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ABSTRACT
A multi-message multi-recipient PKE (mmPKE) encrypts a batch of

messages, in one go, to a corresponding set of independently cho-

sen receiver public keys. The resulting “multi-recipient ciphertext”

can be then be reduced (by any 3rd party) to a shorter, receiver

specific, “invidual ciphertext”. Finally, to recover the 𝑖-th message

in the batch from their indvidual ciphertext the 𝑖-th receiver only

needs their own decryption key. A special case of mmPKE is multi-

recipient PKE (mPKE) where all receivers are sent the samemessage.

By treating (m)mPKE and their KEM counterparts as a stand-alone

primitives we allow for more efficient constructions than trivially

composing individual PKE/KEM instances. This is especially valu-

able in the post-quantum setting, where PKE/KEM ciphertexts and

public keys tend to be far larger than their classic counterparts.

In this work we describe a collection of new results around

mKEMs and (m)mPKEs. We provide both classic and post-quantum

proofs for all results. Our results are geared towards practical con-

structions and applications (for example in the domain of PQ-secure

group messaging).

Concretely, our results include a new non-adaptive to adaptive

compiler for CPA-secure mKEMs resulting in public keys roughly

half the size of the previous state-of-the-art [Hashimoto et.al.,

CCS’21]. We also prove their FO transform for mKEMs to be secure

in the presence of adaptive corruptions in the quantum random

oracle model. Further, we provide the first mKEM combiner. Fi-

nally, we give two mmPKE constructions. The first is an arbitrary

message-length black-box construction from an mKEM (e.g. one

produced by combining a PQ with a classic mKEM). The second

is optimized for short messages (which is suited for several recent

mmPKE applications) and achieves hybrid PQ/classic security more

directly. When encrypting 𝑛 short messages at 256-bits of security

the mmPKE ciphertext are 144𝑛 bytes shorter than the generic con-

struction. Finally, we provide an optimized implementation of the

(CCA secure) mKEM construction based on the NIST PQC winner

Kyber and report benchmarks showing a significant speedup for
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1 INTRODUCTION
Public Key Encryption (PKE) and Key Encapsulation Mechanisms

(KEM) are some of the most important and widely used crypto-

graphic primitives. The advent of quantum computers has moti-

vated a new generation of constructions with conjectured security

against quantum adversaries. However, these come at a cost rela-

tive to their classic counterparts, most often in the form of greatly

increased public key and ciphertext sizes.

ManyMessages, Many Receivers. Auseful collection of generaliza-

tions of PKE and KEM explicitly support the batching of operations.

For example, a multi-message multi-recipient PKE (mmPKE) gener-

alizes PKE to allow sending a vector of messages m = (𝑚1, . . . ,𝑚𝑛)
to a matching vector of recipients R := (𝑅1, . . . , 𝑅𝑛) each with their

own independently generated key pair (pk𝑖 , sk𝑖 ). First introduced
in [26], an mmPKE’s encryption algorithm takes as input m and a

public-keys vector {pk𝑖 } to output a single “multi-recipient cipher-

text” 𝐶 . To reduce ciphertext size for a receiver 𝑅𝑖 , “multi-recipient

ciphertext”𝐶 can later be converted into (presumably much shorter)

receiver specific “individual ciphertexts” 𝑐𝑖 destined for 𝑅𝑖 . This so

called Extract operation requires and reveals no secrets and so can

be performed by any 3rd party; e.g. a server relaying traffic between

parties. Finally, 𝑅𝑖 can retrieve𝑚𝑖 on their own by feeding their indi-

vidual ciphertext 𝑐𝑖 and secret key sk𝑖 to the decryption algorithm.

However, roughly speaking,𝑚𝑖 should stay secret given the full

multi-recipient ciphertext and all other decryption keys. A special
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case of mmPKE is multi-recipient PKE (mPKE) which requires that

all recipients are sent the same message: ∀𝑖, 𝑗 𝑚𝑖 =𝑚 𝑗 . The KEM

analogue of mmPKE/mPKE are (multi-message) multi-recipient KEM
(mmKEM/mKEM). Rather than transmitting a predetermined vector

of messages𝑚, an mKEM instead transmits a random symmetric

key 𝑘 to the recipients.

Efficiency and Applications. In principle, constructing such gen-

eralizations of PKE/KEM is not difficult. For example, a trivial con-

struction of an mmKEM is to simply use a separate instance of a

standard KEM for each receiver to transmit key 𝑘𝑖 to receiver 𝑅𝑖 .

To extended this to an mKEM, choose a fresh key 𝑘 and use an

AEAD to encrypt 𝑘 under each 𝑘𝑖 . Similarly, a trivial construction

of an mmPKE is to use a separate instance of PKE for each receiver.

However, by treating these extensions of PKE/KEM as primitives

in their own right we open the door to more efficient constructions.

Already in the classic setting the mmPKEs of [8, 9, 26, 32] reduce

computation time and ciphertext size by essentially half over the

trivial construction. But it is in the post-quantum setting where

such savings take on the greatest importance as we discuss below.

Indeed, switching to extractable primitives (that is, (m)mKEM

or (m)mPKE) has played a central role in reducing (at times, quite

dramatically) the communication cost of some recent protocols. No-

tably, [25] proposed several PQ mKEMs to reduce the complexity

of (a PQ version of) MLS – the upcoming Secure Group Messaging

standard of the IETF. Compared to a trivial mKEM construction

from Kyber, their Kyber-based construction reduces ciphertext size

by 90% (asymptotically in the number of recipients). Meanwhile,

mPKE plays a central role in the recent Secure Group Messaging

protocol of [22]. Their Kyber-based mPKE reduces ciphertext size

by 50%, albeit at the cost of doubling public-key sizes. A generic

mmPKE scheme is used in the recent Continuous Group Key Agree-

ment protocol of [3]. However, no PQ mmPKE constructions are

known to date (beyond trivial ones described above).

Security. Each of the above protocols defends against active ad-

versaries. Thus, they all require strong non-malleability proper-

ties from their mKEM/mmPKE. While [22] requires full fledged

CCA security, [3] gets away with a relaxed variant known as re-
playable CCA (RCCA) security [12]. Intuitively, CCA guarantees

non-malleability of the challenge ciphertext, while RCCA “only”

guarantees that its semantics are non-malleable. More formally,

RCCA ensures that upon being given a challenge ciphertext that en-

crypts a message𝑚 the adversary cannot produce a new ciphertext

decrypting to a message distinct from yet still meaningfully related

to𝑚 (although, unlike for CCA, it may be possible to produce fresh

encryptions of𝑚).

Along with non-malleability, all the above applications need

mKEM/mmPKE schemes to remain secure in the face of adaptive

corruptions. In other words, being given a set of candidate receiver

public keys, the adversary may request the secret keys of an arbi-

trary subset of their choosing. Security should then hold for the

remaining uncorrupted key pairs. Adaptive security is often difficult

to prove (despite the absence of any known attacks). For example,

the PQ mKEM of [25] enjoys no such security proof. To date, the

only extractable primitives with provable adaptive security are the

CCA secure mPKEs of [22] and mmPKE of [3]. Yet, both security

proofs are in the classic setting only. There exist no extractable

primitives of any type with security proof for PQ adaptive security.

Another gap in the state-of-the-art concerns hybrid security for

extractable primitives. A “hybrid” security property holds if any

one of multiple underlying assumptions holds. A special case of

constructions enjoying hybrid security are combiners [21, 23]. A

combiner for primitive P constructs an instance of P from two (or

more) underlying instances of P. The construction is secure if any of

the underlying primitives is secure. Hybrid security is a very useful

tool for hedging against future breaks of underlying assumptions.

This is particularly pertinent for PQ constructions as it allows us

to use powerful but relatively new and untested assumptions while

still falling back to lower risk (albeit classical) assumptions such as

DDH. To date, no combiners exist for extractable primitives (PQ or

otherwise). In particular, KEM combiners for CCA security [10, 11,

20, 29] generally require hashing or computing a MAC of the full

ciphertext during decapsulation. Thus, it is not immediately clear

how those schemes can be extended to an extractable primitive.

Receivers who only see their individual ciphertext no longer have

the same view; let alone know the entire multi-recipient ciphertext

produced by the sender.

1.1 Our Contributions
Nominally, the goal of this work is to build hybrid PQ/classically

(R)CCA secure mmPKEs. However, we have taken a very modular

approach getting there, resulting in a collection of constructions

and theorems which are useful in the wider context of extractable

PKE/KEMs, especially (but not exclusively) in the PQ setting. At

the most abstract level, we first add adaptive security to existing

CPA encryption schemes. Next, we transform the result into a

CCA secure KEM using the FO transform followed by a KEM/DEM

construction to obtain CCA secure encryption. For hybrid security,

we show how to combine KEMs as well as an optimized direct

construction of a hybrid CCA encryption scheme. The challenge

in all this is to make this paradigm work for the extractable batch

generalizations of PKE/KEM and to prove security against quantum

(and classic) adversaries.

Adaptive CPA Security for mKEMs. In more detail, we begin

with [25] which gives us PQ non-adaptively CPA-secure mPKE.

Picking up from there, our first contribution is a new black-box

compiler converting a non-adaptively CPA secure mPKE into an

adaptively CPA secure one. Compared to the same type of compiler

(implicit) in [22], our compiled ciphertext sizes have the same size

but our public keys are about half as big as theirs.
1
We remark that

[22] don’t prove their compiler secure against quantum adversaries,

although their classic proof should apply essentially unchanged in

the quantum model.

To achieve this, our compiler places additional (mild) require-

ments on the original mKEM (which are already satisfied by all CPA

secure mKEMs that we are aware of). First, for some arbitrary space

of public keys PK the distributions of public keys output during

key generation should look uniform over PK . Second PK should

be equipped with an (efficiently computable) group operation. We

1
We note that all applications of mKEM/mmPKE mentioned above require sending

fresh public keys as part of every protocol packet [22]. In fact, [3, 25] both require

multiple new keys per packet.
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prove classic and quantum security for the compiler. For the rest of

this section, unless stated explicitly otherwise, all security notions

are adaptive.

From CPA to (R)CCA Security for mKEMs. Next, we consider

adapting the FO transform [17, 18], which converts a CPA-secure

PKE into a CCA-secure KEM, to the multi-recipient setting. The

first multi-recipient FO transform was proposed in [25] where it is

shown to be classically and quantum secure. However, the proofs

from [25] do not work with adaptive corruptions and, according to

[15], the proof of quantum security has a gap (carried over from

the proof technique by Zhandry [37]). Partially fixing these issues,

the work [22] proposes a new variant of the multi-recipient FO (the

main difference is introducing explicit rejections) with adaptive

corruptions but only prove it classically secure. In this work, we

complete the above picture by proving quantum security for the FO

transform from [22]. Our proof uses the framework of [15], thus

avoiding the issue in the proof from [25]. We note that applying

the framework of [15] to the multi-recipient setting is technically

non-trivial. For example, in order to use it, we define a new notion

of spreadness for mPKEs.

mKEMCombiner. We introduce the first mKEM combiner. It is ex-

tremely simple, essentially running the two input mKEM instances

in parallel. If the first decapsulates to a key 𝑘1 and the second to 𝑘2
then the key for the combined scheme is simply 𝑘 := 𝐹 (𝑘1, 𝑘2).

We model 𝐹 as a dual PRF and show two incomparable results

for the construction. First, if at least one of the two schemes is

RCCA-secure than so is the combined scheme (which suffices for

the application in [3] for example).

Second, we define a notion of collision resistance (CR) for an

mKEM and show that if one mKEM is CCA-secure and the other

is CR then the combined scheme is also CCA-secure. It turns out

that many natural mKEM contructions are CR. In particular, we

show that any mKEM constructed using the FO of [22] with a hash

function 𝐻 is CR assuming only collision resistance of 𝐻 . We also

present a variant of standard Diffie-Hellman based mKEM which

we can also show to be CR (it is easy to get a variant that is CCA-

secure but not CR by removing one value from a hash input). For

this we need the underlying hash function as well as the encryption

function of the underlying DEM to be collision resistant. Note that

any deterministic DEM can be augmented to have this property by

restricting the decryption algorithm to only output the plaintext if

re-encrypting it produces the original ciphertext. We prove classic

and quantum versions of these results (note that in the quantum

setting the DH-based mKEM is not CPA secure but it is CR).

mmPKE.. We present two new mmPKE constructions. The first

is a black-box mKEM/DEM construction geared towards arbitrary

length messages. We show two incomparable results for it. First, if

both the mKEM and DEM are CCA-secure then so is the resulting

mmPKE. Second, if both the mKEM and DEM are RCCA secure

then so is the mmPKE.

Our second mmPKE construction is optimized to provide shorter

multi-recipient and individual ciphertexts when encrypting short

messages (as is the case in all three protocols [3, 22, 25]). The con-

struction also uses an mKEM and DEM as building blocks. However,

it also directly uses a Diffie-Hellman (DH) group to ensure classic

security regardless of the mKEM. In particular, to obtain hybrid

PQ/classic security for this mmPKE it is more efficient to use a

PQ-only mKEM directly rather than a hybrid one. Specifically, we

show 4 results for this construction.

(1) If mKEM and DEM are both RCCA secure, then so is mmPKE.

(2) If mKEM and DEM are both CCA secure then so is mmPKE.

(3) If the DEM is RCCA secure, then the Double Strong Diffie-

Hellman
2
assumption implies that mmPKE is RCCA secure.

(4) If mKEM is collision resistant and DEM is CCA secure then

the DSDH assumption implies that mmPKE is CCA secure.

Implementation. Finally, we present an implementation of an

mKEM based on Kyber, which is based on the AVX2 implementation

by the Kyber team. Our benchmarks show that, compared to a

trivial Kyber-based mmKEM, computation time required for key

generation and decapsulation increases, but encapsulation becomes

significantly faster already for relatively small batches of, e.g., 10

recipients. More importantly, the ciphertext size is decreased by up

to 79%. We place the implementation into the public domain (CC0).

It is available from http://131.174.142.4/kyber-mkem.tar.bz2.

1.2 Related Work
The idea of improving efficiency of PKE schemes by encrypting to

many receivers at once was first proposed by Kurosawa [26]. In

particular, this work proposes the first constructions and security

notions for mmPKE. The mmPKE primitive has been later consid-

ered in a line of works [8, 9, 32] which define stronger security

notions for it (where “stronger” relates to the adversary’s ability to

corrupt receivers), propose different modularizations and construct

various mmPKE schemes. For example, [32] defines mmKEMs to be

used as a stepping stone in building mmPKEs. All known mmPKE

constructions are only clasically secure.

A parallel sequence of works considers relaxations of mmP-

KE/mmKEM, namely, mPKE and mKEM. The mKEM primitive was

introduced by Smart [33]. Afterwards, various mKEM constructions

have been proposed based on hash proof systems [28] and pairings

[36]. Finally, the first efficient post-quantum secure mKEMs have

been constructed in [25]. In terms of mPKEs, the only construc-

tion with strong (stronger than IND-CPA) security was proposed

recently by Hashimoto et al. [22]. Another line of works considers

identity-based versions of (m)mPKE and (m)mKEMs [13, 24, 27, 31].

Finally, [6] build practical PQ secure Dual-PRFs.

2 PRELIMINARIES
In this section we recall the well-known Oneway-to-Hiding (O2H)

lemma [35] as well as the Extractable Quantum Random Oracle

Simulator from [15] used in post-quantum proofs (see [30] for a thor-

ough introduction). Then we recall multi-message multi-recipient

encryption. We give additional preliminaries in the full version [4].

2.1 Oneway-to-Hiding (O2H)
We recall the original version of the well-known Oneway-to-Hiding

lemma [35], using the notation from [5]. Intuitively, the lemma

2
The DSDH is the standard assumption used to prove CCA security of DH based

non-interactive key exchange. [16]
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allows us the bound the advantage of an adversary in detecting

programming in the quantum random oracle model.

Lemma 2.1 (Original O2H [5], Theorem 3). Let R be a set and
S ⊂ R be random. Let G,H be random functions with domain R
satisfying ∀𝑟 ∉ S : G(𝑟 ) = H(𝑟 ). Let 𝑧 be a random classical value
(S,G,H, 𝑧 may have arbitrary joint distribution). LetA be a quantum
oracle algorithmmaking 𝑞 oracle queries, expecting input 𝑧. Let Ext be
the algorithm which on input 𝑧 samples a uniform 𝑖 from {1, . . . , 𝑞},
runs A right before its 𝑖-th query to G, measures its query input
register and outputs the measurement𝑚. Then���Pr[AG (𝑧) ⇒ 1] − Pr[AH (𝑧) ⇒ 1]

���
≤ 2𝑞

√︃
Pr[𝑚 ∈ S :𝑚 ←

$
ExtH (𝑧)] .

2.2 Quantum Random Oracle Simulation
In general, it isn’t possible to extract the values an adversary queried

in a quantum random oracle without noticeable disrupting the ad-

versaries quantum state. This problem was solved in the seminal

work of Zhandry [37] using so-called compressed oracles. [15] sim-

plified the above formalism and defined the clean abstraction of

a quantum random oracle simulator which allows for extraction

queries (under specific conditions) without noticeably changing

the adversary’s state. We recall their construction in Definition 2.3

together with some properties in Definition 2.2

Definition 2.2. Let 𝑛 ∈ N, X,T two set, 𝑓 : X × {0, 1}𝑛 → T a

function and 𝑅 ⊂ X × {0, 1}𝑛 a relation. We define

Γ(𝑓 ) := max

𝑥 ∈X
𝑡 ∈T

|{𝑦 |𝑓 (𝑥,𝑦) = 𝑡}| ,

Γ′(𝑓 ) := max

𝑥,𝑥 ′∈X
𝑦′∈{0,1}𝑛

|{𝑦 |𝑓 (𝑥,𝑦) = 𝑓 (𝑥 ′, 𝑦′)}|

and Γ𝑅 := max

𝑥 ∈X
|{𝑦 | (𝑥,𝑦) ∈ 𝑅}| .

Definition 2.3 (Extractable Quantum Random Oracle Simulator).
Let 𝑛 ∈ N, X,T two sets, 𝑓 : X × {0, 1}𝑛 → T a function and

𝑅′ ⊂ X × T and 𝑅 ⊂ X × {0, 1}𝑛 relations with (𝑥,𝑦) ∈ 𝑅 ⇔
(𝑥, 𝑓 (𝑥,𝑦)) ∈ 𝑅′.

We define the stateful quantum simulator S𝑓 that has the (quan-

tum accessible) interfaces S𝑓 .𝑅𝑂 : X → {0, 1}𝑛 and S𝑓 .𝐸 : T →
X ∪ ⊥ and the following properties:

(1) If no query to S𝑓 .𝐸 is made, S𝑓 .𝑅𝑂 is indistinguishable from

a (quantum) random oracle.

(2) Any two subsequent independent queries to S𝑓 .𝑅𝑂 (resp.

S𝑓 .𝐸) commute.

(3) Any two subsequent independent queries toS𝑓 .𝐸 andS𝑓 .𝑅𝑂

8

√︃
Γ (𝑓 )
2
𝑛−1 -almost-commute.

(4) Any query to S𝑓 .𝑅𝑂 (resp. S𝑓 .𝐸) is idempotent, i.e. returns

the same result if no other query was made in between.

(5) If 𝑥 = S𝑓 .𝐸 (𝑡) and ˆℎ = S𝑓 .𝑅𝑂 (𝑥) are two subsequent classi-

cal queries, then Pr

[
𝑥 ≠ ⊥ ∧ 𝑓 (𝑥, ˆℎ) ≠ 𝑡

]
≤ 2Γ (𝑓 )

2
𝑛 .

(6) If ℎ = S𝑓 .𝑅𝑂 (𝑥) and 𝑥 = S𝑓 .𝐸 (𝑓 (𝑥, ℎ)) are two subsequent

classical queries, then Pr[𝑥 = ⊥] ≤ 1

2
𝑛−1 .

(7) LetA be an adversarymaking atmost𝑞 queries to theS𝑓 .𝑅𝑂
oracle and no queries to the S𝑓 .𝐸 oracle, which outputs 𝑡 ∈

T . Then Pr[(𝑥, 𝑡) ∈ 𝑅′ | 𝑡 ←
$
AS𝑓 .𝑅𝑂 ;𝑥 ←

$
S𝑓 .𝐸 (𝑡)] ≤

128 · 𝑞2 · Γ𝑅/2𝑛 .
(8) Let A be an adversary making at most 𝑞 queries to S𝑓 .𝑅𝑂

and no queries to S𝑓 .𝐸, that outputs 𝑥, 𝑡 ∈ X × T . Then
Pr[𝑥 ≠ 𝑥 ∧ 𝑓 (𝑥, ℎ) = 𝑡 | 𝑡, 𝑥 ←

$
AS𝑓 .𝑅𝑂 ;ℎ ←

$
S𝑓 .𝑅𝑂 (𝑥);

𝑥 ←
$
S𝑓 .𝐸 (𝑡)] ≤ 40𝑒2 · (𝑞 + 2)3Γ′(𝑓 )/2𝑛 .

Let us give some intuition on the properties of S. Properties 1
and 2 ensure, that S behaves like a regular quantum random oracle,

unless S.𝐸 is called and that independent query don’t interfere

with one another. Property 3 tells us that extraction only causes

detectable change in the state of S with low probability (as long as

𝑓 is sparse). Property 4 ensures that queries are consistent as long as

the state of the oracle does not change between queries. Property 5

states that if extraction succeeds, then it returns a correct preimage

with high probability and 6 states that extraction almost always

works if an image was indeed generated via the oracle. Property

7 gives us a bound for finding a specific relation on input/output

pairs of the simulator (i.e. quantum search is hard in the simulated

random oracle). Lastly, Property 8 tells us that finding collisions in

S is hard despite the extraction interface. Specifically, even with

the extraction interface, the probability of finding a collision is still

bounded by a cubic factor.

2.3 Multi-Message Multi-Recipient Encryption
A multi-message multi-recipient public-key encryption (mmPKE)

scheme allows a sender to encrypt a vector of messages to a vector of
public keys. Formally, an mmPKE scheme consists of the following

algorithms. (Correctness can be found in the full version [4].)

Setup: mSetup() → pp returns a fresh public parameter pp.
Key Generation: mmKGen(pp) → (pk, sk) generates a key pair.

Encryption: mmEnc(pp, ®pk, ®𝑚) → 𝐶 takes the public parameters

pp, a vector of public keys ®pk and a vector of messages ®𝑚 as

input and produces a multi-recipient ciphertext 𝐶 . The 𝑖-th

message in ®𝑚 is encrypted to the 𝑖-th public key in
®pk.

Extraction: The (deterministic) algorithmmmExt(pp,𝐶, 𝑖) → 𝑐/⊥
takes the public parameters pp, a ciphertext 𝐶 and an index 𝑖 .

It outputs the individual ciphertext for the 𝑖-th receiver (or ⊥).
Decryption: mmDec(pp, sk, 𝑐) →𝑚/⊥ takes the public parame-

ters pp, a secret key sk and an individual ciphertext 𝑐 as input

and returns either a decrypted message𝑚 or ⊥.
We recall in Fig. 1 themmIND-CCA andmmIND-RCCA security

with adaptive corruptions from [3]. The notions build upon the

analogous notions for regular encryption. For each notion, the

security experiment starts with the challenger generating a number

of mmPKE key pairs and sending the public keys to the adversary.

At some point, the adversary can request a challenge: it sends to

the challenger two challenge vectors of messages and a challenge

vector of public keys, all vectors of the same length. The challenge

public-key vector can contain keys generated by the challenger and

ones chosen by the adversary.

In addition, throughout the experiment, the adversary can adap-

tively corrupt the key pairs generated by the challenger and access a

decryption oracle. The oracle is defined in a way that does not allow

the adversary to trivially decrypt the challenge. This mechanism is

slightly different for CCA and RCCA, which is the only difference
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Game mmIND-CCA, mmIND-RCCA

ExpmmIND-ATK
mmPKE,𝑁 ,leak,𝑏 (A = (A1,A2))ATK ∈ {CCA,RCCA}

pp← mmSetup()
for 𝑖 ∈ [𝑁 ] do (pk𝑖 , sk𝑖 ) ← mmKGen(pp)
Cor← ∅
( ®pk∗, ®𝑚∗

0
, ®𝑚∗

1
, st) ← ADec1,Cor

1
(pp, (pk𝑖 )𝑖∈[𝑁 ] )

req | ®𝑚∗
0
| = | ®𝑚∗

1
| = | ®pk∗ | ∧ leak( ®𝑚∗

0
) = leak( ®𝑚∗

1
)

𝐶∗ ←$ mmEnc(pp, ®pk∗, ®𝑚𝑏 )
𝑏′ ← ADecATK

2
,Cor

2
(𝐶∗, st)

req ∀𝑗 : (𝑚∗
0
[ 𝑗 ] ≠𝑚∗

1
[ 𝑗 ] =⇒ ®pk∗ [ 𝑗 ] ∈ {pk𝑖 : 𝑖 ∈ [𝑁 ] \ Cor})

return 𝑏′ = 𝑏
Oracle DecmmIND-RCCA

2
(𝑖, 𝑐)

req 𝑖 ∈ [𝑁 ]
𝑚 ← mmDec(pp, sk𝑖 , 𝑐)
if ∃ 𝑗 : ®pk∗ [ 𝑗 ] = pk𝑖 ∧𝑚 ∈ { ®𝑚∗0 [ 𝑗 ], ®𝑚∗1 [ 𝑗 ] } then return ’test’
else return 𝑚

Oracle DecmmIND-CCA
2

(𝑖, 𝑐)
req 𝑖 ∈ [𝑁 ]
req �𝑗 : ®pk∗ [ 𝑗 ] = pk𝑖 ∧ 𝑐 = mmExt(pp,𝐶, 𝑗)
return mmDec(sk𝑖 , 𝑐)

Oracle Dec1 (𝑖 ∈ [𝑁 ], 𝑐)
return mmDec(pp, sk𝑖 , 𝑐)

Oracle Cor(𝑖 ∈ [𝑁 ])
Cor +← 𝑖 ; return sk𝑖

Figure 1: The mmIND-RCCA and mmIND-CCA security game
for mmPKE with an arbitrary leakage function leak( ®𝑚).

between the notions. To disallow trivial wins, we require that the

challenge message vectors coincide on slots where the keys in the

challenge public key vector are corrupt or chosen by the adversary.

Further, we parameterize the notion by a function leak( ®𝑚) and
require that the output of leak on the two challenge message vec-

tors is the same. The function leak formalizes all metadata about

encrypted vectors that need not be kept secret. For instance, these

can be the lengths of individual messages or structure of the vector

(e.g. whether two consecutive messages are the same).

Definition 2.4. Let mmPKE be an mmPKE scheme, let 𝑁 be an

integer and let Exp
mmIND-ATK
mmPKE,𝑁 ,leak,𝑏 (A) be defined in Fig. 1. Further,

let leak be a function with a domain containing all message vectors.

For ATK ∈ {CCA,RCCA} we define the advantage of adversary A
playing game mmIND-ATK with leakage leak as

Adv
mmIND-ATK
mmPKE,𝑁 ,leak (A) :=

��
Pr[ExpmmIND-ATK

mmPKE,𝑁 ,leak,1 (A) ⇒ 1]

− Pr[ExpmmIND-ATK
mmPKE,𝑁 ,leak,0 (A) ⇒ 1]

��.
2.4 Multi-Recipient Key Encapsulation
A multi-recipient key-encapsulation mechanism (mKEM) allows to

encapsulate a single key for multiple recipients. It consists of the

following algorithms. See the full version [4] for correctness.

Setup: mSetup() → pp returns a fresh public parameter pp.

Game mIND-CCA, mIND-RCCA

Experiment ExpmIND-ATK
mKEM,𝑁 ,𝑏

( (A1,A2)) , ATK ∈ {CCA,RCCA}

pp← mSetup() ; Cor← ∅
for 𝑖 ∈ [𝑁 ] do (pk𝑖 , sk𝑖 ) ← mKGen(pp)
( (𝑖∗

1
, . . . , 𝑖∗𝑛), 𝑠𝑡 ) ← A

Cor,Dec1
1

(pp, pk
1
, pk

2
, . . . , pk𝑁 )

(𝐶∗, 𝑘∗
0
) ← mEnc(pp, pk𝑖∗

1

, pk𝑖∗
2

, . . . , pk𝑖∗𝑛 )

𝑘∗
1
←$ {0, 1}𝜅 ; 𝑏′ ← ACor,DecATK

2

2
(𝑠𝑡,𝐶∗, 𝑘∗

𝑏
)

req {𝑖∗
1
, 𝑖∗
2
, . . . , 𝑖∗𝑛 } ∩ Cor = ∅

return 𝑏′ = 𝑏
Oracle Cor(𝑖)

req 𝑖 ∈ [𝑁 ]
Cor← Cor ∪ {𝑖 }
return sk𝑖

Oracle DecCCA
2
(𝑖, 𝑐)

req 𝑖 ∈ [𝑁 ]
𝑘 ← mDec(pp, 𝑐, sk𝑖 )
for 𝑗 s.t. 𝑖∗

𝑗
= 𝑖 do

req 𝑐 ≠ mExt(𝐶∗, 𝑗)
return 𝑘

Oracle Dec1 (𝑖, 𝑐)
req 𝑖 ∈ [𝑁 ]
return mDec(pp, 𝑐, sk𝑖 )

Oracle DecRCCA
2

(𝑖, 𝑐)
req 𝑖 ∈ [𝑁 ]
𝑘 ← mDec(pp, 𝑐, sk𝑖 )
if 𝑘 ∈ {𝑘∗

0
, 𝑘∗

1
} then

return ’test’
else return 𝑘

Figure 2: mIND-CCA and mIND-RCCA security experiments
for mKEM.

Key Generation: The key generation algorithm mKGen(pp) →
(pk, sk) takes as input a public parameter pp returns a fresh

key pair (pk, sk).
Encapsulation: mEnc(pp, pk

1
, . . . , pk𝑛) → (𝐶, 𝑘) takes in a se-

quence (of any length 𝑛 > 0) of public keys and outputs a

(multi-recipient) ciphertext 𝐶 and encapsulated key 𝑘 .

Extract: The deterministic algorithm mExt(pp,𝐶, 𝑖) → 𝑐/⊥ takes

as input a multi-recipient ciphertext 𝐶 and position index 𝑖

and returns a (individual) ciphertext 𝑐 for the 𝑖-th recipient.

Decapsulation: Decapsulation mDec(pp, 𝑐, sk) → 𝑘/⊥ takes as

input an individual ciphertext 𝑐 and decapsulation secret key

sk. If decapsulation succeeds it returns the encapsulated key

𝑘 . (Otherwise, the output is arbitrary or ⊥.)

Security. We define the strong security notion for mKEM with

corruptions as (implicitly) defined in [22], called mIND-CCA, and
the weaker notion of mIND-RCCA.

Definition 2.5. Let mKEM be an mKEM scheme, let 𝑁 be an

integer and let Exp
mmIND-ATK
mKEM,𝑁 ,𝑏 (A) be defined in Fig. 2. For ATK ∈

{CCA,RCCA}, we define the advantage Adv
mIND-ATK
mKEM,𝑁 (A) of an

adversary A against the mIND-ATK security of mKEM as���Pr[ExpmIND-ATK
mKEM,𝑁 ,1 (A) ⇒ 1] − Pr[ExpmIND-ATK

mKEM,𝑁 ,0 (A) ⇒ 1]
��� .

2.5 Multi-Recipient Encryption
A multi-recipient public-key encryption (mPKE) scheme allows a

sender to encrypt a singlemessage to a vector of public keys.Wewill

mainly use this primitive as a stepping stone towards constructing

strongly secure mKEM (via a multi-recipient variant of the Fujisaki-

Okamoto transform). Therefore, even though mPKE is a special
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case of mmPKE, we give syntax and security definitions for mPKE

that are geared towards enabling the mKEM construction. In par-

ticular, we use the less general syntax from [25] and only consider

security with passive attackers. Additionally, we need the notion

of 𝛾-keyindependent spreadness, which is a variant of classical 𝛾-

spreadness for public key encryption and will be used similarly in

(a multi-recipient variant of) the Fujisaki-Okamoto transformation

to turn a weakly secure mPKE into a strongly secure mKEM. An

mPKE scheme consists of the following algorithms. Correctness

can be found in the full version [4].

Setup: mSetup() → pp returns a fresh public parameter pp.
Key Generation: mKGen(pp) → (pk, sk) takes as input a public

parameter pp and samples and returns a fresh key pair.

Encryption: Encryption consists of two algorithms:mEnci (pp) →
𝑐 i outputs a recipient-independent ciphertext component 𝑐 i

needed by all recipients. Second,mEncd (pp, pk,𝑚, 𝑟 ) → 𝑐d on

input a public key pk, a message𝑚 and the randomness 𝑟 used

bymEnci, outputs a recipient-dependent ciphertext component

𝑐d needed only by the recipient with pk.
Decryption: mDec(pp, sk, (𝑐 i, 𝑐d)) →𝑚/⊥ takes as input a secret

key sk and a ciphertext consisting of a recipient-independent

component 𝑐 i and a recipient-dependent component 𝑐d. It

outputs a message𝑚 or ⊥ if decryption fails..

Security. We define four security notions for mPKE, both one-

way and indistinguishability with and without adaptive corruptions

as in [22]. The notions are formally defined in Figure 3. Roughly,

for mOW-CPA security, it should be hard for an adversary to find

the encrypted random challenge message without the secret key.

For mIND-CPA, the adversary can choose two messages and has

to decide, which of the two was encrypted. In the variants with

adaptive corruptions, the adversary can additionally corrupt honest

keys, but can only be challenged on honest keys to prevent triv-

ial wins. mOW-CPA (resp., mOW-CPAcorr) is trivially implied by

mIND-CPA (resp., mIND-CPAcorr).

Definition 2.6. LetmPKE be anmPKE scheme,𝑁 an integer,A an

adversary and Exp
mOW-ATK
mPKE,𝑁 (A) and Exp

mIND-ATK
mPKE,𝑁 ,𝑏 (A) be defined

in Fig. 3. For ATK ∈ {CPA,CPAcorr}, we define the advantage ofA
against the mOW-ATK security of mPKE as

Adv
mOW-ATK
mPKE,𝑁 (A) = Pr[ExpmOW-ATK

mPKE,𝑁 (A) ⇒ 1],

and the advantage of A against mIND-ATK security of mPKE as

Pr[ExpmIND-ATK
mPKE,𝑁 ,1 (A) ⇒ 1] − Pr[ExpmIND-ATK

mPKE,𝑁 ,0 (A) ⇒ 1],

Looking ahead, the Fujisaki-Okamoto transform (see Section 4)

only require one-way security. On the other hand, our compiler

from security without corruptions to security with corruptions (see

Section 3.1) requires mIND-CPA security. Thus, so we define both

notions to show the stronger result.

3 ADAPTIVELY CPA-SECURE MPKE
The goal of this section is to obtain (single-message) multi-recipient

PKE (mPKE) schemes that satisfy the mOW-CPAcorr security no-

tion, i.e., they are one-way secure in the presence of passive attack-

ers and corruptions. These schemes are meant to be turned into

Game mOW-CPA, mOW-CPAcorr

Experiment ExpmOW-ATK
mPKE,𝑁 (A = (A1,A2))ATK ∈ {CPA,CPAcorr }

pp← mSetup() ; Cor← ∅
for 𝑖 ∈ [𝑁 ] do (pk𝑖 , sk𝑖 ) ← mKGen(pp)
if ATK = CPAcorr then O← Cor
else O← ∅
((𝑖∗

1
, . . . , 𝑖∗𝑛), 𝑠𝑡 ) ← AO

1
(pp, pk

1
, . . . , pk𝑁 )

𝑚 ←$ M; 𝑟 ←$ {0, 1}𝜅 ; 𝑐 i ← mEnci (pp; 𝑟 )
for 𝑗 ∈ [𝑛] do 𝑐d

𝑗
← mEncd (pp, pk𝑖∗

𝑗
,𝑚, 𝑟 )

𝑚∗ ← AO
2
(𝑠𝑡, 𝑐 i, 𝑐d

1
, . . . , 𝑐d𝑛)

return 𝑚 =𝑚∗ ∧ {𝑖∗
1
, 𝑖∗
2
, . . . , 𝑖∗𝑛 } ∩ Cor = ∅

Oracle Cor(𝑖)
req 𝑖 ∈ [𝑁 ]; Cor +← 𝑖; return sk𝑖

Game mIND-CPA, mIND-CPAcorr

Experiment ExpmIND-ATK
mPKE,𝑁 ,𝑏

(A = (A1,A2))ATK ∈ {CPA,CPAcorr }

pp← mSetup() ; Cor← ∅
for 𝑖 ∈ [𝑁 ] do (pk𝑖 , sk𝑖 ) ← mKGen(pp)
if ATK = CPAcorr then O← Cor
else O← ∅
((𝑖∗

1
, . . . , 𝑖∗𝑛),𝑚∗0,𝑚∗1, 𝑠𝑡 ) ← AO

1
(pp, (pk𝑖 )𝑖∈[𝑁 ] )

𝑟 ←$ {0, 1}𝜅 ; 𝑐 i ← mEnci (pp; 𝑟 )
for 𝑗 ∈ [𝑛] do 𝑐d

𝑗
← mEncd (pp, pk𝑖∗

𝑗
,𝑚∗

𝑏
, 𝑟 )

𝑏′ ← AO
2
(𝑠𝑡, 𝑐 i, 𝑐d

1
, . . . , 𝑐d𝑛)

req {𝑖∗
1
, 𝑖∗
2
, . . . , 𝑖∗𝑛 } ∩ Cor = ∅

return 𝑏′

Oracle Cor(𝑖)
req 𝑖 ∈ [𝑁 ]; Cor +← 𝑖; return sk𝑖

Figure 3: OW(top) and IND (bottom) mPKE security.

IND-CCA secure (single-key) multi-recipient KEMs (mKEMs) using

the FO transform described in Section 4.

We observe that most (m)mPKE and (m)mKEM constructions

proposed so far, including [8, 9, 25, 26, 32], have been analyzed in

the setting without (adaptive) corruptions. This is rather surprising

given that they are meant to be used in applications like secure

messaging where such a setting is considered completely unrealistic.

More surprisingly, there seems to be no way to adapt the proofs for

the setting without corruptions to the setting with corruptions.
3

For this reason, we construct in this section a black box compiler

that takes as input an mPKE satisfying the standard security notion

considered in the literature,mIND-CPA, and outputs an mPKE that

satisfies mIND-CPAcorr security which is the same as mIND-CPA
except the adversary can adaptively corrupt honest keys. We note

that mIND-CPAcorr implies mOW-CPAcorr, therefore, the output
of the compiler achieves the goal of this section.

3
This is quite unintuitive – why would the adversary gain any meaningful power from

the ability to corrupt key pairs that are independent of those used in the challenge?

And indeed, we don’t find any specific attacks. However, the known proof techniques

fail for reasons related to the so called commitment problem.
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Algorithm Comp[mPKE,H]

mSetup()
return mPKE.mSetup()

mEnci (pp; 𝑟 = (𝑟1, 𝑟2))
𝑐 i1 ← mPKE.mEnci (pp; 𝑟1)
𝑐 i2 ← mPKE.mEnci (pp; 𝑟2)
return 𝑐 i = (𝑐 i1, 𝑐 i2)

mKGen(pp)
(pk, sk) ← mPKE.mKGen(pp)
𝑠 ←$ {0, 1}𝜅 ; swapPk←$ {0, 1}
if swapPk = 0 then pkleft ← pk
else pkleft ← H(𝑠) − pk
return ( (pkleft, 𝑠), (sk, swapPk))

mEncd (pp, pk = (pkleft, 𝑠),𝑚, 𝑟 = (𝑟1, 𝑟2))
pkright ← H(𝑠) − pkleft
swapCtx←$ {0, 1}
if swapCtx = 0 then (pk1, pk2) ← (pkleft, pkright)
else (pk1, pk2) ← (pkright, pkleft)
𝑐d1 ← mPKE.mEncd (pp, pk1,𝑚, 𝑟1)
𝑐d2 ← mPKE.mEncd (pp, pk2,𝑚, 𝑟2)
return 𝑐d = (𝑐d1 , 𝑐d2 , swapCtx)

mDec(pp, (sk, swapPk), ( (𝑐 i1, 𝑐
i
2), (𝑐

d
1, 𝑐

d
2, swapCtx)))

if swapPk ⊕ swapCtx = 0 then
return mPKE.mDec(pp, sk, (𝑐 i1, 𝑐d1 ))

else return mPKE.mDec(pp, sk, (𝑐 i2, 𝑐d2 ))

Figure 4: The mIND-CPAcorr secure mPKE scheme outputted
by our compiler. The hash function 𝐻 outputs elements of
the underlying mPKE key space.

Finally, we conclude this section with a review of known mPKE

constructions which can be used as input to our compiler.

3.1 The Compiler
The compiler is defined in Fig. 4. At a high level, the idea is to adapt

the technique from [19] for obtaining adaptively secure broadcast

encryption to the mPKE setting. This means that the compiler

essentially runs two parallel instances of the mIND-CPA secure

schememPKE. Each recipient has twomPKE key pairs, called “left”

and “right”. He only knows one of the secret keys and he keeps

it secret which one. To encrypt a message𝑚 to recipients 1 to 𝑛,

the encryptor runs the mPKE encryption twice. Both times, the

encrypted message is𝑚. Further, for each recipient 𝑖 , its left public

key goes to one invocation of mPKE and its right public key to the

other. For each 𝑖 , the encryptor chooses at random whether the

left key goes to the first or to the second invocation. The resulting

ciphertext consists of the twomPKE ciphertexts as well as, for each

𝑖 , the bit indicating the invocation which used the 𝑖-th left key.

The description in Fig. 4 formalizes the above intuition in the

mPKE syntax with the encryption split into mEnci and mEncd.
Values computed for the first and second invocation of mPKE are

marked by the subscripts first and second, respectively. The bit

swapCtx sampled bymEncd for the 𝑖-th recipient decides if the left

mPKE public key of that recipient goes to the second invocation,

i.e., the public keys are swapped, or to the first.

At this point, the above scheme may seem quite unintuitive. The

reason is that we are not modifying mPKE in order to prevent any

real attacks, but rather to enable a security proof. This means that to

get an intuition for the scheme, one has to first get an intuition for

the proof. We note that this proof technique is not our contribution

but the result of [19]; we invite all readers interested in why this

works to look at the proof of our compiler’s security in the full

version [4].

We note that the recent work by Hashimoto et al. [22] also adapts

the technique of [19] to the mPKE setting. However, they do not

have the optimization we introduce next.

Key compression. To optimize the compiler, we introduce a tech-

nique called key compression. We observe that in the basic con-

struction a recipient only needs one secret key, say for pkleft. This
means that he can generate the right public key pkright without
necessarily knowing the secret key, for example as the output of a

hash function on a random seed 𝑠 . Then instead of the full public

key (pkleft, pkright), he publishes (pkleft, 𝑠). Since 𝑠 can be much

shorter than a public key, this would cut the public key size of the

compiled scheme roughly in half.

Of course, the recipient cannot simply publish (pkleft, 𝑠), because
he should hide whether he knows the left or the right secret key.

To fix this, we first assume that there is some group operation + on
the public key space of pk. Then, we make 𝐻 (𝑠) the sum of pkleft
and pkright. That is, given a public key (pkleft, 𝑠), we can compute

pkright = 𝐻 (𝑠) − pkleft. Now if the recipient knows the right secret

key only, he can publish the key (𝐻 (𝑠) − pkright, 𝑠).
Key compression requires that one can define some group op-

eration on the public key space of mPKE. This is typically very

straightforward. For instance, the public key spaces of mPKE con-

structions based on Diffie-Hellman [32] and LWE [25] are by def-

inition groups. Alternatively, if an mKEM scheme has a public

key space with dense representation in bitstrings, then the group

operation can be bit-wise XOR.

The technique also requires a hash function outputting elements

of the public key space. For an overview of such hash functions

in the (elliptic-curve) DH context see, e.g., [34]. For LWE-based

constructions, the typical approach is to use rejection sampling

on the output of a XOF; see, e.g., [2, Sec. 3&7]. But, if for some

instantiation of mPKE such a hash function does not exist, the

fallback is to use the compiler without key compression from [22].

Security. Security of the compiler, and in particular of the key

compression, requires an additional property from mPKE. Roughly,
the public key produced by key generation should look like a uni-

form random element of the public-key space. Intuitively, this is

necessary to argue that the output of the hash looks like an honest

public key, so by looking at a recipient’s public key, one cannot tell

if the recipient knows the left or the right secret key. This fact is

necessary to use the proof technique from [19]. Formally, we define:

Definition 3.1. For a scheme mPKE with public-key space PK ,
setup algorithm mSetup and key-generation algorithm mKGen,
we define the advantage of an adversary A against random-key

security of mPKE, AdvmRND-PK
mPKE (A), as

Pr

[
A(pp, pk) ⇒ 1

���� pp←
$
mSetup()

(pk, ∗) ←
$
mKGen(pp)

]
−

Pr

[
A(pp, pk) ⇒ 1

���� pp←
$
mSetup()

pk←
$
PK

]
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Algorithm Generic FO Transform FO[mPKE,H,G1,G2]

mSetup()
return mPKE.mSetup()

mKGen(pp)
return mPKE.mKGen(pp)

mExt(𝐶, 𝑖)
return mPKE.mExt(𝐶, 𝑖)

mEnc(pp, pk
1
, . . . , pk𝑛)

𝑚 ←$ M ; 𝑐0 ← mPKE.mEnci (pp;G1 (𝑚))
for 𝑖 ∈ [𝑛] do

𝑐𝑖 ← mPKE.mEncd (pp, pk𝑖 ,𝑚;G1 (𝑚),G2 (pk𝑖 ,𝑚))
return (H(𝑚), (𝑐0, . . . , 𝑐𝑛))

mDec(pp, sk, 𝑐)
𝑚 ← mPKE.mDec(sk, 𝑐)
if 𝑚 = ⊥ then return ⊥
𝑐0 ← mPKE.mEnci (pp;G1 (𝑚))
𝑐1 ← mPKE.mEncd (pp, pk,𝑚;G1 (𝑚),G2 (pk,𝑚))
if 𝑐 ≠ (𝑐0, 𝑐1) then return ⊥
return H(𝑚)

Figure 5: FO transform for mPKE with adaptive corruption.

The following theorem formalizes security and correctness of

the compiler. We prove it in the full version [4].

Theorem 3.2. Let mPKE = Comp[mPKE,H], where mPKE is an
mPKE with a group operation over the space of public keys and H is a
hash function, be defined as in Fig. 4. For any number of recipients 𝑁
and for any (classical or quantum) adversaryA, there exist (classical
or quantum) adversaries B1 and B2 such that

Adv
mIND-CPAcorr

mPKE,𝑁 (A) ≤ Adv
mIND-CPA
mPKE,𝑁 (B1)+2𝑁 ·AdvmRND-PK

mPKE (B2),
where H is modeled as a random oracle. Additionally, if mPKE is
𝛿-correct, then Comp[mPKE,H] is 𝛿-correct as well.

4 THE FO TRANSFORM
The Fujisaki-Okamoto (FO) transform for regular encryption [17,

18] takes as input an OW-CPA secure PKE scheme and outputs an

IND-CCA secure KEM. It works in the random oracle model (ROM).

The work [25] adapts the FO to the multi-recipient setting, i.e.,

their transform takes as input an mOW-CPA mPKE and outputs

an mIND-CCA secure mKEM. They prove the transform’s security

in both the ROM and the QROM. However, they do not consider

adaptive corruptions; their proof fails in this setting, because their

construction uses implicit rejections. Moreover, [15] claim that

there is a non-trivial gap in the proof. The work [22] partially fixes

this problem by adding explicit rejections and proving security with

adaptive corruptions in the ROM.

In this section, we complete the above picture by proving security

of the multi-recipient FO transform in the QROM with adaptive

corruptions. To fix the issue pointed out in [15], we use the online-

extractable simulation technique [15].

New notion of spreadness. In order to apply the framework of

[15], we introduce a new notion of spreadness. It is meant for the

decomposable syntax ofmPKEs from [25], i.e. onewhere ciphertexts

consist of a public key independent part that all receiver need an a

personalized, public key dependent part that is only needed by a

single receiver. Regularly, 𝛾-spreadness bounds the probability of

the whole ciphertext taking a specific value. However due to this

decomposition, we require only that it is unlikely for the public key

independent part to take any specific value. We formalize this as

𝛾-keyindependent spreadness in Definition 4.1.

Definition 4.1 (𝛾-keyindependent spreadness). Let mPKE be an

mPKE scheme and 𝑛 ∈ N . Let mPKE is 𝛾-keyindependent spread, if

E
pp∈mSetup

pk∈mKGen(pp)

max

𝑚∈M
𝑐𝑡 ∈C𝐼

Pr

𝑟0∈R

[
𝑐𝑡 = mEnci (pp; 𝑟0)

] ≤ 2
−𝛾 ,

where C𝐼 denotes the set of recipient-independent ciphertext parts.

Security. We recall the construction of the multi-recipient FO

transform in Fig. 5. The following theorem formalizes its security

with adaptive corruptions in the ROM and in the QROM.

Theorem 4.2. Let mPKE be a 𝛿-correct, 𝛾-keyindependent spread
mPKEwith message spaceM and G1,G2 and H (classical or quantum)
random oracles. Then for any (classical or quantum) adversary A,
there exists a (classical or quantum) adversaryB′ with approximately
the same runtime as A, s.t.

Adv
mIND-CCA
FO[mPKE,G1,G2,H],𝑁 (A) ≤ 4𝑞 ·

√︃
Adv

mOW-CPAcorr

mPKE,𝑁 (B′) + 𝑞𝐷|M|

+ 48𝑞2
√
𝑛𝛿 + 16𝑞√𝑞 · 2−

𝛾

4 + 28𝑒
√︃
𝑞3 · 2−

𝛾

2 + 28𝑒𝑞
√︁
𝑞3

2
𝜅/2

with 𝜅 as the output length of the random oracles and 𝑞 = 2𝑞𝐷 +
𝑞𝐻 + 𝑞𝐺 , where 𝑞𝐷 is the number of classical queries to the decapsu-
lation oracle, and 𝑞𝐺 and 𝑞𝐻 is the number of (classical or quantum)
queries to the random oracles G1 and G2 and to the random oracle H
respectively made by A.

Proof. The proof for the classical case can be found in [22]. For

the quantum case, we adapt the security proof of the standard FO

transform from [15] to the mPKE FO transform. Themain difference

is that [15] considers PKE/KEM, while we look at mPKE/mKEM.

The proof idea still remains similar: We switch the randomness

used to encrypt the challenge message and the key to uniformly

random and then argue that an adversary noticing this switch

already breaks themOW-CPAcorr security of the underlyingmPKE
scheme. For the latter, we use the extractable quantum random

oracle simulator to extract the queries an adversary made to the

oracle and use them similarly to the classical setting to simulate

the decapsulation oracle. Here, the main observation is that the

recipient-independent part of a ciphertext is already a commitment

to the encrypted message and we can extract the message.

For public parameters pp and keypair (pk, sk), let 𝑔pp be the

maximum probability of any user-independent ciphertext 𝑐0 oc-

curring and 𝛿sk the maximum probability of a decryption error for

a given keypair. Then E[𝑔pp] ≤ 2
−𝛾

and E[𝛿sk] ≤ 𝛿 due to the

definition of 𝛿-correctness and 𝛾-keyindependent spreadness, with

the expectation take over the randomness of the parameter and key

generation. Formally, we define the games G0 to G11 in Fig. 6 and

describe their relation in the following paragraphs.
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Games G0-G11

Games G0 − G2

pp←$ mSetup() ;𝑚∗ ←$ M
for 𝑖 ∈ [𝑁 ] do (pk𝑖 , sk𝑖 ) ←$ mKGen(pp)
𝑂𝑖 ← {Cor,Dec𝑖 ,G1,G2,H} // G0-G1

𝑂𝑖 ← {Cor,Dec𝑖 , Ĝ1, Ĝ2, Ĥ } // G2

(𝑖∗
1
, . . . , 𝑖∗𝑛, 𝑠𝑡 ) ←$ A𝑂1

1
(pp, (pk𝑖 )𝑖∈[𝑁 ] )

𝑐 i
∗ ← mEnci (pp;G1 (𝑚∗)) // G0-G2

𝑐 i ← mEnci (pp; Ĝ1 (𝑚∗)) // G1-G2
for 𝑗 ∈ [𝑛] do

𝑐d
∗
𝑗 ← mEncd (pp, pk𝑖∗

𝑗
,𝑚∗;G1 (𝑚∗),G2 (pk𝑖∗

𝑗
,𝑚∗))

𝑐d
∗
𝑗 ← mEncd (pp, pk𝑖∗

𝑗
,𝑚∗; Ĝ1 (𝑚∗), Ĝ2 (pk𝑖∗

𝑗
,𝑚∗)) // G1 - G2

𝑘∗
0
← H(𝑚∗), 𝑘∗

1
←$ K

return 𝑏 = A𝑂2

2
(𝑠𝑡, 𝑐 i∗, 𝑐d∗

1
, . . . , 𝑐d

∗
𝑛, 𝑘
∗
0
)

Games G3 − G11

pp←$ mSetup() ; 𝑚∗ ←$ M
for 𝑖 ∈ [𝑁 ] do (pk𝑖 , sk𝑖 ) ←$ mKGen(pp)
𝑂𝑖 ← {Cor,Dec𝑖 , Ĝ1, Ĝ2, Ĥ } // G3

𝑂𝑖 ← {Cor,Dec𝑖 , S𝑓 .𝑅𝑂, Ĝ2, Ĥ } // G4-G11

(𝑖∗
1
, . . . , 𝑖∗𝑛, 𝑠𝑡 ) ←$ B𝑂𝑖

1
(pp, (pk𝑖 )𝑖∈[𝑁 ] )

𝑐 i
∗ ← mEnci (pp;G1 (𝑚∗))

for 𝑗 ∈ [𝑛] do 𝑐∗
𝑗
← mEncd (pp, pk𝑖∗

𝑗
,𝑚∗;G1 (𝑚),G2 (pk𝑖∗

𝑗
,𝑚∗))

𝑘∗
0
← Ĥ (𝑚∗), 𝑘∗

1
←$ K

𝑚′ ←$ B𝑂2

2
(𝑠𝑡, 𝑐 i∗, 𝑐∗

1
, . . . , 𝑐∗𝑛, 𝑘

∗
1
)

for 𝑖 ∈ [𝑞𝐷 ] do 𝑚′𝑖 ←$ S𝑓 .𝐸 (𝑐 i(𝑖 ) ) // G4-G5

req 𝑚′
𝑖
= ⊥ ∨𝑚′

𝑖
=𝑚𝑖 // G5

return 𝑚′

Oracle Dec𝑖 ( 𝑗, (𝑐 i, 𝑐1)) // G0 − G3

if 𝑖 = 2 ∧ (𝑐 i, 𝑐d) = (𝑐 i∗, 𝑐d
𝑗

∗) then return ⊥
𝑚 = mDec(sk𝑗 , (𝑐 i, 𝑐1)) ; req 𝑚 ≠ ⊥
𝑟0 ← G1 (𝑚), 𝑟1 ← G2 (pk𝑗 ,𝑚), 𝑘 = H(𝑚) // G0

if 𝑚 =𝑚∗ then 𝑟0 ← G1 (𝑚), 𝑟1 ← G2 (pk𝑗 ,𝑚), 𝑘 = H(𝑚) // G1

else 𝑟0 ← Ĝ1 (𝑚), 𝑟1 ← Ĝ2 (pk𝑗 ,𝑚), 𝑘 = Ĥ (𝑚)

𝑟0 ← Ĝ1 (𝑚), 𝑟1 ← Ĝ2 (pk𝑗 ,𝑚), 𝑘 ← Ĥ (𝑚) // G2-G3

req mEnci (pp, 𝑟0) = 𝑐 i ∧mEncd (pp, pk𝑗 ,𝑚; 𝑟0, 𝑟1) = 𝑐d ∧mEncd (pp, pk𝑗 ,𝑚; 𝑟0, 𝑟1) = 𝑐d
return 𝑘

Oracle Dec𝑖 ( 𝑗, (𝑐 i, 𝑐1)) // 𝑘-th decaps // G4 − G9

if 𝑖 = 2 ∧ (𝑐 i, 𝑐d) = (𝑐 i∗, 𝑐d
𝑗

∗) then return ⊥
𝑚𝑘 = mDec(sk𝑗 , (𝑐 i, 𝑐1))
𝑚′

𝑘
← S𝑓 .𝐸 (𝑐 i) // G9

req 𝑚𝑘 ≠ ⊥
𝑟0 ← S𝑓 .𝑅𝑂 (𝑚𝑘 ), 𝑟1 ← Ĝ2 (pk𝑗 ,𝑚𝑘 )
req mEnci (pp, 𝑟0) = 𝑐 i ∧
mEncd (pp, pk𝑗 ,𝑚𝑘 ; 𝑟0, 𝑟1) = 𝑐d

𝑚′
𝑘
← S𝑓 .𝐸 (𝑐 i) // G6-G8

req 𝑚′
𝑘
= ⊥ ∨𝑚′

𝑘
=𝑚𝑘 // G6-G9

req 𝑚′ ≠ ⊥ // G7-G9
req 𝑐 i = mEnci (pp; S𝑓 .𝑅𝑂 (𝑚′𝑘 )) // G8-G9

return Ĥ (𝑚)
Oracle Dec𝑖 ( 𝑗, (𝑐 i, 𝑐d)) // G10

if 𝑖 = 2 ∧ (𝑐 i, 𝑐d) = (𝑐 i∗, 𝑐d
𝑗

∗) then return ⊥
𝑚 = mDec(sk𝑗 , (𝑐 i, 𝑐1))
𝑚′ ← S𝑓 .𝐸 (𝑐 i)
req 𝑚 =𝑚′ ≠ ⊥
𝑟0 ← S𝑓 .𝑅𝑂 (𝑚′)
𝑟1 ← Ĝ2 (pk𝑗 ,𝑚′)
req 𝑐 i = mEnci (pp; 𝑟0)
req 𝑐d = mEncd (pp, pk𝑗 ,𝑚′; 𝑟0, 𝑟1)

return Ĥ (𝑚′)
Oracle Dec𝑖 ( 𝑗, (𝑐 i, 𝑐d)) // G11

if 𝑖 = 2 ∧ (𝑐 i, 𝑐d) = (𝑐 i∗, 𝑐d
𝑗

∗) then return ⊥

𝑚′ ← S𝑓 .𝐸 (𝑐 i) ; req 𝑚′ ≠ ⊥
𝑟0 ← S𝑓 .𝑅𝑂 (𝑚′)
𝑟1 ← Ĝ2 (pk𝑗 ,𝑚′)
req 𝑐 i = mEnci (pp; 𝑟0)
req𝑐d = mEncd (pp, pk𝑗 ,𝑚′; 𝑟0, 𝑟1)
return Ĥ (𝑚′)

Figure 6: Games G0 to G11 for the proof of Theorem 4.2.

Game G0: This game is identical to themIND-CCA game with 𝑏 =

0, i.e. Exp
mIND-CCA
FO[mPKE,G1,G2,H],𝑁 ,0 (A) = Pr[G0

A = 1] Additionally,
we interpret G1 and G2 as two interfaces of a single random oracle

G with appropriate domain separation.

Game G1: Now, we puncture the random oracles G and H on the

challenge𝑚∗. Formally, we define punctured random oracles Ĝ and

Ĥ as follows. For each𝑚 ≠𝑚∗ and 𝑖 ∈ [𝑁 ]: H(𝑚) = Ĥ (𝑚), G(𝑚) =
Ĝ(𝑚) and G(pk𝑖 ,𝑚) = Ĝ(pk𝑖 ,𝑚). For each other input, the outputs

of Ĝ and Ĥ are random and independent. The adversary still gets

access to the unpunctured G and H. However, we modify the decap-

sulation oracle as follows: Let 𝑟∗ = G1 (𝑚∗), 𝑟∗𝑖 = G2 (pk𝑖 ,𝑚∗) for 𝑖 ∈

[𝑁 ] and 𝑐∗ = (mEnci (pp; 𝑟∗), (mEncd (pp, pk𝑖∗
𝑗
,𝑚∗; 𝑟∗, 𝑟∗

𝑖∗
𝑗

)) 𝑗 ∈[𝑛] ).

Let 𝑟 = Ĝ1 (𝑚∗), 𝑟𝑖 = Ĝ2 (pk𝑖 ,𝑚∗) for 𝑖 ∈ [𝑁 ] and 𝑐 = (mEnci (pp; 𝑟 ),
(mEncd (pp, pk𝑖∗

𝑗
,𝑚∗; 𝑟, 𝑟𝑖∗

𝑗
)) 𝑗 ∈[𝑛] ). Decapsulation oracle now uses

Ĝ and Ĥ on all queries except for parts of 𝑐 .

We argue that the view of the adversary doesn’t change between

the two games unless it queries 𝑐 i
∗
, 𝑐d
∗
𝑗 to the decapsulation oracle

for some 𝑗 ∈ [𝑛] in its first query phase, i.e. before producing the

vector (𝑖∗
1
, . . . , 𝑖∗𝑛). In that case, since G and Ĝ differ on 𝑚∗, the

decapsulation fails, which the adversary can notice. However, in

order to make such a query, A1 would need to guess the message
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𝑚∗, which can only occur with probability 1/|M| as the message

is only chosen afterwards by the game. This is the only way to

distinguish the games. Indeed, note that for all messages except for

the challenge message𝑚∗, nothing changes as the oracles coincide.

For (all parts of) 𝑐∗, the decapsulation oracle won’t answer by

definition in the second phase. For 𝑐 , the oracle will also output ⊥
in both games since the oracle uses the unpunctured oracle for 𝑐 ,

which in turn uses the punctured randomness, so the reencryption

check will fail. Therefore, sinceA makes at most 𝑞𝐷 decapsulation

queries, we have

��
Pr

[
G0
A = 1

]
− Pr

[
G1
A = 1

] �� ≤ 𝑞𝐷/|M| .
Game G2: Finally, in G2 we switch the random oracles of the

adversary to Ĝ and Ĥ . Note that now 𝑐∗ is an encryption of a

random message with randomness independent of the random

oracles accessible by the adversary and 𝑘∗
0
is a uniformly random

key (it is still the output of then random oracle H). Therefore, we
can also switch the key to 𝑘∗

1
.

To bound the difference between the games, we use the original

oneway-to-hiding lemma (Lemma 2.1), which yields

��
Pr

[
G1
A = 1

]
− Pr

[
G2
A = 1

] �� ≤ 2(𝑞𝐻 + 𝑞𝐺 + 2𝑞𝐷 )
√︃
Pr

[
G3
B =𝑚∗

]
, where G3

is identical to G2 except that B simulates A and before a random

query to one of the random oracles Ĝ, Ĥ or the oracle queries made

by a decryption query, B measures said query and outputs the

result.
4
If B intends to measure a query but A makes less queries

or aborts beforehand, B outputs ⊥. Note that this differs from the

approach of [15] in that we let B measure an arbitrary random

oracle query including those in the decapsulation oracle. We don’t

need the additional distinction as done in their games since we

always perform a reencryption check and therefore always perform

the random oracle queries which B might need for extraction.

To get the final advantage in Exp
mIND-CCA
FO[mPKE,G1,G2,H],𝑁 ,1 (A), we

have to revert the changes made before, resulting in the upper

bound 4(𝑞𝐻 +𝑞𝐺 +2𝑞𝐷 )
√︃
Pr

[
G3
B =𝑚∗

]
on the difference between

Exp
mIND-CCA
FO[mPKE,G1,G2,H],𝑁 ,0 (A) and Exp

mIND-CCA
FO[mPKE,G1,G2,H],𝑁 ,1 (A).

Game G4: In this game, we split Ĝ again into Ĝ1 and Ĝ2 and

replace Ĝ1 by the extractable simulator S𝑓 .𝑅𝑂 for the function

𝑓 (𝑚, 𝑟0) := mEnci (pp; 𝑟0) as defined in Definition 2.3. Additionally,

after B outputs its guess𝑚′, we query the extract interface S𝑓 .𝐸
on all recipient-independent parts of encapsulations 𝑐 i ( 𝑗) that were
queried to the decapsulation oracle. Since S simulates a random

oracle perfectly when no extraction queries are made and all ex-

traction queries are made after the execution of B is finished, this

change is undetectable, so Pr

[
G4
B =𝑚∗

]
= Pr

[
G3
B =𝑚∗

]
.

Game G5: Next, we require that the extraction queries at the end

of the game coincide with the decapsulated messages if they suc-

ceed. Specifically, we add the requirement that𝑚′
𝑖
= ⊥ ∨𝑚𝑖 =𝑚′𝑖 .

There are two cases where this assertion can fail: 1)𝑚 ≠ 𝑚′, but
S𝑓 .𝑅𝑂 (𝑚) = S𝑓 .𝑅𝑂 (𝑚′), i.e. there is a collision in the (simulated)

random oracle. We can bound this case using the collision finding

probability proven in [14]. 2)𝑚 ≠𝑚′ and S𝑓 .𝑅𝑂 (𝑚) ≠ S𝑓 .𝑅𝑂 (𝑚′),
but still mEnci (pp;S𝑓 .𝑅𝑂 (𝑚)) = mEnci (pp;S𝑓 .𝑅𝑂 (𝑚′)). We can

bound this case using property 8 of S𝑓 .𝑅𝑂 , where we can bound

Γ′(𝑓 ) ≤ 𝑔pp. With the collision bound for 𝑞 = (𝑞𝐺 + 𝑞𝐷 + 1), we

4
Formally, we reprogram not only on 𝑚∗ but also on all pairs (pk𝑖 ,𝑚∗) , but for
simplicity, we choose the above notation as we can extract𝑚∗ from all these points.

get

��
Pr

[
G4
B =𝑚∗

]
− Pr

[
G5
B =𝑚∗

] �� ≤ 40𝑒2 (𝑞𝐷 + 𝑞𝐺 + 1)3𝑔pp
+ 42𝑒2 (𝑞𝐷+𝑞𝐺+1)

3

2
𝜅 , since the adversary makes at most 𝑞𝐺 queries to

S𝑓 .𝑅𝑂 and 𝑞𝐷 decapsulation queries in addition to the one query

to G1 after B is finished.

Game G6: Now, we move the extraction (and the condition on

the𝑚′
𝑖
s) from the end of the execution to the decapsulation oracle.

Whenever an extraction call and a regular oracle call are swapped,

we apply property 3 of S𝑓 .𝑅𝑂 to bound the distinguishing advan-

tage ofB. Property 3 requires independence of the queries. However,
this is easily satisfied as we only swap extractionswith queriesmade

after the decapsulation where the extraction is performed. There-

fore, all queries to S𝑓 .𝑅𝑂 that are relevant to the ciphertext from

which we extract have to be made before that decapsulation query

and we do not swap with any of these. Since A makes at most 𝑞𝐺
queries to S𝑓 .𝑅𝑂 and there is at most one query in each of the 𝑞𝐷

decapsulation queries, we get

��
Pr

[
G6
B =𝑚∗

]
− Pr

[
G5
B =𝑚∗

] �� ≤
8(𝑞𝐷 + 𝑞𝐺 )

√︃
2
Γ (𝑓 )
2
𝜅 = 8(𝑞𝐷 + 𝑞𝐺 )

√︁
2𝑔pp .

Game G7: In the next game, we abort if the extraction interface

outputs ⊥ in a decapsulation query. However, we perform this

check after the queries to S𝑓 .𝑅𝑂 used for reencryption and the

reencryption check. Since both the RO and extraction query are

classical and subsequent, we can apply property 6 of S𝑓 .𝑅𝑂 𝑞𝐷

times and get

��
Pr

[
G7
B =𝑚∗

]
− Pr

[
G6
B =𝑚∗

] �� ≤ 2𝑞𝐷 · 1

2
𝜅 .

Game G8: In this game, we now require that the extracted message

yields the same recipient-independent ciphertext as the decrypted

message. Since we already require that the extracted messages is

not ⊥ and equal to the decrypted message, this holds trivially, so��
Pr

[
G8
B =𝑚∗

]
= Pr

[
G7
B =𝑚∗

] ��
Game G9: We move the extraction queries in the decapsulation

oracle to before the random oracle queries to compute the reencryp-

tion randomness. Due to the almost commutativity of the extractor

(property 3), we can bound the difference between the two games

by

��
Pr

[
G9
B =𝑚∗

]
− Pr

[
G8
B =𝑚∗

] �� ≤ 8𝑞𝐷 ·
√︁
2𝑔pp .

Game G10: We re-order the 4 consecutive req’s. Re-ordering req’s
can never change the observable behavior of the oracle. In detail:

we anyway check that 𝑚 = 𝑚′ and that they are not bot, so we

can do this at the beginning as well. Now we know that𝑚 = 𝑚′

before the reencryption check, so we can replace all subsequent

occurrences of𝑚 by𝑚′. Pr
[
G10
B =𝑚∗

]
= Pr

[
G9
B =𝑚∗

]
.

Game G11: Finally, in game G11, we don’t need the decrypted mes-

sage𝑚 anymore, so we drop the decryption query (as well as the

equality check𝑚 =𝑚′). This introduces an error, if the adversary

produces a ciphertext 𝑐 i, 𝑐d, which is an honest decryption of𝑚,

but decrypts to another message 𝑚̂. The reason is that our extrac-

tor produces𝑚 and the reencryption succeeds, i.e., an adversary

can distinguish the two games by finding a message causing a

decryption error.

Let 𝑅 be the relation {(𝑚, (𝑟0 = S𝑓 .𝑅𝑂 (𝑚), 𝑟1 = Ĝ2 (𝑚, pk𝑖 )) |
∃𝑖 ∈ [𝑛] : 𝑐 i = mEnci (pp; 𝑟0)∧𝑐d = mEncd (pp, pk𝑖 ,𝑚, 𝑟0, 𝑟1)∧𝑚 ≠

mDec(sk𝑖 , (𝑐 i, 𝑐d)}, i.e. all messages and their randomness for a

given receiver which induce a decryption error when used for

encryption. Since both S𝑓 .𝑅𝑂 and Ĝ2 are random oracles from

the perspective of an adversary (with high probability), we can

use the definition of 𝛿sk𝑖 and the union-bound to see that
Γ𝑅
2
𝜅 ≤
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𝑛 · max

𝑖∈[𝑛]
(𝛿sk𝑖 ). Using property 7 of S𝑓 .𝑅𝑂 for 𝑅 we get the bound��

Pr

[
G11
B =𝑚∗

]
− Pr

[
G10
B =𝑚∗

] �� ≤ 128(𝑞𝐷+𝑞𝐺 )2𝑛·max

𝑖∈[𝑛]
(𝛿sk𝑖 ) .

Finally, the secret keys aren’t needed to compute the decapsula-

tion queries in G11 and the randomness used in 𝑐∗ is independent
of Ĝ1/S𝑓 .𝑅𝑂 and Ĝ2. Therefore, we can use the mOW-CPAcorr

security of mPKE to bound B’s advantage in G11. Concretely, an

adversary B′ against themIND-CPAcorr security of mPKE chooses

a random messages𝑚∗, samples a random key 𝐾∗ and forwards

all keys, its challenge 𝑐∗ and 𝐾∗ to B according to the subset of

keys chosen by B. Corruption queries are forwarded to its own

oracle. Finally, if B outputs 𝑚′, the attacker B′ forwards it. B′
wins themOW-CPAcorr game if and only if B finds the message𝑚∗

for which the oracle was punctured, therefore Pr [G11 ⇒𝑚∗] ≤
Adv

mOW-CPAcorr

mPKE,𝑁 (B′). Combining all probabilities and setting 𝜖1 =

8(𝑞𝐷 + 𝑞𝐺 )
√︁
2𝑔pp, 𝜖2 =

2𝑞𝐷
2
𝜅 , 𝜖3 = 42𝑒2 (𝑞𝐷 + 𝑞𝐺 + 1)3√𝑔pp +

42𝑒2
(𝑞𝐷+𝑞𝐺+1)3

2
𝜅 , 𝜖4 = 8𝑞𝐷 ·

√︁
2𝑔pp and 𝜖5 = 128(𝑞𝐷 + 𝑞𝐺 )2𝑛 ·

max

𝑖∈[𝑛]
(𝛿sk𝑖 ), we get Adv

mIND-CCA
FO[mPKE,G1,G2,H],𝑁 (A) ≤

4(𝑞𝐻 +𝑞𝐺 + 2𝑞𝐷 )
√︃
Adv

mOW-CPAcorr

mPKE,𝑁 (B′) + 𝜖1 + ... + 𝜖5 + 𝑞𝐷
|M | . With

𝑞 = (𝑞𝐻 + 𝑞𝐺 + 2𝑞𝐷 ), using that square root is convex and taking

the expected values, we get the bound in the theorem. □

5 MKEM COMBINER
A KEM combiner is a construction that takes as input two KEMs

and outputs a KEM that is secure as long as at least one of the input

KEMs is secure. The goal of combining KEMs is to derive trust from

multiple assumptions rather than relying on a single one.

KEM combiners are of particular importance in the post-quantum

setting. Here, one typically does not want to rely solely on one of the

relatively new assumptions believed to hold in the post-quantum

world. Therefore, such an assumption is combined with a well

studied classical assumption such as DL.

In this section, we consider mKEM combiners which are analo-

gous to KEM combiners but in the multi-recipient setting.

Challenges in the multi-recipient setting. Simple and efficient

KEM combiners are known in the single-recipient setting. For ex-

ample, a combiner for IND-CCA secure KEMs [20] simply runs the

two KEMs in parallel. Say the first KEM encapsulates a key 𝑘1 in a

ciphertext 𝑐1, and the second KEM encapsulates 𝑘2 in 𝑐2. The key

encapsulated by the combined scheme is H(𝑘1, 𝑘2, 𝑐1, 𝑐2), where H
is a hash function modeled as a random oracle.

Including the entire content of both ciphertexts in the hash is cru-

cial for IND-CCA security of the combined scheme. This is demon-

strated by a simple attack: Say we compute the key as H(𝑘1, 𝑘2) and
the decapsulation of the insecure second KEM outputs 𝑘2 = 0 on

any ciphertext 𝑐2. In this case, nomatter how secure is the first KEM,

an IND-CCA adversary can decapsulate the challenge ciphertext

(𝑐1, 𝑐2) by sending (𝑐1, 𝑐 ′
2
) for 𝑐 ′

2
≠ 𝑐2 to the decapsulation oracle.

This indicates that combiners for IND-CCA secure KEMs should

mix the ciphertexts into the encapsulated key in some way. Indeed,

this is the case for all constructions we are aware of. However, this

is a showstopper for mKEMs, where each recipient should derive

the same key using a different individual ciphertext.

Algorithm Comb[mKEM1,mKEM2, PRF]

mSetup()
return (mKEM1.mSetup(),mKEM2.mSetup())

mKGen( (pp1, pp2))
(pk1, sk1) ← mKEM1.mKGen(pp1)
(pk2, sk2) ← mKEM2.mKGen(pp2)
return ( (pk1, pk2), (sk1, sk2))

mExt( (pp1, pp2), (𝐶1,𝐶2), 𝑖)
return (mKEM1.mExt(pp1,𝐶1, 𝑖),mKEM2.mExt(pp2,𝐶2, 𝑖))

mEnc( (pp1, pp2), (pk11, pk21), . . . , (pk1𝑛, pk2𝑛))
(𝐶1, 𝑘1) ← mKEM1.mEnc(pp1, (pk1𝑖 )𝑖∈[𝑛] )
(𝐶2, 𝑘2) ← mKEM2.mEnc(pp2, (pk2𝑖 )𝑖∈[𝑛] )
return (𝐶 = (𝐶1,𝐶2), 𝑘 = PRF(𝑘1, 𝑘2))

mDec( (pp1, pp2), (𝑐1, 𝑐2), (sk1, sk2))
𝑘1← mKEM1.mDec(pp1, 𝑐1, sk1)
𝑘2← mKEM2.mDec(pp2, 𝑐2, sk2)
if 𝑘1 = ⊥ ∨ 𝑘2 = ⊥ then return ⊥
else return 𝑘 = PRF(𝑘1, 𝑘2)

Figure 7: mKEM combiner that executes mKEM1 and mKEM2

in parallel and computes the key as PRF(𝑘1, 𝑘2), where 𝑘1 and
𝑘2 come from mKEM1 and mKEM2, respectively.

Note that even if there is a “header” ℎ included in all individ-

ual ciphertexts (e.g. the 𝑐0 in [25] or the commitment tag 𝑇 in

[22]), an mKEM combiner which computes the encpsulated key

as 𝐻 (𝑘1, 𝑘2, ℎ1, ℎ2) does not work. The reason is that the simple

attack above still works – the adversary wins by computing an indi-

vidual ciphertext ((ℎ1, 𝑐1), (ℎ2, 𝑐2)) (where 𝑐1, 𝑐2 are the individual
parts) from the challenge multi-recipient ciphertext 𝐶 and sending

((ℎ1, 𝑐1), (ℎ2, 𝑐 ′
2
)) to the decryption oracle.

The construction. Since the standard combiners are incompati-

ble with mKEMs, we consider instead the simplest combiner pos-

sible which runs the two mKEMs in parallel and computes the

encapsulated key as PRF(𝑘1, 𝑘2). Here, PRF is a dual PRF [7], i.e.

both PRF(𝑘, 𝑥) and PRF′(𝑘, 𝑥) = PRF(𝑥, 𝑘) have the PRF security
property. For example, a random oracle is a dual PRF. Simple and

post-quantum dual PRFs are also known in the standard model. We

provide the pseudocode of the combiner in Fig. 7.

Since our combiner does not include ciphertexts in the encap-

sulated key, it is not true that its IND-CCA security is implied by

IND-CCA security of at least one input mKEM. The reason is that it

is vulnerable to the same attack as the one we described in the previ-

ous paragraph for single-recipient KEMs. Therefore, in this section

we propose two different security statements for our combiner.

5.1 The First Statement: More Direct Guarantees
The first idea is to replace IND-CCA with the slightly weaker no-

tion of replayable CCA, IND-RCCA. Roughly, the difference is that

IND-RCCA does not consider it an attack if it is possible to, given a

ciphertext, come up with a different ciphertext as long as it encap-

sulates the same key.
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Intuitively, while IND-CCA requires that a scheme protects the
ciphertext string, IND-RCCA requires that it protects the ciphertext
content. Since in most use-cases all one cares about is the latter,

IND-RCCA is often a more suited notion. Indeed, IND-RCCA is

sufficient for secure communication [12] and continuous group key

agreement, a component of group messaging [3].

We notice that the attack described at the beginning of this

section breaks IND-CCA but not IND-RCCA. Indeed, we prove in

the full version [4]. that the combined scheme is IND-RCCA secure

if at least one of the input mKEMs is IND-RCCA secure.

Theorem 5.1. Define mKEM = Comb[mKEM1,mKEM2, PRF],
where mKEM1 and mKEM2 are some mKEM schemes and PRF is a
PRF, be defined as in Fig. 7. Let dual(PRF) denote the PRF obtained by
swapping the input and key of PRF, i.e., swp(PRF) (𝑘, 𝑥) = PRF(𝑥, 𝑘).
For any 𝑁 ∈ N and for any (classical or quantum) adversaryA, there
exist (classical or quantum) adversaries B1, B2, B′

1
, B′

2
s.t.

Adv
mIND-RCCA
mKEM,𝑁 (A) ≤ 2 · AdvmIND-RCCA

mKEM1,𝑁 (B1) + AdvPRFPRF (B2) and

Adv
mIND-RCCA
mKEM,𝑁 (A) ≤ 2 · AdvmIND-RCCA

mKEM2,𝑁 (B′
1
) + AdvPRF

swp(PRF) (B
′
2
).

Additionally, if mKEM1 is 𝛿1-correct and mKEM2 is 𝛿2-correct, then
mKEM is (𝛿1 + 𝛿2)-correct.

5.2 Second Statement: Stronger Assumptions
The second idea is to prove that the combined scheme is IND-CCA

secure if one of the input mKEMs is IND-CCA secure and the other

insecure mKEM has a weak property called collision resistance.

Roughly, collision resistance requires that, even given a secret

key, it is hard to come up with two ciphertexts that decapsulate to

the same (non ⊥) key. It turns out that most known mKEMs already

are collision resistant (against classical/quantum adversaries), as-

suming only collision resistance of their underlying components,

such as hash functions (against classical/quantum adversaries). We

give examples in the next subsection.

Definition 5.2. The advantage AdvCRmKEM (A) of an adversary A
against collision resistance of mKEM = (mSetup,mKGen,mEnc,
mExt,mDec) is defined as

Pr

 𝑐 ≠ 𝑐
′ ∧mDec(pp, sk, 𝑐) =

mDec(pp, sk, 𝑐 ′) ≠ ⊥

������ pp← mSetup(),
(pk, sk) ← mKGen(pp),
(𝑐, 𝑐 ′) ← A(pp, pk, sk)

 .
In the full version [4] we prove the following.

Theorem 5.3. Define mKEM = Comb[mKEM1,mKEM2, PRF],
where mKEM1 and mKEM2 are mKEM schemes and PRF is a PRF,
be defined as in Fig. 7. Let dual(PRF) denote the PRF obtained by
swapping the input and key of PRF, i.e., swp(PRF) (𝑘, 𝑥) = PRF(𝑥, 𝑘).
For any 𝑁 ∈ N and for any (classical or quantum) adversaryA, there
exist (classical or quantum) adversaries B1 to B3 and B′

1
to B′

3
s.t.

Adv
mIND-CCA
mKEM,𝑁 (A) ≤ 2 · AdvmIND-CCA

mKEM1,𝑁 (B1) + Adv
PRF
PRF (B2)

+ 2𝑁 · AdvCRmKEM2
(B3) and

Adv
mIND-CCA
mKEM,𝑁 (A) ≤ 2 · AdvmIND-CCA

mKEM2,𝑁 (B
′
1
) + AdvPRF

swp(PRF) (B
′
2
)

+ 2𝑁 · AdvCRmKEM1
(B′

3
) .

Additionally, if mKEM1 is 𝛿1-correct and mKEM2 is 𝛿2-correct, then
mKEM is (𝛿1 + 𝛿2)-correct.

Algorithm DH-mKEM[𝐺,𝑔, 𝑝,H,DEM]

mSetup()
return ⊥

mKGen()
𝑥 ←$ Z𝑝

return (𝑔𝑥 , 𝑥)
mExt( (𝑌, 𝑐1, . . . , 𝑐𝑛), 𝑖)
req 𝑖 ∈ [𝑛]
return (𝑌, 𝑐𝑖 )

mEnc(𝑋1, . . . , 𝑋𝑛)
𝑚 ←$ {0, 1}𝜅 ; 𝑦 ←$ Z𝑝

for 𝑖 ∈ [𝑛] do
𝑘dem
𝑖
← H(’dh-key’, (𝑋𝑖 )𝑦, 𝑔𝑦, 𝑖)

𝑐𝑡𝑥𝑖 ← DEM.E(𝑘dem
𝑖

,𝑚)
𝐾 ← H(’output-key’,𝑚,𝑔𝑦 )
return (𝐶 = (𝑔𝑦, 𝑐𝑡𝑥1, . . . , 𝑐𝑡𝑥𝑛), 𝐾)

mDec(𝑐 = (𝑌, 𝑐𝑡𝑥), 𝑥)
𝑘dem ← H(’dh-key’, (𝑌 )𝑥 , 𝑌 )
𝑚 ← DEM.D(𝑘dem, 𝑐𝑡𝑥)
req 𝑚 ≠ ⊥
return H(’output-key’,𝑚,𝑌 )

Figure 8: Collision-resistant mKEM based on DH.

5.3 Collision-Resistant mKEMs
From the FO transform. We show that any mKEM obtained us-

ing the FO transform is collision resistant assuming only collision

resistance of the hash function used by the FO to derive the output

key. This means that all post-quantum secure mKEMs from [25]

are collision-resistant. The formal claim follows with the proof in

the full version [4].

Theorem 5.4. Let mKEM = FO[mPKE,H,G1,G2] for an mPKE
scheme mPKE and hash functions H, G1 and G2. For any (classi-
cal or quantum) adversary A, there exists a (classical or quantum)
adversary B s.t AdvCRmKEM (A) ≤ Adv

CR
H (B) .

From Diffie-Hellman. Further, we consider the mKEM obtained

by encrypting the same random key to all recipients using the

Diffie-Hellman based mPKE [26, 32]. Roughly, the mPKE encrypts

a message to all recipients using the ElGamal encryption and a

DEM (a construction also known as the DHIES). The efficiency gain

comes from the fact that the same randomness for the ElGamal

ciphertext can be used for all recipients. To get mKEM, we encrypt

a random message𝑚 and compute the key as a hash of (𝑚,𝑌 ) (with
an appropriate label for domain separation), where𝑌 is the ElGamal

randomness. Including 𝑌 is crucial for collision resistance.
5
The

pseudocode of the construction is in Fig. 8.

Collision resistance of the DH-based mKEM relies on the colli-

sion resistance of H and the DEM scheme. The latter roughly means

that the DEM’s decryption function is collision resistant. Formally,

Definition 5.5. The advantage of an adversaryA against collision
resistance of DEM = (E,D) is defined as

Adv
CR
DEM (A) = Pr

[
𝑐 ≠ 𝑐 ′ ∧

D(𝑘, 𝑐) = D(𝑘, 𝑐 ′) ≠ ⊥

���� (𝑘, 𝑐, 𝑐 ′) ← A() ]
.

A collision resistant DEM can be constructed from any determin-

istic DEM (note that security of our mKEM construction requires

only one-time security of the DEM, so it can be deterministic). In

particular, let DEM be deterministic. To get a collision-resistant

5
Without this, the adversary can easily create a collision by encrypting the same

message𝑚 with two different randomness values 𝑦 and 𝑦′.
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Algorithm BB-mmPKE[mKEM,DEM]

mmSetup()
return mKEM.mSetup()

mDec(pp, (𝑐, 𝑐𝑡𝑥), sk)
𝑘 ← mKEM.mDec(pp, 𝑐, sk)
req 𝑘 ≠ ⊥
return DEM.D(𝑘, 𝑐𝑡𝑥)

mmKGen(pp)
return mKEM.mKGen(pp)

mExt(pp, ®𝑐𝑡𝑥, 𝑖)
for (𝐶, 𝑐𝑡𝑥, 𝑗) ∈ ®𝑐𝑡𝑥 do

if 𝑖 < 𝑗 then
𝑐 ←
mKEM.mExt(pp,𝐶, 𝑗 − 𝑖)
return (𝑐, 𝑐𝑡𝑥)

return ⊥
mmEnc(pp, pk

1
, . . . , pk𝑛,𝑚1, . . . ,𝑚𝑛)

𝑖 ← 1; ®𝑐𝑡𝑥 ← ()
while 𝑖 ≤ 𝑛 do

𝑗 ← 𝑖

while 𝑗 ≤ 𝑛 ∧𝑚𝑖 =𝑚 𝑗 do 𝑗++
(𝐶,𝑘) ← mKEM.mEnc(pp, (pk𝑖 , . . . , pk𝑗−1))
®𝑐𝑡𝑥 +← (𝐶,DEM.E(𝑘,𝑚𝑖 ), 𝑗)
𝑖 ← 𝑗

return ®𝑐𝑡𝑥

Figure 9: The construction of mmPKE from mKEM and DEM.

DEM, we add an extra check at the end of DEM’s decryption algo-

rithm: we re-encrypt the message and output⊥ if the re-encryption

does not match the original ciphertext.

In the full version [4] we show that the DH-based mKEM is

collision resistance both in the classical and quantum settings.

6 TWO MMPKE CONSTRUCTIONS
Finally, we describe how to combine an mKEM and a DEM to built

secure mmPKE. Our results hold for both classical and quantum

adversaries. Additionally, we present a construction optimized for

very short messages (i.e. messages as long as blocks of the DEM),

which can be useful in applications such as Secure GroupMessaging

(SGM). Both constructions leak individual message length as well

as whether two consecutive messages in the message vector are

identical. Note that this leakage is sufficient for applications such as

group messaging [3]. We compare the two constructions for short

messages in the full version [4].

For simplicity, the constructions in this section collect all consec-

utive occurrences of a message in the encrypted vector, and not all

occurrences overall. Therefore they are more efficient, if the input

vectors are sorted.

6.1 Generic Construction from mKEM
The proof of the following theorem is in the full version [4].

Theorem 6.1. Let mKEM and DEM be an mKEM and a DEM
schemes, let mmPKE = BB-mmPKE[mKEM,DEM] be defined as in
Fig. 9, and let leak( ®𝑚) B ({𝑖 : ®𝑚[𝑖] = ®𝑚[𝑖 + 1]}, | ®𝑚[1] |, . . . , | ®𝑚[𝑛] |).
For any integer 𝑁 and for any (classical or quantum) adversary A,

Algorithm Opt-mmPKE[mKEM,DEM,𝐺, 𝑔, 𝑝,H]

mmSetup()
return mKEM.mSetup()

mmKGen(pp)
𝑥 ←$ Z𝑝

(pk, sk) ← mKEM.mKGen(pp)
return ( (𝑔𝑥 , pk), (𝑥, sk))

mmExt(pp, ( ®𝐶, 𝑐𝑡𝑥1, . . . , 𝑐𝑡𝑥𝑛, 𝑌 ), 𝑖)

for (𝐶, 𝑗) ∈ ®𝐶 do
if 𝑖 < 𝑗 then

𝑐 ← mKEM.mExt(pp,𝐶, 𝑗 − 𝑖)
req 𝑐 ≠ ⊥ ; return (𝑐, 𝑐𝑡𝑥𝑖 , 𝑌 , 𝑖)

return ⊥
mmEnc(pp, (𝑋1, pk1), . . . , (𝑋𝑛, pk𝑛),𝑚1, . . . ,𝑚𝑛)

𝑦 ←$ Z𝑝 ; (𝑖, ®𝐶) ← (1, ())
while 𝑖 ≤ 𝑛 do

𝑗 ← max{ 𝑗 :𝑚𝑖 =𝑚 𝑗 }
(𝐶,𝑘mkem) ← mKEM.mEnc(pp, pk𝑖 , . . . , pk𝑗−1)
®𝐶 +← (𝐶, 𝑗)
for 𝑗 ′ ∈ [𝑖, 𝑗 − 1] do

𝑘dh, 𝑗′ ← H( (𝑋 𝑗′ )𝑦, 𝑋 𝑗′ , 𝑗
′)

𝑐𝑡𝑥 𝑗′ ← DEM.E(G(𝑘dh, 𝑗′ , 𝑘mkem),𝑚𝑖 )
𝑖 ← 𝑗

return ( ®𝐶,𝑐𝑡𝑥1, . . . , 𝑐𝑡𝑥𝑛, 𝑔𝑦 )

mmDec(pp, (𝑐, 𝑐𝑡𝑥,𝑌 , 𝑗), (𝑥, sk))
𝑘mkem ← mKEM.mDec(pp, 𝑐, sk)
req 𝑘mkem ≠ ⊥ ; return DEM.D(G(𝑘mkem,H(𝑌𝑥 , 𝑔𝑥 , 𝑗)), 𝑐𝑡𝑥)

Figure 10: The optimized construction of mmPKE. H and G
are hash functions modeled as random oracles.

there exist (classical or quantum) adversaries B1- B4 s.t.

Adv
mmIND-CCA
mmPKE,𝑁 ,leak (A) ≤ 2𝑛 · AdvmIND-CCA

mKEM,𝑁 (B1)

+ 𝑛 · AdvOT-IND-CCADEM (B2) and

Adv
mmIND-RCCA
mmPKE,𝑁 ,leak (A) ≤ 2𝑛 · AdvmIND-RCCA

mKEM,𝑁 (B3)

+ 𝑛 · AdvOT-IND-RCCADEM (B4),
where 𝑛 is (an upper bound on) the number of recipients of the chal-
lenge vector. Additionally, if mKEM is 𝛿1-correct and DEM is 𝛿2-
correct, then mmPKE is 𝛿-correct with 𝛿 (𝑛) ≤ 𝑛(𝛿1 (𝑛) + 𝛿2 (𝑛)).

6.2 An Optimized Construction
For longmessages, themKEM/DEM approach as used in our generic

construction is very efficient. However, if messages are as short as

the blocksize of the DEM, then we can optimize the construction by

directly encrypting all messages in the DEM instead of encrypting

keys and then including separate encryptions for each message.

Specifically, we instantiate the classically secure mKEM with an

mmPKE based on the Hashed ElGamal encryption scheme (also

called DHIES in e.g. [1]) from [32] together with a post-quantum

secure mKEM. The resulting mmPKE is described in Fig. 10.

In our construction in Fig. 10 the DEM key 𝑘 𝑗 is computed as

H((𝑋 𝑗 )𝑦, 𝑋 𝑗 , 𝑗). Including 𝑋 𝑗 enables a tighter reduction to DSDH.
Including 𝑗 is necessary to assume only one-time security of DEM
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(which means that it can be deterministic). Indeed, consider our

scheme modified so that 𝑗 is not hashed. Now if a public key 𝑋 𝑗
is a receiver of two messages ®𝑚[𝑖] and ®𝑚[𝑖 ′] in one vector, then

the DEM keys for ®𝑚[𝑖] and ®𝑚[𝑖 ′] are the same, which requires

multi-message security.

In the full version [4] we prove the following theorem.

Theorem 6.2. Let mKEM, DEM and H be an mKEM, a DEM
and a hash function. Let G be a group of order 𝑝 , generated by 𝑔.
Further, let mmPKE = Opt-mmPKE[mKEM,DEM,G, 𝑔, 𝑝,H] be de-
fined as in Fig. 10. Moreover, let leak( ®𝑚) B ({𝑖 : ®𝑚[𝑖] = ®𝑚[𝑖 + 1]},
| ®𝑚[1] |, . . . , | ®𝑚[𝑛] |). For any integer 𝑁 , for any (classical or quantum)
adversary A, there is (classical or quantum) adversaries B1 to B5 s.t.

Adv
mmIND-CCA
mmPKE,𝑁 ,leak (A) ≤ 2𝑛 · AdvmIND-CCA

mKEM,𝑁 (B1) + D + 2 ·
𝑞2
ℎ

2
𝜅
,

Adv
mmIND-RCCA
mmPKE,𝑁 ,leak (A) ≤ 2𝑛 · AdvmIND-RCCA

mKEM,𝑁 (B2) + D,

Adv
mmIND-CCA
mmPKE,𝑁 ,leak (A) ≤ 2𝑛 · EG + D + 2𝑛 · AdvCRmKEM (B3) and

Adv
mmIND-RCCA
mmPKE,𝑁 ,leak (A) ≤ 2𝑛 · EG + D,

where EG =

(
𝑒2𝑞𝑐 · AdvDSDH𝐺,𝑔,𝑝

(B4) +
𝑞𝑑

1
+2𝑞ℎ
𝑝

)
, the hash functions H

and 𝐺 are modeled as random oracles, D = 𝑛 · AdvIND-RCCADEM (B5), 𝑒
is the Euler number, 𝑛 is (an upper bound on) the number of recipients
of the challenge vector, and 𝑞𝑐 , 𝑞𝑑1 and 𝑞ℎ are (upper bounds on) the
number of queries to the oracle Cor, the oracle Dec1 and the random
oracle, respectively. Additionally, if mPKE is 𝛿1 correct and DEM is
𝛿2-correct, then mmPKE is 𝛿-correct with 𝛿 (𝑛) ≤ 𝑛(𝛿1 (𝑛) + 𝛿2 (𝑛)).

7 IMPLEMENTATION AND BENCHMARKS
In order to evaluate the computational performance of the construc-

tions proposed in this paper, we implement the core underlying

primitive, the mIND-CCA-secure mKEM based on the NIST PQC

finalist Kyber. More specifically, we adapt the code optimized for

64-bit Intel platforms featuring the AVX2 vector instruction set by

the Kyber submission team
6
.

Benchmarks. We benchmark our Kyber-based mKEM implemen-

tation on a single core of Intel Core i7-4770K (Haswell) CPU with

HT and TurboBoost turned off. All code is compiled with clang-

11.0.1 and optimization flags -mavx2 -mbmi2 -maes -mpopcnt
-march=native -mtune=native -O3 -fomit-frame-pointer.We

report median cycle counts for key generation and decapsulation of

a single user over 1000 experiments. For encapsulation, we report

median cycle counts over 1000 experiments for each size of the set

of recipients. We compare the mKEM cycle counts to a naive solu-

tion that encapsulates to each user individually with unmodified

Kyber. For these benchmarks of Kyber we again report median cy-

cle counts for a single key generation and decapsulation over 1000

experiments. For encapsulation we benchmark a single-recipient

encapsulation operation and multiply this cycle count by the num-

ber of recipients. Results in terms of sizes (at NIST security level

5) are presented in Table 1; results in terms of clock cycles of an

optimized implementation in Table 2. Results for lower security

levels and (for completeness) of the reference implementation are

listed in the full version [4].

6
See https://github.com/pq-crystals/kyber/tree/master/avx2

𝑛 Kyber mKEM 𝑛× Kyber

1 pk: 1568 1568

ct: 3137 1568

2 pk: 3136 3136

ct: 3458 3136

10 pk: 15680 15680

ct: 6026 15680

100 pk: 156800 156800

ct: 34916 156800

1000 pk: 1568000 1568000

ct: 323816 1568000

Table 1: Sizes in bytes for Kyber mKEM and naive 𝑛× applica-
tion of Kyber at NIST security level 5 (Kyber1024)

𝑛 Kyber mKEM 𝑛× Kyber

gen: 76988 63040

dec: 135896 66176

1 enc: 104260 81560

2 enc: 147316 163120

10 enc: 506716 815600

100 enc: 4931444 8156000

1000 enc: 48756832 81560000

Table 2: Intel Haswell cycle counts for AVX2-optimized im-
plementations of Kyber1024 mKEM and naive 𝑛× application
of Kyber1024

Note that our comparison is not exactly comparing apples to

apples for two reasons: First, the optimized mKEM approach makes

sure that all participants have the same shared key, while with the

naive solution is an mmKEM, i.e., the encapsulating party has indi-

vidual keys shared with each of the other participants. If the former

is required, the naive approach would need to use the individual

shared keys to encrypt and authenticate the joint group key. Sec-

ond, when reporting the public-key size for the mKEM solution we

omit the 32 bytes for the public seed needed to derive the matrix A,
while in unmodified Kyber these 32 bytes are part of the public key.

One could decide to save those 32 bytes also in Kyber and handle

the seed on application level like for the mKEM.

As expected, the cycle counts for key generation and decapsula-

tion increase because of the additional effort required to achieve

adaptive security. However, we see that already for rather small

sets of recipients the cycle counts of encapsulation decrease signifi-

cantly. This is because the most expensive operation of computing

the first ciphertext component is amortized across recipients. Even

more importantly, we see a massive decrease in ciphertext size

reaching a factor of about 4.8 at security level 5 for 1000 recipients.
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