2309.03006v2 [cs.CR] 4 Oct 2023

arXiv

Fuzz on the Beach: Fuzzing Solana Smart Contracts

Sven Smolka
University of Duisburg-Essen
sven.smolka@uni-due.de

Oussama Draissi
University of Duisburg-Essen
oussama.draissi@uni-due.de

Jens-Rene Giesen
University of Duisburg-Essen
jens-rene.giesen@uni-due.de

Lucas Davi
University of Duisburg-Essen
lucas.davi@uni-due.de

Klaus Pohl
University of Duisburg-Essen
klaus.pohl@uni-due.de

Pascal Winkler
University of Duisburg-Essen
pascal.winkler@uni-due.de

Ghassan Karame
Ruhr University Bochum
ghassan@karame.org

ABSTRACT

Solana has quickly emerged as a popular platform for building
decentralized applications (DApps), such as marketplaces for non-
fungible tokens (NFTs). A key reason for its success are Solana’s
low transaction fees and high performance, which is achieved in
part due to its stateless programming model. Although the litera-
ture features extensive tooling support for smart contract security,
current solutions are largely tailored for the Ethereum Virtual Ma-
chine. Unfortunately, the very stateless nature of Solana’s execution
environment introduces novel attack patterns specific to Solana
requiring a rethinking for building vulnerability analysis methods.

In this paper, we address this gap and propose FuzzDELSoL, the
first binary-only coverage-guided fuzzing architecture for Solana
smart contracts. FuzzDELSoL faithfully models runtime specifics
such as smart contract interactions. Moreover, since source code is
not available for the large majority of Solana contracts, FuzzDELSoL
operates on the contract’s binary code. Hence, due to the lack of
semantic information, we carefully extracted low-level program and
state information to develop a diverse set of bug oracles covering all
major bug classes in Solana. Our extensive evaluation on 6049 smart
contracts shows that FuzzDELSoL’s bug oracles finds impactful
vulnerabilities with a high precision and recall. To the best of our
knowledge, this is the largest evaluation of the security landscape
on the Solana mainnet.

1 INTRODUCTION

Smart contracts are an essential part of the ecosystem in many
modern blockchain platforms. Smart contracts allow developers to
implement decentralized applications (DApps) that encode business
logic on the blockchain, thereby facilitating a number of use cases.
For instance, smart contracts enable the creation of non-fungible
token (NFT) marketplaces. Artists use NFT marketplaces to auction
their creations. Furthermore, established companies and sport fran-
chises, like Nike [43], Budweiser [8], Lacoste [31], and the NBA [39]
use these marketplaces to sell NFT collections to fans and investors
all over the world.

The Solana blockchain [18] has become a key platform in the
DApps and NFT space, because of its high performance and low
transaction fees. In comparison to the more established smart con-
tract platform Ethereum [17], Solana can execute 100-1000 times
more transactions per second [32, 50] while charging a fraction of

a USD cent as a fee [18, 32]. As a result, the number of all transac-
tions in the Solana network significantly exceeds the number of all
transactions made in Ethereum by a factor of 85'.

From a smart contract perspective, the Solana platform achieves a
high transaction rate because its execution layer decouples program
logic from state, i.e., smart contracts cannot store any dynamic
state. This enables Solana to execute transactions operating on
different data in parallel. However, this also introduces new attack
patterns that are specific to Solana. In fact, attacks against Solana
smart contracts already caused multi-million Dollar losses [57, 58]—
the popular Wormhole attack induced losses of up to 320 million
USD [23].

Smart contract security research ranges across different disci-
plines: from formal verification [52] and static analysis [38, 54]
to dynamic analysis [12], with a high focus on the Ethereum plat-
form. However, Solana suffers from different vulnerabilities than
Ethereum, and the aforementioned techniques are not applicable
to Solana due to its unique features: In comparison to Ethereum,
the Solana blockchain is stateless and smart contracts have no di-
rect association with the state. The stateless nature of Solana’s
execution environment requires stricter handling of user input.
However, vulnerabilities often come from developers not checking
security-critical properties in smart contracts, like missing transac-
tion signer checks. Unlike Ethereum smart contracts, which implic-
itly trust their state if it is not compromised. Moreover, the stateless
approach of Solana and the impact on its security model is largely
unexplored.

Research on Solana security and tooling is limited: At the time
of writing, VRust [11] is the only existing static analysis approach
that covers Solana smart contracts. VRust incorporates detection
patterns for common vulnerabilities in Solana smart contracts and
was able to detect 12 vulnerabilities in popular open-source smart
contracts [11]. However, VRust suffers from several limitations:
1) it strictly requires source code to conduct analyses, 2) it suffers
from a high number of false alarms, and 3) it does not provide an
analyst with enough data to (re-)construct exploit transactions. In
contrast, fuzzing is a technique that does not suffer from any of these
limitations [3, 15, 16, 46]. The fuzzing input given to the analysis
target can also usually be crafted into exploit transactions. Smart

10n April 12, 2023, Ethereum processed 1933 million (https://etherscan.io) transactions,
while Solana already reached 164 839 million transactions (https://solscan.io).

https://etherscan.io
https://solscan.io

Sven Smolka, Jens-Rene Giesen, Pascal Winkler, Oussama Draissi, Lucas Davi, Ghassan Karame, and Klaus Pohl

contract fuzzing is a valuable technique that has been extensively
researched with promising results. [24, 42, 47].

Contributions. In this work, we propose a solution to detect bugs
in Solana called FuzzDELSoL: the first binary-only coverage-guided
fuzzer for Solana smart contracts. We developed a set of bug de-
tection oracles to facilitate the detection of Solana-specific smart
contract bugs, namely 1) missing signer checks, that is, the smart
contract performing critical operations without checking for sig-
natures, 2) missing owner checks, which allow a smart contract
to use untrusted data, 3) arbitrary cross program invocation, i.e.,
a smart contract calls any other smart contract, 4) missing key
checks, which, similar to the missing owner check, enables a smart
contract to use spoofed accounts as system variables, and 5) integer
bugs. In addition, we also design a generic oracle for FuzzDELSoL
to detect vulnerabilities based on lamport gains. Lamports are the
smallest denomination of Solana’s native currency SOL, and 1 SOL
corresponds to 1000000 000 (one billion) lamports. We use this
oracle to detect arbitrary leaking funds and lamport-theft.

Our extensive evaluation of FuzzDELSoL consists of several ex-
periments. In our first experiment, we test FuzzDELSoL with a set
of vulnerable smart contracts provided by the community [40].
We demonstrate that our approach is capable of quickly detecting
Solana-specific vulnerabilities. Compared to VRust, FuzzDeLSoL
does not report any false alarm for the dataset provided in [40].
In addition, FuzzDELSoL is also able to precisely trace back the
vulnerability classes.

Next, we perform a large-scale bug-finding evaluation on all
Solana smart contracts present on the mainnet on March 27, 2023,
which amounts to a total of 6049 smart contracts. At the time of
writing, this is the largest analyzed dataset of Solana smart contracts.
FuzzDELSoL reports 92 bugs in these smart contracts. We analyzed
16 reports in-depth and confirmed that only 2 were false alarms,
thus demonstrating the high accuracy of FuzzDELSoL in detecting
bugs. FuzzDELSoOL is the only analysis tool available that is able to
analyze these contracts on the mainnet.

Third, our performance evaluation on 16 smart contracts from
well-known bug bounty programs demonstrates that FuzzDELSoL
is able to analyze complex smart contracts. Here, FuzzDELSOL’s
generated transactions are able to consistently find new code paths
in the programs. In this experiment, FuzzDELSOL reports a true bug
and only has a single false alarm, i.e., a single wrongly reported
vulnerability. We summarize our contributions as follows:

o We present the first fuzzing architecture for Solana smart
contracts. We conceptualize FuzzDELSoL (Section 4) around
the original Solana runtime to FuzzDELSor faithfully model
runtime specifics, such as smart contract interaction. More-
over, this design guarantees reproducibility and validity of
transactions that FuzzDELSoOL generates: Every transaction
that generates a vulnerability report can be replayed, e.g.,
on a test network.

e We design and implement new bug oracles to detect Solana-
specific vulnerabilities (Section 3.1). Due to our design
choices, FuzzDELSoL detects impactful bugs in smart con-
tracts regardless of source code availability.

e Our extensive evaluation on 6049 smart contracts shows
that FuzzDELSoL’s bug oracles find bugs with a high preci-
sion and recall. This is the largest evaluation of the security
landscape on the Solana mainnet.

e FuzzDELSoL detects the infamous Wormhole bug.

2 SOLANA’S EXECUTION ENVIRONMENT

In the following, we provide an overview of Solana’s execution
environment [19, 20].

Solana Account Model. The Solana account model decouples
accounts containing non-executable raw data from accounts con-
taining executable code. In order to achieve this decoupling, Solana
introduces an account layout consisting of the following six fields:
(1) the public key of the account, (2) the public key of the account
owner, (3) the executable flag, which indicates whether an account
is executable (and accordingly a program), (4) the rent epoch, which
specifies a point in time when the account must pay rent to remain
deployed on the blockchain, (5) the funds that the account holds,
in a unit called lamports, and (6) the data that the account contains.

Smart contracts in Solana are called programs. Executable on-
chain programs contain extended Berkeley Packet Filter (eBPF) byte-
code compiled as an executable and linkable format (ELF) shared
object file in their data field and are stateless, i.e., they do not
store runtime-modifiable data in their data field. Programs man-
age runtime-modifiable data in non-executable accounts whose
owner field contains the program’s public key. Once a program is
the owner of an account, only that program is able to modify the
account’s data as well as deduct lamports from the account.

Solana distinguishes between two types of programs: i) na-
tive programs and ii) on-chain programs. Native programs are im-
plemented in the Solana runtime and are not deployed on the
blockchain. These programs typically perform tasks such as al-
locating new accounts on the blockchain or deploying on-chain
programs on the blockchain. On-chain programs are written in C,
C++, or Rust, compiled in eBPF, and deployed on the blockchain
using a native program. Both native and on-chain programs are
marked as executable. But only on-chain programs contain eBPF
bytecode in their data field. Moreover, on-chain programs are only
capable of modifying the data and lamports of non-executable ac-
counts at runtime. However, some native programs are also capable
of modifying the remaining four fields.

Solana Transactions. Transactions consist of, but are not limited
to, (1) a list of signatures of accounts that signed the transaction
(2) a recent blockhash used to determine if the transaction is too
old, (3) a sorted list of accounts that can be used in the instructions
of the transaction (4) and a list of instructions. An instruction is
responsible for invoking a native or an on-chain program. Here, a
native program is executed directly in the Solana runtime, while an
on-chain program is executed in Solana’s eBPF VM using the eBPF
bytecode stored in the program’s data field. Instructions consist
of three elements: i) the public key of the program called by the
instruction (also referred to as the program id), ii) a list of accounts
passed to the program, which must be a subset of the sorted list of
accounts in the transaction, and iii) instruction data representing
arbitrary data. A called program accesses these three elements
during execution.

Fuzz on the Beach: Fuzzing Solana Smart Contracts

Cluster Information. Solana programs receive cluster information
by calling functions of sysvar accounts. For instance, the amount
of lamports to pay for allocating one data byte for an account.
According to the Solana programming model, sysvar accounts must
also be passed as input to the program by including them in the
instruction’s account list.

Program-Derived Addresses. In addition to addresses that are a
pair of public and private keys, Solana introduces Program-Derived
Addresses (PDAs). PDAs are addresses that are not located on the
ed25519 curve, do not have a corresponding private key, and are
associated with a program. A PDA receives its association with a
program during its derivation, where the PDA is deterministically
derived based on the program’s public key and a set of optional
seeds. In order to ensure that a PDA does not lie on the ed25519
curve, a bump byte is iteratively determined that will uniquely
“bump” the PDA out of the ed25519 curve.

Cross-Program Invocation. Solana programs can call other pro-
grams using Cross-Program Invocation (CPI). Here, the caller in-
vokes the callee with a self-created instruction that contains at least
the same privileges as the instruction which invoked the caller, i.e.,
accounts that signed the transaction. However, the Solana runtime
allows the caller to delegate additional privileges to the callee using
PDAs. These additional privileges are restricted to accounts whose
public key is a PDA associated with the caller, i.e., derived from the
caller’s public key along with a set of optional seeds. Thus, when
invoking a program using CPI, the calling program can use PDAs
to “sign” accounts in the CPI instruction.

eBPF VM. Solana’s eBPF VM [20] can execute on-chain programs
in both Fust-in-time compilation and Interpreter mode. The Solana
runtime defines a number of environmental restrictions when exe-
cuting on-chain programs in the eBPF VM. By default, the eBPF VM
limits the resource consumption of an instruction to a maximum of
a certain number of compute units. The Solana runtime accumulates
compute units for all instructions within a transaction, with certain
runtime operations such as function or system calls consuming a
specific number of compute units. In addition, the Solana runtime
enables the eBPF VM to allocate up to 64 stack frames and reach
a maximum depth of four Cross-Program Invocations. Lastly, it
prohibits reentrancy during CPIL.

When executing an instruction in the eBPF VM, the instruction
is serialized and passed to the VM as input for the program. The
program input starts at a fixed address of the VM memory layout.
Figure 1 depicts the layout of the serialized instruction, which is
divided into three parts: accounts, instruction data, and program id
which corresponds to the input of the program. The first 8 bytes of
each account contain information about whether the account has
signed the transaction, is read-only, or is executable. Followed by
the public key of the account and the account’s owner, the amount
of lamports, the data length, and other information.

3 SOLANA PROGRAM SECURITY AND
CHALLENGES
There are different types of vulnerabilities in Solana programs. At-

tackers exploiting these vulnerabilities may compromise accounts
managed by vulnerable programs, i.e., by stealing an account’s

funds or manipulating an account’s data. The attacker typically ac-
complishes this by crafting and executing sequences of instructions
that allow the attacker to maliciously select the order of accounts
and the instruction data in each instruction. As a result, an attacker
gains access to accounts owned by or authorized to the vulnera-
ble program, and can steal lamports or violate the accounts’ data
integrity.

3.1 Solana Program Vulnerabilities

In the following, we describe five key vulnerabilities [11, 23, 40] of
Solana programs, which we all address in this paper.

Missing Signer Check. A missing signer check (MSC) vulnerability
exists when a program does not verify that an account that should
have signed the transaction according to the business logic actually
signed the transaction. This allows an attacker to gain unauthorized
access to program behavior.

Missing Owner Check. A missing owner check (MOC) vulner-
ability exists when a program reads and processes data from an
account that, according to the business logic, should be owned by
the program without verifying it is actually owned by the program.
Thus, an attacker could create his own account with data and pass
it to the program as input.

Arbitrary CPI. An arbitrary CPI (ACPI) vulnerability exists when
a program does not verify the program id of the invoked program
during CPL Hence, an attacker can deploy a malicious program on
the blockchain and pass it as input to the program possessing the
arbitrary CPI vulnerability. As a result, the program possessing the
vulnerability invokes the malicious program using CPI, giving the
attacker control over the execution. This is especially critical if the
program grants additional privileges to the invoked program by
signing PDAs.

Missing Key Check. A missing key check (MKC) vulnerability
exists when a program expects a specific account and processes
its data without verifying that the passed account is actually the
expected specific account. This vulnerability resulted in a loss of
up to 320 million USD in the Wormhole program [23].

Integer Bugs. An integer bug (IB) exists when values underflow
or overflow in arithmetic operations. This vulnerability can be ex-
ploited by an attacker when a program transfers lamports from
account a to account b. Here, the attacker selects the value to be
transferred so high that the lamports field of account b overflows,
while the lamports field of account a underflows. The Solana run-
time allows this transfer because the total amount of lamports
remains the same before and after executing the instruction.

3.2 Solana Security Analysis

In contrast to the available tools and approaches for Ethereum
smart contract security analysis, only very few approaches and tools
support Solana program security analysis. The existing ecosystem
merely consists of bytecode lifters [35, 44] that are capable to lift
the eBPF bytecode of Solana programs to another, tool-specific
intermediate language (IL), such as Ghidra’s [2] or Binary Ninja’s [1]
IL. These plugins help in reverse engineering, but do not conduct
any sophisticated security analysis on their own.

Sven Smolka, Jens-Rene Giesen, Pascal Winkler, Oussama Draissi, Lucas Davi, Ghassan Karame, and Klaus Pohl

| NA | Account 1 | | Account n | NID | Instruction Data Program ID
| Al | Public Key | Owner Public Key | L | DL | Data |P| Reallocation | E |
NA = Number of Accounts Al = Account Information DL = Data Length of the account P = Data Padding

NID = Number of Instruction Data L

= Amount of Lamports of the Account E

= Rent Epoch of the account

Figure 1: Serialization of an instruction as input of the eBPF VM

Currently, VRust [11] is the only existing static analysis approach
that covers Solana programs with a focus on security. VRust covers
a wide range of vulnerability patterns for common vulnerabilities
in Solana smart contracts. As a result, VRust was able to detect 12
vulnerabilities in popular open-source smart contracts [11]. VRust
uses the Rust compiler to analyze Solana programs on the Rust
Mid-Level Intermediate Representation (MIR) [37]. The MIR is a
typed language that has complete information about the memory
layout and types of a variable’s data structure.

The Rust compiler uses MIR as a compiler-internal represen-
tation that models control-flows and data-flows for further opti-
mization of the ownership and borrow checking rules, hence it is
designed to model control-flows and data-flows precisely. In general,
it is possible to map MIR-level objects backwards to higher-level rep-
resentations, which also provides access to high-level information
like variable names. As a result, today’s decompiling and lifting ap-
proaches [35, 44] cannot achieve the same precision for data-flows
as MIR. Further, custom analysis passes can be implemented as a
visitor on top of the MIR-level control flow graph for any given
Solana program written in the Rust programming language. How-
ever, relying on the MIR for vulnerability analysis strictly requires
source code, because the MIR can only be generated by the Rust
compiler from the higher-level representations.

Solana programs can be written in C or Rust, and it is possible
to differentiate between programs written in either language by
checking which system calls a program uses. As this can be done on
bytecode level, we count the occurrences of the C vs. Rust variants
of the sol_invoke_signed system call. We find that 97% of Solana
programs are written in the Rust programming language, whereas
the remaining programs use the C programming language. Thus,
VRust cannot analyze these programs. The Solana security.txt [41]
feature allows program authors and developers to provide infor-
mation on where to find the source code of a program and whom
to contact for security issues. We use this information to find out
about source code availability of Solana programs. Our findings
show that less than 2% of Solana programs come with source code.
As a result, VRust cannot be applied to a vast majority of Solana
programs.

3.3 Challenges of Fuzzing Solana Programs

A popular approach to uncover bugs is coverage-guided fuzzing [15,
16, 53, 61]. This technique mutates the inputs based on instruction-
coverage data, or feedback information, collected during the target’s
execution, to uncover new paths in the application. Fuzzing Solana
contracts is yet to be explored.

Ethereum Smart Contract Fuzzing. Fuzzing Ethereum smart con-
tracts is a heavily researched area [28, 30, 42, 47, 55, 59]. Ethereum
fuzzers like EFCF [47] model interaction between smart contracts
to detect complex and hard-to-find Ethereum bugs, e.g., composi-
tional reentrancy bugs. However, these approaches are not feasible
or applicable to Solana, because of its unique programming model
(cf. Section 2). Modelling the interaction between Ethereum smart
contracts does not require in-depth information about the type of
other smart contracts. In order to model the interaction between
programs and accounts in Solana, it is necessary to know the do-
main of a program. For instance, the program in Listing 1 interacts
with three different types of accounts: a wallet, a vault, and an au-
thority. Ethereum encapsulates the state within the smart contract,
i.e., an Ethereum fuzzer [30] does not need to consider the different
types of data to detect bugs. Nevertheless, to detect more complex
bugs, like delegated re-entrancy bugs, Ethereum fuzzers [efcf] must
understand the semantics of the respective contracts. In contrast,
it is hard to detect which type an account assumes in a Solana
program. Therefore, modelling the blockchain state and the content
of accounts is essential to detect real, reproducible and impactful
bugs in smart contracts. Thus, in order to faithfully fuzz Solana
programs, a Solana fuzzer has to solve the following challenges:

Challenge 1: Modeling Ledger Snapshots. As Solana requires
programs to store data in external, non-executable accounts, it
is necessary to model a valid ledger snapshot which consists of
multiple accounts. Moreover, programs must be able to change
this snapshot across multiple transactions as well as operate on
the changed snapshots to be able to execute business logic which
depends on a specific state of the ledger snapshot.

Challenge 2: Reproducibility of Transactions. To identify vul-
nerabilities exploitable in the real production blockchain, it is neces-
sary to generate transactions that are reproducible in the production

blockchain.

Challenge 3: Cluster Information. Several Solana programs
require cluster information at runtime, such as the amount of lam-
ports to allocate a byte of data. Solana programs receive this cluster
information using functions provided by sysvar accounts, which
must be passed to the program as input. Hence, it is necessary to
ensure that Solana programs receive sysvar accounts as input and
are able to call functions of these sysvar accounts.

Challenge 4: Solana-specific Vulnerabilities. Since Solana pro-
grams comprise specific vulnerabilities resulting from the Solana
programming model, it is necessary to develop detection mecha-
nisms to detect these Solana-specific vulnerabilities.

Fuzz on the Beach: Fuzzing Solana Smart Contracts

Challenge 5: Program semantics need to be retrieved. Solana
programs manage accounts associated with the program using
PDAs with a program-specific seed structure. Since programs verify
whether the public key of a passed account corresponds to the
program-specific PDA seed structure, it is necessary to i) determine
the program-specific PDA seed structure and ii) to pass accounts to
the program, whose public key is derived from the program-specific
PDA seed structure.

Challenge 6: Faithful CPI. Solana programs are able to invoke
other programs at runtime using CPIL Hence, the runtime envi-
ronment must ensure that programs can use the CPI mechanism
to invoke both on-chain programs—in a separate eBPF VM—and
native programs in the Solana runtime.

4 OVERVIEW OF FuzzDeLSoL

In this section, we introduce the design of FuzzDELSoL and its main
components. Furthermore, we describe how our design tackles the
challenges mentioned in Section 3.3.

Intended Use of FuzzDELSoOL. FuzzDelSol aims to explore the
prevalence of vulnerabilities in Solana programs. Although simi-
lar bytecode-based security studies have been conducted for other
blockchain platforms, such as Ethereum [21, 52], or other applica-
tion domains like Android [13], there does not yet exist any compre-
hensive study about the security of Solana programs. Hence, for the
first time, we aim to raise awareness for Solana program security
with FuzzDELSoL. For 98% of Solana programs, no source code is
available (see Section 3.2). Hence, we argue that source code-based
analysis techniques like VRust [11] are not applicable to analyze
the vast majority of Solana programs. Moreover, FuzzDELSOL can
be used to find vulnerabilities with the intention of forming a bet-
ter understanding of the vulnerability types. This is necessary to
develop appropriate countermeasures for Solana-specific vulnera-
bilities. Further, Solana program developers may use FuzzDELSoOL
to vet closed-source third-party programs interacting with their
own programs. The same applies to users of Solana programs: Fuzz-
DEetLSor helps in ensuring that closed-source programs a user wants
to invest in are secure, before investing funds.

Overview. Our high-level architecture is shown in Figure 2. The
main idea of FuzzDELSoL is to (D create a valid blockchain snapshot
using the blockchain emulator; comprising the Solana program to
analyze, an attacker account and additional accounts, e.g., user and
non-executable data accounts, or executable programs. The next
component is the transaction generator (), which receives random
and mutated bytes from a fuzzer to generate valid transactions.
FuzzDELSoL executes these transactions in an instrumented Solana
runtime (3) called RunDelSol. In particular, we extended the original
Solana runtime with patches to detect Solana-specific vulnerabili-
ties (cf. Section 3.1) induced by the generated transactions. Finally,
the transaction evaluator (4) analyzes the aftermath of the transac-
tions, and extracts valuable insights for following fuzzing iterations.
However, if the transactions signal an erroneous ledger snapshot,
FuzzDELSOL generates a vulnerability report with information to
reproduce this ledger snapshot.

Blockchain Emulator (Section 5.1). A challenge for fuzzing Sol-

ana programs is that program execution is largely dependent on the
ledger snapshot. Thus, we developed a component called blockchain

emulator (D to prepare the snapshot of the ledger available for
analysis. The modeled ledger snapshot contains the program be-
ing fuzzed as well as additional accounts that are relevant to the
execution context. Moreover, this component provides all public
keys that can be passed to the program as input. Operating on
a valid ledger snapshot allows a program, for example, to man-
age and modify lamports and account data at runtime across mul-
tiple transactions. FuzzDELSoL uses the blockchain emulator to
model a ledger snapshot for programs to operate on during pro-
gram execution, thereby addressing Challenge 1. In addition, the
blockchain emulator—along with RunDelSol—also enables Fuzz-
DELSor to address Challenge 3, since the public keys provided by
the blockchain emulator include those of the sysvar accounts used
by the program to retrieve cluster information. Furthermore, the
blockchain emulator incorporates an account generator that creates
attacker-controlled accounts containing malicious data to trigger
Solana-specific vulnerabilities. Therefore, the blockchain emulator
supports addressing Challenge 4. Finally, the blockchain emulator
uses PDA seed structures obtained from the transaction evaluator
to derive valid PDAs, which assists in tackling Challenge 5.

Transaction Generator (Section 5.2). For each fuzzing iteration,
FuzzDELSoL mimics real Solana transactions to find reproducible
bugs. However, Solana transactions contain structured data. Thus,
FuzzDELSOL incorporates a transaction generator (2), which trans-
forms the randomly generated bytes from a fuzzer into valid Solana
transactions. As the transaction generator produces valid and re-
producible transactions, FuzzDELSoL covers Challenge 2.

RunDelSol (Section 5.3). Effective fuzzing requires coverage feed-
back [15, 61] to guide the generation of test inputs. Source code is
commonly used to instrument a program for achieving accurate
results in this feedback mechanism. However, given the absence
of source code for the large majority of Solana programs, we can-
not rely on the source code. Therefore, instead of instrumenting
programs, FuzzDELSOL implements a specialized Solana runtime en-
vironment (3), called RunDelSol. This environment—besides instan-
tiating and executing Solana programs on the previously generated
ledger snapshot—includes instrumentation to measure coverage.
Furthermore, it allows programs to invoke functions of passed sys-
var accounts to retrieve cluster information (addressing Challenge 3
along with the blockchain emulator).

Moreover, RunDelSol features a taint tracking engine to trace the
data-flow during the execution of a program. This enables us to
implement Solana program vulnerability detectors or bug oracles,
as well as Solana-specific runtime information extractors which
extract PDA seed structures. Each oracle aims to detect a poten-
tial vulnerability without source code information and uses the
taint tracking engine differently, and therefore tackling Challenge 4.
Moreover, the Solana-specific runtime information extractors of
RunDelSol (along with the transaction evaluator, see below) al-
low FuzzDELSoL to address Challenge 5 by extracting PDA seed
structures.

Moreover, RunDelSol can invoke multiple programs using CPI
and run them in separate eBPF VMs for on-chain programs. In the
case of native programs, RunDelSol executes them in the Solana
runtime. Otherwise, for invoking on-chain programs, RunDelSol
traces their data-flow using the taint tracking engine independently

Sven Smolka, Jens-Rene Giesen, Pascal Winkler, Oussama Draissi, Lucas Davi, Ghassan Karame, and Klaus Pohl

FuzzDelSol

1
Blockchain Emulator

Program.so

7F 45 4C 46 DA
02010100 EF
7B1A30FD FA

79 A1 FO FF FF

3

()

RunDelSol

Coverage Information

Taint Tracking Engine
Bug Oracles
Semantic Extractors

Vulnerability Report

Vulnerability Class

Transaction Payload

Global Account State

L

Transaction Evaluator Q

 —— (4
Transaction Generator Ei
Mutated bytes
Ebl — Fuzzer
A
eBPF VM
Feedback

Figure 2: FuzzDELSOL Design

to the callee program. This allows the oracle to detect vulnerabil-
ities across multiple CPI invocations. Enabling programs to call
other programs using CPI and analyzing their interaction allows
FuzzDELSoL to solve Challenge 6.

Transaction Evaluator (Section 5.4). Transactions can impact
the state of the blockchain. For correct adjustment of the ledger
snapshot and preparation of the next fuzzing iteration, the trans-
action evaluator (@) extracts relevant information from RunDelSol
after the execution of transactions, including PDA seed structures,
eBPF VM signals, and feedback information for the fuzzer, e.g.,
coverage. Next, the transaction evaluator forwards the information
to the fuzzer and the blockchain emulator and decides whether it
should re-generate the ledger snapshot for subsequent fuzzing iter-
ations, taking into account the newly received semantic program
information. As a result, the transaction evaluator, together with
RunDelSol, allows addressing Challenge 5.

5 FuzzDELSoL INTERNALS

In this section, we detail the implementation of FuzzDELSoL. Fuzz-
DELSoL uses the state-of-the-art Libafl [16] fuzzer. Libafl’s design
allows the FuzzDELSoL to include its own feedback mechanism in
the fuzzing mutation. The bytes generated by Libafl are based on
feedback obtained from previous fuzzing iterations, which helps
uncover new paths and overcome barriers, e.g., such as public key
comparisons, in the Solana program.

We describe how each of the four components depicted in Fig-
ure 2 is used to detect bugs. Moreover, we leverage an exemplary
program that suffers from two impactful bugs to describe Fuzz-
DELSoL for ease of presentation. Listing 1 shows the code of this
example program. We chose this example because it showcases two
of the more popular bugs in Solana. This function allows a user to
withdraw funds from a vault managed by the program. Line 13 in
the function checks if the authority account is authorized to with-
draw funds from account vault. In contrast to Ethereum, Solana

programs need a separate wallet account to store data. In Line 14,
the function also checks whether the vault provided as an input
is associated with the wallet_info account. Finally, if account from
contains sufficient lamports, the transfer proceeds. However, this
program suffers from a missing signer check: an attacker can provide
account authority without the actual owner of authority knowing
about this. Hence, the attacker can transfer funds on behalf ob the
actual authority without proper authorization. This vulnerability
can be fixed by adding a signer check to the program, which is
shown in Line 20. Furthermore, the program lacks an owner check
to verify the integrity of the information stored in the wallet_info
account. In this case, an attacker can provide a forged wallet_info
account with fake data that refers to any vault managed by the
program while supplying his own public key as the authority. This
means that, even if the code includes the signer check in Line 20,
an attacker could drain any vault associated to the program. The
check in Line 17 prevents this, as it verifies that the information in
wallet_info is trusted. Therefore, even if an attacker passes a fake
account to the program, the program recognizes that this account
does not contain the program’s program_id as owner. Thus, this
check mitigates illegal lamport withdrawal. Note that FuzzDELSoL
is detecting these bugs without access to the program’s source code.

5.1 Blockchain Emulator

The blockchain emulator allows FuzzDELSoL to model a valid ledger
snapshot. When creating a ledger snapshot, the blockchain emula-
tor deploys several accounts: (1) a user and attacker wallet account,
which are used by the oracles to determine whether a transaction
triggered a potential security vulnerability (2) on-chain programs
such as the program to fuzz or the SPL Token program (3) sysvar
accounts, enabling programs to use their functions to receive clus-
ter information (4) attacker-controlled accounts, which attempt to
exploit potential missing owner check vulnerabilities.

Fuzz on the Beach: Fuzzing Solana Smart Contracts

fn withdraw(program_id: Pubkey, accounts: [AccountInfo], amount: u64) ->
ProgramResult {

// The accounts from the transaction are attacker-controlled,
// including wallet_info and wallet

let wallet_info = accounts[0];

let wallet = deserialize(wallet_info.data);

let vault = accounts[1];
let authority = accounts[2];

// An attacker can forge the authority and vault fields
// of the wallet account, to pass both of these checks
assert(wallet.authority == authority.key);
assert(wallet.vault == vault.key);

+ // FIX: check owner of account from
+ assert(wallet_info.owner == program_id);

+ // FIX: the following line adds the required signer check
+ assert(authority.is_signer);

// check for sufficient funds
if amount > from.lamports {
raise InsufficientFundsException;

}

// transfer lamports
vault.lamports -= amount;
authority.lamports += amount;

// XXX: Missing signer and owner check vulnerability
// Funds can be transfered to and from unauthorized accounts
0k(O)

}

Listing 1: Solana program to withdraw funds from a vault.
This program contains a missing signer and owner check.
We mark additional checks with + and green highlighting.

The blockchain emulator provides all these accounts and their
public keys to the transaction generator for generating transactions.
The example in Listing 1 requires three accounts: the wallet_info,
vault and authority accounts with their respective data. If these
accounts are not available, the transaction fails. FuzzDEeLSoL gener-
ates all three accounts and deploys them on the blockchain. The
blockchain emulator additionally provides the user’s and attacker’s
private keys, as well as the public keys of Solana’s native programs—
which do not need to be deployed on the blockchain as they are
integrated in the Solana runtime. Finally, it also implements a PDA
generator and an attacker-controlled accounts generator, which re-
ceive information about the runtime from the transaction evaluator.

PDA Generator. The PDA generator derives PDAs based on the in-
formation provided by the PDA seed structures. The seed structures
are extracted by the PDA seed structure extractor (cf. Section 5.3.4)
and received by the transaction evaluator. The generator creates
user-related and attacker-related PDAs by inserting the user’s and
the attacker’s public key at the precise seed positions at which the
program expects a public key. Furthermore, the generator inserts
statically extracted seeds in places where the PDA seed structure
extractor could not determine the origin of the seed. In the case that
no seed exists in a PDA seed structure that originates from a public
key, the PDA generator derives a single PDA without reference to
the user or attacker. Finally, the PDA generator provides each de-
rived PDA to the transaction generator for generating transactions.

Attacker-controlled Accounts Generator. This generator uses
information about the location of public keys from the account
data—extracted by the account data structure extractor (cf. Sec-
tion 5.3.4) and received by the transaction evaluator—to create
attacker-controlled accounts populated with malicious data and
deploys them on the ledger snapshot. Here, the generator pop-
ulates the attacker-controlled account data with public keys of
user-related accounts and the public key of the attacker at positions
at which the program expects public keys. Hence, an extracted
account structure must contain at least two public keys for the
generator to generate attacker-controlled accounts. By generating
attacker-controlled accounts containing malicious data, FuzzDEL-
SoL aims to detect potential missing owner check vulnerabilities.
In Listing 1, this applies to the wallet account wallet_info with an
account authority by comparing wallet_info’s data with the public
key of authority. Since the program does not contain an owner
check, FuzzDELSoL treats the wallet_info account as attacker con-
trolled. Lastly, the attacker-controlled accounts generator provides
the public key of each generated attacker-controlled account to the
transaction generator.

5.2 Transaction Generator

The transaction generator allows FuzzDELSoOL to create valid and
reproducible Solana transactions, effectively simulating real trans-
actions. This component receives generated bytes from the fuzzer,
and blockchain information from the blockchain emulator. This
includes information regarding the public keys of the selectable
accounts, the last blockhash, and accounts capable of signing a
transaction

As each transaction consists of at least one instruction, the gen-
erator first generates instructions from the received bytes, and then
includes the remaining elements of a transaction, including the
signature list, blockhash, and sorted account list (see Section 2).

Figure 3 shows the process and pattern the transaction generator
applies to transform the generated bytes of the fuzzer into a valid
Solana instruction. The pattern can be mainly divided into four
steps: i) number of accounts, ii) information about the account
signing the transaction containing the instruction, iii) information
about the accounts contained in the instruction, iv) and information
about the instruction data contained in the instruction. Regarding
Listing 1, in step iii), the blockchain emulator extracts the accounts
used in the instruction, and deploys accounts for wallet_info, vault,
and authority.

For example, the number of accounts generated for the trans-
action is defined by a one-byte field. This field defines how many
accounts the generator should insert in the instruction, consider-
ing the maximum number of selectable accounts provided by the
blockchain emulator. Similarly, the remaining bytes provided by the
fuzzer are structured to create valid transactions and accounts. Here,
FuzzDelSol takes dependencies between these fields into account:
For instance, the number of generated accounts directly affects
the account and signer information fields. The instruction bytes
information field uses the raw bytes generated by the fuzzer as in-
struction data. After transforming the bytes into a valid instruction,
with all the required information, the transaction generator creates
an associated transaction for that instruction.

Sven Smolka, Jens-Rene Giesen, Pascal Winkler, Oussama Draissi, Lucas Davi, Ghassan Karame, and Klaus Pohl

Generated input bytes of the fuzzer

Transaction Generator

Signer Information Instruction bytes Information

=

Input

T
:

First generated byte

—

Last generated byte

Amount of accounts Account information

l Generates ssembles

Instruction Transaction

Figure 3: Process to transform randomly generated bytes into a valid transaction

5.3 RunDelSol

RunDelSol executes the previously generated transactions in the
Solana runtime environment. Since RunDelSol uses the real Solana
environment, FuzzDELSoL can provide cluster information to the ex-
ecuted Solana program to fuzz and allow invoking other programs
deployed on the blockchain (on-chain programs) and integrated
in the runtime (native programs) using CPI. Moreover, RunDelSol
instantiates the Solana program to fuzz in an instrumented eBPF
VM in Interpreter mode and executes it based on the ledger snap-
shot generated by the blockchain emulator. RunDelSol includes an
instrumented eBPF VM, which extends the execution environment
with coverage information, data-flow tracing with taint tracking, the
implementation of six bug oracles to detect potential vulnerabilities,
and the extraction of Solana-specific program semantics.

5.3.1 Coverage Information. The instrumented eBPF VM of Run-
DelSol extracts coverage information during program execution.
Here, RunDelSol examines each transition in the control flow graph,
i.e., each JMP, CALL, and RET eBPF-instruction, and computes an
index for that transition as follows: Let src be the program counter
of the eBPF JMP, CALL or RET instruction and dst be the program
counter of the target instruction of the transition, then the index
of the transition is i < (src+ dst) mod s, where s is the size of
the coverage array. The indices of the coverage array provide infor-
mation about whether the program executed this transition. After
the instrumented eBPF VM terminates, RunDelSol forwards the
received coverage information of the executed instruction to the
transaction evaluator.

5.3.2 Taint Tracking Engine. The taint tracking engine provides
fine-grained tracing of data-flows during program execution. Run-
DelSol instruments memory addresses and register indices used by
LOAD, STORE and MOV instructions. The Data-flow tracing is enabled
for the following three events. First, FuzzDEeLSoL traces data of
accounts located on the program input (cf. Figure 1) and account
public keys read by the program. In Listing 1 FuzzDELSoL traces
the data of account wallet_info, because its data is read in Lines 13
and 14. FuzzDELSoL also traces the public keys of the vault and
authority accounts for the same reason. Second, the taint tracking
engine starts tainting memory addresses where the program stores
the return values of Solana-specific syscalls for deriving PDAs.
Tainting these memory addresses is crucial, as the program can
use them in its execution instead of the public keys of the accounts
located on the program input. Third, we taint register indices where
the program stores an overflow or underflow value as a result of
an arithmetic eBPF-instruction.

Account vault

A t wallet_inf
ccount wa'et_hio (Not signed; user vault)

(Not signed; program-controlled)

Public Key Public Key vault

wallet_info

Lamports

wallet_info

Data wallet

Account authority

wallet.authority (Not signed, user authority)

wallet.vault Public Key authority

Account vault didn't A
Program B sign the transaction
cmp ([vault] [wallet info |) mark Accounts [vauit],
Oracle: mark (Account wallet_info) wEltei it /
Oracle: mark (Account vault) Account authority didn't

sign the transaction

cMp (| authority || wallet info |)

Oracle: mark (Account authority)

mark Account| authority

wallet_info |already marked

No comparison to an account
that signed the transaction

STORE ([vault_])

Oracle: signal_ebpf_vm()

missing signer check W
T

Figure 4: Interaction of the taint tracking engine and the
missing signer check oracle

5.3.3 Bug Oracles. RunDelSol implements six bug oracles in the
instrumented eBPF VM, to find the following vulnerabilities: i)
missing signer check, ii) missing owner check, iii) arbitrary cross
program invocation, iv) missing key check, v) integer bugs, vi),
and a lamports-based bug oracle to detect lamport-theft. These
oracles investigate eBPF-instructions, leverage the taint tracking
engine to trace data-flows between eBPF-instructions, and signal
the instrumented eBPF VM if a transaction triggers a potential
vulnerability. When signaling the eBPF VM, each oracle specifies
the reason for the crash and the program counter at which the crash
occurs. In the following, we will describe how these oracles work.

Missing Signer Check Oracle. Listing 1 suffers from a missing
signer check. FuzzDELSoL traces and analyzes the data-flow of
this program to detect this vulnerability. Figure 4 describes this
process: The program reads data from the wallet_info, and public
keys from the vault and authority accounts. Algorithm 1 details
the bug-detecting process for a missing signer check. The oracle

Fuzz on the Beach: Fuzzing Solana Smart Contracts

Algorithm 1 Missing Signer Check Oracle

1: k < amount of accounts

2 Ve [01,0,...0;]

32T« 0
4: while program running do
5: if program performs register comparison then
6: a < account in src register
7: b « account in dst register
8 i « index of account g in V
9: if a.data is compared with b.pubkey and a ¢ T then
10: if not a signed tx and not b signed tx then
11 V[i] « V[i] U {a} U {b}
12: else
13: for each c € V[i] do
14: T —TU{c}
15: end for
16: V[l] —0
17: end if
18: end if
19: end if
20: if program writes to lamports or data of account a then
21: for each v € V do
22: if a € v then
23: signal VM
24: end if
25: end for
26: end if

27: end while

keeps track of mainly two things: accounts that the oracle marks as
vulnerable, and accounts that are marked as not vulnerable. Further,
the oracle marks accounts as vulnerable if their public key or data
are compared with another account without any of the accounts
having signed the transaction (see Line 10). On the other hand, the
oracle marks accounts as not vulnerable if a comparison against
an account that signed the transaction happens (see Line 14). The
oracle signals the VM if the program writes to the lamports or data
fields of an account that is marked as vulnerable (see Line 21 to 23).

Regarding the example in Listing 1, because of the checks in
Lines 13 and 14, FuzzDELSoL marks the wallet_info account as
vulnerable. Similarly, FuzzDELSoL marks the vault and authority
accounts because their public keys are compared to the data of
another account which also did not sign the transaction. The oracle
subsequently detects that the program writes a decreased amount
of lamports in account vault’s lamports field. Since the account is
marked as vulnerable and is not previously compared to at least one
public key of an account which signed the transaction, the oracle
signals the VM. However, after enabling the signer check in Line 20
of Listing 1, FuzzDELSoL transitively marks all three accounts as
non-vulnerable.

Missing Owner Check Oracle. The missing owner check oracle
checks whether an eBPF CMP instruction compares data of an ac-
count that is not owned by the program with the public key of
another account. In case the program performs such a comparison,
the oracle marks the latter account as potentially vulnerable to

a missing owner check, because the former account could be an
attacker-controlled account in which the attacker could assemble
data in such a way to reference arbitrary accounts. Algorithm 2
details the bug-detecting process of the missing owner check ora-
cle. The oracle operates as follows: Before the program starts, the
oracle initializes i) a set M in which it stores potentially malicious
accounts (see Line 1) and ii) a set of accounts V that an attacker
could potentially exploit using a missing owner check vulnerability
(see Line 2).

At runtime of the program, the oracle checks if the program
reads the data of an account a which is not owned by the program,
i.e., whose public key in the owner field is not equal to the program
ID of the program (see Line 4 and 5). If the program does not own
account a, the oracle marks a as potentially malicious by adding it
to set M (see Line 6).

Moreover, the oracle checks at runtime whether the program
compares account details of two account a, b in registers (see Line 9
to 11). In this comparison, if data from an account a is compared to
the public key of an account b, and a is included in the set M (see
Line 12), the oracle marks b as potentially vulnerable by adding b to
the set V (see Line 13). The same applies if the order of accounts in
the register comparison is reversed, i.e., if the public key of account
a is compared with data of a account b (see Line 14 and 15). Thus,
the oracle memorizes that the program has compared the data of
an account potentially controlled by the attacker with the public
key of another account.

The oracle signals the eBPF VM in case the program deducts
lamports of an account which is contained in the set V, i.e., whose
public key was previously compared with data of an account not
owned by the program (see Line 18 to 22). The same applies when
the program writes to the data field of an account contained in the
set V (see Line 25 and 26). This is because the oracle assumes that
an owner check is missing because i) the program compared the
data of an account a possibly controlled by the attacker with the
public key of another account b ii) and then modified the lamports
or data field of b. An owner check would have already crashed the
program, because the owner of the account whose data the program
compared with a public key is not the program.

Consider our example from Listing 1. Note that the code in-
cludes Line 17 to show a valid owner check, i.e., in the example we
assume that the code does not contain the check at Line 17. Due to the
missing check, the oracle marks the vault and authority accounts
as vulnerable, because in Lines 13 and 14 their keys are compared
to data read from the wallet_info account. As Listing 1 does not
check the ownership of the wallet_info account, an attacker can
forge this account such that his own public key assumes authority
over the funds stored in any given vault account. To facilitate this,
FuzzDELSoL uses the attacker-controlled accounts generator (cf. Sec-
tion 5.1) to create attacker-controlled accounts that have references
to accounts managed by the program as well as to the attacker to
trigger operations on the accounts the program manages without
verifying the owner of the account. In this example, the attacker
constructs the wallet_info account to contain his public key in the
wallet.authority field and the public key any given vault account
managed by the program in the wallet.vault field.

Lastly, the oracle signals the VM as soon as an eBPF STORE
instruction writes to the lamports or data field of any vulnerable

Sven Smolka, Jens-Rene Giesen, Pascal Winkler, Oussama Draissi, Lucas Davi, Ghassan Karame, and Klaus Pohl

Algorithm 2 Missing Owner Check Oracle

Algorithm 3 Lamports-based Oracle

M0

22 V10

3. while program running do

4 if program reads data of account a then

5: if a.owner # program_id then

6 M — MU {a}

7 end if

8 end if

9 if program performs register comparison then
10: a < account in src register
1 b « account in dst register
12: if a.data is compared with b.pubkey and a € M then
13: V< VuU({b}

14: else a.pubkey is compared with b.data and b € M
15: Ve Vu{a}

16: end if

17: end if

18: if program writes to lamports field of account a then
19: lprev < lamports of a before write
20: lafter < lamports of a after write
21: if a € Vand I frer <lpreo then
22: signal VM
23: end if
24: end if
25: if program writes to data of account a and a € V then
26: signal VM
27: end if

s: end while

N

account. Note that when writing to a lamports field, the oracle
signals the VM only if the STORE instruction decreases the account’s
lamports. In our example, the oracle signals the VM at Line 28,
because the program debits the vault account, which is marked as
vulnerable.

Lamports-based Oracle. The lamports-based oracle checks for
user-related accounts that could lose lamports to an attacker-related
account. We illustrate the process for the lamports-based oracle
in Algorithm 3. Before executing the program, the runtime ini-
tializes user-related and attacker-related accounts with PDAs (cf.
Section 5.1) (see Line 1 and 2).

This oracle is executed only if the issuer and signer of the trans-
action is the attacker (see Line 5). Consider a program where the
attacker passes user-related PDA seeds as a parameter: An attacker
could transfer lamports from user-related accounts to attacker-
related accounts by specifying arbitrary seeds, despite proper owner
and signer checks.

The lamports-based oracle checks eBPF STORE instructions to
the lamports fields of accounts (see Line 7). Thus, the oracle checks
each time if the program subtracts lamports from a user-related
account (see Line 10 and 11) and credits lamports to an attacker-
related account (see Line 12 and 13). The oracle signals the VM
if a program transfers lamports from a user-related account to an
attacker-related account (see Line 17 and 18). The lamports-based

10

1: U « user related accounts
2: A « attacker related accounts

3. lamportsl9% « false

. galn
4 lam‘portsattacker — flese .
5: while program running and attacker signed tx do

6:

7: if program writes to lamports field of account a then
8: Iprev < lamports of a before write
9: lafter < lamports of a after write
10: if a € U and l;fser < lpreo then
11: lamportsl% « true
12: elseif a € Aand l;f;er > lpreo then
13: lampor’[sfftzlcker «— true
14: end if
15: end if
16: .
17: if lamportslos = lamportsff:;ker = true then
18: signal VM
19: end if

20: end while

oracle only reports an error if neither the missing owner check,
nor the missing signer check reports an error, since both oracles
already check the lamports field.

Arbitrary CPI Oracle. The arbitrary cross program invocation
oracle checks whether an eBPF CALL instruction calls the Solana-
specific syscalls for invoking other programs using CPI. In case the
program executes such an instruction, the program checks whether
a previously specified malicious key was passed to the syscall as
the target program, which implies that an attacker is able to invoke
his malicious program. If a previously specified malicious key was
passed as a target program to the syscall, the oracle signals the VM.

The oracle operates as follows: Before starting the program,
we define a malicious public key, which represents a malicious
program controlled by the attacker (see Line 1). At runtime of the
program, the oracle then checks whether the program calls the
functions sol_invoke_signed_rust() or sol_invoke_signed_-
c() (see Line 3). If this is the case, the oracle determines the public
key of the called program (see Line 4). The oracle then checks if
the public key of the program being invoked is equal to that of the
previously defined malicious program (see Line 5). This implies
that an attacker is able to invoke his malicious program. If this is
the case, the oracle signals the virtual machine (see Line 6).

Missing Key Check Oracle. The missing key check oracle requires
specifying the following two parameters before starting fuzzing: i)
the address of a function f for which a key check is expected ii)
and an account a, where the program is expected to compare the
public key of an account it passes to function f with the public key
of account a before calling function f. In the case of Wormhole, f
would represent the function load_instruction_at and a would rep-
resent the KeccakSecp256k sysvar account. At program runtime, the
oracle checks whether an eBPF CALL instruction calls the function
f and signals the VM if the program does not compare the public

Fuzz on the Beach: Fuzzing Solana Smart Contracts

Algorithm 4 Arbitrary CPI Oracle

Algorithm 5 Missing Key Check Oracle

1: myy < predefined malicious public key

2. while program is running do

3: if program calls sol_invoke_signed_rust() or sol_-
invoke_signed_c() then

4 ipk < public key of invoked program

5 if ipg = mpy then

6: signal VM

7 end if

8 end if

9: end while

key of the account passed to the function f with the public key of
account a before calling function f.

Algorithm 5 details the bug-detecting process of the missing key
check oracle. Before the program starts, we pass two parameters
to the oracle: First, the address of a function f for which a key
check is expected (see Line 1). Second, the public key ay of an
account, where the program is expected to compare the public key
of an account it passes to function f with the public key a,. before
calling function f (see Line 2). In the case of Wormbhole, f would
represent the function load_instruction_at and a,. would represent
the public key of the KeccakSecp256k sysvar account. Moreover, the
oracle defines an empty list A, which it uses at program runtime to
store accounts which public key was compared to a,y (see Line 3).

At program runtime, the oracle checks whether the program
performs a register comparison operation or a function call opera-
tion. In the case of the register comparison operation, the oracle
uses the taint tracking engine to check whether the source and/or
destination registers contain account details (see Line 6 and 7). If at
least one of the registers contains account details, the oracle checks
whether the account details are the public key of an account and
whether it is compared with a, (see Line 8 and 10). If this is the
case, the oracle adds the account of the account details to the set
A to memorize that the account was compared with a, before
calling the function f (see Line 9 and 11).

In case the program calls the function f using an eBPF CALL
instruction (see Line 14), the oracle extracts the account p passed
to the function (see Line 15). Then the oracle checks if the account
p is not included in the set A and thus was not compared with the
public key a, before calling the function f (see Line 16). If this is
the case, the oracle signals the VM (see Line 17).

Integer Bugs Oracle. The integer bugs oracle checks whether an
eBPF STORE instruction writes an overflowed or underflowed value
to the lamports field of an account. Subsequently, the oracle signals
the VM. To do so, this oracle leverages the taint tracking engine.
Note that the oracle is not applicable to the accounts’ data field,
since the Borsh serializer’—which programs frequently use for
serializing and deserializing account data—calculates overflow or
underflow values when serializing data into the account’s data field.

Algorithm 6 provides a detailed explanation of the integer bug
oracle. The oracle operates as follows: Before the program runs, the

2htt}')s://borsh.in/

11

1: f « function address for which a key check is expected
2 apy < expected public key to be checked

33 A0
4: while program is running do
5: if program performs register comparison then
6: a < account in src register
7 b « account in dst register
8: if apy is compared with b.pubkey then
9: A— AU {b}
10: else a.pubkey is compared with a,;
11: A— AU{a}
12: end if
13: end if
14: if program calls function f then
15: p « passed account to function f
16: if p ¢ A then
17: signal VM
18: end if
19: end if

20: end while

oracle initializes an empty list T in which the oracle stores the reg-
isters that contain bugged values, i.e., overflowing or underflowing
values (see Line 1).

At program runtime, the oracle then checks whether an eBPF
STORE instruction has caused the program to write a value to a
register (see Line 3). If this case occurs, the oracle checks whether
the value which the program writes into the register is bugged, i.e.
has overflowed or underflowed (see Line 4). If a bugged value is
written to the register, the oracle remembers the register by adding
the register to the list T (see Line 4 and 5). In case the program does
not write a bugged value to the register, the oracle removes the
register from the list T (see Line 7).

Moreover, the oracle checks if the program writes a value into
the lamports field of an account at runtime (see Line 10). Then the
oracle checks whether the set T contains the register whose value
the program writes to the lamports field of an account (see Line
11 and 12). This indicates that the program has written a bugged
value to the lamports field of the account. If the program writes a
bugged value into the field, the oracle signals the VM (see Line 13).

5.3.4 Program Semantic Extractors. FuzzDELSOL does not have
access to a program’s source code, and therefore RunDelSol imple-
ments a PDA seed structure extractor and an account data structure
extractor to determine semantic program information.

PDA Seed Structure Extractor. The PDA seed structure extractor
extracts the structure and origin of the seeds used by the program
to derive PDAs. For this purpose, we use the taint tracking engine
to determine the origin of the arguments of Solana-specific syscalls
that derive PDAs. This allows the PDA seed structure extractor to
determine, for example, whether a seed originates from an account’s
public key. In case no origin for a seed is available, we assume that
the seed has been statically compiled into the program. Hence, the
PDA seed structure extractor does not record the origin of the seed
(e.g., a public key) but the actual bytes of the seed.

https://borsh.io/

Sven Smolka, Jens-Rene Giesen, Pascal Winkler, Oussama Draissi, Lucas Davi, Ghassan Karame, and Klaus Pohl

Algorithm 6 Integer Bugs Oracle

: T«—0

2: while program is running do

3: if program writes value to src register then
4: if value is bugged then

5 T «— T U {src}

6: else

7: T « T\{src}

8: end if

9: end if
10: if program writes value to lamports field then
1 src « register holding value
12: if src € T then
13: signal VM
14: end if
15: end if

16: end while

Account Data Structure Extractor. The account data structure
extractor extracts positions of public keys in the data structures
of accounts. The extractor checks whether the program writes a
public key to the data field of an account located on the program
input (cf. Figure 1). In Listing 1, the account data structure extractor
extracts the offsets of the wallet.authority and wallet.vault fields
in the wallet_info account. Note that this information is extracted
during account initialization of the wallet_info account. Further,
FuzzDELSoL leverages this information in subsequent fuzzing runs
to populate the data fields of wallet_info-like accounts with existing
public keys that may refer to either attacker-controlled accounts or
program-managed accounts. Regarding the program in Listing 1,
this means that FuzzDELSoL creates a wallet_info account with the
exact keys required to trigger a bug that leads to illegitimate gain
of lamports. Thus, the information persists across the independent
transactions created by the fuzzer. The blockchain emulator uses
this information to deploy accounts on the blockchain which can
trigger potential missing owner check vulnerabilities.

5.4 Transaction Evaluator

After RunDelSol finishes the execution of the transaction, RunDel-
Sol forwards the coverage information to the transaction evaluator.
This includes the PDA seed structures, account data structures, and—
if a bug was detected—the oracle signals, received at runtime. The
coverage information and oracle signals determine the input bytes
of the next fuzzing iteration. If the oracle signaled the eBPF VM,
the transaction evaluator also creates a vulnerability report, that in-
cludes information to reproduce the transaction. In case RunDelSol
extracted new PDA seed structures or account data structures, the
transaction evaluator informs the blockchain emulator to generate
a new ledger snapshot before starting the next fuzzing iteration.

6 EVALUATION

In this section, we evaluate multiple aspects of FuzzDELSoOL on
several datasets of Solana programs. We start by demonstrating
the soundness and completeness precision of FuzzDELSoL with
the Neodyme Breakpoint Workshop dataset [40] in Section 6.1. This

12

dataset is a collection of prevalent Solana program vulnerabilities
and is used in previous work [11]. Furthermore, we compare Fuzz-
DEeLSor with VRust [11], which is currently the only other approach
addressing Solana program security. Second, we test FuzzDELSoL’s
vulnerability discovery effectiveness on real-world programs di-
rectly taken from the Solana mainnet blockchain. We present our
findings and discuss newly discovered bugs in Section 6.2. Lastly,
in Section 6.3, we demonstrate FuzzDELSOL’s performance with
bug bounty programs [29]. We focus on FuzzDELSOL’s test case
throughput and achieved code coverage.

Experimental Setup. We ran our evaluation on an AMD EPYC
7302P CPU with 16 cores clocked at 3 GHz with 256 GB RAM. The
experiments are executed in parallel, keeping all physical CPU cores
fully occupied. Each fuzzing experiment uses a single core and uses
the same initial seed for all fuzzing runs.

6.1 Bug Detection Capabilities

To validate our design, we test FuzzDELSoL with the Neodyme
Breakpoint Workshop dataset [40]. The dataset contains common
Solana vulnerabilities (cf. Section 3.1). This dataset is organized into
5 different levels, where each level consists of a Solana program
with a specific vulnerability. For this experiment, we fuzz each
program with a timeout of 10 minutes. Our results are depicted
in Table 1: FuzzDELSoL is able to find all the bugs in this dataset
within less than 5 seconds. FuzzDELSoL does not report any false
alarms, and is able to precisely detect each vulnerability.

We do not include the Level 3 program, because the program has
an account confusion vulnerability. Detecting account confusions
requires knowledge of the underlying data layout that represents
the expected data structure in memory. This information requires
access to the source code of the program. However, FuzzDELSoL’s
goal is to detect bugs in Solana programs, without relying on source
code, and thus we skip this program.

Comparison with VRust. In contrast to VRust [11], FuzzDEL-
Sor reliably detects bugs in smart contracts, without source code.
Thus, a full comparison of every metric (e.g., performance) with
VRust is impossible. While VRust is able to detect the same bugs
as FuzzDELSoL, it reports false alarms regarding the integer bug
in the Level 2 program. Meanwhile, FuzzDELSoL does not report a
single false alarm in this dataset. In addition, VRust only indicates
a missing key check in the Level 0 program and Level 1 program.
FuzzDELSoL, on the other hand, can trace the vulnerability to a
missing owner check in the Level 0 program and a missing signer
check in the Level I program, resulting in FuzzDELSOL being more
precise compared to VRust.

The Infamous Wormbhole Bug. In February 2022, wrapped Ether
(wETH) with a value of 323 million USD has been stolen from the
Wormbhole program, which implements a bridge between Ethereum
and Solana. The underlying bug is a missing key check in a Solana
program. FuzzDELSoL implements a bug detection oracle that de-
tects this bug. Furthermore, FuzzDELSoL works on a binary-only
level and does not need to understand a program’s semantics to
detect vulnerabilities. However, by design, the original Wormhole
program and the underlying bug requires this level of context infor-
mation. The context is provided by off-chain guardians that check
and verify each transaction. However, we challenged FuzzDELSoL

Fuzz on the Beach: Fuzzing Solana Smart Contracts

Program Vulnerabilities Time to first
e B MOC MSC ACPI MKC Bug (s)

Level @ v v 4
Level 1 v v 2
Level 2 v 2
Level 4 v 1
Wormhole* ‘ v ‘ 37
False Alarms (FuzzDELSOL : VRust) ‘ 0:62 0:0 0:0 0:3 0:107 ‘ N/A

Table 1: Results of our validity measurement. We mark true

bugs with /.

Abbreviation ‘ Full Program ID

3nJ2...5erP | 3nJ2MWbnS3bW8rnWhejAgnLQTyiqoA5fMq5Z27 jRv5erP
30d3...jnsW | 30d3X7QN84FTonkyXbQiT1ydxcT9P1jBcA9mbgD3jnsW
3Vtj...498v | 3VtjHnDuDD1QreJiYNziDsdkeALMT6b2F933AXdL4q8v
3w57...0bPW | 3w57iMhv5Zk5VDuTe5dspm2FzE9zQhscCh9CZpAKobPW
4hPk. ..JP5N | 4hPkNV2WsgPWI1wHHcQebvV7GLyLgdDDLEXx3Pu6LzJP5N
4M2f...jStx | 4M2fancicHbUtMLcMNmbi97YngFoqBcnFk5D31JjjStx
6Lan...szqi | 6LangAFCbucXWSG35ssij4kFDTWJI25BY7d6hbR2szqi
TFWE. ..9p7p | 7FWECVG1YRW7evGR3bXgu47ge8m6Je7BQuvTzMbn9p7p
9a5d...3jZP9 | 9a5dihgNgBhWnjmRDJ8rUy4ihetvgMmjaPk7NGdsjZP9
9tSW...11yy | 9tSWsKwtDL6YseLuhThaGFJk312uu9HGyrnVa5XH11yy
GQ6q. ..1ubK | GQ6qchUsofiK7rzeFg5jbvpHcI7pNnfL4yfwaYrB1u6K
9Wol...849B | 9WoLnfjLKk1EBtkABhe3vcA8CLogsbs3XBoddn8h849B
H5rp...nPSG | H5rpfCD6hLFCPCfxxqjGg94Ggoigqfk7afhqGLulnPSG

Table 2: Program IDs and abbreviations from Table 3.

to detect this bug without any context information. Therefore, we
created an emulation of this program which shares the same vulner-
ability as the Wormhole bug. Here, FuzzDELSoL was able to detect
the bug in less than 40 seconds.

6.2 Discovering New Bugs

To evaluate FuzzDEeLSoL’s effectiveness in discovering unknown
vulnerabilities, we assembled a dataset of 6049 real-world programs
deployed on the Solana mainnet on March 27, 2023. We take the
following steps to ensure that we have the most current and com-
plete collection of Solana programs: First, we query an RPC node of
the Solana network for all programs that belong to the most recent
loader program?. Second, we use the Solana toolchain to dump each
of the programs into an ELF file. VRust [11] is not able to analyze
any of these programs, which emphasizes the gap that FuzzDeLSoL
fills. Given the large data set of contracts, we set the timeout to
5 minutes. In total, FuzzDELSoOL reports 92 potential security vul-
nerabilities in 52 out of the 6049 programs, including 30 missing
signer checks, 12 arbitrary CPIs, and 30 integer bugs. Moreover, 20
reports indicate potential vulnerabilities to lamports theft without
possessing the vulnerabilities listed before.

Confirming vulnerabilities is challenging due to the absence of
source code. Hence, we opted for the following approach. We first
generate instructions based on the payload information contained
in the vulnerability report generated by FuzzDELSoL. Next, we

3At the time of writing, this is BPFLoaderUpgradeable11111111111111111111111.

13

Program ID Vulnerabilities

MSC Integer Bug ACPI Lamport
3nJ2...5erP X
30d3...jnsW v
3Vtj...4q8v v
3w57. . .0bPW v
4hPk...JP5N v
4M2f. .. jStx v v
6Lan...szqi v
7FWE. . .9p7p v
9a5d...jzZP9 X v
9tSW...11yy v N4
GQ6q. . . 1ubK v
9WoL . ..849B v
H5rp...nPSG N4

Table 3: Results of our bug discovery experiment. We mark
true bugs with /' and false alarms with x.

analyze the program logs as well as the disassembled eBPF bytecode
executed at the runtime of the instructions. Afterward, we craft
transactions and observe if the transactions create an erroneous
state in the blockchain. Note that this is a tedious validation process,
but a common issue when developing smart contract fuzzers [24,
42, 47].

At the time of writing, we are able to validate the existence of
14 exploitable bugs, and 2 non-exploitable bugs. Accordingly, Fuzz-
DEeLSoL currently has a false alarm rate of 12.5 %. Table 3 shows the
16 discovered bugs and public key abbreviations of the vulnerable
programs. For the sake of reproducibility, we list the full public keys
in Table 3. In the following, we present five interesting vulnerabili-
ties detected by our approach. To minimize potential damage, we
ensured that none of these programs are actively managing valu-
able assets and that no token accounts exist to which the programs
are assigned as authority.

Responsible Disclosure and Ethical Concerns. Since we con-
duct this experiment on all Solana programs present on the Solana
blockchain, this includes many programs of unknown origin, i.e.,
the authors are anonymous. We tried our best to reach out to the
program authors of this experiment. Due to the lack of contact in-
formation, we could not disclose our findings directly to the authors
of vulnerable Solana programs. Hence, we decided to disclose all
of our findings to the Solana foundation* and offered collaboration
to fix the vulnerabilities.

Finding 1: Integer bugs in 3Vtj...4q8v. This program contains
an integer bug that an attacker can use to steal lamports from a
program-controlled account. The vulnerable instruction requires
four accounts, and subtracts one SOL from the fourth account while
adding it to the first account. However, when reducing and crediting,
the program does not check whether an overflow or underflow of
lamports has occurred. Given that the first account owns too much
SOL and the fourth account owns too little, an attacker could exploit
the integer bug to add lamports to the fourth account and subtract
lamports from the first account.

4https://solana.org/

https://solana.org/

Sven Smolka, Jens-Rene Giesen, Pascal Winkler, Oussama Draissi, Lucas Davi, Ghassan Karame, and Klaus Pohl

Finding 2: Arbitrary CPI in 3w57...0bPW. FuzzDELSoL found
an arbitrary CPI vulnerability. We confirmed the bug by sending a
malicious instruction. The instruction accepts five accounts, where
the last account signs the transaction. The program then invokes
the first account supplied without checking the account.

Finding 3: Arbitrary CPI in 9WoL...849B. FuzzDELSoL detected
an arbitrary CPI vulnerability which grants additional privileges to
the invoked program by signing a PDA in the CPI instruction. The
program 9WoL . . . 849B manages accounts whose public key follows
a PDA seed structure consisting of one seed corresponding to a pass-
able public key (e.g., a wallet account). Similarly to 3w57. . . obPW,
we have also created an instruction for 9WoL . . . 849B to confirm the
bug: The instruction expects 13 accounts, where account 13 is the
program an attacker can invoke arbitrarily, and accounts 3, 8, and 11
are accounts that have the same public key matching the PDA seed
structure of 9WolL . . .849B, i.e., a PDA associated to 9WoL . . . 849B.
The instruction results in 9WoL . . . 849B invoking the arbitrary in-
vocable program and signing the PDA in the CPI instruction. This
leads to the invoked program having additional privileges than
originally included in the transaction. Since the program states
in the program log that it generates an instruction for calling the
function borrow_obligation_liquidity of the Serum Swap program
before performing CPI, we assume that it is supposed to manage
accounts of the Serum Swap program as an authority.

Finding 4: Multiple Vulnerabilities in 4M2f...jStx. Here, Fuzz-
DE1rSor discovered both a missing signer check and an integer bug
in this program. The program expects an instruction containing
four accounts and allows playing a gambling game in which a
user can win or lose. The number of lamports of the second ac-
count multiplied by an odd of 1.9934 determines the total payout
of the game. In case the user wins the game, the program credits
the payout to the first account and subtracts 1) from the fourth
account the lamports worth 0,9334 multiplied by the lamports of
the second account, and 2) from the second account, its total lam-
port balance. When crediting and subtracting the lamports, the
program does not check whether overflows or underflows have
occurred. Hence, an attacker can exploit the integer bug to credit
the fourth account with lamports instead of subtracting lamports
in the case that the user won the game. In addition, the program
does not check which account signed the transaction. Thus, an at-
tacker can submit arbitrary program-controlled accounts and start
gambling without the program ever checking whether the attacker
is authorized to gamble with the submitted accounts. We note that
the programs 6Lan. . .szqi and 9tSW. . .11yy also allow gambling
similar to 4M2f. . . jStx, and also do not verify that gambling with
the submitted accounts is authorized.

Finding 5: Integer Bug in 9a5d...jZP9. Besides suffering from
an integer bug, this program also enables an attacker to trans-
fer lamports from a program-controlled account to an arbitrary,
attacker-controlled account. The program expects two accounts and
subtracts all lamports of the first account and credits them to the
second account without checking for overflow or underflow of lam-
ports. Thus, the integer bug is not exploitable, as only the lamports
field of the second account can overflow but not of the first ac-
count. However, the program allows passing an arbitrary program-
controlled account as a first account, transferring its lamports to

14

the second account. In general, such a behavior is undesirable, as it
allows an attacker to drain funds of all accounts belonging to this
program. This is a clear indication of an access control bug: the
intended program behavior would surely only allow an authorized
account to transfer lamports from program-controlled accounts to
carefully selected accounts. To address this bug, the program must
verify that the authorized account is included in the instruction
and that it signed the transaction to prevent exploitation.

6.3 Performance Analysis

Given that FuzzDELSoL is the first fuzzer for Solana programs, there
exists no qualitative baseline or dataset to measure common fuzzing
metrics like coverage and execution speed. Thus, we also aim at
establishing a baseline allowing the community to compare future
fuzzers with FuzzDELSoL.

We assembled a dataset from the Immunefi bug bounty list [29].
This dataset includes a diverse set of Solana programs used in
production and offers a higher grade of code quality and complexity,
compared to the average mainnet programs. Hence, we assess the
execution speed and code coverage of FuzzDELSoL based on this
dataset. For this experiment, we use a representative timeout of 24
hours and collect metrics on execution speed and code coverage.

Binary-only Approach Baseline. Unlike the experiments in Sec-
tion 6.2, source code for the bug-bounty dataset is available. The
performance and coverage of FuzzDELSoL could potentially be op-
timized by analyzing the source code to extract context information
about authority or configuration accounts, solving assertions, and
uncovering new code paths. However, we refrain from doing so
because (1) we aim to provide representative measurements and
(2) for the large majority of Solana programs no source code is
available.

Challenge: Measuring Code Complexity of Solana programs.
There is currently no tool support to measure the complexity of
Solana smart contracts. Previous work, like VRust [11], relied on
lines of code (LOC) to estimate the complexity of a program. How-
ever, this metric is insufficient since it includes unreachable code.
Furthermore, FuzzDELSOL’s coverage works on traversed edges in a
program’s control flow graph (CFG) and is therefore incomparable
to LOC. To tackle this challenge, we developed a static analysis
approach which measures the complexity based on traversing the
eBPF code and counting every control flow instruction that eBPF
supports. We use this number to over-approximate the number of
edges in the CFG.

Note that this ensures that we include every eBPF JMP, CALL,
and RET instruction. This includes any edges that are by design not
reachable, since these may represent dead code or Solana-specific
error handling routines. For example, one routine is the handling
of an incorrect serialized program id at the program input, which
is never executed due to the valid instructions generated by the
transaction generator.

We argue that this is sufficient to estimate the complexity of
Solana programs because it provides a better insight into the com-
plexity of a program than LOC. We analyze the target contracts
with our CFG-based approach, and compare the results with the
covered code paths by FuzzDELSoOL.

Fuzz on the Beach: Fuzzing Solana Smart Contracts

Program Bounty #CFG Covered Mean

Name %) Edges Edges Tx/s
Drift Protocol 500000 67 552 2336 5211
Jet Airspace 100 000 7559 1398 1951
Jet Control 100 000 9506 2716 1500
x Jet Fixed Term 100 000 27 246 2375 1256
Jet Margin 100 000 18 216 1332 1771
Jet Margin Swap 100 000 12843 2626 1332
Jet Metadata 100 000 5164 1310 786
v Jet Test Service 100 000 17972 2706 2894
Lido 2000000 8731 1305 274
Marinade Finance 250000 22424 2648 1023
Port Finance VRL 500000 10704 1643 1066
Pyth 500 000 4438 2984 576
Solend Program 1000000 10818 1681 1129
Sundial 500000 16792 3171 1896
Token Faucet 500000 6500 1299 1217
Whirlpool 500000 20593 2726 1229
n=16 \ | X =16691 X =2141 | ¥ =1569

Table 4: Results of our performance experiment.

Coverage. Table 4 shows the results of this experiment. First, we
observe that the estimated complexity of the dataset varies widely,
ranging from 4438 edges in the control flow graph to 67 552. This
confirms that the size and complexity of the programs in the dataset
is diverse. The number of covered edges by FuzzDELSoL ranges
from 1299 to 3171. This provides two important insights: First, Fuzz-
DELSoL is able to consistently generate meaningful transactions
to uncover new program paths. Second, the binary-only analysis
approach leads to a number of programs, where the number of cov-
ered edges does not increase over time. By further investigation, we
learned that certain barriers or assertions prevent FuzzDELSoL from
reaching deeper nested code. Hence, there is room for optimization
for future work. For example, extending FuzzDELSoL with symbolic
execution [28, 38], using Redqueen [3, 15], or, as mentioned before,
incorporating the available source code (Section 6.2), to overcome
these roadblocks.

On Fuzzing Throughput. Another interesting insight is that Fuzz-
DELSOL is capable to generate on average more than 1569 transac-
tions per second for every Solana program. Furthermore, FuzzDEL-
SoL has an average of over 1000 transactions per second for 13 out
of 16 programs. However, even in these three outliers, FuzzDEL-
Sov is able to generate at minimum 274 transactions per second.
We understand that FuzzDELSoL regularly extracts new runtime
semantics for these programs, causing the blockchain emulator to
initiate updating the ledger snapshot as well as deriving new PDAs.
We measured that initializing the snapshot takes about 60ms, which
results in fewer transactions per second being generated from the
input bytes.

Vulnerability Reports. FuzzDEeLSoL reported 2 bugs in the bug
dataset both belonging to the Jet Protocol. We investigate the bugs
while also consulting the source code of each program. As we will
see, one of the bugs is a false positive while we believe the other one
is a true positive which is currently under review by the developers.

Finding 6: False Alarm in Jet Fixed Term. FuzzDELSoL reports
a missing signer check in the Jet Fixed Term program, which is a

15

program for fixed-term lending and borrowing. The missing signer
check exists in a function that cancels orders, which requires two
accounts as its input. While the first account strictly belongs to
a user of this program, the second account is a public order book
containing the orders. By signing the transaction, a user is granted
authority to remove an order from the marketplace. As a reminder,
the oracle of FuzzDELSoL (c.f. Section 5.3.3) considers transitive
signer checks if accounts are linked in some way;, i.e., an account a
may refer to another account b if a’s data field contains the public
key of b. Additionally, the public key stored in a must be compared
to the public key of b. However, in this particular case, the order
book’s account data may contain the public key of the authority
account, but the public key of the authority account—which signed
the transaction—is never compared to it. As a result, FuzzDELSoL
reports a missing signer check for this program. However, we con-
sider this a false alarm, as the bug is not exploitable, because the
program checks whether the user account owns the canceled order.

Finding 7: True Positive Bug in Jet Test Service. FuzzDEL-
SoL reports an arbitrary cross-program invocation for the Jet
Test Service program from the Jet Protocol. The arbitrary cross-
program invocation exists in a function that accepts an arbitrary
amount of accounts as long as a minimum of two accounts is pro-
vided: the first account is a potentially uninitialized account, and the
second account can be any other program of the Solana blockchain.

The function then checks whether the first account provided
is initialized on the Solana blockchain, and if this is not the case,
the function invokes the second program using CPI. Since there
are no restrictions on the choice of account to invoke, we consider
this a true bug in the Jet Test Service program. This bug can
be overcome by having the Jet Test Service program verify
the public key of the second account before invoking the second
account using CPL

We are now in contact with the vendor to fix these issues and
confirm the bugs. In conclusion, we can confirm the ability to fuzz
complex targets with high transaction throughput and coverage.

7 RELATED WORK

In this section, we survey additional recent research work in the
area of detecting bugs in smart contracts and fuzzing.

Solana Bug Detection Approaches. To the best of our knowledge,
VRust [11] is currently the only static analysis tool for Solana pro-
grams. VRust finds missing owner, signer, and key checks, integer,
account confusion, cross program invocation, numerical precision
error, and bump seed bugs. It detects these bugs by analyzing source
code and checking for vulnerable patterns. However, VRust relies
on the availability of source code which is unfortunately not avail-
able for the majority of Solana programs. Moreover, in contrast to
FuzzDELSoL, VRust suffers from a high false alarm rate of 89.58%.
Hence, due to the overwhelming number of alarms, it is very likely
that developers will miss the true positives.

Library Fuzzing. Fuzzing [6, 7, 15, 16, 33, 53] is a popular tech-
nique for evaluating the security of software and hardware com-
ponents [14, 36] and finding critical vulnerabilities. Different ap-
proaches are needed to fuzz complex targets that require well-
structured data types [5, 22, 25, 27, 60]. For example, Fuzzil [25]
is a grammar-based fuzzer for JavaScript engines. Recent research

Sven Smolka, Jens-Rene Giesen, Pascal Winkler, Oussama Draissi, Lucas Davi, Ghassan Karame, and Klaus Pohl

has focused on fuzzing targets on different platforms [10, 45, 51].
Fuzzware [51], SGXFuzz [10], and USBFuzz [45] fuzz their targets
in an emulated environment. FuzzDELSoL follows a similar fuzzing
strategy as it generates valid Solana transactions from randomly
mutated input bytes and executes them in an emulated Solana
blockchain.

Taint propagation [3, 9, 26, 34, 46, 60] is widely used by fuzzers
to identify which part of an input should be changed. Dowser [26]
applies taints by identifying the input data bytes used in security-
relevant operations. Vuzzer [46], Redqueen [3], and PATA [34]
concentrate on guiding the fuzzer to pass barriers, e.g., passing a
magic value validation. A similar technique could be incorporated
in FuzzDELSoL to further improve the performance. In this paper,
we use Libafl [16] as a fuzzer. Libafl is a high-performance fuzzer
with state-of-the-art fuzzing techniques, e.g., including a persistent
mode which avoids the bottleneck of forking a new process for
each fuzzing iteration. Furthermore, the extensible design of Libafl
enables us to integrate FuzzDELSoL’s coverage information com-
ponent into the fuzzing loop. Therefore, Libafl is the best available
fuzzer for this work.

Smart Contract Fuzzing. Fuzzing has also been applied to Eth-
ereum smart contracts [12, 30, 47, 55, 59]. Harvey [59] is a coverage-
guided fuzzer for smart contracts. It uses program instrumentation
to create a feedback mechanism for input prediction. In addition to
that, it creates transaction sequences to detect smart contract bugs,
like reentrancy and integer bugs. ConFuzzius [55] is a hybrid fuzzer.
It leverages data dependency analysis and symbolic taint analysis
to solve input constraints with the goal of reaching deeper nested
paths, thereby increasing coverage. EFCF [47] is a coverage-guided
binary-only fuzzer that tightly integrates with well-known fuzzing
frameworks for native and legacy programs. EFCF transpiles the
EVM bytecode of a smart contract to native C++ programs and uses
state-of-the-art fuzzing optimization techniques [15].

However, all these smart contract fuzzing approaches only cover
Ethereum smart contracts. Ethereum and Solana vulnerabilities
are fundamentally different and require different bug detection
mechanisms. In addition, the aforementioned approaches benefit
from Ethereum’s more advanced security tool landscape, which
Solana lacks due to its immaturity, and transferring these techniques
require extensive effort. As a result, these techniques are neither
applicable to detect Solana-specific vulnerabilities, nor do they
support Solana programs at all.

Smart Contract Analysis. In addition to fuzzing, other approaches
to detect bugs and securing smart have been proposed [4, 38, 48,
49, 52, 54, 56]. Securify [56] deploys formal verification to detect
vulnerabilities in Ethereum smart contracts. It discovers a variety
of vulnerabilities, including reentrancy, race conditions, and times-
tamp dependency. Oyente [4] and Manticore [38] are symbolic
execution tools which analyze contracts to discover reentrancy
and integer overflow issues. Sereum [49] deploys dynamic analysis
to detect a variety of reentrancy attack patterns. EVMPatch [48]
instruments the bytecode of smart contracts to enable instant patch-
ing of smart contracts. Osiris [54] introduces a symbolic execution
approach for detecting integer-related bugs in Ethereum smart con-
tracts. While these approaches are successful in detecting bugs in
Ethereum smart contracts, they are heavily reliant on Solidity or

16

EVM bytecode, which are closely tied to the Ethereum ecosystem.
Furthermore, many works focus on bug classes that do not exist
in Solana, like reentrancy. To conclude, these approaches cannot
analyze Solana programs, and also lack detection capabilities for
Solana-specific bugs.

8 CONCLUSION

In this paper, we propose FuzzDELSoL, the first coverage-guided
fuzzer for Solana programs. FuzzDELSoL implements five oracles to
detect common vulnerabilities in Solana programs, namely missing
signer checks, missing owner checks, missing key checks, arbitrary
CPIs, and integer bugs. Moreover, FuzzDELSoL also implements a
generic oracle based on lamport gains. To evaluate the capability
of FuzzDELSoL to detect these vulnerabilities, we evaluated Fuzz-
DELSoL against known vulnerabilities [40], including the infamous
Wormbhole bug [23], and compared its performance with VRust [11].
The evaluation has shown that FuzzDELSoL is able to detect the
above-mentioned Solana program vulnerabilities and outperforms
the state-of-the-art Solana bug detection tool. We also performed
an extensive evaluation in which we fuzzed 6049 programs from
the Solana mainnet blockchain. We showed that FuzzDELSoL is the
only existing approach to effectively and precisely detect bugs in
Solana smart contracts, without relying on source code. FuzzDEL-
SoL reports 92 bugs in 52 programs, 14 of which we have verified
as exploitable bugs at the time of writing the paper. Moreover, we
evaluated FuzzDELSoL’s performance against a set of bug bounty
programs consisting of complex and productively used Solana pro-
grams. The evaluation has shown that FuzzDELSoL is capable to
fuzz complex programs with up to 5211 transactions per second.
Our large-scale evaluation is the most extensive security analysis
of the Solana blockchain known to date.

ACKNOWLEDGMENT

Part of this research was conducted within a student project group
at the University of Duisburg-Essen. We thank the project partici-
pants, Michael Mboni and Yelle Lieder, for their contribution. This
work has been partially funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation)—SFB 1119 (CROSSING)
236615297 within project T1, EXC 2092 (CASA) 39078197—and the
European Union (ERC, CONSEC, No. 101042266). The views and
opinions expressed are those of the authors only and do not neces-
sarily reflect those of the European Union or the European Research
Council Executive Agency. Neither the European Union nor the
granting authority can be held responsible for them.

REFERENCES

[1] Vector 35. Binary Ninja. 2016. URL: https://binary.ninja/.

[2] National Security Agency. Ghidra. 2019. URL: https://ghidra-sre.org/.

[3] Aschermann et al. “‘REDQUEEN: Fuzzing with Input-to-State Correspondence”.
In: NDSS Symp. (2019).

[4] Syed Badruddoja et al. “Making Smart Contracts Smarter”. In: 2021 IEEE In-
ternational Conference on Blockchain and Cryptocurrency (ICBC). May 2021,
pp. 1-3.

[5] Osbert Bastani et al. “Synthesizing program input grammars”. In: SIGPLAN
Not. 52.6 (June 2017), pp. 95-110.

[6] Marcel Bshme, Van-Thuan Pham, and Abhik Roychoudhury. “Coverage-based
Greybox Fuzzing as Markov Chain”. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. CCS '16. Vienna, Austria:
Association for Computing Machinery, Oct. 2016, pp. 1032-1043.

https://binary.ninja/
https://ghidra-sre.org/

Fuzz on the Beach: Fuzzing Solana Smart Contracts

(71

(9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Marcel Bshme et al. “Directed Greybox Fuzzing”. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security. CCS ’17.
Dallas, Texas, USA: Association for Computing Machinery, Oct. 2017, pp. 2329—
2344.

Budweiser. Budverse NFT. https://nft.budweiser.com/. Accessed: 2023-4-22.
2023.

Peng Chen and Hao Chen. “Angora: Efficient Fuzzing by Principled Search”.
In: 2018 IEEE Symposium on Security and Privacy (SP). May 2018, pp. 711-725.
Tobias Cloosters et al. “SGXFuzz: Efficiently Synthesizing Nested Structures
for SGX Enclave Fuzzing”. In: USENIX Security. Aug. 2022.

Siwei Cui et al. “VRust: Automated Vulnerability Detection for Solana Smart
Contracts”. In: Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security. 2022.

Mengjie Ding et al. “HFContractFuzzer: Fuzzing Hyperledger Fabric Smart
Contracts for Vulnerability Detection”. In: Evaluation and Assessment in Soft-
ware Engineering. EASE 2021. Trondheim, Norway: Association for Computing
Machinery, June 2021, pp. 321-328.

William Enck et al. “A study of android application security.” In: USENIX
security symposium. Vol. 2. 2. 2011.

Bo Feng, Alejandro Mera, and Long Lu. P 2IM: Scalable and hardware-independent
firmware testing via automatic peripheral interface modeling. https://www.
usenix.org/system/files/sec20-feng.pdf. Accessed: 2023-2-7. 2020.

Andrea Fioraldi et al. “AFL++: Combining Incremental Steps of Fuzzing Re-
search”. In: 14th USENIX Workshop on Offensive Technologies (WOOT 20). 2020.
Andrea Fioraldi et al. “LibAFL: A Framework to Build Modular and Reusable
Fuzzers”. In: Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security. CCS ’22. 2022.

Ethereum Foundation. Ethereum. https://ethereum.org/. Accessed: 2023-4-12.
2023.

Solana Foundation. Solana. https://solana.com/. Accessed: 2023-4-12. 2023.
Solana Foundation. Solana Documentaion. en. https://docs.solana.com/. Ac-
cessed: 2023-4-16. 2023.

Solana Foundation. solana_rbpf. en. https://github.com/solana-labs/rbpf.
Accessed: 2023-4-16. 2023.

Joel Frank, Cornelius Aschermann, and Thorsten Holz. “ETHBMC: A Bounded
Model Checker for Smart Contracts”. In: 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, Aug. 2020, pp. 2757-2774. ISBN:
978-1-939133-17-5. URL: https://www.usenix.org/conference/usenixsecurity20/
presentation/frank.

Patrice Godefroid, Adam Kiezun, and Michael Y Levin. “Grammar-based white-
box fuzzing”. In: Proceedings of the 29th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. PLDI *08. Tucson, AZ, USA:
Association for Computing Machinery, June 2008, pp. 206-215.

Dan Goodin. How $323M in crypto was stolen from a blockchain bridge called
Wormhole. en. https://arstechnica.com/information-technology/2022/02/how-
323- million - in- crypto - was - stolen - from - a - blockchain - bridge - called -
wormhole/. Accessed: 2023-4-12. Feb. 2022.

Gustavo Grieco et al. “Echidna: effective, usable, and fast fuzzing for smart
contracts”. In: Proceedings of the 29th ACM SIGSOFT International Symposium
on Software Testing and Analysis. ISSTA 2020. Virtual Event, USA: Association
for Computing Machinery, July 2020, pp. 557-560.

Samuel Grof. “Fuzzil: Coverage guided fuzzing for javascript engines”. In:
Department of Informatics, Karlsruhe Institute of Technology (2018).

Istvan Haller et al. “Dowsing for overflows: a guided fuzzer to find buffer
boundary violations”. In: USENIX Security Symposium. 2013, pp. 49-64.
Hyungseok Han, Donghyeon Oh, and Sang Kil Cha. “CodeAlchemist: Semantics-
aware code generation to find vulnerabilities in JavaScript engines”. In: Pro-
ceedings 2019 Network and Distributed System Security Symposium. San Diego,
CA: Internet Society, 2019.

Jingxuan He et al. “Learning to Fuzz from Symbolic Execution with Application
to Smart Contracts”. In: Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. CCS. ACM, 2019. por: 10.1145/3319535.
3363230.

IMMUNI SOFTWARE PTE. LTD. Immunefi Bug Bounties. https://immunefi.com/.
Accessed: 2023-3-30. Dec. 2020.

Bo Jiang, Ye Liu, and W. K. Chan. “ContractFuzzer: fuzzing smart contracts
for vulnerability detection”. In: Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering. Ed. by Marianne Huchard,
Christian Kistner, and Gordon Fraser. ASE. ACM, 2018. por: 10.1145/3238147.
3238177.

Lacoste. Lacoste NFT. https://www.lacoste.com/en/undw3.html. Accessed:
2023-4-22. 2023.

Martin Lee. Solana: Scalability through speed. en. https://www.nansen.ai/
research/solana-scalability-through-speed. Accessed: 2023-4-12. Apr. 2022.
Hongliang Liang et al. “Fuzzing: State of the Art”. In: IEEE Trans. Reliab. 67.3
(Sept. 2018), pp. 1199-1218.

Jie Liang et al. “PATA: Fuzzing with Path Aware Taint Analysis”. In: 2022 IEEE
Symposium on Security and Privacy (SP). May 2022, pp. 1-17.

17

(35]

[36]

[47]
(48]

[49]

[50]

(53]

[54]

[57]

[60]

[61]

OtterSec LLC. BN-eBPF-Solana. Accessed: 2023-8-9. 2022. URL: https://github.
com/otter-sec/bn-ebpf-solana.

Dominik Maier, Lukas Seidel, and Shinjo Park. “BaseSAFE: baseband sanitized
fuzzing through emulation”. In: Proceedings of the 13th ACM Conference on
Security and Privacy in Wireless and Mobile Networks. WiSec ’20. Linz, Austria:
Association for Computing Machinery, July 2020, pp. 122-132.

Niko Matsakis. Rust RFC 1211: MIR. en. https://rust-lang.github.io/rfcs/1211-
mirhtml. Accessed: 2023-8-9. 2015.

Mark Mossberg et al. “Manticore: A User-Friendly Symbolic Execution Frame-
work for Binaries and Smart Contracts”. In: 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). Nov. 2019, pp. 1186-1189.
NBA. NBA NFT. https://nbatopshot.com/. Accessed: 2023-4-20. 2023.
Neodyme. Introduction - Solana Security Workshop. en. https://workshop.
neodyme.io/. Accessed: 2023-4-16. 2021.

Neodyme. Solana security.txt. en. https://github.com/neodyme-labs/solana-
security-txt. Accessed: 2023-8-9. 2022.

Tai D Nguyen et al. “sFuzz: an efficient adaptive fuzzer for solidity smart
contracts”. In: Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering. ICSE ’20. Seoul, South Korea: Association for Computing
Machinery, Oct. 2020, pp. 778-788.

Nike. Nike NFT. https://www.swoosh.nike/. Accessed: 2023-4-22. 2023.
Richard Patel. ghidra-eBPF. Accessed: 2023-8-9. 2022. URL: https://github.com/
terorie/ghidra-ebpf.

Hui Peng and Mathias Payer. USBFuzz: A framework for fuzzing USB drivers
by device emulation. https://www.usenix.org/system/files/sec20-peng_0.pdf.
Accessed: 2023-2-7. 2020.

Sanjay Rawat et al. “VUzzer: Application-aware evolutionary fuzzing”. In:
Proceedings 2017 Network and Distributed System Security Symposium. Vol. 17.
San Diego, CA: Internet Society, 2017, pp. 1-14.

Michael Rodler et al. EF/CF: High Performance Smart Contract Fuzzing for Exploit
Generation. 2023. arXiv: 2304.06341 [cs.CR1].

Michael Rodler et al. “EVMPatch: Timely and Automated Patching of Ethereum
Smart Contracts”. In: USENIX Security Symposium. 2021, pp. 1289-1306.
Michael Rodler et al. “Sereum: Protecting existing smart contracts against re-
entrancy attacks”. In: Proceedings 2019 Network and Distributed System Security
Symposium. San Diego, CA: Internet Society, 2019.

Sara Rouhani and Ralph Deters. “Performance analysis of ethereum trans-
actions in private blockchain”. In: 2017 8th IEEE International Conference on
Software Engineering and Service Science (ICSESS). Nov. 2017, pp. 70-74.
Tobias Scharnowski et al. “Fuzzware: Using precise {MMIO} modeling for
effective firmware fuzzing”. In: 31st USENIX Security Symposium (USENIX
Security 22). 2022, pp. 1239-1256.

Clara Schneidewind et al. “eThor: Practical and Provably Sound Static Anal-
ysis of Ethereum Smart Contracts”. In: Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security. CCS ’20. New York, NY,
USA: Association for Computing Machinery, Oct. 2020, pp. 621-640.

Sergej Schumilo et al. “Nyx: Greybox hypervisor fuzzing using fast snapshots
and affine types”. In: 30th USENIX Security Symposium (USENIX Security 21).
2021, pp. 25972614

Christof Ferreira Torres, Julian Schiitte, and Radu State. “Osiris: Hunting for
Integer Bugs in Ethereum Smart Contracts”. In: Proceedings of the 34th Annual
Computer Security Applications Conference. ACSAC ’18. San Juan, PR, USA:
Association for Computing Machinery, Dec. 2018, pp. 664-676.

Christof Ferreira Torres et al. “ConFuzzius: A Data Dependency-Aware Hybrid
Fuzzer for Smart Contracts”. In: IEEE European Symposium on Security and
Privacy. EuroS&P. IEEE, 2021. por: 10.1109/EuroSP51992.2021.00018.

Petar Tsankov et al. “Securify: Practical Security Analysis of Smart Contracts”.
In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security. CCS *18. Toronto, Canada: Association for Computing
Machinery, Oct. 2018, pp. 67-82.

Molly White. Mango Markets exploiter arrested despite claiming all his actions
were legal. https://web3isgoinggreat.com/?blockchain=solana&id=mango-
markets- exploiter - arrested - despite- claiming - all - his- actions- were- legal.
Accessed: 2023-4-12. Dec. 2022.

Molly White. Oracle attack on Solend costs the project $1.26 million. https :
//web3isgoinggreat.com/?blockchain=solana&id=oracle-attack-on-solend-
costs-the-project-1-26-million. Accessed: 2023-4-12. Nov. 2022.

Valentin Wiistholz and Maria Christakis. “Harvey: a greybox fuzzer for smart
contracts”. In: Proceedings of the 28th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering. ESEC/FSE 2020. ACM, Nov. 2020. por: 10.1145/3368089.3417064.
Wei You et al. “ProFuzzer: On-the-fly Input Type Probing for Better Zero-Day
Vulnerability Discovery”. In: 2019 IEEE Symposium on Security and Privacy (SP).
ieeexplore.ieee.org, May 2019, pp. 769-786.

Michal Zalewski. American Fuzzy Lop. URL: https://lcamtuf.coredump.cx/afl/.

https://nft.budweiser.com/
https://www.usenix.org/system/files/sec20-feng.pdf
https://www.usenix.org/system/files/sec20-feng.pdf
https://ethereum.org/
https://solana.com/
https://docs.solana.com/
https://github.com/solana-labs/rbpf
https://www.usenix.org/conference/usenixsecurity20/presentation/frank
https://www.usenix.org/conference/usenixsecurity20/presentation/frank
https://arstechnica.com/information-technology/2022/02/how-323-million-in-crypto-was-stolen-from-a-blockchain-bridge-called-wormhole/
https://arstechnica.com/information-technology/2022/02/how-323-million-in-crypto-was-stolen-from-a-blockchain-bridge-called-wormhole/
https://arstechnica.com/information-technology/2022/02/how-323-million-in-crypto-was-stolen-from-a-blockchain-bridge-called-wormhole/
https://doi.org/10.1145/3319535.3363230
https://doi.org/10.1145/3319535.3363230
https://immunefi.com/
https://doi.org/10.1145/3238147.3238177
https://doi.org/10.1145/3238147.3238177
https://www.lacoste.com/en/undw3.html
https://www.nansen.ai/research/solana-scalability-through-speed
https://www.nansen.ai/research/solana-scalability-through-speed
https://github.com/otter-sec/bn-ebpf-solana
https://github.com/otter-sec/bn-ebpf-solana
https://rust-lang.github.io/rfcs/1211-mir.html
https://rust-lang.github.io/rfcs/1211-mir.html
https://nbatopshot.com/
https://workshop.neodyme.io/
https://workshop.neodyme.io/
https://github.com/neodyme-labs/solana-security-txt
https://github.com/neodyme-labs/solana-security-txt
https://www.swoosh.nike/
https://github.com/terorie/ghidra-ebpf
https://github.com/terorie/ghidra-ebpf
https://www.usenix.org/system/files/sec20-peng_0.pdf
https://arxiv.org/abs/2304.06341
https://doi.org/10.1109/EuroSP51992.2021.00018
https://web3isgoinggreat.com/?blockchain=solana&id=mango-markets-exploiter-arrested-despite-claiming-all-his-actions-were-legal
https://web3isgoinggreat.com/?blockchain=solana&id=mango-markets-exploiter-arrested-despite-claiming-all-his-actions-were-legal
https://web3isgoinggreat.com/?blockchain=solana&id=oracle-attack-on-solend-costs-the-project-1-26-million
https://web3isgoinggreat.com/?blockchain=solana&id=oracle-attack-on-solend-costs-the-project-1-26-million
https://web3isgoinggreat.com/?blockchain=solana&id=oracle-attack-on-solend-costs-the-project-1-26-million
https://doi.org/10.1145/3368089.3417064
https://lcamtuf.coredump.cx/afl/

	Abstract
	1 Introduction
	2 Solana's Execution Environment
	3 Solana Program Security and Challenges
	3.1 Solana Program Vulnerabilities
	3.2 Solana Security Analysis
	3.3 Challenges of Fuzzing Solana Programs

	4 Overview of FuzzDelSol
	5 FuzzDelSol Internals
	5.1 Blockchain Emulator
	5.2 Transaction Generator
	5.3 RunDelSol
	5.4 Transaction Evaluator

	6 Evaluation
	6.1 Bug Detection Capabilities
	6.2 Discovering New Bugs
	6.3 Performance Analysis

	7 Related Work
	8 Conclusion

