑒−𝑑 (𝑡 𝑗 )𝜖 |𝑧−𝜈2+Δ |Pr[𝜖, 𝜂2𝑧 , 𝜅2, 𝑗+1]𝑑𝑧

Now, in case 𝑡 𝑗 is a non-input transition, Δ = 0 and 𝑏 𝑗 = 0.

Hence we get

𝑝1 (𝜖) ≥ 𝑒−𝜖wt𝑗+1𝑝2 (𝜖) = 𝑒𝜖 (−𝑓𝑗 (𝑎 𝑗+𝑏 𝑗 )−wt𝑗+1 )𝑝2 (𝜖)

as required.

Otherwise, 𝑏 𝑗 = 1. Since Δ ∈ [−1, 1], we have that

𝑒−𝑑 (𝑡 𝑗 )𝜖 |𝑧−𝜈2+Δ | ≥ 𝑒−𝑑 (𝑡 𝑗 )𝜖𝑒−𝑑 (𝑡 𝑗 )𝜖 |𝑧−𝜈2 |
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Thus,

𝑝1 (𝜖) ≥ 𝑒−𝜖wt𝑗+1
𝑑 (𝑡 𝑗 )𝜖

2

𝑒−𝑑 (𝑡 𝑗 )𝜖∫ 𝑢2

ℓ2

𝑒−𝑑 (𝑡 𝑗 )𝜖 |𝑧−𝜈2 |Pr[𝜖, 𝜂2𝑧 , 𝜅2, 𝑗+1]𝑑𝑧

= 𝑒𝜖 (−𝑓𝑗 (𝑎 𝑗+𝑏 𝑗 )𝑑 (𝑡 𝑗 )−wt𝑗+1 )𝑝2 (𝜖)

as required.

(c) Let us consider the case when 𝑓𝑗 = 1 and 𝑎 𝑗 = 1. Thus 𝑗 is a

lcycle_node or a gcycle_node. We consider the case when 𝑗

is a lcycle_node. The case when 𝑗 is a gcycle_node is similar

and left out.

Since 𝑗 is a lcycle_node, 𝑡 𝑗 does not output insample. Thus,
we have that ℓ𝑖 = low𝑖

𝑘
and 𝑢𝑖 = up𝑖

𝑘
for each 𝑖 = 1, 2.

Further, we must have by definition for each x ∈ largev(𝑡 𝑗 ),
lastassign(x, 𝑗) is also a lcycle_node. Thus,𝑚 𝑗 (x) = −1 for
each x ∈ largev(𝑡 𝑗 ) . From these observations, we get that

𝑢2 = 𝑢1 − 1 ℓ2 − 1 ≤ ℓ1 ≤ ℓ2 + 1.

Now, as we have assumed that ℓ2 < 𝑢2, we get

ℓ1 < 𝑢2 + 1 = 𝑢1

as desired.

It is also easy to see that 𝜂1𝑧 and 𝜂
2

𝑧−1 is compatible with 𝜌 𝑗+1
for each ℓ2 < 𝑧 − 1 < 𝑢2, ie, for each ℓ2 + 1 < 𝑧 < 𝑢1 .

Also, by definition as 𝑗 is a lcycle_node,𝑚 𝑗+1 (x) = −1 for
each x ∈ assignv(𝑡 𝑗 ) . Thus, we have x ∈ usedv(𝜌 𝑗+1),

𝜂2𝑧−1 (x) = 𝜂1𝑧 (x) +𝑚 𝑗+1 (x).

By induction hypothesis, we get that for each ℓ2+1 < 𝑧 < 𝑢1,

Pr[𝜖, 𝜂1𝑧 , 𝜅1, 𝑗+1] ≥ 𝑒−𝜖wt𝑗+1Pr[𝜖, 𝜂2𝑧−1, 𝜅2, 𝑗+1]

Observe that ℓ2 + 1 ≥ ℓ1 . We thus have

𝑝1 (𝜖) =
𝑑 (𝑡 𝑗 )𝜖

2

∫ 𝑢1

ℓ1

𝑒−𝑑 (𝑡 𝑗 )𝜖 |𝑧−𝜈1 |Pr[𝜖, 𝜂1𝑧 , 𝜅1, 𝑗+1]𝑑𝑧

≥
𝑑 (𝑡 𝑗 )𝜖

2

∫ 𝑢1

ℓ2+1
𝑒−𝑑 (𝑡 𝑗 )𝜖 |𝑧−𝜈1 |Pr[𝜖, 𝜂1𝑧 , 𝜅1, 𝑗+1]𝑑𝑧

≥
𝑑 (𝑡 𝑗 )𝜖𝑒−𝜖wt𝑗+1

2∫ 𝑢1

ℓ2+1
𝑒−𝑑 (𝑡 𝑗 )𝜖 |𝑧−𝜈1 |Pr[𝜖, 𝜂2𝑧−1, 𝜅2, 𝑗+1]𝑑𝑧

=
𝑑 (𝑡 𝑗 )𝜖𝑒−𝜖wt𝑗+1

2∫ 𝑢1

ℓ2+1
𝑒−𝑑 (𝑡 𝑗 )𝜖 |𝑧−𝜈1 |Pr[𝜖, 𝜂2𝑧−1, 𝜅2, 𝑗+1]𝑑𝑧

=
𝑑 (𝑡 𝑗 )𝜖𝑒−𝜖wt𝑗+1

2∫ 𝑢1−1

ℓ2

𝑒−𝑑 (𝑡 𝑗 )𝜖 |𝑧+1−𝜈1 |Pr[𝜖, 𝜂2𝑧 , 𝜅2, 𝑗+1]𝑑𝑧

=
𝑑 (𝑡 𝑗 )𝜖𝑒−𝜖wt𝑗+1

2∫ 𝑢2

ℓ2

𝑒−𝑑 (𝑡 𝑗 )𝜖 |𝑧+1−𝜈2+Δ |Pr[𝜖, 𝜂2𝑧 , 𝜅2, 𝑗+1]𝑑𝑧

≥
𝑑 (𝑡 𝑗 )𝜖𝑒−𝜖wt𝑗+1−𝜖𝑑 (𝑡 𝑗 ) (1+Δ)

2∫ 𝑢2

ℓ2

𝑒−𝑑 (𝑡 𝑗 )𝜖 |𝑧−𝜈2 |Pr[𝜖, 𝜂2𝑧 , 𝜅2, 𝑗+1]𝑑𝑧

= 𝑒−𝜖wt𝑗+1−𝜖𝑑 (𝑡 𝑗 ) (𝑎 𝑗+Δ)𝑝2 (𝜖)

The result follows by observing that Δ ≤ 𝑏 𝑗 as Δ = 0 if

𝑏 𝑗 = 0 and in the interval [−1, 1] otherwise. □

Corollary 10. If the DiPA A is well-formed then there is a number
wt(A) such that A is wt(A)𝜖-differentially private. Further, the
number wt(A) can be computed from aug(A) in polynomial time,
and hence from A is exponential time.

Proof. Thanks to Proposition 6 and Theorem 9, it suffices to

show that there is a 𝔇 such that wt(𝜌) ≤ 𝔇 for every run 𝜌 of

aug(A) . Now, from that fact that if a transition of the automaton

can contribute to the weight of a run at most once (See Proposi-

tion 7), it is immediate to see such a 𝔇 exists. We detail below a

better bound on𝔇.

Consider the underlying labeled graph𝐺 constructed from the

augmented automaton aug(A) as follows. Its vertices are states of
aug(A) and there is an edge from 𝑞1 to 𝑞2 if and only if there is a

transition 𝑡 from 𝑞1 and 𝑞2. The label of the edge is 𝑡 . We shall also

assign weights to the edge as follows. We assign the edge weight

𝑒𝑤1 +𝑤2 where 𝑒 is 2 if the transition is an input transition and 1

otherwise.𝑤1 is 𝑑 (𝑡) if either 𝑡 is not a cycle transition or if there

is a variable x ∈ assignv(𝑡) and a run 𝜌 from starting from 𝑞2 in

which x is accessed without being assigned. Otherwise,𝑤1 is 0. 𝑤2

is 𝑑′ (𝑡) if insample′ is output in 𝑡 and 0 otherwise.

Once the graph 𝐺 has been constructed, we can construct its

component graph𝐺 ′ and assign weights to each node and transition
of this graph. We shall take the weight of a component in 𝐶 to be
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the sum of the weights of all transitions in 𝐶. The weight of the

edge from component 𝐶1 to 𝐶2 labeled 𝑡 is taken to be the weight

of the edge 𝑡 . Note that 𝐺 ′ is a DAG and can be computed in time

polynomial in the size of aug(A) . Now, each path in 𝐺 ′ has a
weight which is the sum of weights of transitions and nodes. Let𝔇

be the maximum value amongst the weights of paths in𝐺 ′ starting
from the component containing the initial state of aug(A) . It is
easy to see that weight of any run of A is bounded by𝔇 and that

𝔇 can be computed from 𝐺 ′ in linear time. Thus, a desired𝔇 can

be constructed from A in polynomial time.

A better approximation to𝔇 can be constructed by taking the

bisimulation quotient of aug(A) before running the above algo-

rithm. □

Checking Well-formedness is in PSPACE.
Theorem 11. The problem of checking whether a DiPA is well-
formed is decidable in PSPACE. When the number of variables is
taken to be a constant 𝑘 , then the problem of checking whether a
DiPA is well-formed is decidable in polynomial time.

Proof. Recall that A is well-formed iff aug(A) is well-formed.

Our PSPACE algorithm will first non-deterministically check

if aug(A) has a leaking cycle without needing to construct the

whole automaton. This will allow us to conclude that the problem

of checking whether aug(A) has a leaking cycle is in PSPACE,
thanks to Savitch’s theorem.

The non-deterministic algorithm 𝐴𝑙𝑔 for checking whether

aug(A) has a leaking cycle guesses a variable x ∈ stor and a run

𝜌 𝐶 of aug(A) incrementally such that (i)𝐶 is a cycle, and (ii) there

are indices 𝑖1 and 𝑖2 such that x is assigned in the transition 𝑡𝑖1 and

used in transition 𝑡𝑖2 . Note that as all runs of aug(A) are feasible,
the algorithm does not need to check the repeatability of the cycle

𝐶.

The algorithm Alg performs the above by guessing the variable

x and the run 𝜌 𝐶 = 𝑡0 · · · 𝑡𝑛−1 one-by-one from the initial state of

aug(A), and at each steo

• checks that the source of the current guessed transition is

exactly the target of the last guessed transition,

• checks that the current guesses transition is a valid transition

of aug(A),
• if has not guessed as yet, Alg guesses if the current guessed

transition is the first transition of 𝐶; if it guesses that it

indeed is, then it remembers src(𝑡𝑖 ) in the memory, and that

fact that it guessed cycle 𝐶 has begun,

• if the cycle 𝐶 begins at position 𝑖 or has already begun then

it additionally checks if

(1) x is assigned in the current guessed transition

(2) x is used in the current guessed transition.

• Alg declares that aug(A) has a leaking cycle if the target

of the last transition is exactly the source of the cycle 𝐶 it

guessed, and if x was assigned and used in its guessed cycle

𝐶.

It is easy to see that the path 𝜌 𝐶 can be guessedwithout explicitly

constructing aug(A) and that the above checks require only space

polynomial in the size of A . If aug(A) has a leaking cycle; then

we can declare that A is not well-formed. Otherwise, we check if

aug(A) has a leaking pair.

To check for a leaking pair of aug(A), we have to search for a

run 𝜌 of aug(A) from the initial state, such that there are indices

0 ≤ 𝑖1 < 𝑗1 ≤ |𝜌 | and 0 ≤ 𝑖2 < 𝑗2 ≤ |𝜌 | such that following

conditions hold.

(1) 𝐶1 = 𝜌 [𝑖1 : 𝑗1] and 𝐶2 = 𝜌 [𝑖2 : 𝑗2] are cycles. (Note that
since aug(A) does not have leaking cycles by assumption,

all cycles of aug(A) are non-leaking cycles).
(2) 𝐶1 and 𝐶2 are non-overlapping.

(3) There is a path 𝑘1, 𝑘2, . . . 𝑘𝑚 in the dependency graph 𝐺𝜌

such that 𝑖1 ≤ 𝑘1 < 𝑗1 (𝑘1 is on 𝐶1), 𝑖2 ≤ 𝑘𝑚 < 𝑗2 (𝑘𝑚 is on

𝐶2), 𝑘2 < 𝑘1 and 𝑘𝑚−1 < 𝑘𝑚 .

Now, it is easy to see that a non-deterministic algorithm that

runs in space polynomial in the size of A can check for a run 𝜌

that satisfies the first two conditions above, as in the case of a

leaking cycle. The challenge is to check for the third condition, as

maintaining the dependency graph for the entire run may not be

possible in polynomial space. However, we will exploit the relations

lt and eq in an augmented state. Let trg(𝜌 [𝑖]) = (𝑞, lt, eq). Recall
that

(1) (x1, x2) ∈ lt if and only if there is a path from

lastassign𝜌 (𝑖, x1) to lastassign𝜌 (𝑖, x2) in the graph 𝐺𝜌 [0:𝑖 ] .
(2) and (x1 x2) ∈ eq if and only if lastassign𝜌 (𝑖, x1) =

lastassign𝜌 (𝑖, x2) .
To exploit the relations lt and eq, the algorithm shall pretend that

there are two additional real variables, 𝑉1 and 𝑉2 that are assigned

exactly once each during the run 𝜌 . The variable 𝑉1 is assigned

when the algorithm guesses that the current index is the index 𝑘2
and the 𝑉2 is assigned when the algorithm guesses that the current

index is the index 𝑘𝑚−1 . The non-deterministic algorithm, Alg
1
,

for checking the existence of a leaking cycle proceeds as follows. It

guesses the run 𝜌 = 𝑡0 · · · 𝑡𝑛−1 incrementally. At each step,

• checks that the source of the current guessed transition is

exactly the target of the last guessed transition,

• checks that the current guessed transition is a valid transition

of aug(A),
• if Alg

1
has not guessed as yet that the index 𝑘2 has been

encountered, Alg
1
guesses if the current transition is the

desired transition 𝑡𝑘2 or not. If it guesses that the current

transition is the desired transition 𝑡𝑘2 , then it treats the vari-

able 𝑉1 as being assigned in the current transition.

• if Alg
1
has not guessed as yet that the index 𝑘𝑚−1 has been

encountered, Alg
1
guesses if the current transition is the

desired transition 𝑡𝑘𝑚−1 or not, if it guesses that the current

transition is the desired transition 𝑡𝑘𝑚−1 , then it treats the

variable 𝑉2 as being assigned in the current transition,

• if Alg
1
has yet to guess the cycle𝐶1, then it guesses if the cur-

rent transition is the first transition of cycle 𝐶1; if it guesses

that it indeed does, then it remembers the source of the cur-

rent transition in the memory, and the fact that it guessed

cycle 𝐶1 has begun,

• it Alg
1
has yet to guess the cycle 𝐶2, then it guesses if the

cycle 𝐶2 begins at the current transition; if it guesses that

it indeed does, then it remembers the source of the current
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transition in the memory, and that fact that it guessed cycle

𝐶2 has begun,

• makes sure that it is not guessing that it is in cycle 𝐶1 and

𝐶2 simultaneously,

• if Alg
1
is guessing that the cycle 𝐶1 is being processed,

then it guesses if the current transition is the transition

𝑡𝑘1 ; and checks the guess by checking if there is a variable

x ∈ largev(𝑡) such that (𝑉1, x) ∈ eq where 𝑡 is the current

transition and eq is such that src(𝑡) = (𝑞, lt, eq);
• if Alg

1
is guessing that the cycle 𝐶2 is being processed,

then it guesses if the current transition is the transition

𝑡𝑘𝑚 ; and checks the guess by checking if there is a variable

x ∈ smallv(𝑡) such that (𝑉2, x) ∈ eq where 𝑡 is the current

transition and eq is such that src(𝑡) = (𝑞, lt, eq);
• if it is guessing that the current transition is in the cycle 𝐶𝑖 ,

for 𝑖 = 1, 2, it guesses if the current guessed transition is the

last transition of 𝐶𝑖 ; if that is the case, then it checks that

the target of the current transition is exactly the source of

the cycle 𝐶𝑖 it has stored in its memory, and

• once the algorithm guesses that both cycles 𝐶1 and 𝐶2 are

completed, it guesses if the current transition is the final

transition of 𝜌. If it guesses that the current transition is

indeed the final transition and the target of the transition

is the triple (𝑞, lt, eq), then it declares that aug(A) has a
leaking pair if all the above checks passed, and if either

(𝑉1,𝑉2) ∈ lt or (𝑉1,𝑉2) ∈ eq.
It is easy to show that the above algorithm runs in space polyno-

mial in the size of aug(A) and that the algorithm declares that

aug(A) has a leaking pair iff aug(A) has a leaking pair thanks to

the properties of lt and eq.
Now, if aug(A) does not have a leaking cycle or a leaking pair,

then the algorithm for well-formedness will check for disclosing

cycle and privacy violating path next. The PSPACE algorithm for

checking disclosing cycle can be designed along the same lines

as the algorithm for checking for leaking cycle, and the PSPACE
algorithm for checking for privacy violating path can be designed

along the same lines as the algorithm for check for leaking pair. □

B NECESSITY OF WELL-FORMEDNESS FOR

OUTPUT-DISTINCT DIPA

In this section, we give the proof showing that if DiPA A satisfy-

ing Output Distinction property is not well-formed then A is not

differentially private. The proof will be broken into four Lemmas

12, 14, 15 and 16, given in this section.

Leaking cycles implies no privacy

Lemma 12. A DiPA A, satisfying Output Distinction property, is
not differentially private if it has a leaking cycle.

Let A = (𝑄, Γ, 𝑞init, 𝑋, 𝑃, 𝛿). Assume that A satisfies Output

Distinction property and has a leaking cycle.

Let 𝜂′ = 𝑡0, 𝑡1, ..., 𝑡𝑚′−1 be a run of A, starting from the initial

state 𝑞init, that is a leaking cycle. For 0 ≤ 𝑢 < 𝑚′, let 𝑐𝑢 be the

guard of transition 𝑡𝑢 . From the definition of a leaking cycle, we

see that there exists an integer 𝑚 ≤ 𝑚′ − 1 such that the suffix

𝐶′ = 𝑡𝑚, ..., 𝑡𝑚′−1 is a cycle that is repeatable, and there exist distinct
integers 𝑖, 𝑗 such that𝑚 ≤ 𝑖, 𝑗 < 𝑚′ and a variable x𝑖′ (1 ≤ 𝑖′ ≤ 𝑘)

such that 𝑡𝑖 is an assignment transition for the variable x𝑖′ and 𝑐 𝑗
references x𝑖′ . Let 𝑛′ = 𝑚′ −𝑚. Now, we extend 𝜂′ by repeating

the cycle𝐶′ to get the run 𝜂 = 𝜂′𝐶′. We let 𝜂 = 𝑡0, ..., 𝑡𝑚+𝑛−1 where
𝑛 = 2𝑛′. For 0 ≤ 𝑢 < 𝑚 + 𝑛, let 𝑞𝑢 = src(𝑡𝑢 ) and 𝛾𝑢 = out(𝑡𝑢 ) .
Also, let 𝑞𝑚+𝑛 = trg(𝑡𝑚+𝑛−1) . Note that 𝑞𝑢 = 𝑞𝑢+𝑛′ , 𝛾𝑢 = 𝛾𝑢+𝑛′ for
𝑚 ≤ 𝑢 < 𝑚 + 𝑛′ . Now, let 𝐶 = 𝑡𝑚, ..., 𝑡𝑚+𝑛−1 . Note that 𝐶 is a cycle.

It is not difficult to see the following property is satisfied by 𝜂: the

variable x𝑖′ is referenced in the condition 𝑐 𝑗+𝑛′ and the transition

𝑡𝑖 is an assignment transition for x𝑖′ .
As before, let 𝑡𝑢 be the 𝑢-th transition of 𝜂 and 𝑐𝑢 be the guard

of the 𝑢-th transition. Further, let 𝑑𝑢 and 𝜇𝑢 be such that 𝑃 (𝑞𝑢 ) =
(𝑑𝑢 , 𝜇𝑢 ) for each 𝑢.

From our discussion above, we see that there exist at least one

triple (𝑢′, 𝑣 ′,𝑤 ′) of integers such that 𝑚 ≤ 𝑢′ < 𝑣 ′ < 𝑚 + 𝑛,
1 ≤ 𝑤 ′ ≤ 𝑘 and the following properties are satisfied: (i) 𝑐𝑣′ refer-

ences x𝑤′ and (ii) 𝑢′ = lastassign𝜂 (x𝑤′ , 𝑣 ′). We call such a triple

as an assign_refer triple. Now, we give the definitions and proof

assuming that there exists at least one triple (𝑢′, 𝑣 ′,𝑤 ′), as given
above, such that the condition insample ≥ x𝑤′ is a conjunct in the

guard 𝑐𝑣′ (the case when for all assign_refer triples (𝑢′, 𝑣 ′,𝑤 ′), the
condition insample < x𝑤′ is a conjunct in the guard 𝑐𝑣′ , is handled

similarly in a symmetric fashion as outlined later). Now we fix

a triple of integers (𝑖, 𝑗, 𝑖′) as follows. If there exists at least one
assign_refer triple (𝑢′, 𝑣 ′,𝑤 ′) such that 𝑞𝑢′ ∈ 𝑄non then we take

(𝑖, 𝑗, 𝑖′) to be any such triple so that 𝜇𝑖 is the maximum among all

such triples; otherwise, we take (𝑖, 𝑗, 𝑖′) be any assign_refer triple.

In the remainder of our proof, we fix the triple of integers 𝑖, 𝑗, 𝑖′ as
specified above.

Consider any integer ℓ > 0. We define a run 𝜂ℓ starting from

𝑞init by repeating the cycle 𝐶 = 𝑡𝑚, . . . 𝑡𝑚+𝑛−1, ℓ times. Formally,

𝜂ℓ = 𝑡0, 𝑡1, ..., 𝑡𝑚+ℓ𝑛−1 such that 𝑞𝑢 = 𝑞𝑢−𝑛 and 𝛾𝑢 = 𝛾𝑢−𝑛 for

𝑚 + 𝑛 ≤ 𝑢 < 𝑚 + ℓ𝑛. Let 𝛾 (ℓ) = 𝑜0 · · ·𝑜𝑚+ℓ𝑛−1 be the output

sequence of length𝑚 + ℓ𝑛 such that 𝑜𝑢 = 𝛾𝑢 if 𝜎𝑢 ∈ Γ, otherwise
𝑜𝑢 = (𝛾𝑢 ,−∞,∞) . Once again, we let 𝑐𝑢 be the guard of the 𝑢-th

transition 𝑡𝑢 . Now, for the given ℓ > 0, we define two neighboring

input sequences 𝛼 (ℓ) = 𝑎0 · · ·𝑎𝑚+ℓ𝑛−1 and 𝛽 (ℓ) = 𝑏0 · · ·𝑏𝑚+ℓ𝑛−1
each of length𝑚 + ℓ𝑛.

Let 𝑍 ′ = { 1
2
} ∪ {|𝜇𝑢 − 𝜇𝑢′ | : 0 ≤ 𝑢,𝑢′ < 𝑚 + 𝑛ℓ, 𝑞𝑢 , 𝑞𝑢′ ∈

𝑄non, 𝜇𝑢 ≠ 𝜇𝑢′ }, and Δ =
min(𝑍 ′ )
𝑚+𝑛ℓ . Observe that Δ > 0. Let

𝑍 = {𝜇𝑢 : 𝑚 ≤ 𝑢 < 𝑚 + 𝑛, 𝑞𝑢 ∈ 𝑄non}. Now, we define a

constant 𝑧 as follows. If 𝑍 ≠ ∅ then 𝑧 = min(𝑍 ) − 1

2
, otherwise

𝑧 = − 1

2
. Let 𝑈 = {𝑢 : 𝑞𝑢 ∈ 𝑄non ,𝑚 ≤ 𝑢 < 𝑚 + 𝑛ℓ} and

𝑈 ′ = {𝑢 : 𝑞𝑢 ∈ 𝑄non , 0 ≤ 𝑢 < 𝑚}.
Recall that 𝐺𝜂ℓ = (𝑉 , 𝐸) is the dependence graph of the run 𝜂ℓ .

Note that𝑉 = {𝑢 : 0 ≤ 𝑢 < 𝑚 +𝑛ℓ}. A source node in𝐺𝜂ℓ is a node

that has no incoming edges and a sink node is a node that has no
outgoing edges. The length of a path in𝐺𝜂ℓ is the number of edges

on the path. Note that if the path is a single node, then it’s length

is zero. Observe that the length of any path is less than𝑚 + 𝑛ℓ. We

say that a path 𝑝 = (𝑢0, ..., 𝑢𝑟 ) in 𝐺𝜂ℓ , is a maximal path iff either

𝑢0 is a source node or 𝑢0 ∈ 𝑈 , and ∀𝑘1, 0 < 𝑘1 ≤ 𝑟 , 𝑢𝑘1 ∉ 𝑈 . For

a maximal path 𝑝 , as given above, we define 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑝) to be the

value 𝑧′ + 𝑟Δ where 𝑧′ = 𝜇𝑢0
if 𝑢0 ∈ 𝑈 , otherwise 𝑧′ = 𝑧. Now, we

define a function𝜓 that associates a real value with each node in𝑉

as follows. For 𝑢 ∈ 𝑉 ,𝜓 (𝑢) is as given below: if 𝑢 ∈ 𝑈 , 𝜓 (𝑢) = 𝜇𝑢 ;
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if 𝑢 ∉ 𝑈 and is a source node then𝜓 (𝑢) = 𝑧; in all other cases,𝜓 (𝑢)
is the maximum weight of a maximal path ending in 𝑢.

From our assumption about A, we observe that 𝜂ℓ is a strongly

feasible run. Using this fact, we establish that, if (𝑢,𝑢′) ∈ 𝐸 then

𝜓 (𝑢′) ≥ 𝜓 (𝑢) + Δ. This is shown as follows. If 𝑢′ ∉ 𝑈 then 𝜓 (𝑢′)
is the maximum weight of a maximal path ending in 𝑢′ . If 𝑢′′ is
the node just before 𝑢′ on such a maximal path, then by definition

𝜓 (𝑢′) = 𝜓 (𝑢′′) + Δ, and further more 𝜓 (𝑢′′) ≥ 𝜓 (𝑢), and the

desired result follows. Now, consider the case, when 𝑢′ ∈ 𝑈 . Now,

consider a predecessor 𝑢′′ of 𝑢′, i.e., (𝑢′′, 𝑢′) ∈ 𝐸, such that𝜓 (𝑢′′)
is maximum. Clearly 𝑢′′ ∉ 𝑈 . Consider the maximal path ending

in 𝑢′′ whose weight is maximum. If this path starts from a node

which is a source node, then by definition, we see that the weight

of the path is less than min({𝜇𝑢 : 𝑢 ∈ 𝑈 }) and the result follows

from this. On the other, if the above maximal path ending 𝑢′′ starts
from a node𝑤 ∈ 𝑈 , we see that 𝜇𝑤 < 𝜇𝑢′ (because every feasible

execution in A is strongly feasible); the required result follows

from this observation and the fact the length of the above maximal

path is less than𝑚 + 𝑛ℓ.
For each 𝑢, 0 ≤ 𝑢 < 𝑚 + 𝑛ℓ , if 𝑢 ∈ 𝑈 ′ ∪ 𝑈 then let 𝑎𝑢 := 𝜏 ,

otherwise let 𝑎𝑢 = 𝜓 (𝑢). For any such 𝑢, let 𝑋𝑢 be the random

variable with distribution Lap(𝑑𝑢𝜖, 𝜇𝑢 ) or Lap(𝑑𝑢𝜖, 𝑎𝑢 ), respec-
tively, depending on whether 𝑢 ∈ 𝑈 ′ ∪ 𝑈 or not. Consider any

𝑢, 0 ≤ 𝑢 < 𝑚 + 𝑛ℓ, such that 𝑞𝑢 ∉ 𝑄non . (Note that if 𝑞𝑢 ∈ 𝑄non
then 𝑐𝑢 is the condition true.) The guard 𝑐𝑢 is a conjunction of

atomic conditions of the form insample ≥ x𝑘1 or of the form

insample < x𝑘1 for some 𝑘1, 1 ≤ 𝑘1 ≤ 𝑘 . Let 𝑢1 < 𝑢 be the

maximum integer such that the transition 𝑡𝑢1
is an assignment

transition for the variable x𝑘1 . Now, in 𝑐𝑢 , we replace insample
by the random variable 𝑋𝑢 and replace x𝑘1 by 𝑋𝑢1

. Let 𝑐′𝑢 be the

condition obtained by modifying every atomic condition in 𝑐𝑢
as specified above. Now, let X(ℓ) = {𝑋𝑢 : 0 ≤ 𝑢 < 𝑚 + 𝑛ℓ},
C(ℓ) = {𝑐′𝑢 : 0 ≤ 𝑢 < 𝑚 + 𝑛ℓ}. Let 𝜌𝛼 (ℓ) denote the com-

putation given by the triple (𝜂ℓ , 𝛼 (ℓ), 𝛾 (ℓ)) . Now, Pr[𝜖, 𝜌𝛼 (ℓ)] is
the probability that the random variables in X(ℓ) satisfy all the

guard conditions in C(ℓ). Let 𝑅Pr[𝜖, 𝜌𝛼 (ℓ)] be the probability that

the random variables in X(ℓ) satisfy all the guard conditions in

C(ℓ) and ∀𝑢 ∈ 𝑈 ′, 𝑋𝑢 ∈ [𝜓 (𝑢) − Δ
2
, 𝜓 (𝑢) + Δ

2
] . For all 𝑢 ∈ 𝑈 ′,

we call the intervals [𝜓 (𝑢) − Δ
2
, 𝜓 (𝑢) + Δ

2
] as bands. Clearly,

Pr[𝜖, 𝜌𝛼 (ℓ)] ≥ 𝑅Pr[𝜖, 𝜌𝛼 (ℓ)] . Let 𝐶Pr[𝜖, 𝜌𝛼 (ℓ)] be the conditional
probability that the random variables in X(ℓ) satisfy all the guard

conditions in C(ℓ) given that ∀𝑢 ∈ 𝑈 ′, 𝑋𝑢 ∈ [𝜓 (𝑢) − Δ
2
, 𝜓 (𝑢) + Δ

2
] .

Now, we see that 𝑅Pr[𝜖, 𝜌𝛼 (ℓ)] = (𝐶Pr[𝜖, 𝜌𝛼 (ℓ)] · Prob[∀𝑢 ∈
𝑈 ′, 𝑋𝑢 ∈ [𝜓 (𝑢) − Δ

2
, 𝜓 (𝑢) + Δ

2
]]). It can be easily shown that

there exists 𝜖′ > 0, such that ∀𝜖 > 𝜖′, for every 𝑢 ∈ 𝑈 ′,

Prob[𝑋𝑢 ∈ [𝜓 (𝑢)− Δ
2
, 𝜓 (𝑢)+ Δ

2
]] ≥ 1

4
𝑒−𝜖𝑑𝑢 |𝜇𝑢−𝜓 (𝑢 )−

Δ
2
| . From this,

we see that, there exists constants 𝑐1, 𝑐2, 𝜖
′ > 0, such that ∀𝜖 > 𝜖′,

Prob[∀𝑢 ∈ 𝑈 ′, 𝑋𝑢 ∈ [𝜓 (𝑢) − Δ
2
, 𝜓 (𝑢) + Δ

2
]] ≥ 𝑐1𝑒

−𝑐2𝜖 .
Now, we give a lower bound for 𝐶Pr[𝜖, 𝜌𝛼 (ℓ)], for large values

of 𝜖. Recall that, each conjunct in 𝑐′𝑢 ∈ C(ℓ), for 𝑢 ∉ 𝑈 ∪ 𝑈 ′,
involves two random variables, say 𝑋𝑢 , 𝑋𝑢′ ∈ X(ℓ). We replace

each such conjunct in 𝑐′𝑢 as follows, if 𝑢′ ∈ 𝑈 ′; if the conjunct is
the atomic condition 𝑋𝑢′ ≥ 𝑋𝑢 we replace it by 𝜓 (𝑢′) − Δ

2
≥ 𝑋𝑢 ,

otherwise the conjunct is the atomic condition 𝑋𝑢′ < 𝑋𝑢 and we

replace it by 𝜓 (𝑢′) + Δ
2

< 𝑋𝑢 . The condition 𝑐′𝑢 is unchanged if

𝑢′ ∉ 𝑈 ′ . Let the resulting set of conditions be denoted by 𝑐′′𝑢 .

Now, let C′′ (ℓ) = {𝑐′′𝑢 : 0 ≤ 𝑢 < 𝑚 + 𝑛ℓ}. Now, it is easily
seen that 𝐶Pr[𝜖, 𝜌𝛼 (ℓ)] is greater than or equal to 𝑝ℓ , where 𝑝ℓ is

the probability that the random variables in X(ℓ) satisfy all the

conditions in C′′ (ℓ) . Now, using similar proof technique as given

in [10, 11], we can show that there exists a constant 𝜖′
ℓ
, such that

∀𝜖 > 𝜖′
ℓ
, 𝑝ℓ > 1

2
.(This is because, for every conjunct of 𝑐′′𝑢 of

the form 𝑋𝑢1
≥ 𝑋𝑢2

or of the form 𝑋𝑢2
< 𝑋𝑢1

, it is the case that

𝑎𝑢1
> 𝑎𝑢2

. For every conjunct of the form 𝑋𝑢1
≤ 𝑐′, we have

𝑎𝑢1
< 𝑐′ and for conjuncts of the form 𝑐′ < 𝑋𝑢1

, it is the case

that 𝑎𝑢1
> 𝑐′, where 𝑐′ is a constant). Now putting all the above

observations together, by taking 𝜖ℓ = max(𝜖′, 𝜖′
ℓ
), we see that ∀𝜖 >

𝜖ℓ , Pr[𝜖, 𝜌𝛼 (ℓ)] > 𝑐1
2
𝑒−𝑐2𝜖 .

Now, we define 𝛽 (ℓ) = 𝑏0 · · ·𝑏𝑚+ℓ𝑛−1 . To do this, we prove some

properties of 𝛼 (ℓ). For each 𝑢, 0 ≤ 𝑢 < 𝑚 + 𝑛ℓ , we define the real
value a𝑢 as follows: if 𝑢 ∈ 𝑈 ′ ∪𝑈 then a𝑢 = 𝜇𝑢 , otherwise a𝑢 = 𝑎𝑢 .

from the way we chose the integers 𝑖, 𝑗, 𝑖′ and our assumption that

the condition insample ≥ x𝑖′ is a conjunct of the guard 𝑐 𝑗 , we see
that, for every ℓ′ such that 0 ≤ ℓ′ < ℓ the following properties are

satisfied: 𝑡𝑖+𝑛ℓ ′ is an assignment transition for x𝑖′ ; the condition
insample ≥ x𝑖′ is a conjunct in the guard 𝑐 𝑗+𝑛ℓ ′ ; for every 𝑘1 such
that 𝑖 + 𝑛ℓ′ < 𝑘1 < 𝑗 + 𝑛ℓ′, 𝑡𝑘1 is not an assignment transition for

x𝑖′ . Now, we fix ℓ′ to be any integer such that 0 ≤ ℓ′ < ℓ . We show

below that a𝑖+𝑛ℓ ′ < a𝑗+𝑛ℓ ′ ≤ a𝑖+𝑛ℓ ′ + 1

2
.

We proceed as follows. First, observe that 𝑗 + 𝑛ℓ′ ∉ 𝑈 , since

𝑐 𝑗+𝑛ℓ ′ is not the condition true. From our definition, we see that

a𝑗+𝑛ℓ ′ is the maximum of the weights of maximal paths in𝐺𝜂ℓ that

end at the node 𝑗 +𝑛ℓ′ . Let (𝑖0, 𝑖1, ..., 𝑖ℓ2 ) be the maximal path in𝐺𝜂ℓ

that ends in the node 𝑗 + 𝑛ℓ′ (i.e., 𝑖ℓ2 = 𝑗 + 𝑛ℓ′) having maximum

weight among all such paths. Clearly the length of this path is ℓ2
and ℓ2 < 𝑚 + 𝑛ℓ. If the node 𝑖 + 𝑛ℓ′ lies on the above path then

the desired result follows from the definition of 𝜓 ( 𝑗 + 𝑛ℓ′) . Now
assume that the node 𝑖 + 𝑛ℓ′ does not lie on the above path. Now,

we have two cases. In the first case, 𝑖 ∈ 𝑈 . Clearly (𝑖, 𝑗) ∈ 𝐸. From
the way we chose 𝑖, 𝑗, 𝑖′, it is the case that 𝜇𝑖 is the maximum of all

𝜇𝑢 such that there is an assign_refer triple (𝑢, 𝑣,𝑤) where 𝑢 ∈ 𝑈
and insample ≥ x𝑤 is a conjunct of 𝑐𝑣 . It should be easy to see that

𝜇𝑖0 = 𝜇𝑖 and a𝑖+𝑛ℓ ′ < a𝑗+𝑛ℓ ′ < a𝑖+𝑛ℓ ′ + 1

2
. Now, consider the case

when 𝑖 ∉ 𝑈 and hence 𝑖0 ∉ 𝑈 . In this case also, we see, from the

definition of𝜓 , that a𝑗+𝑛ℓ ′ ≤ 𝑧 + 1

2
and a𝑖+𝑛ℓ ′ ≥ 𝑧 and the desired

result follows.

Now, we give the values of 𝑏𝑢 , for 0 ≤ 𝑢 < 𝑚 + 𝑛ℓ. For every ℓ′,
such that 0 ≤ ℓ′ < ℓ , 𝑏 𝑗+𝑛ℓ ′ = 𝑎 𝑗+𝑛ℓ ′ − 1 and for all other values

of 𝑢, 𝑏𝑢 = 𝑎𝑢 . For each 𝑢, 0 ≤ 𝑢 < 𝑚 + 𝑛ℓ , let b𝑢 be defined as

follows: if 𝑢 ∈ 𝑈 ′ ∪ 𝑈 then b𝑢 = 𝜇𝑢 , otherwise b𝑢 = 𝑏𝑢 . Since

a𝑖+𝑛ℓ ′ < a𝑗+𝑛ℓ ′ ≤ a𝑖+𝑛ℓ ′ + 1

2
, we see that b𝑗+𝑛ℓ ′ ≤ b𝑖+𝑛ℓ ′− 1

2
. Clearly,

the input sequence 𝛽 (ℓ) is a neighbor of 𝛼 (ℓ) . Now, using the same

analysis, as in [10, 11], it is easily shown that the input sequences

𝛼 (ℓ) and 𝛽 (ℓ) are witnesses for violation of the differential privacy

property by A .

In the above definition of the input sequences 𝛼 (ℓ) and 𝛽 (ℓ),
we assumed that there exists an assign_refer triple (𝑢, 𝑣,𝑤) such
that the condition insample ≥ x𝑤 is a conjunct in the guard 𝑐𝑣 .

Now, we give the construction for the other case when no such as-

sign_refer triple exists, that is, for every assign_refer triple (𝑢, 𝑣,𝑤),
the condition insample < x𝑤 is a conjunct of 𝑐𝑣 . Now, we chose

an assign_refer triple (𝑖, 𝑗, 𝑖′) as follows. If there exists at least one
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assign_refer triple (𝑢, 𝑣,𝑤) such that 𝑞𝑢 ∈ 𝑄non, then we chose

(𝑖, 𝑗, 𝑖′) to be one such triple so that 𝜇𝑖 is the minimum among

all such triples; otherwise, we chose (𝑖, 𝑗, 𝑖′) to be any of the as-

sign_refer triples. Now, the proof is similar to the earlier case with

the following changes. Basically, we change the definitions (in a

symmetric way) of the function 𝜓 , of maximal paths and their

weights in 𝐺𝜂ℓ = (𝑉 , 𝐸) .
The constant Δ is same as before, i.e., Δ = min(𝑍 ′) where

𝑍 ′ = { 1
2
} ∪ {|𝜇𝑢 − 𝜇𝑢′ | : 0 ≤ 𝑢,𝑢′ < 𝑚 + 𝑛ℓ, 𝑞𝑢 , 𝑞𝑢′ ∈ 𝑄non, 𝜇𝑢 ≠

𝜇𝑢′ }. However, the constant 𝑧 is given as follows. If 𝑍 ≠ ∅ then
𝑧 := max(𝑍 ) + 1

2
, otherwise, 𝑧 = 1

2
; here 𝑍 = {𝜇𝑢 : 𝑚 ≤ 𝑢 <

𝑚+𝑛, 𝑞𝑢 ∈ 𝑄non}. As before,𝑈 = {𝑢 : 𝑞𝑢 ∈ 𝑄non ,𝑚 ≤ 𝑢 < 𝑚+𝑛ℓ}
and𝑈 ′ = {𝑢 : 𝑞𝑢 ∈ 𝑄non , 0 ≤ 𝑢 < 𝑚}.

We say that a path 𝑝 = (𝑢0, ..., 𝑢𝑟 ) in 𝐺𝜂ℓ , is a maximal path iff

either 𝑢𝑟 is the sink node or 𝑢𝑟 ∈ 𝑈 , and ∀𝑘1, 0 ≤ 𝑘1 < 𝑟 , 𝑢𝑘1 ∉ 𝑈 .

For a maximal path 𝑝 , as given above, we define𝑤𝑒𝑖𝑔ℎ𝑡 (𝑝) to be the
value 𝑧′ − 𝑟Δ where 𝑧′ = 𝜇𝑢𝑟 if 𝑢𝑟 ∈ 𝑈 , otherwise 𝑧′ = 𝑧. Now, we

define the function𝜓 that associates a real value with each node in

𝑉 as follows. For𝑢 ∈ 𝑉 ,𝜓 (𝑢) is as given below: if𝑢 ∈ 𝑈 , 𝜓 (𝑢) = 𝜇𝑢 ;

if 𝑢 ∉ 𝑈 and is a sink node then𝜓 (𝑢) = 𝑧; in all other cases,𝜓 (𝑢) is
the minimum weight of a maximal path starting with 𝑢.

The definition of 𝛼 (ℓ) is same as before with the modified def-

inition of 𝜓 . To define 𝛽 (ℓ), we modify the earlier approach as

follows. First, for each integer ℓ′, such that 0 ≤ ℓ′ < ℓ , we show

that a𝑗+𝑛ℓ ′ < a𝑖+𝑛ℓ ′ ≤ a𝑗+𝑛ℓ ′ + 1

2
. Now, the values of 𝑏𝑢 , for

0 ≤ 𝑢 < 𝑚 + 𝑛ℓ are given as follows. For every ℓ′, such that

0 ≤ ℓ′ < ℓ , 𝑏 𝑗+𝑛ℓ ′ = 𝑎 𝑗+𝑛ℓ ′ + 1 and for all other values of 𝑢,

𝑏𝑢 = 𝑎𝑢 . Now, for each 𝑢, 0 ≤ 𝑢 < 𝑚 + 𝑛ℓ , we define b𝑢 to be as in

the previous case. Since a𝑗+𝑛ℓ ′ < a𝑖+𝑛ℓ ′ ≤ a𝑗+𝑛ℓ ′ + 1

2
, we see that

b𝑗+𝑛ℓ ′ ≥ b𝑖+𝑛ℓ ′ + 1

2
. The proof remains the same as in the previous

case with the above changes.

Leaking pair implies no privacy

The following technical lemma states the properties of the depen-

dency graph of a path that has a non-leaking cycle repeated many

times.

Lemma 13. Let 𝐶 be a non-leaking cycle of DiPA A of length𝑚

and 𝜌 = 𝜌′𝐶𝜌′′ be a run of A starting from the initial state and
𝜌𝐿 = 𝜌′𝐶𝐿𝜌′′ be the run in which the cycle𝐶 is repeated 𝐿 times, for
some 𝐿 > 0. If (𝑖, 𝑗) is an edge in 𝐺𝜌 (respectively, ( 𝑗, 𝑖) is an edge)
then the following properties hold.

(1) At most one of the two indices 𝑖, 𝑗 is on the cycle 𝐶 (i.e., corre-
sponds to a position on 𝐶).

(2) If 𝑖 is before𝐶 and 𝑗 is on𝐶 then, in𝐺𝜌𝐿 , there are edges from
𝑖 to the node 𝑗 + 𝑘𝑚 (respectively, an edge from 𝑗 + 𝑘𝑚 to 𝑖),
for every 𝑘, 0 ≤ 𝑘 < 𝐿.

(3) If 𝑖 is after 𝐶 and 𝑗 is on 𝐶 then, in 𝐺𝜌𝐿 , there is an edge from
𝑖 +𝑚(𝐿 − 1) to 𝑗 +𝑚(𝐿 − 1) (respectively, from 𝑗 +𝑚(𝐿 − 1)
to 𝑖 +𝑚(𝐿 − 1)).

Proof. We make the following observations. An edge (𝑖, 𝑗) (or
( 𝑗, 𝑖)) in 𝐺𝜌 indicates that the transition in 𝜌 at the position given

bymin(𝑖, 𝑗), is an assignment transition for some variable xℓ which
is referenced in the guard of the transition in 𝜌 at the position

given by max(𝑖, 𝑗). Property (1) of the lemma follows from this

observation and the fact that 𝐶 is non-leaking cycle. Property (2)

of the lemma follows from the fact that the transition of 𝜌 at the

position 𝑖 is an assignment transition for some variable xℓ which is

referenced in the guard of the transition at the position 𝑗 which is

on 𝐶 , and none of the transitions on 𝐶 is an assignment transition

for xℓ . (Note that 𝑗 +𝑘𝑚 is the position in the 𝑘𝑡ℎ iteration of𝐶 in 𝜌𝐿
that corresponds to position 𝑗 in 𝜌.) Property (3) follows from the

observation that the transition in 𝜌 at position 𝑗 is an assignment

transition for some variable xℓ which is referenced in the guard of

the transition at position 𝑖 . □

Lemma 14. A DiPAA is not differentially private if it has a leaking
pair.

Proof. Let A = (𝑄, Γ, 𝑞init, 𝑋, 𝑃, 𝛿). Assume that A has a leak-

ing pair. From the definition 9, we see that there exists a feasible

run 𝜌 of A from the initial state 𝑞init and there are indices ℓ1, ℓ2, ℓ3
and ℓ4 such that 0 ≤ ℓ1 < ℓ2 ≤ |𝜌 | and 0 ≤ ℓ3 < ℓ4 ≤ |𝜌 | such that

the three conditions specified in the definition are satisfied. These

conditions state the following. The sub-runs 𝐶 = 𝜌 [ℓ1 : ℓ2] and
𝐶′ = 𝜌 [ℓ3 : ℓ4] are both non-leaking cycles. The cycles 𝐶,𝐶′ are
non-overlapping and may appear in either order, i.e., either ℓ2 ≤ ℓ3
or ℓ4 ≤ ℓ1 . Further more, there exists a path 𝑖1, 𝑖2, ..., 𝑖𝑚−1, 𝑖𝑚 in𝐺𝜌

such that 𝑖1 is on𝐶 (i.e., ℓ1 ≤ 𝑖1 < ℓ2),𝑡𝑖𝑚 is on𝐶′ (i.e.,ℓ3 ≤ 𝑖𝑚 < ℓ4),

𝑖2 < 𝑖1 and 𝑖𝑚−1 < 𝑖𝑚 .

Let the lengths of𝐶,𝐶′ be 𝑛1, 𝑛2, respectively; that is 𝑛1 = ℓ2− ℓ1
and 𝑛2 = ℓ4 − ℓ3 . We give the proof assuming 𝐶 appears before

𝐶′, i.e., ℓ2 ≤ ℓ3 . (The proof for the case when 𝐶′ appears before
𝐶 , i.e., ℓ4 ≤ ℓ1 is similar and is left out). Now, we can write the

run 𝜌 as 𝜌 = 𝜌1𝐶𝜌2𝐶
′𝜌3 where 𝜌1 = 𝜌 [0 : ℓ1],𝜌2 = 𝜌 [ℓ2 : ℓ3]

and 𝜌3 = 𝜌 [ℓ4 : |𝜌 |] . Now, for any 𝐿 > 0, consider the run 𝜌𝐿
in A starting from 𝑞init in which the cycles 𝐶,𝐶′ are repeated 𝐿

times each. That is, 𝜌𝐿 = 𝜌1 (𝐶)𝐿𝜌2 (𝐶′)𝐿𝜌3 . Using Lemma 13, the

following are easily observed. For every 𝑘′, 0 ≤ 𝑘′ < 𝐿, we have the

following edges in 𝐺𝜌𝐿 : there is an edge from the node 𝑖1 + 𝑘′𝑛1 to
𝑖2 (note that the former node is a copy of node 𝑖1 in iteration 𝑘′ of
𝐶); if 𝑖𝑚−1 is before 𝐶 then there is an edge from 𝑖𝑚−1 to the node

(𝑖𝑚 + 𝑛1 (𝐿 − 1) + 𝑛2𝑘′) (note the later node is a copy of node 𝑖𝑚 in

iteration 𝑘′ of𝐶′); if 𝑖𝑚−1 is on or after𝐶 then there is an edge from

the node (𝑖𝑚−1 + (𝐿−1)𝑛1) to (𝑖𝑚 +𝑛1 (𝐿−1) +𝑛2𝑘′) . Further more,

using Lemma 13, the following can be shown. If 𝑖𝑚−1 is before 𝐶
in 𝜌 then there is a path in 𝐺𝜌𝐿 from 𝑖2 to 𝑖𝑚−1, otherwise there
is a path in 𝐺𝜌𝐿 from 𝑖2 to (𝑖𝑚−1 + 𝑛1 (𝐿 − 1)) . (Roughly speaking,

such a path in 𝐺𝜌𝐿 can be obtained by taking the path from 𝑖2 to

𝑖𝑚−1 in𝐺𝜌 , and replacing every node in the path that is on𝐶 or on

𝐶′ by the copy of the same node in the last iteration of that cycle

in 𝜌𝐿). Putting all the above observations together, it is easily seen

that, for every 𝑘′, 𝑘′′ such that 0 ≤ 𝑘′, 𝑘′′ < 𝐿, there is a path in

𝐺𝜌𝐿 from the node (𝑖1 + 𝑘′𝑛1) to the node (𝑖𝑚 +𝑛1 (𝐿 − 1) + 𝑘′′𝑛2);
essentially this states that from each node which is a copy of node

𝑖1 in every iteration of 𝐶 , there is a path to the copy of node 𝑖𝑚 in

every iteration of 𝐶′ .
Now, for each 𝑘 , let 𝑡𝑘 be the 𝑘-th transition of 𝜌𝐿 , 𝑐𝑘 be the

guard of the 𝑘-th transition, 𝑞𝑘 = src(𝑡𝑘 ) and 𝜎𝑘 = out(𝑡𝑘 ) . Note
that 𝜌 = 𝜌𝐿 when 𝐿 = 1.

Let 𝛾 (𝐿) = 𝑜0 · · ·𝑜𝑛−1+(𝑛1+𝑛2 ) (𝐿−1) be the output sequence of
length 𝑛 + (𝑛1 + 𝑛2) (𝐿 − 1) such that 𝑜𝑘 = 𝜎𝑘 if 𝜎𝑘 ∈ Γ, otherwise
𝑜𝑘 = (𝜎𝑘 ,−∞,∞) .
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Now, we define two adjacent input sequences 𝛼 (𝐿) =

𝑎0 · · ·𝑎𝑛−1+(𝑛1+𝑛2 ) (𝐿−1) and 𝛽 (𝐿) = 𝑏0 · · ·𝑏𝑛−1+(𝑛1+𝑛2 ) (𝐿−1) as
follows. We define 𝛼 (𝐿) similar to the way we defined the corre-

sponding input sequence in the proof of the Lemma 12. To do this,

we consider the dependence graph 𝐺𝜌𝐿 = (𝑉 , 𝐸) where 𝑉 = {𝑢′ :

0 ≤ 𝑢′ < 𝑛+(𝑛1+𝑛2) (𝐿−1)}. For any𝑢′ ∈ 𝑉 , let 𝜇𝑢′ be the constant

as defined in the proof of Lemma 12. Let 𝑍 ′ = { 1
2
} ∪ {|𝜇𝑢′ − 𝜇𝑢′′ | :

𝑢′, 𝑢′′ ∈ 𝑉 , 𝑞𝑢′ , 𝑞𝑢′′ ∈ 𝑄non, 𝜇𝑢′ ≠ 𝜇𝑢′′ } and Δ =
min(𝑍 ′ )

𝑛+(𝑛1+𝑛2 ) (𝐿−1) .
Let 𝑍 = {𝜇𝑢′ : ℓ1 ≤ 𝑢′ < ℓ2 𝑜𝑟 ℓ3 ≤ 𝑢′ < ℓ4, 𝑞𝑢′ ∈ 𝑄non}). Now,
we define the constant 𝑧 as follows. If 𝑍 ≠ ∅ then 𝑧 = min(𝑍 ) − 1

2
,

otherwise 𝑧 = − 1

2
. Let 𝑈 = {𝑢′ : 𝑞𝑢′ ∈ 𝑄non , ℓ1 ≤ 𝑢′ <

ℓ2 + 𝑛1 (𝐿 − 2) 𝑜𝑟 ℓ3 + 𝑛1 (𝐿 − 1) ≤ 𝑢′ < ℓ4 + (𝑛1 + 𝑛2) (𝐿 − 2)}
and𝑈 ′ = {𝑢′ : 𝑞𝑢′ ∈ 𝑄non , 0 ≤ 𝑢′ < 𝑛 + (𝑛1 +𝑛2) (𝐿 − 1), 𝑢′ ∉ 𝑈 }.
We define maximal paths in 𝐺𝜂𝐿 and weights of the maximal paths

as in the proof of lemma 12.

First, observe that, the set𝑈 is the set of all indices corresponding

to the non-input states in the first 𝐿 − 1 iterations of 𝐶 and 𝐶′; the
corresponding indices in the 𝐿𝑡ℎ iteration (last iteration) of 𝐶 and

𝐶′ are included in the set 𝑈 ′. We make the following additional

observations using the fact that 𝐶 and 𝐶′ are non-leaking cycles.

Any variable that is assigned a value in 𝐶 is not referenced by

another transition in 𝐶; the same holds for 𝐶′. Also, if a variable
that is assigned a value in𝐶 in the run 𝜌 is referenced in a transition

in 𝐶′, then in 𝜌𝐿 only the value assigned in the last iteration of

𝐶 (i.e., 𝐿𝑡ℎ iteration ) is referenced in a transition of any of the

iterations of 𝐶′.
Based on all these observations, we see that every maximal path

in 𝐺𝜌𝐿 starts with node 𝑢0 ∉ 𝑈 . (Maximal paths of 𝐺𝜌𝐿 and their

weights are as defined in the proof of lemma 12). As a consequence,

weights of any two maximal paths differ by at most
1

2
.

Now, we define the function𝜓 that associates a value with each

𝑢′ ∈ 𝑉 , exactly as in the proof of lemma 12 using the above values

of Δ, 𝑧,𝑈 and𝑈 ′ .
From the way we defined the graph𝐺𝜌𝐿 and the above observa-

tions, the following properties are easily shown to hold.

• For every𝑢′, 𝑢′′, 0 ≤ 𝑢′, 𝑢′′ < 𝐿, there is a path, in𝐺𝜌𝐿 , from

the node 𝑖1 + 𝑢′𝑛1 to the node 𝑖𝑚 + 𝑛1 (𝐿 − 1) + 𝑢′′𝑛2 .
• For every 𝑢′, 0 ≤ 𝑢′ < 𝐿, every maximal path, in 𝐺𝜌𝐿 , that

ends in the node 𝑖1+𝑢′𝑛1 or in the node 𝑖𝑚 +𝑛1 (𝐿−1) +𝑢′𝑛2,
starts from a node that is not in𝑈 .

Putting all the above observations together, we see that, for every

𝑢′, 0 ≤ 𝑢′ < 𝐿−1,𝜓 (𝑖1+𝑢′𝑛1) ≤ 1

2
and𝜓 (𝑖𝑚+𝑛1 (𝐿−1)+𝑢′𝑛2) ≤ 1

2
.

Further more, for every 𝑢′, 𝑢′′, such that 0 ≤ 𝑢′, 𝑢′′ < 𝐿, there is a

path, in𝐺𝜌𝐿 , from the node 𝑖1+𝑢′𝑛1 to the node 𝑖𝑚+𝑛1 (𝐿−1)+𝑢′′𝑛2,
and𝜓 (𝑖1 + 𝑢′𝑛1) < 𝜓 (𝑖𝑚 + 𝑛1 (𝐿 − 1) + 𝑢′′𝑛2) ≤ 𝜓 (𝑖1 + 𝑢′𝑛1) + 1

2
.

Now using proof similar to that of lemma 12, it is easily shown

that there exist constants 𝜖ℓ , 𝑐1, 𝑐2 > 0 such that ∀𝜖 > 𝜖ℓ ,

Pr[𝜖, 𝜌𝛼 (𝐿)] > 𝑐1
2
𝑒−𝑐2𝜖 .

Now, let 𝛽 (𝐿) = 𝑏0 · · ·𝑏𝑛−1+(𝑛1+𝑛2 ) (𝐿−1) be such that, for 0 ≤
𝑢1 < 𝑛 + (𝑛1 + 𝑛2) (𝐿 − 1), 𝑏𝑢1

is defined as follows: if 𝑢1 = 𝑖𝑚 +
𝑛1 (𝐿 − 1) + 𝑢′𝑛2 for some 𝑢′, 0 ≤ 𝑢′ < 𝐿 − 1, 𝑏𝑢1

= 𝑎𝑢1
− 1,

otherwise 𝑏𝑢1
= 𝑎𝑢1

. It is easily seen that the input sequences

𝛼 (𝐿), 𝛽 (𝐿) are neighboring sequences. For each 𝑢1, 0 ≤ 𝑢1 < 𝑛 +
(𝑛1 + 𝑛2)𝐿, let 𝑋𝑢1

be the random variable with the distribution

Lap(𝑑𝑢1
𝜖, 𝑏𝑢1

). Now, for each 𝑢′, 0 ≤ 𝑢′ < 𝐿 − 1, consider the

pair of random variables 𝑋𝑖1+𝑢′𝑛1
and 𝑋𝑖𝑚+𝑛1 (𝐿−1)+𝑢′𝑛2

. The guard

conditions of all the transitions of the execution of 𝜂𝐿 , with input

sequence 𝛽 (𝐿), imply that for each 𝑢′, 0 ≤ 𝑢′ < 𝐿 − 1, 𝑋𝑖1+𝑢′𝑛1
<

𝑋𝑖𝑚+𝑛1 (𝐿−1)+𝑢′𝑛2
. However, from the definition of 𝛽 (𝐿), we see

that 𝑏𝑖𝑚+𝑛1 (𝐿−1)+𝑢′𝑛2
≤ 𝑏𝑖1+𝑢′𝑛1

− 1

2
. Now, using the same analysis,

as in [10, 11], it is easily shown that the input sequences 𝛼 (ℓ) and
𝛽 (ℓ) are witnesses for violation of the differential privacy property

by A . □

Disclosing cycles implies no privacy

Lemma 15. A DiPA A is not differentially private if it has a dis-
closing cycle.

Proof. Thanks to Lemma 12 and Lemma 14, we can assume A
does not have leaking cycles or leaking pairs. Assume thatA has a

disclosing cycle𝐶. By definition, there is a feasible run inA starting

from the initial state, having a suffix which is a non-leaking cycle,

say cycle 𝐶 , such that 𝐶 has a transition whose output is insample
or insample′ . We consider the case when 𝐶 has a transition whose

output is insample. The proof for the case when 𝐶 has a transition

whose output is insample′ is simpler and is left out. Now, if the

transition of 𝐶 whose output is insample has the guard true, then
it can be shown easily that repeating the cycle ℓ times incurs a

privacy cost linear in ℓ𝜖, and hence A cannot be𝔇𝜖-differentially

private for any 𝔇 > 0. Thus, we consider more interesting case

when the guard is a condition other than true.
As indicated above, we consider the case when𝐶 has a transition

with output insample. Let 𝜌 be a run of A such that |𝜌 | = 𝑗 +𝑚
where𝑚 > 0, 𝑗 ≥ 0, src(𝜌) = 𝑞𝑖𝑛𝑖𝑡 , and the following conditions are

satisfied: 𝜌 [ 𝑗 : |𝜌 |] = 𝐶 and and for each ℓ > 0, the run 𝜌 [0 : 𝑗]𝐶ℓ

(i.e., the run obtained by repeating the cycle 𝐶 , ℓ times) is feasible.

Fix 0 ≤ 𝑟 < 𝑚 be such that the output of the ( 𝑗 + 𝑟 )-th transition

of 𝜌 is insample. Let the guard of the ( 𝑗 + 𝑟 )-th transition of 𝜌 be

the condition 𝑐𝑟 . Let ℎ𝑠𝑒𝑡 = {x𝑗 |insample < x𝑗 is a conjunct of 𝑐𝑟 }
and 𝑙𝑠𝑒𝑡 = {x𝑗 |insample ≥ x𝑗 is a conjunct of 𝑐𝑟 }. Observe that,
since 𝐶 is non-leaking cycle, it has no assignment transitions for

any of the variables in 𝑙𝑠𝑒𝑡 ∪ ℎ𝑠𝑒𝑡 .
Fix ℓ > 0. We define the run 𝜌ℓ starting from 𝑞init by repeating

the cycle 𝐶 in 𝜌 , ℓ times. Formally, 𝜌ℓ = 𝜌 [0 : 𝑗]𝐶ℓ . Observe that

|𝜌ℓ | = 𝑗 + ℓ𝑚. For each 𝑘′, 0 ≤ 𝑘′ < 𝑗 + ℓ𝑚, let 𝑡𝑘 ′ , 𝑐𝑘 ′ be the 𝑘
′
-th

transition and it’s guard in 𝜌ℓ , 𝑞𝑘 ′ = src(𝑡𝑘 ′ ), 𝜎𝑘 ′ = out(𝑡𝑘 ′ ) and
𝑃 (𝑞𝑘 ′ ) = (𝑑𝑘 ′ , 𝜇𝑘 ′ , 𝑑′𝑘 ′ , 𝜇

′
𝑘 ′
). Observe that 𝑡𝑘 ′ = 𝑡𝑘 ′−𝑚 and 𝜎𝑘 ′ =

𝜎𝑘 ′−𝑚 for 𝑗 +𝑚 ≤ 𝑘′ < 𝑗 + ℓ𝑚. Observe that 𝜎 𝑗+𝑛𝑚+𝑟 = insample,
for all 𝑛 such that 0 ≤ 𝑛 < ℓ .

Now we construct two input sequences 𝛼 (ℓ) = 𝑎0 · · ·𝑎 𝑗+ℓ𝑚−1
and 𝛽 (ℓ) = 𝑏0 · · ·𝑏 𝑗+ℓ𝑚−1 as follows. We take 𝑎𝑘 ′ = −𝜇𝑘 ′ , for all
𝑘′, 0 ≤ 𝑘′ < 𝑗 + ℓ𝑚 such that 𝑡𝑘 ′ is an input transition, otherwise

we take 𝑎𝑘 ′ = 𝜏 . We take 𝑏𝑘 ′ = −𝜇𝑘 ′ − 1 if 𝑘′ = 𝑗 + 𝑛𝑚 + 𝑟 for

some 0 ≤ 𝑛 < ℓ and 𝑏𝑘 ′ = 𝑎𝑘 ′ otherwise. We also construct

an output sequence 𝑂 (ℓ) = 𝑜0 · · ·𝑜 𝑗+ℓ𝑚−1 as follows: for all 𝑘′,
0 ≤ 𝑘′ < 𝑗 + ℓ𝑚, i) 𝑜𝑘 ′ = 𝜎𝑘 ′ if 𝜎𝑘 ′ ∈ Γ, ii) 𝑜𝑘 ′ = (𝜎𝑘 ′ , 0,∞) if
𝑘′ = 𝑗 + 𝑛𝑚 + 𝑟 for some 0 ≤ 𝑛 < ℓ , and iii) 𝑜𝑘 ′ = (𝜎𝑘 ′ ,−∞,∞)
otherwise. Let 𝜅 (ℓ) and 𝜅′ (ℓ) respectively be the computations

given by the triples (𝜌ℓ , 𝛼 (ℓ),𝑂 (ℓ)) and (𝜌ℓ , 𝛽 (ℓ),𝑂 (ℓ)) .
Let 𝜅 (ℓ) [𝑘′ :] = (𝜌 (ℓ) [𝑘′ :], 𝛼 (ℓ) [𝑘′ :],𝑂 (ℓ) [𝑘′ :]) and

𝜅′ (ℓ) [𝑘′ :] = (𝜌 (ℓ) [𝑘′ :], 𝛽 (ℓ) [𝑘′ :],𝑂 (ℓ) [𝑘′ :]), respectively, be
the suffixes of the computations𝜅 (ℓ) and𝜅′ (ℓ) from the position 𝑘′ .
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Using backward induction on 𝑘′,i.e., in decreasing values of 𝑘′, we
can easily show that for each evaluation𝜓, for the set of variables

{x𝑗 ′ |1 ≤ 𝑗 ′ ≤ 𝑘}, either both Pr[𝜖,𝜓, 𝜅 (ℓ) [𝑘′ :]], Pr[𝜖,𝜓, 𝜅′ (ℓ) [𝑘′ :
]] are zero (intuitively speaking, this happens when the interval

[𝑢, 𝑣] ∩ (0,∞) = ∅ where 𝑢 is the maximum value of a variable in

𝑙𝑠𝑒𝑡 and 𝑣 is the minimum value of a variable in ℎ𝑠𝑒𝑡 for a given

evaluation) , or both the probabilities are non-zero and

Pr[𝜖,𝜓, 𝜅 (ℓ) [𝑘′ :]] = 𝑒#(𝑘
′ )𝑑 𝑗+𝑟𝜖Pr[𝜖,𝜓, 𝜅′ (ℓ) [𝑘′ :]]

where #(𝑘′) is the number of indices𝑘1 such that𝑘
′ ≤ 𝑘1 < 𝑗+𝑚ℓ−1

and 𝑘1 = 𝑗 + 𝑛𝑚 + 𝑟 for some 0 ≤ 𝑛 < ℓ . Thus,

Pr[𝜖, 𝜅 (ℓ)] = 𝑒ℓ𝑑 𝑗+𝑟𝜖Pr[𝜖, 𝜅′ (ℓ)] .
Now, ℓ is arbitrary and hence for every𝔇 > 0, there is an ℓ such

that Pr[𝜖, 𝜅 (ℓ)] > 𝑒𝔇𝜖Pr[𝜖, 𝜅′ (ℓ)] . Hence A is not differentially

private. □

Privacy violating paths implies no privacy

Lemma 16. A DiPAA is not differentially private if it has a privacy
violating path.

Proof. Thanks to Lemma 12, Lemma 15 and Lemma 14, we

can assume A does not have leaking cycles, disclosing cycles or

leaking pairs. We give the proof for one of the two cases of a privacy

violating path. (The proof for the other case of the privacy violating

path is similar and is leftout.) Specifically, we give the proof when

condition (b) of the definition 11 is satisfied; that is, the privacy

violating path 𝜌 which starts from the the initial state 𝑞init has a

non-leaking cycle𝐶 , and the dependency graph𝐺𝜌 has a path of the

form 𝑖1, ..., 𝑖𝑚 where the index 𝑖1 (i.e. the transition trans(𝜌 [𝑖1]))
is on 𝐶 , 𝑖2 < 𝑖1 and the transition trans(𝜌 [𝑖𝑚]) outputs insample.
Since 𝐶 is not a leaking cycle and 𝑖2 < 𝑖1, it follows that there is a

variable x𝑘 ′ such that trans(𝜌 [𝑖2]) is an assignment transition for

x𝑘 ′ and the condition insample < x𝑘 ′ is a conjunct of the guard of

trans(𝜌 [𝑖1]).
Fix ℓ > 0. Consider the run 𝜌 (ℓ) of length 𝑛 from the initial

state 𝑞init such that 𝜌 (ℓ) is obtained from 𝜌 by repeating the cycle

𝐶 , ℓ times. Let 𝑘1, 𝑘2, . . . , 𝑘ℓ be the indices where the transition

trans(𝜌 [𝑖1]) of 𝜌 (which is on the cycle𝐶) occurs in 𝜌 (ℓ). Similarly,

let 𝑟 be the index where the transition trans(𝜌 [𝑖𝑚]) of 𝜌 occurs in

𝜌 (ℓ). Let 𝑃 (src(trans(𝜌 (ℓ) [𝑖])) = (𝑑𝑖 , 𝜇𝑖 , 𝑑′𝑖 , 𝜇
′
𝑖
), for all 𝑖, 0 ≤ 𝑖 ≤ 𝑛.

Next, we construct two input sequences 𝛼 (ℓ) = 𝑎0 · · ·𝑎𝑛−1 and

𝛽 (ℓ) = 𝑏0 · · ·𝑏𝑛−1 of length𝑛 as follows. If the 𝑖-th transition of 𝜌 (ℓ)
is a non-input transition then 𝑎𝑖 = 𝑏𝑖 = 𝜏 . If 𝑖 ∈ {𝑘1, 𝑘2, . . . , 𝑘ℓ } then
𝑎𝑖 = −𝜇𝑖 and 𝑏𝑖 = −𝜇𝑖 + 1. For all other values of 𝑖 , 𝑎𝑖 = 𝑏𝑖 = −𝜇𝑖 .
For 0 ≤ 𝑖 < 𝑛, let 𝜎𝑖 = out(trans(𝜌 (ℓ) [𝑖]). Let 𝑂 (ℓ) = 𝑜0, ..., 𝑜𝑛−1
be the output sequence defined as follows: for all 𝑖 , 0 ≤ 𝑖 < 𝑛, i)

𝑜𝑖 = 𝜎𝑖 if 𝜎𝑖 ∈ Γ, ii) 𝑜𝑖 = (𝜎𝑖 ,−∞, 0) if 𝑖 = 𝑟 , and iii) 𝑜𝑖 = (𝜎𝑖 ,−∞,∞)
otherwise.

Let 𝜅 (ℓ) and 𝜅′ (ℓ) be the computations given by the triples

(𝜌 (ℓ), 𝛼 (ℓ),𝑂 (ℓ)) and (𝜌 (ℓ), 𝛽 (ℓ),𝑂 (ℓ)) respectively. Please note
that in 𝜅 (ℓ), 𝜅′ (ℓ), the 𝑟 -th output (i.e., the value output in 𝑜𝑟 ) is a

non-positive number. From the construction of 𝜅 (ℓ), 𝜅′ (ℓ), it can
be shown that

Pr[𝜖, 𝜅 (ℓ)] = 𝑒ℓ𝑑𝑘1𝜖Pr[𝜖, 𝜅′ (ℓ)] .
As in the case of disclosing cycle (See Lemma 15), we can conclude

that A is not differentially private. □

C PSPACE-HARDNESS OF CHECKING

WELL-FORMEDNESS

In this sub-section we show that the problem of checking well-

formedness of a DiPA.

Lemma 17. The problem of checking if a given output-distinct DiPA
is well-formed is PSPACE-hard.

Proof. We prove the lemma by giving a polynomial time reduc-

tion from the problem of checking whether a polynomial space

bounded single tape Turing Machine (TM) halts on a given input.

More specifically, given a single tape TM𝑀 that is polynomial space

bounded and an input 𝑢, we give a polynomial time algorithm that

outputs a DiPA A so that 𝑀 halts on the input 𝑢 iff A has no

leaking cycle.

Let𝑀 be the given TM. Without loss of generality, we assume

that the input alphabet of 𝑀 is given by Σ = {0, 1} and it’s tape

alphabet Υ = Σ ∪ {𝐵} where 𝐵 is the blank symbol. Let𝑀 be given

by the 4-tuple (𝑅, 𝛿 ′, 𝑟𝑖𝑛𝑖𝑡 , 𝑟ℎ𝑎𝑙𝑡 ) where 𝑅 is the set of it’s control

states; 𝑟𝑖𝑛𝑖𝑡 , 𝑟ℎ𝑎𝑙𝑡 ∈ 𝑅 are the initial and halting states respectively

and

𝛿 ′ : (𝑅 − {𝑟ℎ𝑎𝑙𝑡 }) × Υ→ 𝑅 × Σ × {𝐿𝑒 𝑓 𝑡, 𝑅𝑖𝑔ℎ𝑡}
is the transition function. Intuitively, if 𝛿 ′ (𝑟, 𝑎) = (𝑟 ′, 𝑏, 𝑑), where
𝑑 ∈ {𝐿𝑒 𝑓 𝑡, 𝑅𝑖𝑔ℎ𝑡} then𝑀 when in the control state 𝑟 scanning the

symbol 𝑎 in the cell pointed by it’s head, it writes the symbol 𝑏 into

the cell and moves it’s head in the direction given by 𝑑. We assume

that if 𝑀 tries to move it’s head further left of the left most cell

then it stays in the same position. Without loss of generality, we

assume that in each transition,𝑀 always writes a value 0 or 1 into

the current cell its scans; the value it writes may be the same value

it read or is a different value. Notice that when in the control state

𝑟ℎ𝑎𝑙𝑡 , 𝑀 halts, i.e., no transitions are defined from the state 𝑟ℎ𝑎𝑙𝑡 .

We assume that𝑀 uses at most 𝑝 (𝑛) space on any input of length

𝑛, where 𝑝 (𝑛) is a polynomial in 𝑛.

Let𝑢 = 𝑢0, . . . , 𝑢𝑛−1 be the given input to𝑀. Let 𝑁 = 𝑝 (𝑛) . Now,
we give the construction of the automatonA = (𝑄, Γ, 𝑞init, 𝑋, 𝑃, 𝛿)
as follows. The set of store variables 𝑆 = {𝑥} ∪ {𝑦𝑖 , 𝑧𝑖 0 ≤ 𝑖 < 𝑁 }.
The set 𝑄 =

{𝑞 𝑗 , 𝑞′𝑗 : 0 ≤ 𝑗 ≤ 𝑁 } ∪ {(𝑟, 𝑖), (𝑟 ′, 𝑖), (𝑟 ′′, 𝑖) : 0 ≤ 𝑖 < 𝑁, 𝑟 ∈ 𝑅}.

Further more, 𝑞init = 𝑞0, Γ = {⊤,⊥},𝑃 (𝑠) = (1, 0, 1, 0) for all
𝑠 ∈ 𝑄 and 𝛿 , which defines the transitions of A is defined as

follows. First we define the intuition into the definition of 𝛿 and

the working of A . The variables 𝑦𝑖 , 𝑧𝑖 together with 𝑥 are used to

denote the contents of the 𝑖-th tape cell of𝑀. More specifically, the

satisfaction of the conditions 𝑧𝑖 < 𝑥 , 𝑧𝑖 ≥ 𝑥 , denote that the cell 𝑖 has

blank symbol (i.e., symbol B) and non-blank symbol, respectively;

similarly, satisfaction of the conditions 𝑦𝑖 < 𝑥 , 𝑦𝑖 ≥ 𝑥 , denote that

cell 𝑖 contains 0 and 1, respectively. We have a transition from 𝑞0 to

𝑞1 with guard true that assigns insample to 𝑥 and outputs ⊥; this
transition initializes 𝑥 .

We have the following transitions that capture the fact that the

first 𝑛 cells of the tape contain non-blank input symbols, and the

remaining cells contain blank symbols. For each 𝑗 ,1 ≤ 𝑗 ≤ 𝑛, we

have two transitions: (i) from 𝑞 𝑗 to 𝑞
′
𝑗
with guard insample ≥ 𝑥 and

with assignment to variable 𝑧 𝑗−1; (ii) from 𝑞′
𝑗
to 𝑞 𝑗+1 with guard

insample < 𝑥 (resp., with guard insample ≥ 𝑥) when 𝑢 𝑗−1 = 0
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(resp., when 𝑢 𝑗−1 = 1) with assignment to variable 𝑦 𝑗−1 . For each
𝑗 , 𝑛 + 1 ≤ 𝑗 < 𝑁 , we have a transition from 𝑞 𝑗 to 𝑞 𝑗+1 with

guard insample < 𝑥 and with assignment to 𝑧 𝑗−1 . We also have a

transition from 𝑞𝑁 to the state (𝑟𝑖𝑛𝑖𝑡 , 0) with guard insample < 𝑥

and with assignment to 𝑧𝑁−1 . All these transitions output ⊥.
When the automaton A is in the states of the form (𝑟, 𝑖) (𝑟 ∈

𝑅, 0 ≤ 𝑖 < 𝑁 ), it simulates 𝑀. For 𝑟 ∈ 𝑅 and for each 𝑖, 0 ≤ 𝑖 < 𝑁 ,

A has the following transitions.

• If 𝛿 ′ (𝑟, 𝐵) = (𝑠, 𝑏, 𝑑) then we have the following three tran-

sitions inA: (i) there is a transition from (𝑟, 𝑖) to (𝑟 ′, 𝑖) with
guard 𝑧𝑖 < insample∧insample ≤ 𝑥 that outputs⊥; (ii) there
is a transition from (𝑟 ′, 𝑖) to (𝑟 ′′, 𝑖) with guard insample ≥ 𝑥

that assigns insample to 𝑧𝑖 and outputs ⊤ (iii) there is a tran-

sition from (𝑟 ′′, 𝑖) to (𝑠, 𝑗) that assigns insample to 𝑦𝑖 , and
where 𝑗 = 𝑖 + 1 if 𝑑 = 𝑅𝑖𝑔ℎ𝑡 and 𝑗 = 𝑖 − 1 if 𝑑 = 𝐿𝑒 𝑓 𝑡 ; if 𝑏 = 0

then the guard of the transition is insample < 𝑥 , otherwise

the guard is insample ≥ 𝑥 .

• If 𝛿 ′ (𝑟, 𝑎) = (𝑠, 𝑏, 𝑑), where 𝑎 ≠ 𝐵, then we have the fol-

lowing three transitions in A: (i) there is a transition from

(𝑟, 𝑖) to (𝑟 ′, 𝑖), if 𝑎 = 0 then the guard of the transition is

insample ≥ 𝑦𝑖∧insample < 𝑥 and it’s output is⊥, otherwise
it’s guard is insample ≥ 𝑥 ∧ insample < 𝑦𝑖 and it outputs

⊤; (ii) there is a transition from (𝑟 ′, 𝑖) to (𝑠, 𝑗) that assigns
insample to 𝑦𝑖 , if 𝑏 = 0 then the guard of the transition

is insample < 𝑥 and it outputs ⊥, otherwise the guard is

insample ≥ 𝑥 and it outputs ⊤; further more, 𝑗 = 𝑖 + 1 if

𝑑 = 𝑅𝑖𝑔ℎ𝑡 and 𝑗 = 𝑖 − 1 if 𝑑 = 𝐿𝑒 𝑓 𝑡 .

It can easily be shown that𝑀 halts on the input 𝑢 iff A is well-

formed. □

D DETAILS OF EXAMPLES USED IN THE

EXPERIMENTS

D.1 Pseuedocode of examples in experiments

We present the pseudocode of the examples described in Section 7.1.

Input: 𝑞 [1 : 𝑁 ]
Output: 𝑜𝑢𝑡 [1 : 𝑁 ]

threshold← Lap( 𝜖
4
,𝑇 )

for 𝑖 ← 1 to 𝑁 do

r← Lap( 𝜖
2
, 𝑞[𝑖])

if (r ≥ threshold) then
𝑜𝑢𝑡 [𝑖] ← ⊤
exit

else

𝑜𝑢𝑡 [𝑖] ← ⊥
end

end

Algorithm 4: SVT. SVT is differentially private. In experi-

ments, the (non-private) threshold is set to 0.

Input: 𝑞 [1 : 𝑁 ]
Output: 𝑜𝑢𝑡 [1 : 𝑁 ]

threshold← Lap( 𝜖
4
,𝑇 )

for 𝑖 ← 1 to 𝑁 do

r← Lap( 𝜖
2
, 𝑞[𝑖])

if (r ≥ threshold) then
𝑜𝑢𝑡 [𝑖] ← Lap( 𝜖

2
)

exit

else

𝑜𝑢𝑡 [𝑖] ← ⊥
end

end

Algorithm 5: Num-Sparse. Num-Sparse is differentially

private. In experiments, the (non-private) threshold is set to

0.

Input: 𝑞 [1 : 𝑁 ]
Output: 𝑜𝑢𝑡 [1 : 𝑁 ]

x1← Lap( 𝜖
2
,𝑇ℓ )

x2← Lap( 𝜖
2
,𝑇𝑢 )

for 𝑖 ← 1 to 𝑁 do

r← Lap( 𝜖
2
, 𝑞[𝑖])

if ((r < x1) ∧ (r > x2)) then
𝑜𝑢𝑡 [𝑖] ← ⊤

else if (r < x2) then
x2← r
𝑜𝑢𝑡 [𝑖] ← ⊥

end

Algorithm 6: The example LC-Example. LC-Example is

not differentially private as it has a leaking cycle. In the

experiments, 𝑇ℓ and 𝑇𝑢 are taken to be 0 and 1, respectively.

Input: 𝑞 [1 : 𝑁 ]
Output: 𝑜𝑢𝑡 [1 : 𝑁 ]

low← Lap( 𝜖
4
,𝑇ℓ )

high← Lap( 𝜖
4
,𝑇𝑢 )

for 𝑖 ← 1 to 𝑁 do

r← Lap( 𝜖
4
, 𝑞[𝑖])

if (r ≥ low) ∧ (r < high) then
𝑜𝑢𝑡 [𝑖] ← r

else if (r ≥ low) ∧ (r ≥ high) then
𝑜𝑢𝑡 [𝑖] ← ⊤
exit

else if (r < low) ∧ (r < high) then
𝑜𝑢𝑡 [𝑖] ← ⊥
exit

end

end

Algorithm 7: The example DC-Example. DC-Example is

not differentially private as it has a disclosing cycle. In the

experiments, 𝑇ℓ and 𝑇𝑢 are taken to be 0 and 1, respectively.
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Input: 𝑞 [1 : 𝑁 ]
Output: 𝑜𝑢𝑡 [1 : 𝑁 ]

low← Lap( 𝜖
4
,𝑇ℓ )

high← Lap( 𝜖
4
,𝑇𝑢 )

for 𝑖 ← 1 to 𝑁 do

r← Lap( 𝜖
4
, 𝑞[𝑖])

if (r ≥ low) ∧ (r < high) then
𝑜𝑢𝑡 [𝑖] ← ⊥

else if (r ≥ low) ∧ (r ≥ high) then
𝑜𝑢𝑡 [𝑖] ← r
exit

else if (r < low) ∧ (r < high) then
𝑜𝑢𝑡 [𝑖] ← ⊤
exit

end

end

Algorithm 8: The algorithm Num-Range-1. Num-Range-

1 is not differentially private as it has a privacy-violating

path. In the experiments, 𝑇ℓ and 𝑇𝑢 are taken to be 0 and 1,

respectively.

Input: 𝑞 [1 : 𝑁 ]
Output: 𝑜𝑢𝑡 [1 : 𝑁 ]

low← Lap( 𝜖
4
,𝑇ℓ )

high← Lap( 𝜖
4
,𝑇𝑢 )

for 𝑖 ← 1 to 𝑁 do

r← Lap( 𝜖
4
, 𝑞[𝑖])

if (r ≥ low) ∧ (r < high) then
𝑜𝑢𝑡 [𝑖] ← ⊥

else if (r ≥ low) ∧ (r ≥ high) then
𝑜𝑢𝑡 [𝑖] ← Lap( 𝜖

4
, 𝑞[𝑖])

exit

else if (r < low) ∧ (r < high) then
𝑜𝑢𝑡 [𝑖] ← ⊤
exit

end

end

Algorithm 9: Num-Range-2. Num-Range-2 is differentially

private. In the experiments, 𝑇ℓ and 𝑇𝑢 are taken to be 0 and

1, respectively.

D.2 Raw data for graph plots

Table 3 and Table 2 give the running times for 𝑘-Min-Max and

𝑚-Range in our experiments. We also report the time taken to

compute the weight. As we can see, it is minuscule compared to

the total running time.

Input: 𝑞 [1 : 𝑁 ]
Output: 𝑜𝑢𝑡 [1 : 𝑁 ]

u← Lap( 𝜖
4
,𝑇ℓ )

v← Lap( 𝜖
4
,𝑇𝑚)

w← Lap( 𝜖
4
,𝑇𝑢 )

for 𝑖 ← 1 to 𝑁 do

r← Lap( 𝜖
4
, 𝑞[𝑖])

if (r ≥ u) ∧ (r < v) then
𝑜𝑢𝑡 [𝑖] ← cont

else if (r < u) then
𝑜𝑢𝑡 [𝑖] ← ⊥
exit

else if (r > v) ∧ (r < w) then
𝑜𝑢𝑡 [𝑖] ← ⊤
break

end

end

for 𝑖 ← 𝑖 + 1 to 𝑁 do

r← Lap( 𝜖
4
, 𝑞[𝑖])

if (r ≥ v) ∧ (r < w) then
𝑜𝑢𝑡 [𝑖] ← cont

else if (r < v) then
𝑜𝑢𝑡 [𝑖] ← ⊥
exit

else if (r > w) then
𝑜𝑢𝑡 [𝑖] ← ⊤
exit

end

end

Algorithm 10: Two-Range-1 algorithm. Two-Range-1 is

not differentially private as it has a leaking pair. In the exper-

iments, the thresholds𝑇ℓ ,𝑇𝑚 and𝑇𝑢 are chosen as 0, 1, and 2,

respectively
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Table 2: Experimental result of 𝑚-Range examples. The

columns vars, states, and transitions give the number of vari-

ables of states and transitions in the example. The columnwt

calculation time gives the average running time in seconds,

and running time gives the average running time in seconds.

The running times are averaged over 6 executions. In each

case, DiPAut, returns that the automaton is differentially pri-

vate with weight 1.

m vars # states # transitions wt calc. time running time

1 2 4 5 0.001s 0.227s

2 4 7 10 0.001s 0.225s

3 6 10 15 0.002s 0.242s

4 8 13 20 0.003s 0.234s

5 10 16 25 0.003s 0.258s

6 12 19 30 0.004s 0.3s

7 14 22 35 0.005s 0.354s

8 16 25 40 0.006s 0.392s

9 18 28 45 0.007s 0.467s

10 20 31 50 0.008s 0.611s

11 22 34 55 0.009s 0.735s

12 24 37 60 0.01s 0.894s

13 26 40 65 0.012s 1.061s

14 28 43 70 0.012s 1.259s

15 30 46 75 0.014s 1.467s

16 32 49 80 0.015s 1.737s

17 34 52 85 0.017s 2.085s

18 36 55 90 0.018s 2.47s

19 38 58 95 0.02s 2.911s

20 40 61 100 0.021s 3.469s

25 50 76 125 0.029s 7.332s

30 60 91 150 0.04s 13.466s

35 70 106 175 0.049s 22.775s

40 80 121 200 0.062s 35.894s

45 90 136 225 0.077s 56.14s

50 100 151 250 0.09s 83.05s

55 110 166 275 0.12s 114.16s

60 120 181 300 0.145s 156.80s

65 130 196 325 0.167s 207.30s

70 140 211 350 0.224s 286.87s

75 150 226 375 0.284s 402.43s

80 160 241 400 0.259s 506.33s

Table 3: Experimental result of 𝑘-Min-Max examples. The

columns vars, states, and transitions give the number of vari-

ables of states and transitions in the example. The columnwt

calculation time gives the average running time in seconds,

and running time gives the average running time in seconds.

The running times are averaged over six executions. In each

case, DiPAut, returns that the automaton is differentially pri-

vate with weight 1.

k vars # states # transitions wt. calc time running time

2 2 4 7 0.001s 0.22s

3 2 5 10 0.001s 0.22s

4 2 6 13 0.001s 0.223s

5 2 7 16 0.001s 0.223s

6 2 8 19 0.001s 0.226s

7 2 9 22 0.002s 0.227s

8 2 10 25 0.002s 0.228s

9 2 11 28 0.002s 0.23s

10 2 12 31 0.002s 0.23s

11 2 13 34 0.002s 0.234s

12 2 14 37 0.003s 0.234s

13 2 15 40 0.003s 0.236s

14 2 16 43 0.003s 0.238s

15 2 17 46 0.003s 0.24s

16 2 18 49 0.004s 0.241s

17 2 19 52 0.004s 0.244s

18 2 20 55 0.004s 0.246s

19 2 21 58 0.004s 0.247s

20 2 22 61 0.004s 0.248s

30 2 32 91 0.007s 0.264s

40 2 42 121 0.01s 0.282s

50 2 52 151 0.012s 0.299s

60 2 62 181 0.015s 0.317s

70 2 72 211 0.019s 0.335s

80 2 82 241 0.022s 0.365s

90 2 92 271 0.025s 0.386s

100 2 102 301 0.029s 0.409s

110 2 112 331 0.034s 0.44s

120 2 122 361 0.038s 0.448s

130 2 132 391 0.044s 0.476s

140 2 142 421 0.047s 0.492s

150 2 152 451 0.052s 0.515s

160 2 162 481 0.057s 0.54s

170 2 172 511 0.062s 0.565s

180 2 182 541 0.068s 0.583s

190 2 192 571 0.074s 0.609s

200 2 202 601 0.08s 0.643s
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