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ABSTRACT
Wepresent ProvG-Searcher, a novel approach for detecting known
APT behaviors within system security logs. Our approach lever-
ages provenance graphs, a comprehensive graph representation of
event logs, to capture and depict data provenance relations by map-
ping system entities as nodes and their interactions as edges. We
formulate the task of searching provenance graphs as a subgraph
matching problem and employ a graph representation learning
method. The central component of our search methodology in-
volves embedding of subgraphs in a vector space where subgraph
relationships can be directly evaluated. We achieve this through
the use of order embeddings that simplify subgraph matching to
straightforward comparisons between a query and precomputed
subgraph representations. To address challenges posed by the size
and complexity of provenance graphs, we propose a graph parti-
tioning scheme and a behavior-preserving graph reduction method.
Overall, our technique offers significant computational efficiency,
allowing most of the search computation to be performed offline
while incorporating a lightweight comparison step during query ex-
ecution. Experimental results on standard datasets demonstrate that
ProvG-Searcher achieves superior performance, with an accuracy
exceeding 99% in detecting query behaviors and a false positive
rate of approximately 0.02%, outperforming other approaches.
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1 INTRODUCTION
Causality analysis and provenance graphs have emerged as cru-
cial tools for understanding and mitigating risks associated with
cyber attacks targeting computer systems. A provenance graph is a
holistic representation of kernel audit logs, describing interactions
between system entities [55, 56]. By interconnecting isolated sys-
tem events, provenance graphs offer two indispensable capabilities
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for security analysis. First, they facilitate identifying causal rela-
tionships and tracing data lineage, thereby providing an enriched
context for discerning the nature of system events. Second, they
enable the application of advanced graph algorithms in audit log
analysis. Consequently, provenance graph analysis has been exten-
sively employed in the detection of anomalous system activities
[14, 21, 41, 43, 51, 71, 73, 85]; root-cause analysis and forensic track-
ing [15, 25, 29, 34, 45]; attack story generation [1, 27, 28, 58]; and
supporting alert validation and investigation [23, 24, 54, 77].

Another domain that can greatly benefit from using provenance
graphs is the efficient search for known attack behaviors within
vast repositories of historical system logs. This is an under-studied
problem with crucial implications for the practice of threat hunt-
ing. Due to the increasing complexity and volume of cyber attacks,
relying solely on detection tools available within organizations
is no longer feasible for in-house security teams. Consequently,
threat hunters must continuously scan descriptions of new threat
behaviors provided by threat intelligence sources and operate un-
der the assumption that the same attackers may also bypass their
organization’s security controls.

Consider a scenario where a threat hunter discovers news of a
new attack targeting an organization operating in the same industry
as theirs. In this case, the appropriate course of action is to hypoth-
esize that the attackers may have already infiltrated their systems
and to search for traces of an ongoing intrusion in their system logs.
In the context of provenance analysis, this necessitates converting
an externally observed threat behavior into a query that can be
searched within system-level provenance graphs [53, 61, 74, 87].
This problem setting can indeed be viewed as an instance of the
graph entailment (subgraph matching) problem. To better illustrate
our use case, we present an example scenario in Fig. 1. The scenario
involves a threat intelligence report [67], which describes how an
adversary compromises a nginxweb server by downloading a mali-
cious payload and executing to gain root privileges. A threat hunter
leverages this information to create a query graph G𝑄 , where each
type of system entity is represented with a distinct shape and color.
The objective is to search the extensive system-level provenance
graph G and identify nodes that match the query graph in terms
of both color and connection pattern. In this example, the larger
subgraph shows where such an alignment is possible, and G𝑄 can
be confirmed as a subgraph of G, enabling the threat hunter to infer
that the described threat behavior is present within that system.

In this work, we propose a solution to this problem and develop
a system named ProvG-Searcher, which can efficiently and ac-
curately identify matching subgraphs within a large provenance
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Figure 1: Illustration of the search for threat behaviors in
the system-level provenance graph as a subgraph matching
problem. G𝑄 represents the query graph generated from the
described interactions in a threat intelligence text, and G
displays part of the system-level provenance graph centered
around the process that executed the malicious code. Match-
ing nodes are colored with the same colors, while unrelated
nodes are uncolored or omitted for clarity.

graph corresponding to a given query graph.The subgraph match-
ing problem involves determining whether a query graph is iso-
morphic to a subgraph of a larger graph both structurally and in
its key features. This is a fundamental problem in graph analysis
with significant practical implications across a broad range of ap-
plication domains. However, exact subgraph matching is known
to be NP-complete1. Thus, exact methods based on combinatorial
approaches are unable to solve large-scale instances. To perform
subgraph matching within a reasonable time frame, several ap-
proximate solutions have been proposed. Earlier inexact subgraph
matching methods typically relied on heuristics to discern better
alignment of nodes [42, 44] or translated the discrete optimization
problem into a continuous one [48, 65, 66]. Recently, graph neu-
ral networks (GNNs) have achieved significant success in graph
representation learning [8]2. This led to the development of sev-
eral learning-based methods for approximate subgraph matching
with superior performance [5, 37, 40, 46, 60]. At the core of these
methods is the learning of an embedding function that maps each
graph into an embedding vector encapsulating its key features. The
subgraph relation between two graph embeddings is then evaluated
in this continuous vector space.

In the realm of provenance graph analysis, approximate sub-
graph matching methods encounter distinct challenges absent in
other domains where they have been successfully implemented
[12, 75, 79]. (The characteristics of graph datasets used in this work
are presented in Table 5 of Appendix Sec. A.) Provenance graphs are
characterized by a large number of nodes and edges, as well as a high
average node degree, due to the diverse activities inherent within
a typical computing system. This results in a considerable com-
putational burden when searching behaviors and learning graph

1https://en.wikipedia.org/wiki/Subgraph_isomorphism_problem
2In the cybersecurity context, graph representation learning has already demonstrated
notable advancements and widespread application, particularly in the domain of
vulnerability detection [7, 13].

relationships. Moreover, the coarse-grained nature of logs hinders
precise tracking of information and control flows among system
entities, leading to erroneous connections between nodes. These
factors render search methods based on node alignment between
graphs largely impractical. Applying learning-basedmethods, based
on GNNs, to large graphs introduces further complications. GNNs
carry out computation through a series of message-passing iter-
ations, during which nodes gather data from neighboring nodes
to update their own information. The updated information of all
nodes is then pooled together to create a graph-level representation.
In this context, increasing the model depth beyond a few layers
(i.e., the number of iterations) to more effectively capture relation-
ships results in an exponential expansion of a GNN’s receptive
field, which consequently leads to diminished expressivity due to
oversmoothing [47, 82].

To improve the efficiency of provenance graph analysis, several
methods have been proposed for simplifying provenance graphs,
including entity pruning [1, 23, 39, 81], removal of redundant se-
mantics [14, 29, 52, 81, 86], behavior abstraction [22, 80, 84] and
dependence explosion mitigation [26, 28, 38, 49]. These data reduc-
tion methods primarily focus on identifying anomalous interactions
and preserving forensic tractability. Nevertheless, they often do not
meet the objective of preserving sufficient integrity to support the
search for more general graph patterns.

Previous Hypothesis-Driven Threat Hunting Techniques
and Limitations: Enhancing threat hunting capabilities necessi-
tates tackling two distinct challenges: effective search and query
generation. Milajerdi et al. [53] focused on the search aspect by
proposing a non-learning-based method, called Poirot, to facilitate
the search of provenance graphs using known APT attack behav-
iors as query graphs. To reduce search complexity, they adopted a
heuristic that assumes an attacker’s limited ability to exploit multi-
ple vulnerabilities, allowing them to exclude graph paths without
attack nodes. A significant drawback of this approach is that the
entire search computation must be performed at the query time.
In situations where the nodes of the query graph are commonly
present in the target provenance graph, the search must consider
numerous potential alignments, which may result in covering a
large portion of the graph with each query.

In a similar vein, Wei et al. proposed DeepHunter in [74], a
learning-based subgraph matching technique that leverages Neu-
ral Tensor Networks (NTN) to model the subgraph relationship
between two graph-level embeddings and to calculate a matching
score. Their method identifies subgraphs surrounding indicators
of compromise (IoCs) related to the query, effectively using the
query as a filter to reduce the provenance graph. A match is deter-
mined by exhaustively comparing embedding similarities through
NTN’s pairwise comparisons between the query embedding and
sampled subgraph embeddings. The efficiency of this method de-
clines due to its dependency on the query, particularly as the size
of the provenance graph increases.

The other aspect of hypothesis-driven threat hunting involves
creating queries that correspond to specific behaviors to be inves-
tigated. In contrast to the methods used in studies [53, 74], which
relied on manually generated query graphs from incident reports,
Zong et al. [87] tackled this as a query discovery problem. They
developed a discriminative subgraph pattern mining technique to
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generate query templates automatically. Alternatively, Satvat et al.
[61] employed a natural language processing pipeline to identify
relationships between system entities in threat intelligence reports,
ultimately extracting query graphs using this information. We fo-
cus on the first aspect of the problem, assuming that queries are
already available.

Approach Overview and Summary of Contributions: The
design of ProvG-Searcher3 addresses the challenge of efficiently
processing numerous queries within extensive provenance graph
repositories. As a departure from earlier proposed hypothesis-
driven threat hunting methods, our technique leverages a graph
representation learning approach that enable the bulk of search
computation to be conducted offline, accompanied by a lightweight
comparison step performed during query time. To effectively learn
the diverse range of relations in a provenance graph and mitigate
the complexities introduced by its size, we conduct a process-centric
partitioning of provenance graphs. Additionally, we implement a
behavior-preserving graph reduction method, which incorporates
graph versioning to integrate timing information. The central com-
ponent of our search methodology is the embedding of subgraphs
in a vector space, where subgraph relationships can be directly
evaluated. To achieve this, we employ order embeddings, which
allow learning hierarchical entity representations while maintain-
ing the hierarchical structure through the coordinate-wise ordering
of these representations in the embedding space. Consequently,
ProvG-Searcher reduces subgraph matching to simple compar-
isons between query and precomputed subgraph embeddings. This
approach eliminates the necessity for exhaustive computation of
all pairwise interactions between query and target subgraph em-
beddings. Overall, our study offers significant contributions in the
following areas:
• A graph simplification strategy that preserves the diverse
range of behaviors present in a provenance graph, thereby
fostering effective learning and search capabilities.
• The use of order embeddings to facilitate the efficient evalu-
ation of subgraph relationships in the embedding space.
• A versatile search methodology that is not exclusively biased
towards attack behavior but can be generalized to identify
any type of behavior.
• The ability to efficiently search vast quantities of historical
log data, owing to the compactness of subgraph representa-
tions and the simplification of provenance graphs.
• A substantial decrease in false-matching rates and improved
accuracy compared to other hypothesis-driven threat hunt-
ing approaches.

2 CHALLENGES IN LEARNING TO SEARCH
PROVENANCE GRAPHS

The strength of the provenance graph lies in what it reveals about
contextual relationships between system events. By mapping the
recorded interactions in individual audit log events onto a graph
that shows the chronological interplay between processes and other
system resources, such as files, network sockets, memory, and reg-
istry objects, in the form of system calls, they allow for the use of

3The source code and trained models associated with our study are accessible online:
Anonymized for review.

graph analysis techniques. In this regard, a provenance graph is
a heterogeneous, typed, directional, and dynamic graph that pro-
vides a coarse-grained insight into system state changes. This rich
representation, however, also poses a number of key challenges for
graph-learning methods.

Challenge #1: Size of Graphs. Many system events are re-
current, in mundane nature, and affect a large number of system
objects such as system and software updates, backup, and data syn-
chronization jobs. As a result, audit logs collected from a typical
machine may easily yield provenance graphs with a very large
number of nodes and edges over shorter durations of time [76]. The
expressive power of a GNN is determined by its capacity, which is
generally expressed in terms of the width and depth of a neural net-
work, i.e., the embedding size and the number of layers of a GNN,
respectively. Loukas [47] studied the difficulty of well-known sub-
graph analysis tasks and determined that even verifying whether a
subgraph meets a given property requires the product of a GNN’s
depth and width higher than a (low-order) polynomial of the size of
a graph. This lower bound implies that for large query and prove-
nance graphs learning subgraph relations will indeed be difficult.
Further, for large graphs increasing the model depth, i.e., the num-
ber of layers in a GNN, often translates to exponential expansion
in the number of neighboring nodes. This implies that the scope
(i.e., receptive field) of a GNN has to be restricted through methods
such as subgraph-based sampling [10, 83] when learning subgraph
relationships.

Challenge #2: High-Degree Nodes. The average degree of a
node in the provenance graph can be quite high. For example, the
IP node of a DNS server may have incoming and outgoing node de-
grees that easily exceed tens of thousands, while a /dev/null device
might have incoming node degrees reaching several thousands. This
is partly due to the dependence explosion problem, where long-
running processes interacting with many other system entities
appear as highly connected nodes on the graph. The computation
in GNNs is performed through several message-passing iterations
in which nodes aggregate information from adjacent neighbors
to update their information. For high-degree nodes, this aggrega-
tion step is likely to suppress useful characteristics. It will result
in degraded expressivity due to the well-known over-smoothing
behavior where node embeddings become uninformative after sev-
eral rounds of message-passing [31]. This is especially a concern
for system behaviors that occur infrequently. This indeed requires
adopting a representation that exhibits system behaviors in a bal-
anced manner.

Challenge #3: Preserving Time Order of Events. Edges in
a provenance graph represent a time-ordered sequence of events.
Disregarding the timing information essentially introduces spuri-
ous information flows among system entities. The computation in
GNNs includes the creation of computation graphs rooted at each
node describing the structure for message-passing and aggregation.
The timing information can be incorporated during graph creation
by enforcing a time order going from root to leaves. In practice,
however, a recursive neighborhood aggregation scheme is used to
avoid the computational overhead of repeated creation of these
computation graphs. This scheme cannot preserve the causality
relation between edges as all nodes concurrently aggregate infor-
mation from their neighbors. In addition, it needs to be considered
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that a queried behavior may not explicitly include the timing in-
formation between depicted events. Therefore, timing information
must be utilized so that subgraph relationships do not explicitly
depend on it.

Challenge #4: Semantic Gap with Query. Another challenge
is the potential mismatch in the degree of expressiveness between
the queried behavior and its observed version on the provenance
graph. An essential source for threat behavior includes incident
response reports where an analyst gathers evidence related to steps
of malicious activity on a system [61]. In this regard, the query
graph may not necessarily convey the system-level interactions
with all its details. For example, a query graph may show a browser
or application process as part of an attack vector. However, on the
audit logs, this process may correspond to a cloned version of the
main process or another process spawned by a launcher process to
handle the task, which may not be a part of the query. Additionally,
missing or unrecorded events or the inclusion of additional inter-
actions can cause the queried behavior to only partially match its
version on the provenance graph. Thus, the learned representation
must offer a degree of robustness to such variations.

Challenge #5: Setting a Learning Objective. The learning
objective serves as a guiding principle for the model’s training
process. Establishing a clear and well-defined learning objective
is essential for the model to effectively learn subgraph relations
in query graphs. This entails generating training samples that ac-
curately represent the characteristics of the query graphs that are
expected to be encountered in practical usage. To promote model
generalization, it is essential to draw training and test samples from
the same data distribution. This consistency allows the model to
effectively learn the underlying patterns and relations in the data,
enhancing its ability to recognize subgraph relations in new and
unseen data. In the context of threat hunting, query graphs are
anticipated to exhibit a strong relationship with observed attack
behaviors. Consequently, it is vital to adapt the model’s training
process to reflect these behaviors.

3 SYSTEM DESIGN AND METHODOLOGY
Our approach to hypothesis-driven threat hunting utilizes prove-
nance graphs and frames the task as a subgraph entailment problem.
Provenance graphs depict audit logs as labeled, typed, and directed
graphs, where nodes represent system entities and directed edges
indicate transformation or flow of information due to distinct sys-
tem calls. Timestamps assigned to each node and edge capture the
graph’s evolving nature. Our technique aims to effectively identify
system behaviors of interest by representing queries as graphs and
searching for them within the larger context of the provenance
graph.

3.1 Problem Formulation
A graph G is defined as a set of nodes V = {𝑣1, ..., 𝑣𝑁 } and a set
of edges E = {𝑒1, ..., 𝑒𝑀 } where each node and each edge are asso-
ciated with a type. Given a target and a query graph, the solution
to the graph entailment problem involves detecting every query
instance in the target. Since exact subgraph matching on graphs
with the scale of provenance graphs is not feasible, we employ an
approximate matching method to make subgraph predictions. Our

method involves a sequence of steps that reduce the size of a graph
while ensuring that the system behavior is preserved at a higher
level of abstraction.

Following this reduction, the primary problem we want to solve
is formulated as follows. Let G represent a reduced provenance
graph. We decompose G into a set of overlapping subgraphs by
extracting the 𝑘-hop ego-graph4 G𝑝 of each process node 𝑝 ∈ V𝑃 .
Given the set of ego-graphs P = {G𝑝 |G𝑝 ⊆ G}, our goal is to learn
an embedding function 𝜂 : G𝑝 → R𝑑 that maps each ego-graph to a
d-dimensional representation z ∈ R𝑑 , capturing the key structural
information of a graph for use in conjunction with a suitable sub-
graph prediction function 𝜑 . Hence, the encoder must incorporate
an inductive bias to effectively represent the subgraph relation-
ship while learning a mapping in which the subgraph prediction
function 𝜑 (z𝑝 , z𝑞) serves as a vector-based measure to confirm the
existence or absence of this relation. It must further be noted that
since provenance graphs are typically very large, 𝜑 (z𝑝 , z𝑞) needs to
be evaluated over all z𝑝 values for a given z𝑞 . Therefore, effective
computation of 𝜑 (z𝑝 , z𝑞) is very critical.

In our method, we employ a subgraph embedding function that
effectively addresses both issues. For this, we utilize the notion
of order embedding, which aims to encode the ordering proper-
ties among entities into target representation space [2, 9, 69, 70].
Order embeddings specifically model hierarchical relations with
anti-symmetry and partial-order transitivity, which are inherent
to subgraph relationships. To develop the embedding function 𝜂,
we utilize an inductive graph neural network [19] and apply the
order embedding technique introduced by Vendrov et al. [69]. This
approach enables us to learn a geometrically structured embed-
ding space that effectively represents the relationships between
subgraphs. At the query execution state, the encoder 𝜂 is applied
independently to the query graph G𝑄 . This is done by identify-
ing ego-graphs Q = {G𝑞 |G𝑞 ⊆ G𝑄 } corresponding to all anchor
nodes 𝑞 ∈ V𝑄 and computing the embeddings z𝑞 = 𝜂 (G𝑞) for all
ego-graphs in Q.

Then, the subgraph prediction function is evaluated by consid-
ering the newly computed embeddings z𝑞 from the query and the
precomputed subgraph embeddings z𝑝 . This involves identifying
(𝑝, 𝑞) node pairs that satisfy the subgraph relation 𝜑 (z𝑝 , z𝑞). To
determine whether one graph is a subgraph of another, one can
simply check that all neighbors of 𝑞 ∈ 𝑉𝑄 satisy the subgraph re-
lationship. However, such a comparison enforces an exact match
of the query, which cannot handle cases where discrepancies exist
between the query and the logs. To address this issue and achieve
greater generality, we propose the use of a soft-decision metric,
defined as follows:

G𝑄 ⊆ G𝑃 iff 𝑔(G∗𝑝 ,G𝑄 ) ≥ 𝜏 where

G∗𝑝 = {∪G𝑝 |∃𝑞 ∈ 𝑉𝑄 , 𝜑 (𝑧𝑝 , 𝑧𝑞) is satisfied} (1)

Here, G∗𝑝 represents a graph obtained by combining all ego-graphs
G𝑝 that satisfy the subgraph relationship with the query ego-graphs
ofG𝑄 , and𝑔(., .) is a scoring function that computes the intersection
of G and the query graph G𝑄 .

4An ego-graph of depth 𝑘 , centered around a node 𝑝 , is an induced subgraph that
includes 𝑝 and all nodes within a distance 𝑘 from it.
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Figure 2: Overview of ProvG-Searcher and its key components.

3.2 System Overview
Our system, displayed in Fig. 2, consists of an offline embedding
stage and an online prediction stage. During the offline phase, audit
logs are collected and used to create a provenance graph. Several
graph simplification steps are taken to optimize graph learning and
better align with queried behavior (Sec. 4.1.1). These involve re-
moving non-essential nodes and edges related to pipe and memory
accesses, merging cloned processes with their parents, and consoli-
dating network communication events over time intervals. Each
node that describes a unique system entity is then assigned to an
abstract class that describes a higher-level categorization, such as
a system file, a user application process, etc. After simplifying the
graph, the next step is to version the nodes, which incorporates
timing information into the graph to prevent spurious informa-
tion flows between nodes (Sec. 4.1.2). In the final step, the graph
is partitioned into overlapping subgraphs by extracting the 𝑘-hop
ego-graph of each process node. Here, 𝑘 also signifies the number
of GNN layers used to obtain a subgraph representation. We then
apply another level of reduction to the abstracted ego-graphs by
removing repeated behaviors using an iterative label propagation
(Sec. 4.1.4). This leaves unique traits in each subgraph to learn as
part of a subgraph relation.

We then employ a 𝑘-layer GNN to learn a representation of the
subgraph relation by training it on positive and negative pairs of
graphs to learn an inductive embedding function that will be used
in conjunction with a subgraph prediction function. For this, we
utilize order embeddings which provide a natural way to model
transitive relational data such as entailing graphs. These embed-
dings essentially obey a structural constraint whereby G𝑞 is deemed
a subgraph of G𝑝 if and only if all the coordinate values of z𝑝 are
higher than z𝑞 ’s (Sec 4.2). During the prediction stage, the query
graph undergoes the same processing steps as the provenance graph
and is partitioned into subgraphs. Afterward, the order relations
between the query ego-graph embeddings and the precomputed
ego-graph embeddings in the provenance graph are computed to
determine whether the subgraph relation exists (Sec. 4.3).

3.3 Threat Model
We assume that adversaries cannot tamper with the system or
the kernel auditing facility responsible for collecting security logs,
ensuring the integrity of the constructed provenance graphs. How-
ever, adversaries who possess knowledge of our systemmight make

slight adjustments to their behavior in an attempt to better conceal
their traces. To obscure their actual behavior from threat hunters,
an adversary may choose to refrain from performing specific steps
or replace some of the attack steps with alternative ones. Hence, it
is crucial for our system to exhibit robustness against the insertion
and deletion of nodes and edges in the query graph representing the
attack behavior. Although limiting the impact of such modifications
poses a significant challenge, it is widely recognized that adver-
saries face difficulties in frequently altering their tactics, techniques,
and procedures. Moreover, engaging in arbitrary activities during
an attack would increase the risk of detection by other system-wide
attack detection tools. As a result, we proceed with the assumption
that the fundamental characteristics of the attack behavior will
remain unchanged and that similarity will be largely preserved.

4 SYSTEM COMPONENTS
4.1 Graph Creation
ProvG-Searcher processes raw system logs through multiple re-
duction steps before constructing a streamlined provenance graph
that represents various interactions between subjects (e.g., pro-
cesses) and objects (e.g., processes, files, network sockets). The
graph creation module produces a partitioned version of this graph
to facilitate effective learning of subgraph relationships.

4.1.1 Graph Simplification (Challenges #1 and #4). We start the
process by adopting the approach from previous research [72, 74],
where we retain only process, file, network, and registry objects. We
maintain all read, write, and modify attribute events for processes,
files, sockets, and registries. Additionally, we preserve clone, fork,
or execute events for processes, while removing open and close
events to avoid redundancy, as they precede or follow read or write
events.

We expand upon the generic graph simplification approaches
in two main aspects. The first aspect pertains to the handling of
threads during the creation of provenance graphs. Applications
often use threads to enhance performance and scalability, but query
graphs might not exhibit this behavior [64]. To ensure consistency
across both graphs, we merge threads into their parent process as
illustrated in Fig. 3. Furthermore, to capture changes in the behavior
of remote servers over time, we adopt the method described in [29],
treating each remote IP and port combination as a distinct source
within 10-minute time windows.
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Figure 3: An example provenance graph consisting of pro-
cesses (♦) and files (◦). The node labels represent the names of
the files and processes. The nodes that represent threads of
processes 𝑃0 and 𝑃1 are surrounded by circles. The simplified
graph after combining threads is shown on the right side.

The second aspect focuses on achieving a consistent representa-
tion of system entities and their interactions in both the query and
provenance graphs. A discrepancy in these representations could
hinder the model’s generalization capability. This is particularly
concerningwhen the query lacks the granularity and detail typically
found in system logs, potentially leading to mismatches or misin-
terpretations when comparing the query and provenance graphs.
For example, a browser process in the query may correspond to
one of several processes, such as Firefox, Chrome, or Safari, in the
provenance graph. Similarly, two files with the same name may be
associated with different functions in the context of different appli-
cations. To avoid such ambiguities, we use a system directory-based
abstraction for all system entities, with the exception of network
objects, in order to provide a consistent description for each entity.
Specifically, we assign category labels to each entity based on its
root directory in the file system, indicating a higher-level function
for each entity. In contrast, network objects are abstracted based
on their source IP, destination IP, and destination port. Each IP
address is categorized as public, private, or local based on its usage,
while ports are categorized as reserved if they are less than 1024
and as user otherwise. Overall, this led to the use of more than 70
abstraction categories, which are summarized in Appendix Sec. B.

Abstracting system entities not only helps reveal recurring pat-
terns in a graph but also allows for further reduction in graph
complexity. When object nodes—such as files, network sockets,
and registry entries—within the same abstraction category are con-
nected to a single subject (process) node through a shared event
type, we merge these nodes into one node with the same object ab-
straction. To maintain causality relationships during deduplication,
we keep the timestamp of the first event if the flow starts from a
process to an object (e.g., write or attribute modification) and the
timestamp of the last event if the flow originates from an object
and leads to a process. Since these nodes are connected to only
one process, this procedure preserves the causality relationships
between nodes.

4.1.2 Mitigating Dependence Explosion (Challenges #2 and #3). The
dependence explosion, caused by high in-degree and out-degree
nodes in a provenance graph, significantly impedes the learning of
subgraph relationships. This is because tracing through such nodes

leads to an exponential increase in the possible node interactions
that must be considered. We implement two strategies to address
this problem while extracting ego-graphs from the provenance
graph. First, we leverage the available event timestamp information
to impose a timing constraint on the flows. To satisfy this require-
ment, we employ the graph versioning approach proposed in [29],
which effectively encodes time dependencies into the provenance
graph by creating a new version of a node whenever the corre-
sponding system entity receives new information. This method
ensures that all paths in the extracted ego-graphs have edges with
monotonically increasing timestamp values, thereby preserving the
causal order of events. Additionally, it allows the elimination of
repeated events between two versioned nodes. It’s worth noting
that incorporating node versioning in provenance graphs does not
necessitate the inclusion of edge timestamps in the query graph.

The second strategy we propose aims to address the challenges
of oversmoothing in GNNs by alleviating the impact of dependence
explosion. For this, we designate specific nodes as sink nodes. No-
tably, interactions with high-degree nodes, such as DNS server IP
addresses or cache files, do not provide discriminative information
that aids in learning subgraph relationships. Moreover, any sys-
tem entity interacting with these high-degree nodes will appear
to receive information from numerous other system entities. This
contributes to the oversmoothing phenomenon, as it results in an
expanded receptive field for a GNN. By treating these nodes as
sink nodes, we effectively prevent non-informative information
flows, leading to more accurate and meaningful learning of sub-
graph relationships. It is important to note that non-process nodes
with zero in-degree or out-degree, such as log files written to by all
processes without reads, or configuration files that are only read,
are also considered sink nodes. This is because there is no flow of
information between the neighbors of these nodes, making their
role in understanding subgraph relationships less significant.

4.1.3 Graph Partitioning (Challenge #1). A pattern within a graph
can always be detected in a sufficiently large local neighborhood
surrounding a specific node. An ego-graph with depth 𝑘 , centered
around node 𝑣 , is an induced subgraph that includes 𝑣 and all nodes
within a distance 𝑘 from it. In fact, any pattern with a radius smaller
than 𝑘 can be found within an ego-graph of depth 𝑘 , where the
value 𝑘 can be determined based on the characteristics of query
graphs and the graph representation learning algorithm. To take
advantage of this, the reduced provenance graph, containing ver-
sioned and sink nodes, is partitioned into subgraphs by extracting
the ego-graph of each process node which are crucial for under-
standing the system behavior [64]. Given that processes are the
only active system entities, adopting a process-centric view of the
provenance graph indirectly encompasses all relationships involv-
ing other entities. This approach also contributes to reducing the
computational complexity of both offline and online stages. Even
though the graph partitioning step is performed once, it is essential
for this task to be as efficient as possible. To extract ego-graphs, we
use a dynamic programming algorithm presented in the Algorithm
2 in Appendix Sec. C.

4.1.4 Behavior-Preserving Graph Reduction (Challenges #1 and #4).
At this stage, resulting ego-graphsmay still contain redundant infor-
mation. For instance, consider an ego-graph showing a user process
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Figure 4: The left figure displays the ego-graph of a process 𝑃1
after applying simplification and dependence explosion steps
to the initial graph shown in Fig. 3. The right figure presents
the resulting graph after applying behavior-preserving re-
duction. Algorithm 1 is utilized to identify the recurring
behavior, as indicated within the blue boxes.

that has written to hundreds of var directory files, possibly in dif-
ferent contexts. A given query involving this user process, however,
is likely to be relevant to only one of these contexts. Therefore,
from a search perspective, a user process writing to a var directory
is more informative than tracking the number of written files. More-
over, as repeated events can dominate the information aggregation
step, GNNs may primarily learn those repetitive behaviors while
neglecting less frequent ones. To avoid the suppression of observed
system behaviors, it is necessary to identify and eliminate recurring
patterns within each ego-graph5.

We propose a behavior-preserving graph reduction method that
captures the local graph structure surrounding each node at varying
depths using iterative label propagation. First, we collapse the node
versions back onto the original nodes. (While this loses the bene-
fits of versioning, maintaining time-dependency during ego-graph
creation ensured that only relevant system entities are included
in each ego-graph, eliminating all spurious interactions with unre-
lated system entities.) We compute a hash value for each node by
aggregating edges with their neighboring nodes’ hash values. For
each node, the abstraction category of the node is assigned as its
0-hop hash, and the hashes of neighboring nodes are accumulated
from incoming and outgoing edges using the following equation:

𝑛ℎ[𝑛] [𝑓 𝑜𝑟𝑤] [𝑙] = ℎ𝑎𝑠ℎ
©«

∑︁
𝑒,𝑣∈𝐼𝑛 (𝑛)

(𝑒 + 𝑛ℎ[𝑣] [𝑓 𝑜𝑟𝑤] [𝑙 − 1])ª®¬ ,
𝑛ℎ[𝑛] [𝑏𝑎𝑐𝑘] [𝑙] = ℎ𝑎𝑠ℎ

©«
∑︁

𝑒,𝑣∈𝑂𝑢𝑡 (𝑛)
(𝑒 + 𝑛ℎ[𝑣] [𝑏𝑎𝑐𝑘] [𝑙 − 1])ª®¬ .

Here, 𝑛ℎ[𝑛] [𝑓 𝑜𝑟𝑤] [𝑙] and 𝑛ℎ[𝑛] [𝑏𝑎𝑐𝑘] [𝑙] represent the hash val-
ues of node 𝑛 at 𝑙-hop distance in the forward and backward direc-
tions, respectively. The function ℎ𝑎𝑠ℎ() is the SHA-256 function
that takes a string as an input and returns a cryptographic hash
value. We use the function 𝐼𝑛(𝑛)𝑒 to retrieve all incoming edges
with their source nodes for a given input node 𝑛, while 𝑂𝑢𝑡 (𝑛)𝑒

5A similar approach was taken by Watson [84] to cluster similar system behaviors
on the provenance graph. However, unlike ProvG-Searcher, Watson adopts a se-
quence modeling approach by decomposing subgraphs into paths and utilizing TransE
knowledge embeddings.

Algorithm 1 Behavior-Preserving Graph Reduction Method
Require: G𝑝 : ego-graph of anchor node 𝑣𝑝 , 𝑛ℎ: hashes of node 𝑛
Ensure: G𝑝 : reduced ego-graph of anchor node 𝑣𝑝
1: 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 ← 𝑉𝑝
2: for 𝑙 = 0, .., 𝑘 do
3: 𝑢𝑛𝑖𝑞𝑢𝑒 ← 𝑑𝑖𝑐𝑡 ()
4: for all 𝑒, 𝑣 ∈ 𝐼𝑛𝑒 (𝑓 𝑜𝑟𝑤𝑎𝑟𝑑) do
5: 𝑢𝑛𝑖𝑞𝑢𝑒 [𝑒 + 𝑛ℎ[𝑣] [′ 𝑓 𝑜𝑟𝑤 ′] [𝑘 − 𝑙]] .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑣)
6: end for
7: for all ℎ𝑎𝑠ℎ ∈ 𝑢𝑛𝑖𝑞𝑢𝑒 do
8: 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑒𝑙𝑒𝑐𝑡 (𝑢𝑛𝑖𝑞𝑢𝑒 [ℎ𝑎𝑠ℎ])
9: end for
10: end for
11: 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 ← 𝑉𝑝
12: for 𝑙 = 0, .., 𝑘 do
13: 𝑢𝑛𝑖𝑞𝑢𝑒 ← 𝑑𝑖𝑐𝑡 ()
14: for all 𝑒, 𝑣 ∈ 𝑂𝑢𝑡𝑒 (𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑) do
15: 𝑢𝑛𝑖𝑞𝑢𝑒 [𝑒 + 𝑛ℎ[𝑣] [′𝑏𝑎𝑐𝑘′] [𝑘 − 𝑙]] .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑣)
16: end for
17: for all ℎ𝑎𝑠ℎ ∈ 𝑢𝑛𝑖𝑞𝑢𝑒 do
18: 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑒𝑙𝑒𝑐𝑡 (𝑢𝑛𝑖𝑞𝑢𝑒 [ℎ𝑎𝑠ℎ])
19: end for
20: end for
21: 𝑢𝑛𝑖𝑞𝑢𝑒_𝑛𝑜𝑑𝑒𝑠 ← 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 |𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑

22: G𝑝 ← G𝑝 .𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ(𝑢𝑛𝑖𝑞𝑢𝑒_𝑛𝑜𝑑𝑒𝑠)

returns all outgoing edges and their target nodes. The set function∑
returns the unique strings in its input in sorted order.
We perform behavior-preserving reduction starting from the

anchor node of an ego-graph. At each depth 𝑙 , we determine all
unique (𝑘 − 𝑙) hash values of the neighbor nodes and select one
node for each unique hash value. These selected nodes form the
set of unique nodes for that depth. We repeat this process at all
depths up to 𝑘 and obtain a set of unique nodes for the entire
ego-graph. Using these unique nodes, we create a reduced ego-
graph that preserves the behavior of the original one. The detailed
steps of our behavior-preserving reduction are provided in Algo-
rithm 1. The 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑒𝑙𝑒𝑐𝑡 function takes a list of nodes as input
and returns one random node from the input list, and the 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ
function is used to create a reduced graph with the input nodes.
Figure 4 depicts the resulting ego-graph obtained after applying
the behavior-preserving reduction step.

4.2 Learning Subgraph Relationships
4.2.1 Subgraph Prediction Function (Challenge #5): Subgraph rela-
tionship essentially imposes a hierarchy over graphs. Therefore, a
vector representation for subgraphs should take into account the
structure of this hierarchy to effectively evaluate the relationship
between two graphs. In [69], Vendrov et al. introduced order em-
beddings to model the transitivity and antisymmetry of partially
ordered data, which naturally applies to the representation of entail-
ing graphs6. Order embeddings ensure the preservation of partial
6Subgraph relation is a partial order relation as it has the following three properties
Given three graphs G𝑎 , G𝑏 , G𝑐 , subgraph relationship satisfies the following three
properties: (i) G𝑎 ⊆ G𝑎 (reflexivity) (ii) if G𝑎 ⊆ G𝑏 and G𝑏 ⊆ G𝑐 , then G𝑎 ⊆ G𝑐
(transitivity); and (iii) if G𝑎 ⊆ G𝑏 and G𝑏 ⊆ G𝑎 , then G𝑎 = G𝑏 (antisymmetry).
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ordering between elements by maintaining the order relations of
coordinates in the embedded space such that for two graphs G𝑝
and G𝑞 and their embeddings z𝑝 , z𝑞 ∈ R𝑑

G𝑞 ⊆ G𝑝 if and only if ∀𝑑𝑖=1 z𝑝𝑖 ≥ z𝑞𝑖 . (2)

That is, G𝑞 is a subgraph of G𝑝 if and only if all the coordinate
values of z𝑝 are higher than z𝑞 ’s. To impose this constraint on the
learned relation, [69] proposed an order violation penalty function

𝐸 (z𝑞, z𝑝 ) = ∥max{0, z𝑞 − z𝑝 }∥2 (3)

to measure the extent to which two embeddings violate their order,
i.e., 𝐸 (z𝑞, z𝑝 ) ≠ 0 if Eq. (2) is not satisfied. Consequently, we opti-
mize our GNN to minimize the order violation penalty to learn an
approximate order embedding function using the following max-
margin loss

L(z𝑞, z𝑝 ) =
∑︁

(z𝑞 ,z𝑝 ) ∈𝑆+
𝐸 (z𝑞, z𝑝 )+

∑︁
(z𝑞′ ,z𝑝′ ) ∈𝑆−

max{0, 𝛼−𝐸 (z𝑞′ , z𝑝′ )}

(4)
where 𝑆+ denotes a set of positive graph pairs that satisfy the
subgraph relation, and 𝑆− is the set of negative pairs for which
this relation is not satisfied. This loss crucially encourages positive
samples to have zero penalty and negative samples to have a penalty
greater than a margin 𝛼 , thereby ensuring that two embeddings
have a violation penalty of 𝛼 if the subgraph relation does not
hold. Thus, the subgraph prediction function introduced in Eq. (1)
becomes a proxy for the order violation penalty, i.e., 𝜑 (𝑧𝑝 , 𝑧𝑞) =
𝐸 (z𝑞, z𝑝 ). In our evaluation, as an alternative, we also utilized a
neural network model to learn the intrinsic relationship between
embeddings z𝑞 and z𝑝 of entailing graphs as a representation for
𝜑 (z𝑝 , z𝑞).

4.2.2 Training Sample Generation (Challenge #5). Training ProvG-
Searcher requires positive and negative pairs of query and target
graphs. These pairs can be represented as (G+𝑞 ,G𝑝 ) and (G−𝑞 ,G𝑝 , )
where G+𝑞 is a subgraph of G𝑝 and G−𝑞 is not. During training,
the model first computes embeddings for all graphs in a batch
of positive and negative pairs, then evaluates the resulting loss as
defined in Eq. (4). We backpropagate this loss to update the network
weights and minimize its value.

To ensure generalization, G𝑝 is chosen as an ego-graph of a
node 𝑣𝑝 within a reduced provenance graph GP. There are two
crucial factors to consider when creating a paired query graph.
The first is the size of the query graphs. In line with previous re-
search [53, 61, 74, 87], we opted to limit the size of reduced query
graphs to 10-15 edges considering 3-hop ego-graphs. We note that
in unreduced query graphs, this may correspond to 40-50 edges
as discussed in the findings of Table 1 in Sec. 5.1. The second fac-
tor is the strategy employed to generate G+𝑞 and G−𝑞 . The most
straightforward approach to create G+𝑞 involves subsampling a set
of nodes or edges from G𝑝 and extracting the corresponding node
or edge-induced graph. However, a random selection scheme could
expose the model to repetitive behaviors and lead to overfitting
common graph patterns. As for G−𝑞 , choosing a graph at random
may not only generate easy negative samples but also inadvertently
yield an actual subgraph of G𝑝 , particularly when G𝑝 is large.

To circumvent these pitfalls, we propose a new graph sampling
method based on path frequency. First, possible flows for each ego-
graph, G𝑝 ∈ GP, are determined via forward and backward depth-
first search around the anchor node 𝑣𝑝 , where a flow represents a
path between two nodes of G𝑝 that passes through 𝑣𝑝 . To generate
positive graph pairs, we count the unique flows for each ego-graph
G𝑝 belonging to the same process path. Then, for each G𝑝 , we
randomly select a flow from all its flows based on their inversely
weighted frequency in all ego-graphs of the same path. Once the
flow is selected, we expand it by randomly choosing some incoming
and outgoing edges of the nodes in the selected flow until the
desired number of edges is reached.

Creating a negative example is more challenging as one needs
to avoid introducing both superficial and unlikely behaviors to G−𝑞 .
One can indeed create a hard negative example G𝑞 by synthetically
adding edges and nodes to a target graph G𝑝 to violate the subgraph
relationship. However, this may result in implausible behaviors.
Alternatively, one can identify an arbitrary flow from the list of
known unique flows, which is not contained within the target G𝑝 ,
and use the corresponding process’s ego-graph to expand this flow
which may result in a very easy example for the model. Instead,
we follow a three-step procedure to create a negative sample: First,
we pick a flow from an ego-graph with the same anchor process
as the target graph and expand from it. (E.g., to create a negative
example for a Firefox process, we prefer to choose an ego-graph
of another Firefox process and subsample it.) However, this may
not always be possible if there are not many instances of the same
process. Because in such a case, the same behavior may potentially
be used to generate many negative examples, thereby biasing the
model. To avoid this, as a second step, we utilize the behavior of
another process with the same abstraction, i.e., using a Chrome
process instead of a Firefox. Where this is not possible, as a last
resort, we pick a random flow and expand from it.

To ensure that the generated (G−𝑞 , G𝑝 ) pairs violate the subgraph
relationship, we apply an independent validation step. For this, we
first check if any node or edge abstraction is present in G𝑞 but
absent in G𝑝 .If all categories of system entities are indeed found
within G𝑝 , we proceed to analyze all 1- and 2-hop flows in the
query graphs, taking both edge types and node abstractions into
account. Should at least one distinct flow fail to meet the subgraph
relationship criteria, the pair is deemed a negative sample. Sample
positive and negative queries are presented in Appendix Sec. G.

4.2.3 GNNArchitecture and Features. Graph neural networks (GNNs)
are expressed as message-passing networks that rely on three key
functions, namely MSG, AGG, and UPDATE. These functions work to-
gether to transfer information between the different components
of the network and update their embeddings. Typically, these func-
tions operate at the node level, exchanging messages between a
node 𝑣𝑖 and its immediate neighboring nodesN𝑣𝑖 . In layer 𝑙 , a mes-
sage between two nodes (𝑣𝑖 , 𝑣 𝑗 ) depends on the previous layer’s
hidden representations ℎ𝑙−1

𝑖
and ℎ𝑙−1

𝑗
, i.e, 𝑚𝑙

𝑖 𝑗
= MSG(ℎ𝑙−1

𝑖
, ℎ𝑙−1

𝑗
).

Then, AGG combines the messages from N𝑣𝑖 with ℎ𝑙−1𝑖
to produce

𝑣𝑖 ’s representation for layer 𝑙 in UPDATE. Various adaptations of this
core message passing framework with alternative MSG, AGG, and
UPDATE implementations have been proposed [19, 30, 35, 68]. To
leverage the comprehensive representation of provenance graphs,
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we deploy a multi-relational GNN that can also incorporate infor-
mation by taking into account both edge type and edge direction
relations [63].

The expressive power of GNNs is known to increase when node
and edge features become more distinct [20]. To take advantage of
this, it is essential to assign suitable node and edge features. We
employ two separate one-hot encoding representations for each
object type and abstraction category, and the node features for both
the provenance and query graphs are determined in the same way.

4.3 Subgraph Matching Score Computation
Our technique relies on two measures to achieve robustness against
inexact queries, in cases where the query may not precisely match
the system events being searched for. The first measure is utilized
when assessing the subgraph relationship between two ego-graphs,
as defined in Eq. (5), by permitting a certain degree of order viola-
tion, i.e., 𝜑 (𝑧𝑝 , 𝑧𝑞) = 𝐸 (z𝑞, z𝑝 ) ≤ 𝜏𝑜𝑣𝑝 . The second measure allows
for partial matching of the query graph within the provenance
graph, which is achieved by using a graph intersection-based scor-
ing function. The graph G∗, as described in Eq. (1), is the union of all
possible matches G𝑝 to G𝑄 and may contain several disconnected
parts. The scoring function intersects the query graph with each
connected component (CC) of G∗ and utilizes the ratio of edges
in the intersected graphs to the total number of edges in G𝑄 | to
compute the final matching score, as defined below:

𝑔(G∗,GQ ) =𝑚𝑎𝑥

({ |G∗1 ∩ G𝑄 |
|G𝑄 |

, . . . ,
|G∗𝑛 ∩ G𝑄 |
|G𝑄 |

}
, 𝜏

)
(5)

where 𝐶𝐶 (G∗) = {G∗1 , . . . ,G
∗
𝑛} and

𝑚𝑎𝑥 (𝑆, 𝜏) = {𝑚𝑎𝑥 (𝑆) if𝑚𝑎𝑥 (𝑆) > 𝜏, 0 otherwise}.

The connected component that yields the highest score above the
threshold 𝜏 , together with its intersected edges, is identified as the
matching subgraph corresponding to the query. The intersected
edge-induced graph extracted from this connected component is
returned as a response to the query.

5 RESULTS
We evaluate our approach on four DARPA TC [11] datasets–Theia,
Trace, Cadets, and FiveDirections–which feature eight distinct at-
tack scenarios as described in [67]. The Theia dataset was collected
from hosts operating on Ubuntu 12.04, the Trace dataset was col-
lected from hosts operating on Ubuntu 14.04, the Cadets dataset was
obtained from a FreeBSD 11.0 host, and the FiveDirections dataset
was collected from a Windows 7 machine. The attack scenarios
used to evaluate our approach include an Nginx server backdoor,
a Firefox backdoor, a backdoor with one of Firefox’s extensions
(password manager), and a phishing email with a malicious Excel
document.

In this section, we start by evaluating the efficiency of our graph
reduction strategies. Subsequently, we assess the capacity of order
embeddings to represent subgraph relationships using DARPA TC
datasets. Next, we examine our technique’s ability to search for and
identify subgraphs with two types of queries: those derived from
converting DARPA TC attack logs into query graphs and those

Table 1: Reduction in Ego-Graph Size During Graph Creation
Process (GS: Graph Simplification, DEM: Dependence Exploi-
sion Mitigation, BR: Behavior-Preserving Reduction)

Dataset Initial GS (Sec. 4.1.1) DEM (Sec. 4.1.2) BR (Sec. 4.1.4)
N E N E N E N E

Theia 206k 13M 22k 6.9M 159 336 19 38
Trace 29k 490k 400 1461 329 1303 16 28
Cadets 5k 160k 1.9k 76k 43 75 12 15

FiveDirection 25k 8.7M 2.1k 4.2M 350 1034 71 527

representing generic system activities. Finally, we compare ProvG-
Searcher to other hypothesis-driven threat hunting methods in
terms of both effectiveness and performance.

5.1 Reduction in Graph Size
We demonstrate the effectiveness of our graph creation method
in terms of reduction in the graph size. Table 1 summarizes the
results obtained for each dataset, where we compute the average
count of nodes and edges in 3-hop ego-graphs of process nodes.
The first column of the table presents the average number of nodes
and edges in each ego-graph after the graph simplification steps,
up until the entity abstraction step described in Sec. 4.1.1 is applied.
(Since DeepHunter also applies these steps [74], we consider this
as our starting point). We then process the provenance graph by
applying all remaining graph reduction steps. Our results show a
substantial reduction in the ego-graph size across all datasets. For
instance, on the Theia dataset, the ego-graphs initially contain 206K
nodes and 13M edges, while the final ego-graphs contain only 19
nodes and 38 edges, on average. The variation across datasets can
be attributed to the nature of graphs where the node degrees are
much smaller in the Trace and Cadets dataset.

These results demonstrate the effectiveness of our approach in
reducing the size of ego-graphs while still preserving the diverse
behaviors exhibited by processes. In fact, we observe that several
reduced ego-graphs G𝑝 are duplicated, containing identical nodes
and edges. To ensure all graph relationships are learned on an equal
footing, regardless of their prevalence, we retain only one sample
from each set of repeated ego-graphs. This reduces the total number
of ego graphs from 15k, 235k, 195k, and 17k to 1k, 11k, 3k, and 3k
for Theia, Trace, Cadets, and Five Directions datasets, respectively.
It’s essential to clarify that several other approaches have been
proposed to simplify provenance graphs for various computational
purposes. (See Section 6.2 for a brief review.) However, the effective-
ness of a graph simplification method should be evaluated based
on its intended primary task. For instance, a graph simplification
technique designed to support forensic tractability or anomaly de-
tection may not be suitable for our specific use case, and vice versa.
In the context of searching for threat behaviors, it is worth men-
tioning that Poirot [53] does not employ graph reduction, whereas
DeepHunter [74] suggests preserving parts of the graph around
EDR alerts.

5.2 GNN Architecture and Parameter Selection
In the design phase of our model, we evaluate the performance of
the subgraph prediction function (Sec. 4.2) on the Theia dataset to
determine the most suitable GNN architecture and optimal model
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parameters. We train the models using 80% of the 3-hop ego-graphs
and reserve 20% for testing. During the training phase, we ensure
the test samples are not seen. We conduct the training on 400
batches with a batch size of 1024, which includes an equal number
of positive and negative target-query pairs. After the training, we
evaluate the models on 10 batches.

To identify the most effective GNN architecture for our system,
we assess the performance of several well-known graph neural net-
work architectures, such as GCN[35], GIN [78], and GraphSage [19].
Additionally, we experiment with the Multi-Relation GNN architec-
ture [62, 63], where each edge type and direction are represented
separately. Following a thorough evaluation, we determine that
the multi-relational GraphSage model, which integrates GraphSage
with the Multi-Relation GNN, delivers the best performance among
the tested architectures.

We also analyze the impact of the number of layers and aggrega-
tion method used to obtain subgraph embeddings on the model’s
performance. Although the performance differences are not sub-
stantial, using three layers yields the best results. In addition, we
explore a variety of pooling methods, such as add pooling, mean
pooling, graph multiset pooling [4], and utilizing only the anchor
node’s embedding. Our findings indicate that add pooling, which
aggregates the embeddings of all nodes in the graph, surpasses
the other pooling techniques. We present the results of these tests
in Appendix Sec. H in Fig. 7. We conduct further experiments to
identify optimal values for batch size, scheduling scheme, weight
decay parameter, and embedding size. The results reveal that, apart
from the embedding size, the choice of other parameters does not
significantly affect the performance. We observe that improvements
become marginal when the embedding size exceeds 256 dimensions.
Consequently, we choose this value for our experiments.

5.3 Power of Order Embeddings
We initially assess the effectiveness of order embeddings in iden-
tifying subgraph relationships between two graphs. We train a
separate model for each dataset to learn the subgraph prediction
function, i.e.,𝜑 (𝑧𝑝 , 𝑧𝑞). We employ a 3-layer multi-relational Graph-
Sage GNN architecture with add pooling and an embedding size of
256. The ability of order embeddings to detect subgraph relation-
ships among 3-hop graphs is illustrated by the ROC curves shown
in Fig. 5(a). The results indicate that our method exhibits strong
performance, with AUC scores ranging from 96.6 to 98.3 across the
datasets, effectively distinguishing positive queries from negative
ones in the provenance graph.

To examine the robustness properties of order embeddings, we
use the same set of test samples from the Theia dataset while con-
sidering two types of changes in attacker behaviors. In the first
scenario, we examine the inclusion of additional activities by the
attacker on the system, relative to the query graph. This behavior
can be emulated by reducing the number of nodes and edges in
the query graph. In the second scenario, we assume the attacker
performs fewer actions on the system compared to the query, which
is simulated by removing nodes and edges from the target graph.
The ROC curves obtained under both scenarios are shown in Fig. 8
in Appendix Sec. E. The results indicate that, in scenario #1 where
nodes and edges are eliminated from the query graphs, Fig. 8(a),

order embeddings achieve AUC scores of 93.3 and 90.2 when remov-
ing 15% of the query nodes and 45% of the query edges, respectively.
A similar behavior is observed in scenario #2, where nodes and
edges are removed from the target graph, Fig. 8(b). Our technique
achieves AUC scores of 92.9 and 93.0 when eliminating up to 15% of
the query nodes and 45% of the query edges from the target graphs,
respectively. Based on these findings, we can conclude that our
technique is capable of handling imprecise queries.

Figure 5: ROC curves for validating subgraph relationship
between 3-hop graphs using our model on all the datasets

5.4 Accuracy in Subgraph Entailment Decision
We now test the performance of ProvG-Searcher in accurately
determining whether a query graph is entailed within a provenance
graph by computing the subgraph matching scores, Eq. (5), between
the query and the target graphs. For this, we use the models gener-
ated earlier to evaluate the subgraph relations among 3-hop graphs.
We test their performance on two sets: (i) attack queries underlying
DARPA-TC datasets [67], and (ii) a new test set comprising 5-hop
ego-graphs involving generic behaviors extracted from the test
portion of the Theia dataset.

5.4.1 DARPA-TC Attack Queries. The DARPA-TC dataset consists
of eight attack scenarios, each consisting of up to three processes.
We began by evaluating the subgraph prediction function, which
involves extracting and searching process-centric ego-graphs from
the query graph within the corresponding provenance graphs. Ta-
ble 2 displays the number of matching ego-graphs compared to the
total number associated with each process in the provenance graph.
For instance, process P1 has 846 instances within the provenance
graph in the TRACE dataset’s attack query. Our subgraph predic-
tion function identifies only two, or 2/846, as matching candidates.
Notably, no missed matches are observed in any of the test scenar-
ios. Upon analyzing the false matches, we find that all returned
ego-graphs are connected, and on average, 78.9% of all query nodes
appear in those ego-graphs. A comparison between the number of
query nodes in correctly-matching and incorrectly-matching ego-
graphs reveals that the former contain, on average, 57% more query
nodes. This indicates that our subgraph matching function effec-
tively localizes the query within the provenance graph. We proceed
to calculate the overall graph-matching scores for each scenario by
first merging all the returned ego-graphs into a single graph, G∗.
Following that, we compute the corresponding scores 𝑔(G∗,G𝑄 ),
as described in Sec. 4.3. The resulting score values consistently
exceeded 0.9, indicating a high degree of matching accuracy in all
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Table 2: Number of Matches Identified Per Query Ego-Graph

Dataset Query P1 P2 P3
Theia Q1 2/846 1/1 1/1

Trace Q2 1/21023 1/1 -
Q3 1/239 1/2 -

Cadets
Q4 3/15 1/1 -
Q5 1/15 1/1 -
Q6 2/15 3/4 1/2

Five Direction Q7 6/724 - -
Q8 9/724 3/10 1/1

scenarios. To assess the false matching rate, we also tested each
trained model by querying them with attack queries from other
datasets. The results showed that none of these queries yielded a
match, with the highest observed matching score being around 0.2.

5.4.2 GenericQueries. Wealso evaluate the performance of ProvG-
Searcher on a set of queries that include generic system behaviors.
A generic behavior refers to any system activity that does not nec-
essarily involve attack events. These behaviors can be obtained
by randomly subsampling ego-graphs of process nodes from the
system-level provenance graph. However, this approach would re-
sult in a sampling that mainly comprises the most prevalent system
behaviors, leading to repeated queries with the same behaviors.
To address this, we adopt the same approach used during model
training to learn diverse system behaviors (Sec. 4.2.2). For this
purpose, we generate ten batches of test samples, each consisting
of 5-hop ego-graphs for both positive and negative sample pairs
(5K each). Here, a positive sample includes an ego-graph with a
matching subgraph, while a negative sample includes an ego-graph
with a non-matching but similar graph. Appendix Sec. G presents
examples of positive and negative sample pairs.

We validate the subgraph relationship by calculating the order
violation penalty, 𝜑 (𝑧𝑝 , 𝑧𝑞), between the ego-graphs of the prove-
nance graph and those in the query. During the evaluation, we set
the threshold 𝜏𝑜𝑣𝑝 to the value that produces the highest accuracy
in our experiments. The optimum value for 𝜏𝑜𝑣𝑝 varies between
0.025 and 0.045 depending on the dataset as can be seen in Appendix
H, Fig. 7.) Next, we combine the matching ego-graphs to create G∗
and calculate the final matching score, 𝑔(G∗,G𝑄 ). The resulting
ROC curve for subgraph matching scores is displayed in Fig. 10(a)
(the exact match curve). The overall performance in determining
whether the query graph is contained within the target graph re-
sults in an AUC value of 99.8. We also conducted an assessment of
ProvG-Searcher ’s robustness to imprecise queries. Our findings,
showcasing its robustness against node and edge removal, as well
as its ability to match mutated malware behavior, are detailed in
Appendix Sec. F.

5.5 Comparison with Previous Approaches
This section presents a comparative evaluation of our technique
against other hypothesis-driven threat hunting approaches, specif-
ically Poirot and DeepHunter [74]. As the source codes for these
systems are not publicly accessible, we have implemented them
to the best of our ability for the purpose of this comparison. To
expand upon the tests for detecting attack queries (Sec. 5.4.1) and
conduct a more comprehensive evaluation with a larger sample size,

we conducted additional tests involving generic system behaviors,
similar to Sec. 5.4.2. For this comparison, we generated 5K positive
and 5K negative query-target pairs from each dataset and evaluated
all techniques on the same data.

Poirot [53]: Poirot is a non-learning-based search method that
falls under the category of methods requiring the entire search
computation to be executed at query time. However, this constraint
makes Poirot less suitable for handling large datasets or supporting
highly responsive applications. During operation, Poirot searches
for all query nodes in the provenance graph until it finds the first
acceptable alignment that exceeds a predefined threshold or exhaus-
tively examines all possible paths. As the graph size or number of
queries increases, this extensive search also leads to a tendency to
generate false alignments. When evaluating the alignment of query
nodes with those on a graph path, the Poirot algorithm calculates an
attacker influence score by considering the number of compromised
ancestor processes present on the path. However, Poirot’s definition
of an ancestor process is not clearly established. To address this
ambiguity, we conduct experiments using various definitions of
ancestor processes, including immediate ancestors, top-most an-
cestors, and top-most ancestors identified through clone, fork, or
execute events. We report the best-obtained values.

We first assess the search complexity of Poirot on Theia and
Trace datasets. As these datasets contain only a single instance of
some processes in the queried attack behavior (i.e., mail and profile
processes), they are quite favorable for Poirot. The execution time
of Poirot on these queries has been reported to vary from several
minutes [53] to over an hour [18], which can be attributed to the
level of optimization in the code. Upon analysis, we determined
that the influence score computation requires traversing a large
portion of the graph. For instance, the query on the Theia dataset
for the Firefox backdoor vulnerability traverses around 40% of all
edges and 13% of all nodes. This factor can significantly hinder
Poirot’s performance, particularly with larger and more complex
datasets.

The performance of Poirot in searching generic system behaviors
entailed in the test samples associated with the three datasets are
presented in Table 3. These results show that ProvG-Searcher
and Poirot perform very similarly in correctly matching query
system behaviors entailed in positive samples to corresponding
target graphs, with ProvG-Searcherslightly outperforming Poirot
by around 1% in all cases. However, as shown in the last column of
Table 3, Poirot produces a considerably higher false-positive rate on
Theia (3%) and Trace (5%) datasets, compared to ProvG-Searcher,
which falsely matches only around 0.01% of the neqative samples.
On the Cadets dataset, Poirot also yields a low false-positive rate
(0.69%), which can be attributed to the relatively simpler nature of
the graphs in the Cadets dataset (Table 1). It is important to note
that both ProvG-Searcher and Poirot significantly outperformed
other techniques used for testing.

IsoRankN [42]. IsoRankN is a network alignment method de-
signed to identify equivalent nodes or edges in multiple networks.
It achieves this by optimizing a global objective function that mea-
sures network similarity through node alignment. The method
utilizes a spectral clustering algorithm to break down the networks
into smaller subgraphs and aligns them based on their topological
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properties. However, the results indicate that this method is not
highly effective for the subgraph matching task.

DeepHunter [74]: The subgraph matching technique most similar
to ours is DeepHunter, which utilizes an NTN to learn the subgraph
relationship between graph embeddings. DeepHunter relies on EDR
alerts to reduce the provenance graph by identifying query seed
nodes close to IoCs and to minimize falsely matching behaviors.
However, as we don’t have access to graphs created around the IoCs,
we ran it on graphs created using our method. To compare with
DeepHunter, we integrated its search component with our graph
creation module and fine-tuned its parameters for each dataset. We
trained themodel until its performance plateaued and conducted the
tests accordingly. The corresponding results are presented in Table
3. These results clearly illustrate that ProvG-Searcher surpasses
DeepHunter by approximately 15-25% in terms of accuracy.

SimGNN [5]: SimGNN uses a more advanced architecture than
DeepHunter that also incorporates node-alignment into its decision.
For our tests, we optimized its parameters for each dataset. Our
results show that, despite this additional modeling step, SimGNN
performs similar to DeepHunter, with SimGNN performing slightly
worse, consistent with the findings reported in [5] . DeepHunter
slightly outperforming it outperforming in on Theia dataset by
consistent with the findings reported by DeepHunter.

Runtime Analysis: Our technique’s offline phase incurs a fixed
one-time cost for each dataset, involving the creation of training
samples and model training. In our evaluation, we determined that
the collective steps of the offline phase take roughly 400, 287, and
250 minutes for Theia, Trace, and Cadets datasets, respectively.
As part of the offline stage, the trained model is also employed to
precompute subgraph embeddings for all ego-graphs within the
provenance graph. This process averages around 11 minutes for
each dataset. The online phase involves generating embeddings
for query graphs and performing searches for matching subgraphs
using precomputed embeddings. Across all datasets, our technique
completes processing 10,000 samples in approximately 48 seconds.
In contrast, Poirot’s execution times for the same set of queries are
considerably longer, requiring 1166, 392, and 327 minutes for Theia,
Trace, and Cadets datasets, respectively.

5.6 Ablation Study
To assess the impact of various subcomponents of ProvG-Searcher
on its performance, we conducted an ablation study. In this regard,
the graph creation component has three processing steps that are
indispensable for the operation of our technique. These include the
graph simplification (GS), dependence explosion mitigation (DEM),
and the graph partitioning (GP) steps. The GS and DEM steps play a
crucial role in reducing the size of the graphs, making them suitable
for graph representation learning approaches. On the other hand,
the GP step is responsible for generating the required ego-graphs,
facilitating the subsequent operations of our system. As shown
in Table 1, the size of ego-graphs is unmanageably large for all
datasets, except for the Trace dataset, before the application of the
DEM step. Consequently, the ablation study involving the DEM
step, in addition to the behavior-preserving reduction (BR) step,
is limited to the Trace dataset. In our study, we also evaluate the

Table 3: Performance Comparison on Different Datasets

Method Metrics
Acc. F1 AUC Prec. Recall FPR

Th
ei
a

IsoRankN 63.20 62.85 63.06 63.46 62.26 35.84
SimGNN 83.28 84.49 90.39 78.77 91.11 24.56
DeepHunter 83.67 84.42 90.86 80.69 88.53 21.19
Poirot 97.38 97.44 97.46 95.16 99.84 5.07
ProvG-Searcher 99.83 99.84 99.81 99.98 99.69 0.02

Tr
ac
e

IsoRankN 56.47 36.46 55.07 68.36 24.86 11.61
SimGNN 75.93 78.63 84.33 70.69 88.57 36.72
DeepHunter 74.93 77.45 83.51 70.36 86.13 36.28
Poirot 97.99 98.01 98.40 97.03 99.02 3.02
ProvG-Searcher 99.34 99.33 99.34 99.98 98.69 0.01

Ca
de
ts

IsoRankN 62.17 44.15 56.96 84.35 29.90 5.54
SimGNN 84.50 85.55 90.27 80.10 91.80 22.80
DeepHunter 84.11 85.21 90.43 79.69 91.55 23.34
Poirot 98.18 98.16 99.66 99.30 97.05 0.68
ProvG-Searcher 99.78 99.76 99.80 99.96 99.61 0.03

impact of the subgraph matching (SM) step, which allows ProvG-
Searcher to process large query graphs by partitioning them into
𝑘-hop ego-graphs.

As part of our study, we repeated the experiments in Sec. 5.3 and
5.4.2 by partitioning the provenance graph into both 3-hop (lines
1-3) and 5-hop (lines 4-7) ego-graphs when generating subgraph
representations. The query graphs, respectively, include 3-hop and
5-hop ego-graphs in both cases. Results corresponding to different
combination of subcomponents are presented in Table 4. Specifi-
cally, the DEM step alone impacts the accuracy by 1.5% and 5.6%
(lines 1-2 and 5-6) depending on the size of ego-graphs. Moreover,
the results demonstrate that the BR step leads to a substantial in-
crease in accuracy, around 3% (lines 2-3 and 5-6), considering both
3- and 5-hop ego-graphs. The effectiveness of the SM step is demon-
strated in lines 5 and 7. In line 5, where the query and ego-graphs
have the same size, the SM function is not required. However, in line
7, the query graphs are partitioned into 3-hop ego-graphs before
the match is evaluated using the SM function. Consequently, the
SM step enables the utilization of smaller graph representations
(3-hop ego-graphs instead of 5-hop ego-graphs), resulting in a more
precise query matching. This improvement boosted the accuracy by
almost 5.5%, increasing it from 93.33% to 98.83%. When combined
together, the BR and SM steps yield an additional improvement of
0.5%, pushing the overall accuracy to an impressive 99.34%.

Table 4: Ablation Study (GS: Graph Simplification, DEM: De-
pendence Exploision Mitigation, GP: Graph Partitioning BR:
Behavior-Preserving Reduction, SM: Subgraph Matching)

System Components Metrics
Accuracy Precision Recall FPR

1 GS+GP (k=3) 90.01 87.37 93.55 13.52
2 GS+DEM+GP (k=3) 91.52 92.96 90.36 7.23
3 GS+DEM+GP+BR (k=3) 95.09 97.46 93.05 2.66
4 GS+GP (k=5) 87.71 83.95 93.26 17.82
5 GS+DEM+GP (k=5) 93.33 97.21 90.21 3.01
6 GS+DEM+GP+BR (k=5) 96.06 93.51 99.00 6.87
7 GS+DEM+GP+SM (k=5) 98.83 98.67 99.79 1.31
8 GS+DEM+GP+BR+SM (k=5) 99.34 99.98 99.69 0.02
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6 RELATEDWORK
6.1 Threat Hunting and Provenance Analysis
Threat hunting is a proactive defense approach where experts con-
tinuously search for traces of an unknown attack. Provenance
graphs have been utilized in two main ways to expand existing
threat hunting capabilities. The first one aims at leveraging the
contextual information revealed by a graph representation to dis-
cover irregularities and anomalies that may suggest malicious ac-
tivity. To this objective, one group of work applied statistics-based
techniques to identify unlikely events or event chains [24, 45, 71].
Another group of work proposed clustering and learning-based
techniques to distinguish between benign and anomalous patterns
in the provenance graph. These works applied several intuitions
to graph analysis such as the use of graph sketching techniques
[21, 51], graph embedding techniques [41, 73], knowledge graph em-
bedding techniques [84, 85], and sequence-based neural embedding
methods [1, 43, 71].

The other use of provenance graphs for threat hunting relates
to hypothesis-driven investigations. When knowledge about a new
threat is obtained from threat intelligence sources and feeds, offer-
ing intelligence on the most current tactics, techniques, and pro-
cedures utilized by attackers [3], threat hunters will search within
their own environment for those specific attack behaviors. In the
context of provenance graphs, this search task can be formulated
as a graph pattern matching problem where an observed attacker
behavior is expressed as a query graph, and its entailment within a
provenance graph has to be determined. Given the NP-completeness
of exact graph matching, this formulation of the problem calls for
the use of approximate methods. Most inexact methods rely on
heuristics to select appropriate seed nodes, and then expand to
neighboring nodes according to predetermined rules to match the
topology as well as node and edge features [33, 44, 53, 59, 65, 66].
To perform this search rapidly, Poirot examines all paths from the
seed node to other nodes and retains only those that are more likely
to be under the influence of an attacker for alignment by ensuring
that the processes along a selected path share a common ances-
tor in their process tree. With a similar motivation, DeepHunter
generates graph embeddings to evaluate the alignment of query
graph with subgraphs extracted from the provenance graph and
uses a neural tensor network to model the relation between two
graph-level embeddings. To reduce the complexity of the search,
the provenance graph is reduced by only considering subgraphs
extracted around nodes related to suspicious events identified by
alerts of an EDR tool.

6.2 Provenance Graph Simplification
The substantial size of provenance graphs presents a significant
challenge for conducting timely analyses, thus impeding their prac-
tical usability. To address this issue, one strategy is to utilize the
limited memory resource efficiently trough adopting compact rep-
resentations for referencing nodes and edges [27, 29], identifying
the relevant portion of the graph for analysis and caching only
that part in main memory [25], or losslessly compressing the graph
[15]. While these approaches preserve the utility of data, their ef-
fectiveness inevitably diminishes as the complexity of the graphs
increases.

Therefore, to simplify provenance graphs, several works have
proposed preprocessing methods by removing logs that are associ-
ated with dead system entities [39], repeated events [81], and events
comprising nodes that are disconnected from the backward and
forward tracing graph of a symptomatic, point-of-interest event [1]
or (EDR) threat alert event [23]. While lossy reduction techniques
cannot provide a foolproof guarantee that every analysis task will
yield the desired outcome, it’s possible to perform the reduction
in a way that doesn’t compromise the objective of the forensics
analysis. To achieve this objective, three reduction techniques have
been proposed. The first, causality-preserving reduction, aims to
eliminate events that are redundant for causality reasoning [81].
The second technique, dependency-preserving reduction, reduces
causality to reachability and removes events (i.e., edges of the graph)
more aggressively, provided that system entities required for back-
ward and forward tracing queries can be correctly identified [29].
The third technique, attack-preserving reduction, has been pro-
posed to preserve attack-relevant causal relations while eliminating
those related to benign process activities [14, 52]. In contrast, when
searching and matching graph patterns in provenance graphs, it
is crucial to capture a wide range of local relations, regardless of
their frequency of occurrence. Thus, log reduction techniques that
aim to preserve causality or dependency relations along traces in a
graph are not ideally suited for learning subgraph relationships.

Another key challenge in analyzing provenance graphs is to
mitigate the risk of false dependencies. As the number of nodes and
edges in the graph increases, the potential dependencies between
system entities grow exponentially, giving rise to the dependency
explosion problem. The impact of this explosion is more severe for
(long-running) high fanout processes and frequently accessed files.
Therefore, manyworks proposed to address the issue of dependence
explosion through execution partitioning of graphs [36, 38, 49, 50],
tag propagation for information flow tracking [28], and incorpo-
ration of system and application logs [26]. An alternative and less
costly approach to determining true dependencies between system
entities is to create versioned graphs. Versioning allows encoding
the time order of events by creating a version of a process or file
when its state changes. Several methods have been proposed to
reduce the number of node versions and edges while preserving
dependencies [6, 29, 57].

6.3 Graph Neural Networks and Subgraph
Matching

Inspired by the success of graph learning methods in several pre-
diction tasks, several graph learning-based methods have been
recently proposed to solve approximate subgraph matching task.
These methods use graph neural networks to generate node level
embeddings that encode the neighborhood structures and features
of nodes as well as edges. Then, resulting embeddings are used
to model the relation between the data and query graphs. When
evaluating the match between two graphs, a common approach is
using graph embedding models [5, 12, 46]. This involves learning
an inductive function that embeds graphs into a vector space such
that similar graphs are mapped closely while dissimilar ones are far
apart. At the graph embedding stage, the individual node embed-
dings are pooled together through one of several schemes as the
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final graph-level representation [78]. One challenge these models
face is reflecting minute structural differences between graphs in
the resulting graph-level embeddings. To address this, the larger
data graph is partitioned into subgraphs to better emphasize node-
level information, and the evaluation is done between the query
graph and those smaller subgraphs comprising the data graph.

An alternative approach to graph embedding is to allow a model
to incorporate more complex relation information instead of in-
dependently mapping each graph to a vector. This is realized by
jointly computing a similarity score between a pair of graphs. With
the cross-graph matching approach, the reasoning of the relation
between two graphs is made by modeling the node-to-node interac-
tions [37, 40, 60, 75, 79] or by modeling the graph-to-graph interac-
tions [5]. Since the graph-learning model attends a pair of graphs
jointly, cross-graph matching methods are potentially stronger than
the graph embedding models, and they can be made more resistant
to slight variations between graphs. This gain, however, comes at
the cost of increased computational complexity. Because the sim-
ilarity computation has to be done in an online setting (i.e., after
the query graph is presented) where the number of pairs of query
and target subgraphs that need to be compared depends on the
size of the data graph. Therefore, for large-scale graph instances,
cross-graph matching methods are not feasible. In contrast, graph
embedding models allow operating in a batch setting by precom-
puting the embeddings for data graphs, thereby limiting the online
computation step to computing a similarity measure between a pair
of embeddings. In the context of threat hunting, both the size of the
provenance graphs and the potential number of queries are consid-
erably large. Consequently, a graph embedding approach emerges
as a more suitable solution to perform search in provenance graphs.

7 LIMITATIONS AND CONCLUSIONS
The design of ProvG-Searcher emphasizes learning diverse sys-
tem behaviors, rather than focusing on the prevalence of those
behaviors within the system. This approach can lead to ambigu-
ous representations for queries involving repetitive activities. For
instance, a malicious software transferring or encrypting large num-
ber of files under a directory may be represented by only a few
write events to different file object abstraction categories, making
it harder to discern the underlying pattern. A potential solution to
address such cases is to train a new model tuned to learn frequently
exhibited behaviors. Queries involving such repetitive behaviors
can then be searched using this specialized model.

For efficiency and accuracy in matching, our technique performs
search on reduced provenance graphs. Part of this reduction in-
volves abstracting system entities by assigning them higher-level
category labels. Although this abstraction based on entity’s func-
tion enhances matching capability, the loss of specificity (such
as process and file names, IP addresses) may contribute to false
matches. Results from real-life queries describing DARPA TC attack
behaviors demonstrate that our technique can accurately match
abstracted entities on unreduced provenance graphs. However, for
much larger graphs with increasing number of queries, this may
lead to additional false matches, such as when two queries rep-
resent different behaviors but map to the same abstract behavior
representation. Our approach can be adapted to this search mode by

maintaining additional indexing information alongside the precom-
puted and stored ego-graph embeddings. By including information
on the anchor process of an ego-graph, we can limit the evaluation
of subgraph relationship only to matching entities.

One area that may offer further improvement to our technique
involves utilizing deeper GNNs to better leverage their increased
expressive power. Our initial tests reveal that using three or four
layers yields similar performance. Using higher number of layers
requires handling larger graphs during the graph creation phase and
reducing batch sizes to accommodate target and query graph pairs
within GPU memory during training. Exploring deeper networks
will be considered in our future work. Additionally, ensuring the
generalizability of our technique to support search across different
systems requires an operating system-agnostic representation for
system entities and edge types. This aspect will also be considered
in our future work.
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A CHARACTERISTICS OF GRAPH DATASETS
Table 5 showcases the average number of nodes and edges for
various graph datasets employed in different application contexts.
These datasets encompass biology (Mutag-MT, Predictive Toxicol-
ogy Challenge-PTC, Enzymes-EZ), chemistry (COX2), and image
processing (MSRC_21), alongside the characteristics of the prove-
nance graph in the Theia dataset. As can be seen, the number of
nodes and edges in the Theia dataset is several orders of magnitude
higher compared to other datasets.

Table 5: Graph Dataset Statistics in Subgraph Matching Ap-
plications (Average Node and Edge Counts)

MT PTC EZ COX2 MSRC_21 Theia
# Nodes 18 14 33 41 77 206K
# Edges 39 15 124 216 198 13M

B ABSTRACTION CATEGORIES

Table 6: Process and File Abstraction Categories for Linux
Operating System

bin, cache, com, data, dbus-vfs-daemon, dev, devd,
digit, dns, etc, home, lib, lib64, man, other,

proc, root, run, sbin, stream, sys, tmp, unknown,
usr, usrbin, var, vi, www

Table 7: Process and File Abstraction Categories forWindows
Operating System

c:program files, c:program files (x86), c:programdata, c:users,
c:windows, device, program files, program files (x86),

programdata, registry, systemroot, users,
windows, c:deploy-keys, c:lwabeat, c:program,

c:program files, c:program files (x86), c:programdata, c:recovery,
c:system volume information, c:tcssl, c:users, c:windows,
d:extend, d:recycle.bin, d:system volume information

Table 8: Abstraction Categories for Network Objects

inter_private_inter, user_local_user, user_private_user,
user_private_reserved, user_public_inter, user_public_user,

user_public_reserved, reserved_local_user, reserved_local_reserved,
reserved_private_user, reserved_private_reserved, reserved_public_user

C EGO-GRAPH EXTRACTION ALGORITHM
This algorithm is used to extract all ego-graphs of process nodes, i.e.,
G𝑝 , from the provenance graph GP. The algorithm aggregates each
versioned node’s forward and backward neighbors starting from
0-hop distance and extending to neighbors at 𝑘-hop distance, where
the 0-hop neighbor refers to the node itself. The 𝑙-hop neighbors of a

Algorithm 2 Dynamic algorithm for provenance graph partition-
ing.
Require: G𝑃 : reduced provenance graph, 𝑘 : ego-graph hop count,

𝑆 : set of sink nodes,V𝑃 : process nodes
Ensure: G𝑝 : 𝑘-hop ego-graphs
1: for all 𝑝 ∈ V do
2: 𝑛𝑒𝑖𝑔ℎ[𝑝] [′ 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑′] ← 𝑝

3: 𝑛𝑒𝑖𝑔ℎ[𝑝] [′𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑′] ← 𝑝

4: end for
5: for 𝑖 = 1, .., 𝑘 do
6: for all 𝑛 ∈ V do
7: if 𝑛 ∈ 𝑆 then
8: 𝑛𝑒𝑖𝑔ℎ[𝑛] [′ 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑′] [0] ← 𝑝

9: 𝑛𝑒𝑖𝑔ℎ[𝑛] [′𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑′] [0] ← 𝑝

10: else
11: {Calculate forward neighbours}
12: for all𝑤 ∈ 𝐼𝑛(𝑛) do
13: 𝑛𝑒𝑖𝑔ℎ[𝑛] [′ 𝑓 𝑜𝑟𝑤 ′] [𝑖]+ ← 𝑛𝑒𝑖𝑔ℎ[𝑤] [′ 𝑓 𝑜𝑟𝑤 ′] [𝑖 − 1]
14: end for
15: 𝑛𝑛 = 𝑔𝑒𝑡_𝑛𝑒𝑥𝑡_𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝑛)
16: 𝑛𝑒𝑖𝑔ℎ[𝑛] [′ 𝑓 𝑜𝑟𝑤 ′] [𝑖]+ ← 𝑛𝑒𝑖𝑔ℎ[𝑛𝑛] [′ 𝑓 𝑜𝑟𝑤 ′] [𝑖]
17: {Calculate backward neighbours}
18: for all𝑤 ∈ 𝑂𝑢𝑡 (𝑛) do
19: 𝑛𝑒𝑖𝑔ℎ[𝑛] [′𝑏𝑎𝑐𝑘′] [𝑖]+ ← 𝑛𝑒𝑖𝑔ℎ[𝑤] [′𝑏𝑎𝑐𝑘′] [𝑖 − 1]
20: end for
21: 𝑝𝑛 = 𝑔𝑒𝑡_𝑝𝑟𝑒𝑣_𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝑛)
22: 𝑛𝑒𝑖𝑔ℎ[𝑛] [′𝑏𝑎𝑐𝑘′] [𝑖]+ ← 𝑛𝑒𝑖𝑔ℎ[𝑝𝑛] [′𝑏𝑎𝑐𝑘′] [𝑖]
23: end if
24: end for
25: end for
26: for all 𝑝 ∈ V𝑃 do
27: G𝑝 ← 𝑛𝑒𝑖𝑔ℎ[𝑝] [′ 𝑓 𝑜𝑟𝑤 ′] [𝑘] + 𝑛𝑒𝑖𝑔ℎ[𝑝] [′𝑏𝑎𝑐𝑘′] [𝑘]
28: end for

node are aggregated from (𝑙−1)-hop neighbors of the corresponding
node’s neighbors, except for versioned neighbors where different
versions of the same node are considered to be at the same depth. It
must be noted that, for forward neighbors, the node with the next
version, and for backward neighbors, the node with the previous
version, are the only neighbors that can be reachable. Additionally,
we only compute the 0-hop neighbors of object nodes with 0 in- or
out-degree, which are added to sink nodes since they can only be
reached in 1-hop.

Here, the function 𝐼𝑛(𝑛) returns all incoming neighbors of node
𝑛, while 𝑂𝑢𝑡 (𝑛) is used to obtain the outgoing neighbors. For a
versioned node 𝑛 with version 𝑖 , we aggregate the neighbors of
node 𝑛𝑖+1 to calculate its forward neighbors and the neighbors
of node 𝑛𝑖−1 to determine its backward neighbors. The functions
𝑔𝑒𝑡_𝑛𝑒𝑥𝑡_𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝑛) and 𝑔𝑒𝑡_𝑝𝑟𝑒𝑣_𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝑛) are used within the
algorithm to retrieve the next and previous versions of node 𝑛,
respectively.

D GRID SEARCH
The performance impact of changing the GNN architectures, num-
ber of layers, embedding dimension, and aggregation method are
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evaluated on Theia, Trace, and Cadets datasets. The results of our
grid-search analysis for all datasets are presented in Fig. 7. Subse-
quently, upon fixing the GNN hyperparameter values accordingly,
we investigated the influence of the threshold value 𝜏 , which de-
termines the maximally tolerable order violation penalty. Fig. 7
presents the change in performance concerning the correct valida-
tion of the subgraph relationship as a function of 𝜏 .

Figure 6: Impact of various GNN architectures, embedding
dimensions, number of layers, and aggregation methods on
performance across three datasets.

Figure 7: Impact of order violation penalty values on sub-
graph relationship detection across three datasets.

E ADDITIONAL RESULTS ON ROBUSTNESS OF
ORDER EMBEDDINGS

We evaluate the robustness of order embeddings to the addition and
deletion of nodes and edges. Figure 8(a) shows ROC curves resulting
from trimming the query graph, depicting the scenario where the
attacker introduces extra attack actions into their known behavior.
Similarly, in Fig. 8(b), ROC curves are presented for the target
graph’s case, reflecting the scenario where the attacker removes
specific attack actions from their known behavior.

(a) (b)

Figure 8: ROC curves for validating subgraph relationship on
the Theia dataset considering 3-hop graphs when a random
portion of nodes and edges are removed from the (a) query
graph (scenario #1) and (b) target graph (scenario #2).

F ROBUSTNESS COMPARISON
To examine the overall robustness of our technique in handling
imprecise queries, we conducted two additional tests. First, we
adopt the same approach described in Sec. 5.3 to randomly remove
a portion of query edges and nodes from the test samples generated
in Sec. 5.4.2. As depicted in Fig. 10(a), the removal of 15% of edges
leads to a 13% decrease in the model’s accuracy. This demonstrates
that our subgraph matching score is sensitive to alterations in the
input data, yet still maintains a relatively high level of accuracy.
We also assess the robustness of Poirot when there is a discrep-
ancy between the queried behavior and its actual version in the
provenance graph. As shown in Fig 10(b), Poirot’s node alignment
performance declines significantly even with the absence of a single
edge or node within the query graph.

In the second test, we evaluate our technique’s ability to iden-
tify mutations in attack behavior. To conduct this assessment, we
examine three distinct malware families, each containing two sam-
ples. One of the samples within each family has its corresponding
provenance graph available in [61]. For the second sample in each
family, we utilized a dynamic malware analysis platform7 to analyze
the actions performed by the sample on the system and generate
the corresponding provenance graphs. We proceeded by testing
whether the subgraph relationship between the pairs of isolated
provenance graphs is preserved. Given that these malware fami-
lies target the Windows operating system, we utilized our model
trained on the Five Directions dataset for evaluation. In each sce-
nario, we treat each pair of graphs as a query and target. These
graph pairs are processed through our system, similar to the other
tests, to calculate the resulting order violation penalty. This penalty
is used to assess the extent of matching between the query and tar-
get graphs. Results show that all three pairs can be matched using
our pretrained model with the same parameters used in our tests.
Each test is carried out twice by interchanging query and target
graphs, resulting in the values presented in the last two columns.
The malware hashes and the resulting matching scores are pre-
sented in Table 9. The outcomes reveal that when queried with
mutated behaviors, ProvG-Searcher can attain a matching score
of 0.5 or higher. This finding further underscores the robustness of
our technique against real-world mutations in behavior.

7https://any.run
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(a) (b)

Figure 9: Sample (a) negative and (b) positive pairs, i.e., (G−,G𝑝 ) and (G+,G𝑝 ) pairs defined in Sec. 4.2.2.

(a) (b)

Figure 10: ROC curves for searching generic behaviors in
the Theia dataset using (a) ProvG-Searcher and (b) Poirot,
considering both exact matching and imprecise matching
with a portion of query edges and nodes are removed in the
provenance graph.

Table 9: Matching Scores for Mutated Malware Behaviors

Malware Report Malware Sample Matching
Family Source MD5 Score

Carbanak Kaspersky[32] B8E1E5B832E5947F41FD6AE6EF6D09A1 0.83 0.56
njRAT Fidelis[16] 8B482947F8AA69E7F21BB5D51C363135 0.75 0.66

HawkEye Fortinet[17] E20FF757A8A3E61CD78528C83D8DC796 0.88 1.00

G SAMPLE QUERY GRAPHS
We provide visualizations of positive and negative graph pair sam-
ples, which are utilized for training and testing our models. A neg-
ative pair consists of a target graph and a query graph that do not
fulfill the subgraph relationship, as depicted in Fig. 9(a). Conversely,
a positive graph pair adheres to the subgraph relationship, Fig. 9(b).

Table 10: Performance Comparison on Unbalanced Datasets

Method 1:1 1:10 1:100 1:1000
MCC F1 MCC F1 MCC F1 MCC F1

Th
ei
a

IsoRankN 31.56 62.85 16.13 19.66 5.46 2.49 1.73 0.26
SimGNN 67.39 84.49 41.51 41.72 15.17 6.88 4.87 0.74
DeepHunter 67.65 84.42 43.44 44.21 16.13 7.67 5.19 0.83
Poirot 95.04 97.44 79.34 79.75 39.52 28.26 13.53 3.79
ProvG-Searcher 99.26 99.84 99.40 99.45 97.72 97.73 84.34 83.24

Tr
ac
e

IsoRankN 17.14 36.46 11.43 20.72 4.09 3.89 1.31 0.43
SimGNN 53.6 78.63 30.26 31.87 10.62 4.59 3.39 0.48
DeepHunter 51.15 77.45 29.16 31.38 10.24 4.52 3.27 0.47
Poirot 96.02 98.01 85.69 86.37 48.63 39.47 17.42 6.14
ProvG-Searcher 99.18 99.33 98.97 99.06 94.18 94.11 67.39 62.68

Ca
de
ts

IsoRankN 31.89 44.15 26.15 32.24 10.31 8.72 3.35 1.05
SimGNN 69.74 85.55 43.68 43.73 16.11 7.43 5.18 0.80
DeepHunter 68.98 85.21 42.98 43.09 15.81 7.25 5.08 0.78
Poirot 96.39 98.16 94.73 95.20 75.17 73.12 34.57 22.01
ProvG-Searcher 99.57 99.76 99.48 99.61 97.88 97.89 84.53 83.41

H EVALUATIONWITH AN UNBALANCED
TEST SET

The comparison results presented in Table 3 were initially obtained
using a balanced set of positive and negative samples. To better
simulate real-world scenarios, we conducted further experiments,
as outlined in Sec. 5.5, by introducing class imbalance with a focus
on negative samples. In these tests, we retained all 5K negative
samples and reduced the number of positive samples to achieve
an imbalance ratio of 1 : 𝑘 , where 𝑘 takes values from the set
10, 100, 1000. This means that for every 𝑘 negative samples tested,
only one positive sample was included in the evaluation process. To
ensure rigorous evaluation, we employed k-fold cross-validation,
guaranteeing the inclusion of all positive samples during testing.
The average performance values are presented in Table 10 using
balance-awaremetrics likeMatthews Correlation Coefficient (MCC)
and F1-score. This comprehensive approach provides valuable in-
sights into ProvG-Searcher’s performance across various class
distribution scenarios.
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