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ABSTRACT
Federated learning (FL) provides an efficient paradigm to jointly

train a global model leveraging data from distributed users. As

local training data comes from different users who may not be

trustworthy, several studies have shown that FL is vulnerable to

poisoning attacks. Meanwhile, to protect the privacy of local users,

FL is usually trained in a differentially private way (DPFL). Thus,

in this paper, we ask: What are the underlying connections between
differential privacy and certified robustness in FL against poisoning
attacks? Can we leverage the innate privacy property of DPFL to
provide certified robustness for FL? Canwe further improve the privacy
of FL to improve such robustness certification? We first investigate

both user-level and instance-level privacy of FL and provide formal

privacy analysis to achieve improved instance-level privacy. We

then provide two robustness certification criteria: certified prediction
and certified attack inefficacy for DPFL on both user and instance

levels. Theoretically, we provide the certified robustness of DPFL

based on both criteria given a bounded number of adversarial users

or instances. Empirically, we conduct extensive experiments to

verify our theories under a range of poisoning attacks on different

datasets. We find that increasing the level of privacy protection

in DPFL results in stronger certified attack inefficacy; however, it
does not necessarily lead to a stronger certified prediction. Thus,
achieving the optimal certified prediction requires a proper balance

between privacy and utility loss.
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1 INTRODUCTION
Federated Learning (FL), which aims to jointly train a global model

with distributed local data, has been widely deployed in different

applications, such as finance [81] and medical analysis [14]. How-

ever, the fact that the local data and the training process are entirely

controlled by the local users, who may be adversarial, raises great

concerns from both security and privacy perspectives. In particu-

lar, recent studies show that FL is vulnerable to different types of

training-time attacks, such as model poisoning [8, 24, 67], backdoor

attacks [4, 72, 79], and label-flipping attacks [27].

Several defenses have been proposed to defend against poison-

ing attacks in FL. For instance, various robust aggregation meth-

ods [11, 23, 57, 61, 83] identify and down-weight the malicious

updates during aggregation, or estimate a true “center” of the re-

ceived updates instead of taking a weighted average directly. Other

defenses include robust FL protocols (e.g., clipping [69], noisy per-

turbation [69], and additional evaluation during training [80]) and

post-training strategies (e.g., fine-tuning and pruning [77]) that

repair the poisoned global model. However, as these works mainly
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focus on providing empirical robustness on specific types of attacks,

they have been shown to be vulnerable to newly proposed strong

adaptive attacks [24, 72, 79]. Recently, some certified defenses have

been proposed against poisoning attacks [38, 39, 43, 65, 76], while

they mainly focus on centralized setting.

In the meantime, privacy concerns have motivated FL training,

where the sensitive raw data is kept on local deviceswithout sharing.

However, sharing other indirect information such as gradients or

model updates during the FL training process can also leak sensitive

user information [85]. As a result, approaches based on differen-

tial privacy (DP) [22], homomorphic encryption [66], and secure

multiparty computation [7, 13] have been proposed to protect the

privacy of users in FL. In particular, differentially private federated

learning (DPFL) [28, 53, 56] provides strong privacy guarantees for

user privacy, and has been deployed to real-world FL applications

such as Google’s Gboard [63] and Apple’s Siri [64].

Recent studies observe that differential privacy (DP) is related to

the robustness of ML models. Intuitively, DP is designed to protect

the privacy of individual data, such that the output of an algorithm

should not change much when one individual record is modified.

Hence, the prediction of a DP model will be less impacted by a

small amount of perturbation. Consequently, several studies have

been conducted to provide empirical and certified defenses against

evasion attacks [42, 47, 74] and data poisoning attacks [34, 50] based

on DP properties in the centralized ML setting. Empirical defense

against backdoor attacks [32] based on DP has also been studied in

federated learning without theoretical guarantees [4, 56, 69]. To the

best of our knowledge, despite the widespread use of DP in FL, there

is no study exploring the underlying connections between DP and

certified robustness in FL against poisoning attacks, or providing

certified robustness for DPFL leveraging its privacy properties.

Hence, in this paper, we aim to bridge this gap and answer the

research questions: Can we quantitatively uncover the underlying

connections between differential privacy and the certified robust-

ness of FL against poisoning attacks? Can we improve the privacy

of FL to improve its certified robustness?

To explore and exploit the inherent privacy properties of DPFL

for robustness certifications of FL, we mainly focus on two goals:

(1) conducting thorough privacy analysis of DPFL algorithms over

multiple rounds of training; (2) providing certified robustness of

DPFL as a function of its privacy parameters (𝜖, 𝛿) under differ-
ent robustness criteria. In terms of privacy analysis, we revisit

existing DPFL algorithms and provide improved privacy analy-

sis. We investigate user-level DP, which is commonly guaranteed

in cross-device FL to protect the sensitive information of each

user [2, 3, 28, 46, 53], as well as instance-level DP which is more

suitable for cross-silo FL to protect sensitive information in each

data instance [49, 51, 86]. Moreover, we carry out privacy analy-

sis for instance-level DPFL algorithms, and provide an improved

guarantee for FedSGD [52]-based algorithm with privacy ampli-

fication of user and batch subsampling. We also provide a formal

privacy guarantee for FedAvg [52]-based algorithm with parallel

composition [54] considering local privacy budget accumulation

and global privacy budget aggregation over training rounds. In

terms of certified robustness of FL, we introduce two robustness

criteria: certified prediction and certified attack inefficacy, which can

be adapted to different threat models in DPFL. We prove that user-

level (instance-level) DPFL is certifiably robust against a bounded

number of adversarial users (instances). We also show that our

analysis on certified robustness is agnostic to the type of poison-

ing attack strategies as long as the number of adversarial users or

instances is bounded. Empirically, we quantitatively measure the

relationship between privacy guarantee and the certified robustness

of FL based on different robustness criteria. We present the first set

of certified robustness for DPFL on image datasets MNIST, CIFAR

and text dataset Tweets against various FL poisoning attacks, in-

cluding backdoor attacks [4, 69], distributed backdoor attacks [79],

label-flipping attacks [27], model replacement attacks [4, 8], and

optimization-based model poisoning attacks [67]. From our theo-

retical and empirical results, we provide the following insights:

(1) Certified robustness in terms of certified prediction is influenced

by both the privacy guarantee and model utility. Moderately

strong privacy protection enhances certified prediction, while

overly strong privacy protection can harm. This is potentially

caused by the significant loss of model utility. Thus, optimal

certified prediction is achieved by balancing privacy protection

and utility.

(2) Certified attack inefficacy is always enhanced by stronger pri-

vacy protection. The certified lower bounds of attack inefficacy

are generally tight when the number of poisoned users or in-

stances is small, or the attack strategy is strong.

(3) Different DPFL algorithms yield varying certification robust-

ness under the same privacy guarantee due to distinct training

mechanisms (e.g., per-layer clipping or flat clipping).

(4) Larger FL data heterogeneity leads to a smaller number of toler-

able adversaries for certified prediction, due to degraded utility.

Contributions. In this paper, we take the first step to characterize

the underlying connections between privacy guarantees and cer-

tified robustness in FL. We hope our work can pave the way for

more private and robust FL applications.

• We provide two criteria for certified robustness of FL against

poisoning attacks (Section 4.2).

• Given an FL model satisfying user-level DP, we prove that it

is certifiably robust against arbitrary poisoning attacks with a

bounded number of adversarial users (Section 4.2).

• We revisit two instance-level DPFL algorithms and provide the

improved privacy analysis (Section 5.1). We further prove that

instance-level DPFL is certifiably robust against a bounded num-

ber of poisoning instances during training (Section 5.2).

• We systematically evaluate the certified robustness for user-level

and instance-level DPFL based on two robustness criteria on both

image and text datasets against five types of poisoning attacks.

We provide a series of ablation studies to further analyze the

factors that affect the certified robustness, such as different DPFL

algorithms and data heterogeneity. Our results also indicate that

our certification approach offers strong empirical robustness
when compared to six empirical FL defenses (Section 6).

2 RELATEDWORK
2.1 Differentially Private Federated Learning
To guarantee user-level privacy for FL, McMahan et al. [53] in-

troduce user-level DP-FedAvg and DP-FedSGD to train language
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Table 1: Comparison between our work and existing studies
on privacy and robustness in the context of poisoning attacks.

FL DP

Empirical

Robustness

Certifed

Prediction

Certifed

Attack Inefficacy

[43, 65, 73, 76] × × ✓ ✓ ×
[34] × ✓ ✓ × ×
[50] × ✓ ✓ × ✓

[15, 78] ✓ × ✓ ✓ ×
[4, 56, 69, 72] ✓ ✓ ✓ × ×
Our work ✓ ✓ ✓ ✓ ✓

models with millions of users, where the server clips the norm of

each local update, then adds Gaussian noise on the summed update.

User-level DP-FedAvg is also proposed independently by Geyer

et al. [28]. Both of these works calculate the privacy budget via the

moment accountant [1]. In CpSGD [2], each user clips and quantizes

the model update, and adds noise drawn from Binomial distribution,

achieving both communication efficiency and DP. Bhowmick et al.

[9] derive DP for FL via Rényi divergence [55] and study its re-

silience against data reconstruction attacks. Liang et al. [46] utilize

Laplacian smoothing for each local update to enhance model util-

ity. Asoodeh and Calmon [3] propose a different way to calculate

the privacy budget by interpreting each round as a Markov kernel

and quantifying its impact on privacy parameters. Recent studies

propose different regularization and sparsification techniques to

improve utility [17] and leverage sharpness-aware optimizer [25]

to make the model less sensitive to weight perturbation [68].

In terms of instance-level privacy for FL, Dopamine [51] provides

instance-level privacy guarantee for FedSGD [52] where each user

only performs one step of DP-SGD [1] at each FL round. Girgis

et al. [29] introduce variants of instance-level DP-FedSGD with a

trusted shuffler between the server and users to randomly permutes

user gradients for privacy amplification through anonymization.

Nonetheless, both works cannot be applied to the more general set-

ting (e.g., FedAvg [52]) where each user performs multiple steps of

SGD. Zhu et al. [86] privately aggregate the label predictions from

users in a voting scheme and provide DP guarantees on both user

and instance levels. However, it does not allow aggregating the gra-

dients or updates and is thus not applicable to standard FL. Recent

works combine local DP-SGD training of clients with personalized

FL algorithms [48, 49, 58, 82] to address the user heterogeneity

issue in FL and improve privacy-utility tradeoff.

In summary, the above works focus on privacy in FL while leav-

ing its robustness unexplored. Our goal is to uncover the underlying

connections between privacy guarantees with certified robustness.

2.2 Certified Robustness against Evasion
Attacks

Machine learning models are susceptible to test-time evasion at-

tacks [31], and different defenses have been proposed to enhance

the robustness of models and provide certifications to guarantee

consistent predictions under a specified perturbation radius [44].

Pixel-DP [42] first connects DP to certified robustness against ad-

versarial examples by adding noise on the test sample 𝑂 times and

taking the expectation over the corresponding outputs. Later on,

randomized smoothing [18] is proposed to provide a tight robust-

ness certification. Wang et al. [74] extends Pixel-DP [42] to NLP

tasks, and Liu et al. [47] improves the certification based on Rényi

DP [55]. However, such an approach of adding noise to test samples

does not guarantee that the training algorithm itself satisfies DP.

In contrast, our certification against poisoning attacks focuses on

DPFL, which requires the training algorithm to satisfy DP. Such

analysis requires careful privacy budget analysis of DPFL models

across multiple training rounds and aggregation.

2.3 Certified Robustness against Poisoning
Attacks

Compared to test-time certifications against evasion attacks, training-

time certifications against poisoning attacks have been less explored

due to the notably different threat models and the complexity of

analyzing model training dynamics, even in a centralized setting.

In centralized setting, current approaches primarily utilize ran-
domized smoothing to certify the model robustness under a bounded

number of poisoned instances. Weber et al. [76] and Rosenfeld et al.

[65] propose to add noise directly to the training dataset, train mul-

tiple models on the randomized datasets, and take majority vote for

the final prediction for certification. Levine and Feizi [43] andWang

et al. [73] propose to partition a centralized dataset into disjoint

subsets, train an independent model on each partition, and make

majority predictions among all models. However, these certifica-

tions do not apply to FL, where each local model can influence other

users’ local models through periodic global model aggregation, so

the malicious effect of one poisoned local model could spread to

all local models, making the certified robustness in FL a far more

challenging task. To achieve certified robustness in FL, CRFL [78]

clips the aggregated FL model parameters and adds noise, but it

does not consider the properties provided by DPFL. Emsemble [15]

trains numerous FL global models (e.g., 500) on different subsets

of users and takes majority prediction. Similarly, it only leverages

the randomness in user-subsampling and does not consider data

privacy property during training. Our goal is to explore the under-

lying connections between DP properties of DPFL algorithms and

their certified robustness, as well as provide recipes for achieving

higher certified robustness.

Several studies have explored the robustness against poisoning

attacks induced by DP, either in centralized learning or only empir-

ically in FL. Ma et al. [50] first demonstrate that private learners are

resistant to data poisoning for centralized regression models and

analyze the lower bound of attack inefficacy. Here we extend such a

lower bound of attack inefficacy from DP in centralized setting [50]

to user-level DP in FL, and further derive the upper bound of the

attack inefficacy. We also provide certified prediction guarantees

as another robustness certification criterion for general classifica-

tion tasks in FL based on the privacy properties. Meanwhile, some

empirical studies [4, 34, 56, 69] show that DP property can miti-

gate backdoor attacks. For instance, in the centralized setting,
Hong et al. [34] show that the off-the-shelf mechanism DP-SGD [1]

can serve as a defense against poisoning attacks; in FL, [4, 69, 72]
show that bounding the norm and adding Gaussian noise on model

updates can mitigate backdoor attacks. Recently, Naseri et al. [56]

revealed that both user-level DP and instance-level DP can defend

against backdoor attacks empirically with varying levels of pri-

vacy protection. However, none of these studies provides certified

robustness guarantees for DPFL or characterizes the quantitative

relationships between privacy guarantees and certified robustness
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in FL. In contrast, our work offers robustness certifications, which

can be represented as a function of DP parameters (𝜖, 𝛿) based on

different robustness criteria. We provide an overall comparison

between our work and existing studies in Table 1.

3 PRELIMINARIES
We start by providing some background on Differential Privacy

(DP) and Federated Learning (FL).

Differential Privacy. DP provides a mathematically rigorous guar-

antee for privacy, which ensures that the output of a random al-

gorithm is close no matter whether an individual data record is

included in the input.

Definition 1 ((𝜖, 𝛿)-DP [21]). A randomized mechanismℳ : 𝒟→
Θ with domain 𝒟 and output set Θ satisfies (𝜖, 𝛿)-DP if for any pair
of two adjacent datasets 𝑑,𝑑′ ∈ 𝒟, and for any possible (measurable)
output set 𝐸 ⊆ Θ, it holds that

Pr[ℳ(𝑑) ∈ 𝐸] ≤ 𝑒𝜖 Pr

[
ℳ

(
𝑑′

)
∈ 𝐸

]
+ 𝛿. (1)

Group DP follows immediately Definition 1, where the privacy

guarantee decreases with the size of the group.

Definition 2 (Group DP). For mechanismℳ that satisfies (𝜖, 𝛿)-
DP, it satisfies (𝑘𝜖, 1−𝑒𝑘𝜖

1−𝑒𝜖 𝛿)-DP for groups of size 𝑘 . That is, for any
𝑑, 𝑑′ ∈ 𝒟 that differ by 𝑘 individuals and any 𝐸 ⊆ Θ, it holds that

Pr[ℳ(𝑑) ∈ 𝐸] ≤ 𝑒𝑘𝜖 Pr

[
ℳ

(
𝑑′

)
∈ 𝐸

]
+ 1 − 𝑒𝑘𝜖

1 − 𝑒𝜖 𝛿. (2)

Federated Learning. The standard instantiation of FL is FedAvg [52],
which trains a shared global model in FL without directly accessing

the local training data of users. We consider an FL system consisting

of 𝑁 users, with 𝐵 representing the set of all users (i.e., 𝐵 := [𝑁 ])
and 𝐷 := {𝐷1, . . . , 𝐷𝑁 } denoting the union of local datasets across

all users. At round 𝑡 , the server sends the current global model

𝑤𝑡−1 to users in the selected user set 𝑈𝑡 , where |𝑈𝑡 | = 𝑚 = 𝑞𝑁

and 𝑞 is the user sampling probability. Each selected user 𝑖 ∈ 𝑈𝑡

then locally updates the model for 𝐸 local epochs with its dataset

𝐷𝑖 and learning rate 𝜂 to obtain a new local model. Then, the user

sends the local model updates Δ𝑤𝑖
𝑡 to the server. Finally, the server

aggregates over the updates from all selected users into the new

global model:𝑤𝑡 = 𝑤𝑡−1 + 1

𝑚

∑
𝑖∈𝑈𝑡

Δ𝑤𝑖
𝑡 .

4 USER-LEVEL DP AND CERTIFIED
ROBUSTNESS

4.1 User-level DP and Background
Definition 1 leaves the definition of adjacent datasets flexible, which

is application-dependent. When DP is used for the privacy protec-

tion of individual users, the adjacency relation is defined as that

differing by data from one user [53].

Definition 3 (User-level (𝜖, 𝛿)-DP). Let 𝐵, 𝐵′ be two user sets. Let 𝐷
and 𝐷′ be the datasets that are the union of local training examples
from all users in 𝐵 and 𝐵′, respectively. Then, 𝐷 and 𝐷′ are adjacent
if 𝐵 and 𝐵′ differ by one user. The mechanism ℳ satisfies user-level
(𝜖, 𝛿)-DP if it meets Definition 1 with 𝐷 and 𝐷′ as adjacent datasets.

Following the standard user-level DPFL [28, 53], we introduce

UserDP-FedAvg (Algorithm 1 in Appendix A). Specifically, at each

round, the server first clips the model update from each user with a

threshold 𝑆 such that its ℓ2-sensitivity is upper bounded by 𝑆 . Next,

the server sums up the updates, adds Gaussian noise sampled from

𝒩 (0, 𝜎2𝑆2), and takes the average:

𝑤𝑡 ← 𝑤𝑡−1 +
1

𝑚

©«
∑︁
𝑖∈𝑈𝑡

Clip(Δ𝑤𝑖
𝑡 , 𝑆) +𝒩

(
0, 𝜎2𝑆2

)ª®¬ . (3)

During FL training, the users repeatedly query private datasets

over training rounds; thus, the privacy guarantee composes. We

use the existing accountant [75] based on Rényi Differential Privacy

(RDP) [55] for a tight privacy budget accumulation over 𝑇 rounds.

4.2 Certified Robustness of User-level DPFL
4.2.1 Threat Model. We consider there are 𝑘 adversarial users

(attackers) out of 𝑁 users.

• Attack Goal: The goal of attackers is to fool the trained FL

global model on the server side with specific attack objectives

(e.g., misclassification).

• Attack Capability: In line with prior works [56, 69], for attacker
capability, we consider the attacker with full control of its local

training data/model. The attacker can arbitrarily manipulate the

features and labels of the local data and modify the weights of

the local model before submitting it to the server. However, the

attacker has no control over the server operations nor over the

local training process of other users. The trusted server conducts

DP-related operations [28], including model update clipping and

noise perturbing, so that the trained FL global model satisfies

user-level DP even in the presence of attackers.

• Attack Strategy: The attacker strategies include backdoor at-
tacks [16, 32], which alter local data to embed a backdoor trigger

with a targeted adversarial label during local training, causing

the FL global model to misclassify any test data with the back-

door trigger as the target label [4, 69, 72, 79]; label flipping at-

tacks [10, 36] which switch the labels of local training data from

one source class to a target class while keeping the data features

unchanged, causing the FL global model to misclassify any test

data from source class to target class [26]; and model poisoning

attacks that directly manipulate local model weights to tamper

global model convergence [24] or amplify the malicious effects

of the attacker’s model updates derived from poisoning data by

scaing the updates by a factor of 𝛾 [4, 8]. Note that by providing

certified robustness for FL, which is agnostic to the actual attack

strategies, our work is able to explore the worst-case robustness

of FL and its relationship to privacy properties.

We denote 𝐵′ as the set of all users, among which 𝑘 users are

adversarial, and 𝐷′ := {𝐷′1, . . . , 𝐷′𝑘−1
, 𝐷′𝑘 , 𝐷𝑘+1, . . . , 𝐷𝑁 } as the

corresponding union of local datasets.

Next, we introduce two criteria for robustness certification in

FL: certified prediction and certified attack inefficacy.

4.2.2 Certified Prediction. Consider the classification task with 𝐶

classes. We define the classification scoring function 𝑓 : (Θ,R𝑑 ) →
Υ𝐶 which maps model parameters 𝜃 ∈ Θ and an input data 𝑥 ∈ R𝑑
to a confidence vector 𝑓 (𝜃, 𝑥), and 𝑓𝑐 (𝜃, 𝑥) ∈ [0, 1] represents the
confidence of class 𝑐 . We mainly focus on the confidence after

normalization, i.e., 𝑓 (𝜃, 𝑥) ∈ Υ𝐶 = {𝑝 ∈ R𝐶≥0
: ∥𝑝 ∥1 = 1} in the

probability simplex. Since the DP mechanism ℳ is randomized

and produces a stochastic FL global model 𝜃 = ℳ(𝐷), it is natural
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to resort to a probabilistic expression as a bridge for quantitative

robustness certifications. In particular, we will use the expectation

of the model’s predictions to provide a quantitative guarantee on

the robustness of ℳ. Concretely, we define the expected scoring
function 𝐹 : (𝜃,R𝑑 ) → Υ𝐶 where 𝐹𝑐 (ℳ(𝐷), 𝑥) = E[𝑓𝑐 (ℳ(𝐷), 𝑥)]
is the expected confidence for class 𝑐 . The expectation is taken over

DP training randomness, e.g., random Gaussian noise and random

user subsampling. The corresponding prediction 𝐻 : (𝜃,R𝑑 ) → [𝐶]
is defined by

𝐻 (ℳ(𝐷), 𝑥) := arg max

𝑐∈[𝐶 ]
𝐹𝑐 (ℳ(𝐷), 𝑥), (4)

which is the top-one class based on expected prediction confidence.

We prove that such prediction allows robustness certification.

Certified Prediction under One Adversarial User. Follow-
ing our threat model above and the DPFL training mechanism

in Algorithm 1, we denote the trained global model exposed to a

poisoned dataset 𝐷′ as ℳ(𝐷′). When the number of adversarial

users 𝑘 = 1, 𝐷 and 𝐷′ are user-level adjacent datasets according to

Definition 3. Given that mechanism ℳ satisfies user-level (𝜖, 𝛿)-
DP, based on the DP property, the distribution of the stochastic

model ℳ(𝐷′) is “close” to the distribution of ℳ(𝐷). Intuitively,
according to the post-processing property of DP [21], during testing,

given a test sample 𝑥 , we would expect the values of the expected

confidence for each class 𝑐 , i.e., 𝐹𝑐 (ℳ(𝐷′), 𝑥) and 𝐹𝑐 (ℳ(𝐷), 𝑥), to
be close, and hence the returned most likely class to be the same,
i.e., 𝐻 (ℳ(𝐷), 𝑥) = 𝐻 (ℳ(𝐷′), 𝑥), indicating robust prediction.

Theorem 1 (Certified Prediction under One Adversarial User).
Suppose a randomized mechanism ℳ satisfies user-level (𝜖, 𝛿)-
DP. For two user sets 𝐵 and 𝐵′ that differ by one user, let 𝐷 and
𝐷′ be the corresponding training datasets. For a test input 𝑥 , sup-
pose A,B ∈ [𝐶] satisfy A = arg max𝑐∈[𝐶 ] 𝐹𝑐 (ℳ(𝐷), 𝑥) and
B = arg max𝑐∈[𝐶 ]:𝑐≠A 𝐹𝑐 (ℳ(𝐷), 𝑥). Then, it is guaranteed that
𝐻 (ℳ(𝐷′), 𝑥) = 𝐻 (ℳ(𝐷), 𝑥) = A if:

𝐹A (ℳ(𝐷), 𝑥) > 𝑒2𝜖𝐹B (ℳ(𝐷), 𝑥) + (1 + 𝑒𝜖 )𝛿, (5)

Proof sketch. The proof generalizes the analysis of pixel-

level DP in test-time [42]. Specifically, with DP property for

two FL neighboring datasets, we can lower bound 𝐹A (ℳ(𝐷′), 𝑥)
based on 𝐹A (ℳ(𝐷), 𝑥), and upper bound 𝐹B (ℳ(𝐷′), 𝑥) based on

𝐹B (ℳ(𝐷), 𝑥). When the lower-bound of 𝐹A (ℳ(𝐷′), 𝑥) is strictly
higher than the upper-bound of 𝐹B (ℳ(𝐷′), 𝑥), the predicted class

will be provably A even under poisoning attack. Equation (5) states

the condition for achieving such robustness. Full proofs are in Ap-

pendix C. □

Remark. In Theorem 1, if 𝜖 is large, i.e., weak privacy guarantee,

such that the RHS of Equation (5) > 1, the robustness condition

cannot hold since the expected confidence 𝐹A (ℳ(𝐷), 𝑥) ∈ [0, 1].
On the other hand, to achieve small 𝜖 , i.e., strong privacy guarantee,

large noise is required during training, which would hurt model

utility and thus result in a small confidence margin between the

top two classes (e.g., 𝐹A (ℳ(𝐷), 𝑥) and 𝐹B (ℳ(𝐷), 𝑥)), making it

hard to meet the robustness condition. This indicates that achieving

certified prediction requires a reasonable privacy level 𝜖 .

Certified Prediction under 𝑘 Adversarial Users.When the

number of adversarial users 𝑘 > 1, we resort to group DP. Ac-

cording to Definition 2, given mechanism ℳ satisfying user-level

(𝜖, 𝛿)-DP, it also satisfies user-level (𝑘𝜖, 1−𝑒𝑘𝜖
1−𝑒𝜖 𝛿)-DP for groups of

size 𝑘 . When 𝑘 is smaller than a certain threshold, leveraging the

group DP property, we would expect that the distribution of the

stochastic model ℳ(𝐷′) is not too far away from the distribution

of ℳ(𝐷) such that they would make the close prediction for a

test sample with high probability. Next, we present the correspond-

ing robustness certificate by studying the sufficient condition of 𝑘 ,

such that the prediction for a test sample is consistent between the

stochastic FL models trained from 𝐷 and 𝐷′ separately.

Theorem 2 (Upper Bound of 𝑘 for Certified Prediction). Suppose a
randomized mechanismℳ satisfies user-level (𝜖, 𝛿)-DP. For two user
sets 𝐵 and 𝐵′ that differ by 𝑘 users, let 𝐷 and 𝐷′ be the corresponding
training datasets. For a test input 𝑥 , suppose A,B ∈ [𝐶] satisfy A =

arg max𝑐∈[𝐶 ] 𝐹𝑐 (ℳ(𝐷), 𝑥) andB = arg max𝑐∈[𝐶 ]:𝑐≠A 𝐹𝑐 (ℳ(𝐷), 𝑥),
then 𝐻 (ℳ(𝐷′), 𝑥) = 𝐻 (ℳ(𝐷), 𝑥) = A, ∀𝑘 < K where K is the cer-
tified number of adversarial users:

K =
1

2𝜖
log

𝐹A (ℳ(𝐷), 𝑥) (𝑒𝜖 − 1) + 𝛿
𝐹B (ℳ(𝐷), 𝑥) (𝑒𝜖 − 1) + 𝛿 (6)

Proof sketch. By solving Theorem 1 combined with Group DP

definition, we derive the above robustness condition. Full proofs

are in Appendix C. □

Remark. (1) In Theorem 2, if we fix 𝐹A (ℳ(𝐷), 𝑥) and

𝐹B (ℳ(𝐷), 𝑥), the smaller 𝜖 of FL can certify larger K. However,
smaller 𝜖 also induces lower confidence due to the model perfor-

mance drop, thus reducing the tolerable K instead. As a result,

properly choosing 𝜖 would help to improve the certified robustness

and tolerate more adversaries during training (e.g. certify against

a large K). (2) Theorem 2 provide a unified certification against 𝑘

adversarial users built upon 𝜖 , which remains valid regardless of

how 𝜖 is achieved. It thus offers the flexibility of choosing various

types of noise, clipping, subsampling strategies, and FL training

algorithms to achieve user-level 𝜖 . DPFL mechanisms that can re-

tain a larger prediction confidence margin under the same 𝜖 can

certify a larger K. (3) Theorem 2 is distinct from the maximum

adversarial perturbation magnitude against test-time attacks pro-

vided by Pixel-DP [42] in three important aspects. First, we employ

group DP to provide certifications against a discrete 𝑘 number of

adversarial users under the threat model of FL poisoning attacks,

while Pixel-DP measures maximum perturbation magnitude us-

ing the ℓ𝑝 -norm due to the continuous nature of pixels. Second,

the certification from Pixel-DP is based on the one-time noise in

the direct input perturbation during test time, leading to different

closed-form solutions for different types of noise distributions such

as Laplace and Gaussian. In contrast, Theorem 2 based on 𝜖 is a

unified certification applicable to any user-level DP FL mechanisms.

Third, the analysis of 𝜖 in DPFL takes into account more factors

than sorely the noise, such as user subsampling and the privacy

accountant techniques for DP composition over training rounds.

Certified Prediction via Rényi DP. In addition to the theo-

retical guarantees of DP-based certified prediction, we also derive

the certified prediction based on RDP [55] with the randomized

smoothing technique via Rényi Divergence [20] in Appendix D. Yet,

compared to DP-based certifications, RDP-based certifications are

more intricate, due to the additional parameter, RDP order 𝛼 , and

its foundational Rényi Divergence-based definition, which makes it



CCS ’23, November 26–30, 2023, Copenhagen, Denmark Chulin Xie, Yunhui Long, Pin-Yu Chen, Qinbin Li, Arash Nourian, Sanmi Koyejo, and Bo Li

more challenging to derive a straightforward upper bound K as in

Theorem 2. In our main paper, we focus on DP-based certifications

for the convenience of illustration.

4.2.3 Certified Attack Inefficacy. In addition to the certified predic-

tion, we define a bounded attack inefficacy for attacker 𝐶 : Θ→ R,
which quantifies the difference between the attack performance

of the poisoned model and the attack goal, following [50]. In gen-

eral, the attacker aims to minimize the expected attack inefficacy

𝐽 (𝐷′) := E[𝐶 (ℳ(𝐷′))] where ℳ(𝐷′) is the global model trained

from poisoned dataset 𝐷′, and the expectation is taken over the

randomness of DP training. The inefficacy function can be instan-

tiated according to the concrete attack goal in different types of

poisoning attacks, and we provide some examples below. For in-

stance, in Example 1 of backdoor attack, the attack inefficacy is

defined as the loss of the poisoned FL model 𝜃 ′ = ℳ(𝐷′) evaluated
on a backdoor testset. During the FL training stage, the attacker

optimizes the poisoned FL model 𝜃 ′ with poisoned training data,

so as to minimize the attack inefficacy 𝐶 (𝜃 ′) during the test phase.

The lower the attack inefficacy, the stronger the attack is.

Given a global FL model ℳ(𝐷′) satisfying user-level (𝜖, 𝛿)-DP,
we prove the lower bound of the attack inefficacy 𝐽 (𝐷′) when there

are at most 𝑘 users. The existence of the lower bound implies that

𝐽 (𝐷′) can not be arbitrarily low under the constraint of 𝑘 adver-

sarial users, i.e., the attack can not be arbitrarily successful, which

reflects the robustness of the trained global model. A higher lower

bound of the attack inefficacy (i.e., less effective attack) indicates a

more certifiably robust global model.

Example 1. (Backdoor attack [32]) 𝐶 (𝜃 ′) = 1

𝑛

∑𝑛
𝑖=1

𝑙 (𝜃 ′, 𝑧∗
𝑖
), where

𝑧∗
𝑖
= (𝑥𝑖 + 𝛿𝑥 , 𝑦∗), 𝛿𝑥 is the backdoor pattern, 𝑦∗ is the target adver-

sarial label. Minimizing 𝐽 (𝐷′) over model parameters 𝜃 ′ drives the
prediction on test data with backdoor pattern 𝛿𝑥 to 𝑦∗.

Example 2. (Label Flipping attack [10]) 𝐶 (𝜃 ′) = 1

𝑛

∑𝑛
𝑖=1

𝑙 (𝜃 ′, 𝑧∗
𝑖
),

where 𝑧∗
𝑖
= (𝑥𝑖 , 𝑦∗) and 𝑦∗ is the target adversarial label. Minimizing

𝐽 (𝐷′) over model 𝜃 ′ drives the prediction on test data to 𝑦∗.
Certified Attack Inefficacy under 𝑘 Adversarial Users. We

discuss our main results on certified attack inefficacy below.

Theorem 3 (Attack Inefficacy with 𝑘 Attackers). Suppose a ran-
domized mechanism ℳ satisfies user-level (𝜖, 𝛿)-DP. For two user
sets 𝐵 and 𝐵′ that differ 𝑘 users, 𝐷 and 𝐷′ are the corresponding
training datasets. Let 𝐽 (𝐷) be the expected attack inefficacy where
|𝐶 (𝜃 ) | ≤ 𝐶 , ∀𝜃 . Then,

min{𝑒𝑘𝜖 𝐽 (𝐷) + 𝑒𝑘𝜖 − 1

𝑒𝜖 − 1

𝛿𝐶,𝐶} ≥ 𝐽 (𝐷′)

≥ max{𝑒−𝑘𝜖 𝐽 (𝐷) − 1 − 𝑒−𝑘𝜖
𝑒𝜖 − 1

𝛿𝐶, 0}, if 𝐶 (·) ≥ 0

min{𝑒−𝑘𝜖 𝐽 (𝐷) + 1 − 𝑒−𝑘𝜖
𝑒𝜖 − 1

𝛿𝐶, 0} ≥ 𝐽 (𝐷′)

≥ max{𝑒𝑘𝜖 𝐽 (𝐷) − 𝑒𝑘𝜖 − 1

𝑒𝜖 − 1

𝛿𝐶,−𝐶}, if 𝐶 (·) ≤ 0

(7)

Proof sketch. Theorem 3 contains the lower bound and upper

bound for attack inefficacy. For the lower bound, we generalize the

proof from DP in centralized learning [50] to the user-level DP in FL.
Concretely, we derive the lower bound of 𝐽 (𝐷′) based on 𝐽 (𝐷) ac-
cording to the satisfied condition in the Group DP definition for the

neighboring datasets differing 𝑘 users. In addition, we prove the up-

per bound by leveraging the symmetric property of DP neighboring

datasets. The full proofs are omitted to Appendix C. □

Remark. In Theorem 3, (1) the lower bounds show to what extent

the attack can reduce 𝐽 (𝐷′) by manipulating up to 𝑘 users, i.e.,

how successful the attack can be. The lower bounds depend on

𝐽 (𝐷), 𝑘 , and 𝜖 . Here 𝐽 (𝐷) is the attack inefficacy evaluated on the

global model trained from clean dataset 𝐷 , which is unrelated to

the adversarial users and is only influenced by DPFL mechanism

ℳ. When 𝐽 (𝐷) is higher (i.e., the clean modelℳ(𝐷) is more ro-

bust), the DPFL model under poisoning attacks ℳ(𝐷′) is more

robust because the lower bounds are accordingly higher; a tighter

privacy guarantee, i.e., smaller 𝜖 , can also lead to higher robustness

certification as it increases the lower bounds. On the other hand,

with larger 𝑘 , the attacker ability grows and thus leads to lower

𝐽 (𝐷′). (2) The upper bounds indicate the minimal adversarial im-

pact caused by 𝑘 attackers, demonstrating the vulnerability of DPFL

models in the most optimistic case (e.g., the backdoor pattern is less

distinguishable). (3) Leveraging the above lower bounds, we can

lower bound the minimum number of attackers required to reduce

attack inefficacy to a certain level associated with hyperparameter

𝜏 in Corollary 1.

Corollary 1 (Lower Bound of 𝑘 Given 𝜏 , extended from [50]). Sup-
pose a randomized mechanismℳ satisfies user-level (𝜖, 𝛿)-DP. Let
attack inefficacy function be 𝐶 (·), the expected attack inefficacy be
𝐽 (·). In order to achieve 𝐽 (𝐷′) ≤ 1

𝜏 𝐽 (𝐷) for 𝜏 ≥ 1when 0 ≤ 𝐶 (·) ≤ 𝐶 ,

or achieve 𝐽 (𝐷′) ≤ 𝜏 𝐽 (𝐷) for 1 ≤ 𝜏 ≤ − 𝐶
𝐽 (𝐷 ) when −𝐶 ≤ 𝐶 (·) ≤ 0,

the number of adversarial users should satisfy the following:

𝑘 ≥ 1

𝜖
log

(𝑒𝜖 − 1) 𝐽 (𝐷)𝜏 +𝐶𝛿𝜏
(𝑒𝜖 − 1) 𝐽 (𝐷) +𝐶𝛿𝜏

or 𝑘 ≥ 1

𝜖
log

(𝑒𝜖 − 1) 𝐽 (𝐷)𝜏 −𝐶𝛿
(𝑒𝜖 − 1) 𝐽 (𝐷) −𝐶𝛿

,

Proof sketch. The proof generalizes the proof of DP in cen-

tralized learning [50] to the user-level DP in FL. Consider the case

0 ≤ 𝐶 (·) ≤ 𝐶 , when the lower bound of 𝐽 (𝐷′) in Theorem 3 is

smaller than the desired attack inefficacy
1

𝜏 𝐽 (𝐷), the current attack
inefficacy 𝐽 (𝐷′) will be smaller than the desired attack inefficacy,

i.e., 𝐽 (𝐷′) ≤ 1

𝜏 𝐽 (𝐷), indicating the desired attack effectiveness

under 𝑘 adversarial users. Corollary 1 states the aforementioned

condition. The full proofs are omitted to Appendix C. □

Remark. Corollary 1 shows that stronger privacy guarantee (i.e.,

smaller 𝜖) requires more attackers to achieve the same effect of the

attack, indicating higher robustness.

5 INSTANCE-LEVEL DP AND CERTIFIED
ROBUSTNESS

5.1 Instance-level Privacy
We start by introducing instance-level DP definition that protects

privacy of individual instances, and guarantees that the trained sto-

chastic FL model should not differ much if one instance is modified.

Definition 4 (Instance-level (𝜖, 𝛿)-DP). Let 𝐷 be the dataset that is
the union of local training examples from all users. Then, 𝐷 and 𝐷′

are adjacent if they differ by one instance. The randomized mechanism
ℳ is instance-level (𝜖, 𝛿)-DP if it meets Definition 1 with 𝐷 and 𝐷′

as adjacent datasets.
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Next, we revisit InsDP-FedSGD [51] and InsDP-FedAvg, where
each user adds noise in each training step using DP-SGD [1] when

training its local model based on Fed-SGD and Fed-Avg, respectively.

Then, we formally provide the corresponding privacy analysis.

5.1.1 Instance-level DP for FedSGD. Dopamine [51] provides the

first instance-level DP guarantee for the DP-SGD [1] training of

FedSGD [52]. Although FedSGD performs the user sampling on

the server and the batch sampling in each user during training,

Dopamine neglects the privacy gain provided by random user

sampling, unlike the privacy analysis in user-level DP. There-

fore, we improve the privacy guarantee via privacy amplifica-

tion [1, 6] with user sampling. In addition, we use the Rényi DP

(RDP) accountant [75], instead of the moment accountant [1] used

in Dopamine [51], for a tighter privacy budget analysis, given its

tighter compositions rules based on Rényi divergence [55].

Specifically, in InsDP-FedSGD (Algorithm 2 in Appendix A), each

user updates its local model by one step of DP-SGD [1] to protect the

privacy of each training instance, the randomized mechanismℳ
that outputs the global model preserves the instance-level DP. The

one-step update for the global model can be described as follows:

𝑤𝑡 ← 𝑤𝑡−1 −
1

𝑚

∑︁
𝑖∈𝑈𝑡

𝜂

𝐿

©«
∑︁

𝑥 𝑗 ∈𝑏𝑖𝑡

Clip(∇𝑙𝑖 (𝑤𝑡−1;𝑥 𝑗 ), 𝑆 ) +𝒩
(
0, 𝜎2𝑆2

)ª®®¬ ,
(8)

where 𝑏𝑖𝑡 is a local batch randomly sampled from the local dataset

of user 𝑖 , 𝐿 is the batch size, ∇𝑙𝑖 (𝑤𝑡−1;𝑥 𝑗 ) is the gradient for local
sample 𝑥 𝑗 ∈ 𝑏𝑖𝑡 calculated upon the current FL model 𝑤𝑡−1, and

𝒩
(
0, 𝜎2𝑆2

)
is the Gaussian noise added to the per-sample gradient.

Proposition 1 (InsDP-FedSGD Privacy Guarantee). Given batch
sampling probability 𝑝 without replacement, and user sampling prob-
ability 𝑞 = 𝑚

𝑁
without replacement, FL rounds 𝑇 , the clipping thresh-

old 𝑆 , the noise parameter 𝜎 , the randomized mechanism ℳ in
Algorithm 2 satisfies (𝑇𝜖′ (𝛼) + log

𝛼−1

𝛼 − log𝛿+log𝛼
𝛼−1

, 𝛿)-DP with
𝜖 (𝛼) = 𝛼/(2𝑚𝜎2) where 𝛼 is the RDP order and

𝜖′ (𝛼 ) ≤ 1

𝛼 − 1

· log

(
1 + (𝑝𝑞)2

(
𝛼

2

)
min

{
4

(
𝑒𝜖 (2) − 1

)
, 𝑒𝜖 (2) ·

min

{
2,

(
𝑒𝜖 (∞) − 1

)
2

}}
+

𝛼∑︁
𝑗=3

(𝑝𝑞) 𝑗
(
𝛼

𝑗

)
𝑒 ( 𝑗−1)𝜖 ( 𝑗 )

min

{
2,

(
𝑒𝜖 (∞) − 1

) 𝑗 })
Proof sketch. We use 𝑝𝑞 to represent instance-level sampling

probability,𝑇 to represent FL training rounds, 𝜎
√
𝑚 to represent the

equivalent global noise level. The rest of the proof follows (1) RDP
subsampling amplification [75], (2) RDP composition for privacy

budget accumulation over 𝑇 rounds based on the RDP composi-

tion [55] and (3) transferring RDP guarantee to DP guarantee based

on the conversion theorem [5]. □

5.1.2 Instance-level DP for FedAvg. Dopamine only allows users

to perform one step of DP-SGD [1] during each FL round, while in

practice, users are typically allowed to update their local models for

many steps before submitting updates to reduce communication

costs. To solve this problem, we introduce InsDP-FedAvg (Algo-

rithm 3 in Appendix A), where each user 𝑖 performs local DP-SGD

for multiple steps so that the local training mechanism ℳ𝑖
sat-

isfies instance-level DP. Then, the server aggregates the updates

by FedAvg. We prove that the global mechanism ℳ preserves

instance-level DP using DP parallel composition theorem [54].

In InsDP-FedAvg, before FL training, local privacy costs

{𝜖𝑖
0
}𝑖∈[𝑁 ] are initialized as 0. At round 𝑡 , if user 𝑖 is not selected, its

local privacy cost is kept unchanged 𝜖𝑖𝑡 ← 𝜖𝑖
𝑡−1

since local dataset

𝐷𝑖 is not accessed. Otherwise, user 𝑖 updates the local model by

running DP-SGD for 𝑉 local steps with batch sampling probability

𝑝 , noise level 𝜎 and clipping threshold 𝑆 , and 𝜖𝑖𝑡 is accumulated

upon 𝜖𝑖
𝑡−1

via its local RDP accountant. Next, the server aggre-

gates the updates from selected users and leverages the parallel

composition in Proposition 2 to calculate the global privacy cost

𝜖𝑡 = max𝑖∈[𝑁 ] 𝜖
𝑖
𝑡 . After 𝑇 rounds, the mechanism ℳ that outputs

the final FL global model satisfies instance-level (𝜖𝑇 , 𝛿)-DP.
To derive the privacy guarantee for InsDP-FedAvg, we analyze

the privacy cost accumulation for each local model across FL train-

ing rounds, as well as the privacy cost aggregation during model

aggregation on the server side at each round.

Proposition 2 (InsDP-FedAvg Privacy Guarantee). In Algorithm 3,
during round 𝑡 , the local mechanism ℳ𝑖 satisfies (𝜖𝑖𝑡 , 𝛿𝑖 )-DP, and
the global mechanismℳ satisfies

(
max𝑖∈[𝑁 ] 𝜖

𝑖
𝑡 , 𝛿

𝑖
)
-DP.

Proof sketch. When 𝐷′ and 𝐷 differ in one instance, the modi-

fied instance only falls into one user’s local dataset for any 𝑡 training

round, and thus parallel composability of DP [54] applies. Moreover,

server aggregation does not increase privacy costs due to DP post-

processing property. The local cost 𝜖𝑖 is only accumulated via the

local RDP accountant. Finally, the privacy guarantee corresponds

to the worst case and is obtained by taking the maximum local

privacy cost across all the users. Proof is in Appendix A. □
Remark. Proposition 2 provides the privacy guarantee for trained

FL global model when users perform local DP-SGD training. To

achieve that, we examine the outcomes from FL local and global

randomized mechanisms and analyze the accumulation of local

privacy costs and subsequent aggregation of global privacy costs

over different training rounds. In the centralized setting, Yu et al.

[84] analyzes disjoint data batching and presents similar results.

Recent studies [48, 49, 82] directly apply the results from [84] for

instance-level DPFL. However, these studies lack a thorough privacy

analysis in the context of FL, and our analysis fills this gap.

5.2 Certified Robustness of Instance-level DPFL
5.2.1 Threat Model. We consider there are in total 𝑘 poisoned

instances that the same or multiple users could control.

• Attack Goal. The goal of attackers is to mislead the trained

global model to make mispredictions by injecting poisoning data

during local training.

• Attack Capability. In accordance with prior work [56], for

attack capability, we consider that local users, including adver-

saries, follow the DP training protocol to protect data privacy.

That means the adversaries need to follow the training protocol

to sample local data randomly during training. This scenario

is realistic for instance-level DPFL because FL users often run

pre-defined programs [12, 40] that implement DP mechanisms.

For example, according to Bonawitz et al. [12], “If the device has

been selected, the FL runtime receives the FL plan, queries the

app’s example store for data requested by the plan, and computes

plan-determined model updates and metrics.” On the other hand,
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the users have full control over their training data, so they can

arbitrarily manipulate the local training data. Under this setting,

the trained FL model is guaranteed to satisfy instance-level DP.

• Attack Strategy. It includes data poisoning attacks, e.g., back-
door [16, 32] or label-flipping [10, 36]. Our analysis of certified

robustness is agnostic to the specific attack strategy employed.

5.2.2 Certified Robustness. According to the group DP property

and the post-processing property for the FL model with instance-

level (𝜖, 𝛿)-DP, we prove that our robust certification results for

user-level DP are also applicable to instance-level DP. Below is the

formal theorem (proof is given in Appendix C).

Theorem 4. Suppose𝐷 and𝐷′ differ by 𝑘 instances, and mechanism
ℳ satisfies instance-level (𝜖, 𝛿)-DP. The results on user-level DPFL
in Theorem 1, Theorem 2, Theorem 3, and Corollary 1 still hold for
the instance-level DPFLℳ, 𝐷 , and 𝐷′.

Remark.We analyze the underlying relationship between privacy

and certified robustness under both user-level DPFL and instance-

level DPFL, as well as the relationship between these two levels of

privacy in FL. From the privacy perspective, the same 𝜖 for these

two different privacy levels signifies different privacy scopes. One

straightforward way to convert instance-level DP to user-level

DP is to use Group DP [22] to incorporate all instances of a user,

which could lead to a loose privacy bound. On the other hand,

a randomized mechanism that satisfies (𝜖, 𝛿) user-level DP also

satisfies (𝜖, 𝛿) instance-level DP based on their definitions. From the

certified robustness perspective, the same 𝜖 on two different privacy

levels implies different levels of robustness. When considering the

ability to tolerate adversarial poisoning instances, instance-level

DPFL provides rigorous certified robustness as a function of the

number of poisoning instances, while user-level DPFL may indicate

stronger robustness if we consider injecting all poisoning instances

with one user. The user-level DPFL, however, might compromise

the model utility when controlling per-user sensitivity during DP

training. Thus, different types of DPFL mechanisms and algorithms

may be chosen to protect both privacy and robustness considering

several factors such as adversarial strategies, data types, and trained

model sensitivity. Our evaluation on diverse datasets and different

DPFL algorithms in Section 6 will validate our analysis and findings

on both user-level and instance-level DP, as well as provide more

observational insights.

6 EXPERIMENTS
In this section, we conduct the evaluation on three datasets (both

image and text data) for the certified robustness of different DPFL

algorithms against various poisoning attacks to verify the insights

from our theorems. We highlight our main results and present some

interesting findings and ablation studies.

6.1 Experimental Setup
6.1.1 Datasets and Models. We consider three datasets: image

classification on MNIST, CIFAR and text sentiment analysis on

tweets from Sentiment140 [30] (Sent140), which involves classi-

fying Twitter posts as positive or negative. For MNIST, we use a

CNN model with two Conv-ReLu-MaxPooling layers and two lin-

ear layers; for CIFAR, we use the CNN architecture from PyTorch

Table 2: Dataset description and parameters.

Algorithm Dataset 𝑁 𝑚 𝐸 𝑉 batch size 𝜂 𝑆 𝛿 𝐶

UserDP-FedAvg MNIST 200 20 10 / 60 0.02 0.7 0.0029 0.5

UserDP-FedAvg CIFAR 200 40 5 / 50 0.05 1 0.0029 0.2

UserDP-FedAvg Sent140 805 10 1 / 10 0.3 0.5 0.000001 1.4

InsDP-FedAvg MNIST 10 10 / 25 50 0.02 0.7 0.00001 0.5

InsDP-FedAvg CIFAR 10 10 / 100 50 0.05 1 0.00001 2

differential privacy library [62] which consists of four Conv-ReLu-

AveragePooling layers and one linear layer. In line with previous

work on DP ML [37, 50] and backdoor attacks [70, 76], we mainly

discuss the binary classification forMNIST (digit 0 and 1) and CIFAR

(airplane and bird) in the main text, and defer their 10-class results

to Appendix B. For Sent140, we use a two-layer LSTM classifier

containing 256 hidden units with pretrained 300D GloVe embed-

ding [60] following [45].

6.1.2 Training Setups. Unless otherwise specified, we split the

training datasets for 𝑁 FL users in an i.i.d manner for MNIST and

CIFAR. For Sent140, the local datasets are naturally non-i.i.d, where

each Twitter account corresponds to an FL user. We also study

the effect of data heterogeneity degrees on certified robustness by

simulating FL non-i.i.d setting based on Dirichlet distribution [35]

in Section 6.2.3. FL users run SGD with learning rate 𝜂, momen-

tum 0.9, and weight decay 0.0005 to update the local models. The

training parameter setups, including the number of total users 𝑁 ,

the number of selected users per round𝑚, local epochs 𝐸, the num-

ber of local SGD steps 𝑉 , local learning rate 𝜂, batch size, etc., are

summarized in Table 2.

To simulate cross-device settings for UserDP-FedAvg, we follow
the FL settings in previous studies and use Sent140 data with ∼ 800

clients [45], and CIFAR/MNIST with 200 clients [52]. To simulate

cross-silo FL settings for InsDP-FedAvg, we train DPFL models on

MNIST and CIFAR with 10 users. Following [53] that use 𝛿 ≈ 1

𝑁 1.1

as privacy parameter, for UserDP-FedAvg we set 𝛿 = 0.0029 for

MNIST and CIFAR, and 𝛿 = 0.000001 for Sent140 according to

the total number of users; for InsDP-FedAvg we set 𝛿 = 0.00001

according the total number of training samples. When training on

CIFAR10, we follow the standard practice for differential privacy [1,

37] that fine-tunes a whole model pre-trained non-privately on

CIFAR100 [41]. We refer the readers to Appendix B for more details

about detailed hyperparameters for differential privacy.

6.1.3 Poisoning Attacks. We evaluate four poisoning attacks

against our DPFLmechanisms, which represent the common threats

in FL research. We consider backdoor attacks (BKD) on image

datasets [4] and label flipping attacks (LF) on image and text

datasets [27] against both levels of DPFL. For InsDP-FedAvg, we
evaluate the worst-case where 𝑘 backdoored or label-flipped in-

stances are injected into the dataset of one user. For UserDP-FedAvg,
we additionally evaluate the static optimization attacks (STAT-
OPT) [67], which solve the adversarial optimization problem to

find poisoning model updates, as well as distributed backdoor attack
(DBA) [79], which decomposes the backdoor pattern into several

smaller ones and embeds them into different local training sets

for different adversarial users. Moreover, we also consider BKD,

LF, and DBA via model replacement attack [4, 8] where 𝑘 attack-

ers train the local models using local datasets with 𝛼 fraction of

poisoned instances, and scale the malicious updates directly with

hyperparameter 𝛾 , i.e., Δ𝑤𝑖
𝑡 ← 𝛾Δ𝑤𝑖

𝑡 , before sending them to the
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server. This way, the malicious updates would have a stronger

impact on the FL model. Note that even when attackers perform

scaling after server clipping, the sensitivity of each model update

is still upper-bounded by the clipping threshold 𝑆 , so the privacy

guarantee of user-level DPFL still holds under poisoning attacks

via model replacement.

Specifically, for the attacks against UserDP-FedAvg, by default,

the local poison fraction is 𝛼 = 100%, and the scale factor is 𝛾 = 50.

We use the same parameters setups for all 𝑘 attackers. In terms

of label flipping attacks, the attackers swap the label of images in

the source class (digit 1 for MNIST; bird for CIFAR; positive for

Sent140) into the target label (digit 0 for MNIST; airplane for CIFAR;

negative for Sent140). In terms of backdoor attacks in MNIST and

CIFAR, the attackers add a triangle pattern in the right lower corner

of the image as the backdoor pattern and swap the label of any

sample with such pattern into the target label (digit 0 for MNIST;

airplane for CIFAR). In terms of distributed backdoor attacks, the

triangle pattern is evenly decomposed and injected by the 𝑘 attack-

ers. For the attacks against InsDP-FedAvg, the same target classes

and backdoor patterns are used as UserDP-FedAvg.

6.1.4 Evaluation Metrics. We consider two evaluation metrics

based on our robustness certification criteria.

• Certified Accuracy. To evaluate the certified prediction, we cal-
culate certified accuracy, which is the fraction of the test set for

which the poisoned DPFL model makes correct and the same

prediction compared with that of the clean model. The test set

can be either poisoned or clean based on Theorem 2. Given that

the certifications are agnostic to the actual attack strategy, and

certain attacks, such as model poisoning and label flipping, do

not produce poisoned test input samples 𝑥 , we use the clean

test samples to calculate the certification following the standard

setting of certified robustness in centralized systems [19]. Given

a test set of size 𝑛, for the 𝑖-th test sample 𝑥𝑖 , the ground truth

label is 𝑦𝑖 , the output prediction is 𝑐𝑖 , and the number of ad-

versarial users/instances that can be certifiably tolerated is K𝑖
based on Equation 6. We calculate the certified accuracy given 𝑘

adversarial users/instances as
1

𝑛

∑𝑛
𝑖=1

1{𝑐𝑖 = 𝑦𝑖 and K𝑖 ≥ 𝑘}.
• Lower bound of attack inefficacy. To evaluate the certified
attack inefficacy, we calculate the lower bound of attack ineffi-

cacy in Theorem 3: 𝐽 (𝐷′) = max{𝑒−𝑘𝜖 𝐽 (𝐷) − 1−𝑒−𝑘𝜖
𝑒𝜖−1

𝛿𝐶, 0}. This
lower bound represents the cost of the attacker for performing

poisoning attacks. The lower the certified attack inefficacy is, the

less robust the model is. We evaluate the tightness of 𝐽 (𝐷′) by
comparing it with the empirical attack inefficacy 𝐽 (𝐷′) under
different attacks.

6.1.5 Robustness Certification with Monte Carlo Approximation.
The robustness certifications presented in our theorems depend on

the expected confidence 𝐹𝑐 (ℳ(𝐷), 𝑥) for class 𝑐 or expected attack
inefficacy 𝐽 (𝐷). We take 𝐹𝑐 (ℳ(𝐷), 𝑥) as an example here, and de-

note 𝐹𝑐 (ℳ(𝐷), 𝑥) as 𝐹 (ℳ) for simplicity. In practice, 𝐹 (ℳ) is not
directly used for prediction because the true expectation cannot

be analytically computed for deep neural networks. To empirically
verify the insights provided by our theorems, we follow the conven-

tion in prior work on certified robustness [15, 18, 42, 50, 65, 76]

to use 𝐹 (ℳ), which is a Monte Carlo approximation of 𝐹 (ℳ) by
taking the average over 𝑂 models outputs for utility evaluation in
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Figure 1: Certified accuracy of UserDP-FedAvg under different pri-
vacy budgets 𝜖 .

our experiments. Note that (1) from the DP perspective, increasing
𝑂 increases the overall privacy budget as the sampling process

re-accesses the sensitive data and consumes the privacy budget.

Based on standard DP composition theory [21], calculating 𝐹 (ℳ)
costs 𝑂𝜖 privacy budget, where 𝜖 is the privacy budget consumed

by training one model; (2) From the robustness certification perspec-
tive, the estimation of 𝐹 (ℳ) will be more accurate with higher

confidence when we use larger 𝑂 ; (3) Using a single model for

prediction is equivalent to computing 𝐹 (ℳ) with 𝑂 = 1, leading

to strong privacy protection but low confidence for the robustness

certification.

Specifically, we estimate the expected class confidence by

𝐹𝑐 (ℳ(𝐷), 𝑥) ≈ 1

𝑂

∑𝑂
𝑠=1

𝑓 𝑠𝑐 to evalute Theorem 2, where each

𝑓 𝑠𝑐 = 𝑓𝑐 (ℳ(𝐷), 𝑥) is obtained from one DPFL model. Similarly,

we approximate the attack inefficacy to evaluate Theorem 3 and

Corollary 1. We use a relatively large 𝑂 = 1000 for certified accu-

racy and 𝑂 = 100 for certified attack inefficacy in experiments so

as to obtain an accurate approximation of the expectation follow-

ing [50] and precisely reveal the connections between the privacy

parameters (𝜖 ,𝛿) and certified robustness under different criteria.

In Section 6.3.3, we use Hoeffding’s inequality [33] to calibrate the

empirical estimation with confidence level parameter𝜓 .

6.2 Evaluation Results of User-level DPFL
Here we present our main results on user-level DPFL based on

the certified accuracy under different (1) privacy budget 𝜖 , (2)

DPFL algorithms, and (3) data heterogeneity degrees; empirical
accuracy under (1) different poisoning attacks and (2) comparison

to empirical FL defenses; certified and empircal attack inefficacy
under (1) different 𝑘 and poisoning attacks, and (2) different 𝜖 .

6.2.1 Certified Accuracy under Different 𝜖 . Figure 1 presents

the user-level certified accuracy under different 𝜖 by training

UserDP-FedAvg with different noise scale 𝜎 . (The uncertified accu-

racy of UserDP-FedAvg under non-DP training and DP training is

deferred to Appendix B.1.2.) Since each test sample 𝑥𝑖 has its own

certified K𝑖 , the largest 𝑘 that an FL model can reach is a threshold

that none of the test samples have a larger K𝑖 than it, i.e., K𝑖 < 𝑘,∀𝑖 ,
which can be observed as the largest value on the x-axis of Figure 1.

Note that here we calculate the certified K𝑖 as the numerical upper

bound in Theorem 2, which could be fractional.

We observe that (1) the largest number of adversaries 𝑘 can be

certified when 𝜖 is around 0.6298 (0.1451, 0.2238) on MNIST (CIFAR,

Sent140), which verifies the relationship between 𝜖 and certified

accuracy as discussed in Section 4.2. In particular, when 𝜖 is too

large, K𝑖 decreases since 𝜖 is in the denominator of Equation 6;

when 𝜖 is too small, large noise is added during training, which

hurts the model utility, and the model is not confident in predicting

the top-1 class, thus decreasing the margin between 𝐹A and 𝐹B and
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flat clipping (UserDP-FedAvg)
per-layer clipping (McMahan et al., 2018)

flat median clipping (Geyer et al., 2017)
per-layer median clipping (Geyer et al., 2017)

(a) MNIST (𝜖 = 0.63) (b) CIFAR (𝜖 = 0.53) (c) Sent140 (𝜖 = 0.40)
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Figure 2: Certified accuracy of UserDP-FedAvg under different user-
level DPFL algorithms with the same 𝜖 .

decreasing K𝑖 . (2) Additionally, for each fixed 𝑘 , there is an optimal

𝜖 that yields the maximum certified accuracy due to similar reasons.

For example, to certify 𝑘 = 2 adversaries, the 𝜖 with highest certi-

fied accuracy is around 0.6298 (0.2444, 0.2234) on MNIST (CIFAR,

Sent140). (3) Given that there is a 𝜖 achieving maximal certified

number of adversaries 𝑘 or yielding the maximum certified accu-

racy under a fixed 𝑘 , properly choosing 𝜖 would be important for

certified accuracy. As the optimal 𝜖 is data/task-dependent, one can

find it automatically as hyperparameter tuning. Our evaluation can

serve as a guide for similar data/tasks to narrow down the search

space of 𝜖 . (4)We also notice that for certain datasets like CIFAR,

the ideal 𝜖 for certified accuracy can be small, primarily because

the datasets are inherently difficult to learn. Nevertheless, on sim-

pler datasets like MNIST, using 𝜖= 0.6298 to train DPFL models

remains feasible (with 97% clean accuracy) and yields the maximal

certified 𝑘 ≈ 4. When DPFL algorithms offer improved utility and

a larger confidence margin, a larger 𝜖 can be used to certify the

same 𝑘 , as indicated in Theorem 2. Moreover, enhanced privacy

accountants that produce a tighter DP bound naturally result in a

smaller 𝜖 without impacting model utility. As our paper focuses on

deciphering the privacy-robustness interplay, our findings — both

theoretical and empirical — imply opportunities to further improve

the utility of current DPFL algorithms or the tightness of privacy

accountants in order to achieve higher certified robustness for FL.

6.2.2 Certified Accuracy under Different DPFL Algorithms. Given
that our certifications are agnostic to DPFL algorithms (i.e., the

certifications hold no matter how (𝜖, 𝛿) is achieved), we are able
to compare the certified results of different DPFL algorithms given

the same privacy budget 𝜖 . Specifically, we consider the following

four DPFL algorithms with different clipping mechanisms:

• flat clipping (UserDP-FedAvg) clips the concatenation of all the

layers of model update with the L2 norm threshold 𝑆 .

• per-layer clipping [53] clips each layer of model update with the

L2 norm threshold 𝑆 .

• flat median clipping [28] uses the median
1
of the norms of clients’

model updates as the threshold 𝑆 for flat clipping.

• per-layer median clipping [28] uses the median of each layer’s

norms of model updates as threshold 𝑆 for per-layer clipping.

We defer the detailed experimental parameters to Appendix B.1.3.

As shown in Figure 2, the models trained by different DPFL algo-

rithms satisfying the same 𝜖 can have different certified robustness

results. The flat clipping is able to certify the largest number of

1
Strictly speaking, the median norm information can leak privacy and this slight

looseness would extend to robustness certifications which leverage the DP guarantee.

Nevertheless, the information leakage through the median is small, so median-clipping-

based methods claimed to be DPFL in [28].

(a) MNIST i.i.d (b) CIFAR i.i.d
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Figure 3: Certified accuracy of UserDP-FedAvg under varying
levels of data heterogeneity. We use Dirichlet distribution
Dir(𝛼) to create FL heterogeneous data distributions, where
smaller 𝛼 indicates greater heterogeneity.

adversaries 𝑘 on MNIST; while on CIFAR and Sent140, the median

clipping certifies the largest 𝑘 instead. Moreover, flat clipping and

per-layer clipping with the same 𝑆 lead to different certification

results on all datasets, while the results of flat median clipping

and per-layer median clipping are nearly identical on MNIST and

CIFAR. We observe that no clipping mechanism is strictly better

than others on all datasets. This is likely due to the significant dif-

ference in the norm of model updates when training on different

datasets, which consequently affects the effectiveness of different

clipping mechanisms, and thus the DP utility is dataset-dependent.

Under the same DP guarantee 𝜖 , if one DPFL algorithm has higher

utility and is more confident in predicting the ground-truth class,

then it can increase the margin between the class confidences 𝐹A
and 𝐹B in Theorem 2 and lead to a larger certified number of ad-

versaries. Therefore, advanced DPFL protocols that have fewer

clipping constraints or require less noise while achieving the same

level of privacy are favored to improve both utility and certified

robustness. The practitioner can use our certifications to conduct

offline comparisons of different DPFL algorithms under the same

𝜖 , and better understand which DPFL algorithm provides better

protection against poisoning attacks before real-world deployment.

6.2.3 Certified Accuracy under Different Data Heterogeneity De-
grees. Recent studies [58, 82] show that DP makes the utility of the

FL global model degraded more under heterogeneous data distri-

butions among users, compared to the i.i.d data setting. Motivated

by those findings, we study the impact of heterogeneity on the
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certified accuracy of DPFL models. We simulate varying levels of

data heterogeneity on MNIST and CIFAR using the Dirichlet dis-

tribution Dir(𝛼), which create FL heterogeneous data partitions

with different local data sizes and label distributions for users, and

smaller 𝛼 indicates greater heterogeneity (more non-i.i.d).

From the results in Figure 3, we find that (1) different non-i.i.d
degrees have different optimal 𝜖 and the largest number of adver-

saries can be certified when 𝜖 is around 0.62, 0.28, 0.41 under the

i.i.d, Dir(1), Dir(0.5) settings on MNIST, respectively. The optimal

𝜖 for CIFAR is around 0.14, 0.14, 0.24 under the i.i.d, Dir(1), Dir(0.5)
settings, respectively. (2) Moreover, when FL data is more non-i.i.d,

the largest number of adversaries that can be certified is smaller.

This is mainly because the utility of the global model trained from

the FedAvg-based DPFL degrades when FL data is more non-i.i.d,

leading to a smaller confidence gap between 𝐹A and 𝐹B in The-

orem 2. This suggests that advanced FL algorithms designed for

training more accurate FL models that tackle data heterogeneity

issues can be applied to DPFL settings [49, 58, 82]. By doing so, it

is possible to amplify the class confidences margin between 𝐹A, 𝐹B
under non-i.i.d data and certify a larger 𝑘 , subsequently improving

both privacy-utility tradeoff and certified robustness.

6.2.4 Empircal Robust Accuracy against State-of-the-Art Poisoning
Attacks. In addition to the robustness certification, our DPFL cer-

tification process that produces prediction based on Equation 4,

exhibits effective robustness empirically against state-of-the-art

poisoning attacks, even without theoretical guarantees. Table 9 in

Appendix B.2.3 show that DPFL certification achieves high empiri-

cal robust accuracy on CIFAR when 𝑘 = 2, 3, 5, 10 against different

attack strategies including STAT-OPT attacks [67], BKD and LF

attacks boosted by the model replacement strategy [4, 8]. Moreover,

we see that the certified accuracy serves as the lower bound for the

empirical robust accuracy. Details are deferred to Appendix B.2.3.

6.2.5 Comparison to Empirical FL Defenses. Another line of re-

search is to develop empirical defenses such as robust aggregation

mechanisms [11, 23, 27, 57] to detect and remove malicious users.

Compared to empirical FL defenses, our work provides robustness

certifications, while existing studies only offer empirical robust-
ness. One key advantage of our analysis is that our robustness

certifications provide lower bounds for model accuracy or attack

inefficiency against constrained attacks, and such certification is

agnostic to actual attack strategies, which means there are no future

attacks that can break the certification as long as the 𝑘 is within the

certified range. Conversely, empirical countermeasures are typically

designed against specific types of attacks, leaving them potentially

vulnerable to stronger or adaptive attacks in unknown environ-

ments [24, 72]. Moreover, our certifications are general and uncover

the inherent relations between DPFL and certified robustness, and

DPFL algorithms with better utility or tighter privacy accountants

can further enhance the certification results.

As existing FL defenses do not provide robustness guarantees

and hence cannot be directly compared under our certified cri-

teria, we compare the empirical robust accuracy of our certifica-

tion method with six FL robust aggregations, including Krum [11],

Multi-krum [11], Trimmed-mean [83], Median [83], Bulyan [23],

RFA [61]. Table 9 in Appendix B.2.4 shows that our certification

method achieves similar and even higher robust accuracy than

empirical defenses under the state-of-the-art poisoning attacks on

CIFAR, while our approach can further provide robustness guaran-

tees under different criteria.We defer detailed results and discussion

to Appendix B.2.4.

Moreover, it is worth noting that our certifications still hold

when DPFL is combined with other empirical defense strategies.

Theoretically, in the presence of such defensive mechanisms, the

(𝜖, 𝛿) privacy guarantee holds due to the post-processing property

of DP, and therefore certified robustness guarantee given (𝜖, 𝛿)-
DP still holds. Combining DPFL with other robust aggregations

would further enhance the empirical robustness, which remains an

interesting future direction.

6.2.6 Computational Overhead and Overall Privacy Costs of Ro-
bustness Certifications. Our robustness certifications are based on

DPFL, and we do not impose additional operations for DPFL, so

the certifications are applicable for practical FL scenarios where

the DPFL algorithm is implemented [63]. The major overhead of

our certifications comes from re-training the DPFL algorithm 𝑂

times for Monte-Carlo approximation (see Section 6.1.5). Notably,

retraining is a common requirement when providing certifications

against poisoning attacks [65, 76]. In addition, the multiple runs of

re-training are parallelizable and can be speeded up with multiple

GPUs. We report the running time for certifications on Sent140 in

Appendix B.2.1. The re-training for Monte-Carlo approximation

also increases the overall privacy costs, as discussed in Section 6.1.5.

In practice, one can adjust 𝑂 to prioritize robustness (i.e., a larger

𝑂 for higher certification confidence), or privacy (i.e., a smaller

𝑂 for fewer times of re-training). As a result, certified robustness

(a) MNIST BKD (𝜖 = 0.43) (b) CIFAR BKD (𝜖 = 0.53) (c) MNIST LF (𝜖 = 0.40) (d) CIFAR LF (𝜖 = 0.59) (e) Sent140 LF (𝜖 = 0.41)
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Figure 4: Certified attack inefficacy of UserDP-FedAvg given different 𝑘 , under various attacks with different 𝛼 or 𝛾 .
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(a) MNIST (b) MNIST BKD (𝜖 = 0.23) (c) MNIST LF (𝜖 = 0.23) (d) MNIST BKD (𝑘 = 10) (e) MNIST LF (𝑘 = 10)
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Figure 5: Certified accuracy (a) and certified attack inefficacy of InsDP-FedAvg on MNIST under different attacks given different 𝑘 (b-c) and
different 𝜖 (d-e).
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Figure 6: Certified accuracy (a) and certified attack inefficacy of InsDP-FedAvg on CIFAR given different 𝑘 (b-c) and different 𝜖 (d-e).
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Figure 7: Certified attack inefficacy of UserDP-FedAvgwith different
𝜖 (a-c), and the lower bound of 𝑘 given different 𝜖 under different
attack effectiveness 𝜏 (d-f).

can be achieved by balancing the privacy budget and robustness

confidence. For example, as shown in Appendix B.2.2, the maximal

certified number of adversaries on CIFAR is 𝑘 = 4 with the overall

privacy cost 10.15 (calculated by 𝜖𝑂) under a confidence level of

80% (details about confidence level are deferred to Section 6.3.3).

6.2.7 Certified Attack Inefficacy under Different 𝑘 and Different
Poisoning Attacks. To evaluate Theorem 3 and characterize the

tightness of our theoretical lower bound 𝐽 (𝐷′), we compare it with

the empirical attack inefficacy 𝐽 (𝐷′) under different local poison
fraction 𝛼 , attack methods and scale factor 𝛾 in Figure 4. Note that

when 𝑘 = 0, the model is benign, so the empirical attack inefficacy

equals the certified one.

(1) When 𝑘 increases, the attack ability grows, and both the empir-

ical attack inefficacy and theoretical lower bound decrease.

(2) In Figure 4 row 1, given the same𝑘 , higher𝛼 , i.e., poisoningmore

local instances for each attacker, achieves a stronger attack,

under which the empirical 𝐽 (𝐷) can be achieved and is closer to

the certified lower bound. This indicates that the lower bound

appears tighter when the poisoning attack is stronger.

(3) In Figure 4 row 2, we fix 𝛼 = 100% and evaluate UserDP-FedAvg
under different𝛾 and attack methods. It turns out that DP serves

as a strong defense empirically for FL, given that 𝐽 (𝐷) did
not vary much under different 𝛾 (1,50,100) and different attack

methods (BKD, DBA, LF). This is because the clipping operation

restricts the magnitude of malicious updates, rendering the

model replacement ineffective; the Gaussian noise perturbs the

malicious updates and makes the DPFL model stable, and thus

the FL model is less affected by poisoning instances.

(4) In both rows, the lower bounds are tight when 𝑘 is small. When

𝑘 is large, there remains a gap between our lower bounds and

empirical attack inefficacy under different attacks, suggesting

that there is room for improvement in either devising more

effective poisoning attacks or developing tighter robustness

certification techniques.

6.2.8 Certified Attack Inefficacy under Different 𝜖 . We further ex-

plore the impacts of different factors on the certified attack ineffi-

cacy. Figure 7 (a-c) present the empirical attack inefficacy and the

certified attack inefficacy lower bound given different 𝜖 of user-

level DP. As the privacy guarantee becomes stronger (smaller 𝜖),

the model is more robust, achieving higher 𝐽 (𝐷′) and 𝐽 (𝐷′). The
results under the BKD attack are omitted to Appendix B.2.5.

In Figure 7 (d-f), we train user-level (𝜖 , 𝛿) DPFL models, calculate

corresponding 𝐽 (𝐷), and plot the lower bound of 𝑘 given different
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Figure 10: Lower bound of 𝑘 under instance-level 𝜖 given attack
effectiveness 𝜏 .

attack effectiveness hyperparameter 𝜏 according to Corollary 1. It

shows that (1) when the required attack effectiveness is higher

(larger 𝜏), more attackers are required. (2) To achieve the same

effectiveness of the attack, a fewer number of attackers is needed

for larger 𝜖 , which means a DPFL model with weaker privacy is

more vulnerable to poisoning attacks.

6.3 Evaluation Results of Instance-level DPFL
Here, we start by comparing the privacy protection between our

InsDP-FedSGD and Dopamine, and then present certified robust-

ness for InsDP-FedAvg based on certified accuracy under (1) dif-

ferent 𝜖 , (2) given confidence level; and certified attack inefficacy
under (1) different 𝑘 and attacks, and (2) different 𝜖 .

6.3.1 Privacy Bound Comparison. We compare InsDP-FedSGD
with Dopamine, both under RDP accountant [55] for convenience of

comparison, to validate the privacy amplification of InsDP-FedSGD
provided by user subsampling. With the same noise level (𝜎 = 3.0),

clipping threshold (𝑆 = 1.5), and batch sampling probability

(𝑝 = 0.4), we calculate the privacy budget under different user

sampling probability 𝑞 =𝑚/𝑁 . Figure 9 shows that InsDP-FedSGD
achieves tighter privacy bound over training rounds. For instance,

at round 200, with 𝑞 = 10/30, our method (𝜖 = 0.87) achieves a

much tighter privacy guarantee than Dopamine (𝜖 = 2.70), which

comes from user subsampling 𝑞 < 1, while Dopamine neglects it.

6.3.2 Certified Accuracy under Different 𝜖 . We report the certified

accuracy of InsDP-FedAvg under different 𝜖 on MNIST and CIFAR

in Figure 5 (a) and Figure 6 (a). We note that the optimal 𝜖 that is

able to certify the largest number of poisoned instances 𝑘 is around

0.3593 for MNIST and 0.6546 for CIFAR. Despite the different FL

setups (e.g., the total number of users) under user/instance DP, we

can approximately compare the certified robustness in terms of the

number of tolerable poisoned instances for the two DP levels under

the same 𝜖 . When 𝜖 ≈ 0.4 on MNIST, UserDP-FedAvg can certify a

maximum of 𝑘 ≈ 5 attackers, translating to a total of roughly 1250

poisoned instances, while InsDP-FedAvg can certify up to 𝑘 ≈ 12

poisoned instances. Therefore, UserDP-FedAvg can certify many

more poisoned instances under the same 𝜖 than InsDP-FedAvg,
though with a different privacy scope. We report the (uncertified)

accuracy of InsDP-FedAvg in Appendix B.

6.3.3 Certified Accuracy with a Confidence Level. Here, we

present the certified accuracy with the confidence level for

both user and instance-level DPFL. We use Hoeffding’s inequal-

ity [33] to calibrate the empirical estimation with one-sided

error tolerance 𝜓 , i.e., one-sided confidence level 1 − 𝜓 . We

denote the empirical estimation of the class confidence for

class 𝑐 as 𝐹𝑐 (ℳ(𝐷), 𝑥) = 1

𝑂

∑𝑂
𝑜=1

𝑓 𝑠𝑐 . For a test input 𝑥 , sup-

pose A,B ∈ [𝐶] satisfy A = arg max𝑐∈[𝐶 ] 𝐹𝑐 (ℳ(𝐷), 𝑥) and
B = arg max𝑐∈[𝐶 ]:𝑐≠A 𝐹𝑐 (ℳ(𝐷), 𝑥). For a given error tolerance

𝜓 , we use Hoeffding’s inequality to compute a lower bound

𝐹A (ℳ(𝐷), 𝑥) = 𝐹A (ℳ(𝐷), 𝑥) −
√︃

log(1/𝜓 )
2𝑂

for A, as well as a up-

per bound 𝐹B (ℳ(𝐷), 𝑥) = 𝐹B (ℳ(𝐷), 𝑥) +
√︃

log(1/𝜓 )
2𝑂

for B. We

use𝜓 = 0.01 (i.e., 99% confidence).

From the results in Figure 8, we observe similar trends between

𝜖 and certified accuracy as in Figure 1, Figure 5 (a) and Figure 6

(a). In general, the largest number of certified adversarial users in

Figure 8 is smaller than the previous results because we calibrate

the empirical estimation, leading to the narrowed class confidence

gap between classes A and B.

6.3.4 Certified Attack Inefficacy under Different 𝑘 . We report the

certified attack inefficacy of InsDP-FedAvg on MNIST and CIFAR

in Figure 5 and Figure 6. We see that from Figure 5 (b)(c) and

Figure 6 (b)(c), poisoning more instances (i.e., a larger 𝑘) induces

lower theoretical and empirical attack inefficacy lower bounds.

6.3.5 Certified Attack Inefficacy under Different 𝜖 . From Figure 5

(d)(e) and Figure 6 (d)(e), it is clear that instance-level DPFL with a

stronger privacy guarantee ensures higher attack inefficacy both

empirically and theoretically, meaning that it is more robust against

poisoning attacks. In Figure 10, we train instance-level (𝜖, 𝛿) DPFL
models, calculate corresponding 𝐽 (𝐷), and plot the lower bound of

𝑘 given different attack effectiveness hyperparameter 𝜏 according

to Corollary 1. We can observe that fewer poisoned instances are
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required to reduce the 𝐽 (𝐷′) to a similar level for a less private

DPFL model, indicating that the model is easier to be attacked.

7 DISCUSSION & CONCLUSION
In this work, we take the first step to characterize the connections

between certified robustness against poisoning attacks and DP in

FL. We introduce two certification criteria, based on which we

prove that an FL model satisfying user-level (instance-level) DP is

certifiably robust against a bounded number of adversarial users

(instances). We also provide formal privacy analysis to achieve

improved instance-level privacy. Through comprehensive evalua-

tions, we validate our theories and establish a general measurement

framework to assess the certified robustness yielded by DPFL.

Limitations & Future Work. One limitation of our work is

that we focus on the “central” DP with a trusted server for user-

level DPFL, where the FL server clips and adds noise, as opposed to

a “local” DP setting, where each client clips and adds their noise

locally [56]. While we follow [28, 53] to consider a trusted server in

the central DP regime, it offers weaker privacy protection than local

DP, since the privacy guarantee does not hold against the server

who can see raw client updates. It would be interesting to further

extend the analysis to FL with local DP guarantees. Another limi-

tation is that our certifications could add computational overhead.

Certifying training-time robustness necessitates training multiple

models, demonstrated in prior certification studies [65, 76], though

this can be accelerated using parallelization and multiple GPUs.

The future directions include (1) extending our analysis to

more complicated DP settings, such as scenarios where only non-

attackers apply local DP in FL while attackers do not [56]; (2) com-

bining DPFL with robust FL aggregations to further boost robust-

ness; (3) investigating the certified robustness of advanced FL al-

gorithms [17, 58, 68] that would maintain higher utility under DP

in non-IID data settings; (4) developing tighter privacy accountant

techniques over FL training to improve the certified robustness

from the DP theory perspective; (5) investigating advanced model

architectures and pretraining techniques to further improve the

certified robustness of DPFL. We hope our work will help provide

more insights into the relationships between privacy and certified

robustness in the context of FL, paving the way for more secure

and privacy-preserving FL applications in practice.

8 ACKNOWLEDGEMENTS
The authors thank Linyi Li and the anonymous reviewers for their

valuable feedback and suggestions. This work is partially supported

by the NSF grant No.1910100, No.2046726, No. 2046795, No. 2205329,

NSF ACTION Institute, DARPA GARD (HR00112020007), C3AI, Al-

fred P. Sloan Foundation, Amazon Research Award, DARPA con-

tract #N66001-15-C-4066, and the National Research Foundation

Singapore and DSO National Laboratories under the AI Singapore

Programme (AISG Award No: AISG2-RP-2020-018).

REFERENCES
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In

Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security. 308–318.

[2] NamanAgarwal, Ananda Theertha Suresh, Felix Yu, Sanjiv Kumar, andHBrendan

McMahan. 2018. cpSGD: communication-efficient and differentially-private

distributed SGD. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems. 7575–7586.

[3] Shahab Asoodeh and F Calmon. 2020. Differentially private federated learning:

An information-theoretic perspective. In ICML Workshop on Federated Learning
for User Privacy and Data Confidentiality.

[4] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly

Shmatikov. 2020. How to backdoor federated learning. In International Conference
on Artificial Intelligence and Statistics. PMLR, 2938–2948.

[5] Borja Balle, Gilles Barthe, Marco Gaboardi, Justin Hsu, and Tetsuya Sato. 2020.

Hypothesis testing interpretations and renyi differential privacy. In International
Conference on Artificial Intelligence and Statistics. PMLR, 2496–2506.

[6] Raef Bassily, Adam Smith, and Abhradeep Thakurta. 2014. Private empirical

risk minimization: Efficient algorithms and tight error bounds. In 2014 IEEE 55th
Annual Symposium on Foundations of Computer Science. IEEE, 464–473.

[7] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 1988. Completeness theo-

rems for non-cryptographic fault-tolerant distributed computation. In Proceedings
of the twentieth annual ACM symposium on Theory of computing. 1–10.

[8] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo.

2019. Analyzing Federated Learning through an Adversarial Lens. In International
Conference on Machine Learning. 634–643.

[9] Abhishek Bhowmick, John Duchi, Julien Freudiger, Gaurav Kapoor, and Ryan

Rogers. 2018. Protection against reconstruction and its applications in private

federated learning. arXiv preprint arXiv:1812.00984 (2018).
[10] Battista Biggio, Blaine Nelson, and Pavel Laskov. 2012. Poisoning attacks against

support vector machines. In Proceedings of the 29th International Coference on
International Conference on Machine Learning. 1467–1474.

[11] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer.

2017. Machine learning with adversaries: Byzantine tolerant gradient descent. In

NeurIPS. 118–128.
[12] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex

Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi,
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The Appendix is organized as follows:

• Appendix A provides the proofs for the privacy guarantees

of our DPFL algorithms.

• Appendix B provides more details on experimental setups

and the additional experimental results on robustness certi-

fications.

• Appendix C provides the proofs for the certified robustness-

related analysis, including Definition 2, Theorem 1, Theo-

rem 2, Theorem 3, Theorem 4 and Corollary 1.

• Appendix D provides the theoretical results and correspond-

ing proofs for certified robustness against FL poisoning at-

tacks derived from Rényi DP and Randomized Smoothing

via Rényi Divergence.

A DIFFERENTIALLY PRIVATE FEDERATED
LEARNING

We first present all the notations used in our paper in Table 3.

A.1 UserDP-FedAvg
To calculate the privacy costs for Algorithm 1, existing works utilize

moments accountant [1] for privacy analysis [28, 53]. We note that

Rényi Differential Privacy (RDP) [55] supports a tighter composi-

tion of privacy budget than the moments accounting technique for

DP [55]. Therefore, we utilize RDP [55] to perform the privacy anal-

ysis in Algorithm 1. Specifically,ℳ.accum_priv_spending() is the
call on RDP accountant [75], and ℳ.get_privacy_spent() transfers
RDP guarantee to DP guarantee based on the RDP to DP conversion

theorem of [5].

A.2 InsDP-FedSGD
Here, we present the algorithm InsDP-FedSGD.

Next, we recall Proposition 1 and present its proof.

Proposition 1 (InsDP-FedSGD Privacy Guarantee). Given batch
sampling probability 𝑝 without replacement, and user sampling prob-
ability 𝑞 = 𝑚

𝑁
without replacement, FL rounds 𝑇 , the clipping thresh-

old 𝑆 , the noise parameter 𝜎 , the randomized mechanism ℳ in
Algorithm 2 satisfies (𝑇𝜖′ (𝛼) + log

𝛼−1

𝛼 − log𝛿+log𝛼
𝛼−1

, 𝛿)-DP with

Algorithm 1: UserDP-FedAvg.

1

Input: Initial model 𝑤0, user sampling probability

𝑞, privacy parameter 𝛿 , clipping threshold 𝑆 ,

noise level 𝜎 , local datasets 𝐷1, ..., 𝐷𝑁 , local

epochs 𝐸, learning rate 𝜂.

Output: FL model𝑤𝑇 and privacy cost 𝜖

2 Server executes:
for each round 𝑡 = 1 to 𝑇 do

3 𝑚 ← max(𝑞 · 𝑁, 1);
4 𝑈𝑡 ← (random subset of𝑚 users);

5 for each user 𝑖 ∈ 𝑈𝑡 in parallel do
6 Δ𝑤𝑖

𝑡 ← UserUpdate(𝑖,𝑤𝑡−1) ;

7 𝑤𝑡 ← 𝑤𝑡−1 +
1

𝑚

(∑
𝑖∈𝑈𝑡

Clip(Δ𝑤𝑖
𝑡 , 𝑆) +𝒩

(
0, 𝜎2𝑆2

) )
;

8 ℳ.accum_priv_spending(𝜎, 𝑞, 𝛿) ;
9 𝜖 = ℳ.get_privacy_spent() ;

10 return𝑤𝑇 , 𝜖

11 Procedure UserUpdate(𝑖,𝑤𝑡−1)
12 𝑤 ← 𝑤𝑡−1 ;

13 for local epoch 𝑒 = 1 to 𝐸 do
14 for batch 𝑏 ∈ local dataset 𝐷𝑖 do
15 𝑤 ← 𝑤 − 𝜂∇𝑙 (𝑤 ;𝑏)

16 Δ𝑤𝑖
𝑡 ← 𝑤 −𝑤𝑡−1 ;

17 return Δ𝑤𝑖
𝑡

18 Procedure Clip(Δ, 𝑆)
19 return Δ/max

(
1,
∥Δ∥

2

𝑆

)

𝜖 (𝛼) = 𝛼/(2𝑚𝜎2) where 𝛼 is the RDP order and

𝜖′ (𝛼 ) ≤ 1

𝛼 − 1

· log

(
1 + (𝑝𝑞)2

(
𝛼

2

)
min

{
4

(
𝑒𝜖 (2) − 1

)
, 𝑒𝜖 (2) ·

min

{
2,

(
𝑒𝜖 (∞) − 1

)
2

}}
+

𝛼∑︁
𝑗=3

(𝑝𝑞) 𝑗
(
𝛼

𝑗

)
𝑒 ( 𝑗−1)𝜖 ( 𝑗 )

min

{
2,

(
𝑒𝜖 (∞) − 1

) 𝑗 })

Proof. (1) In instance-level DP, we consider the sampling proba-

bility of each instance under the combination of user-level sampling

and batch-level sampling. Since the user-level sampling probability

is 𝑞 and the batch-level sampling probability is 𝑝 , each instance

is sampled with probability 𝑝𝑞. (2) Additionally, since the sensi-
tivity of instance-wise gradient w.r.t one instance is 𝑆 , after local

gradient descent and server FL aggregation, the equivalent sensi-

tivity of global model w.r.t one instance is 𝑆 ′ = 𝜂𝑆

𝐿𝑚
according to

Eq (8). (3)Moreover, since the local noise is 𝑛𝑖 ∼ 𝒩 (0, 𝜎2𝑆2) , the
“virtual” global noise is 𝑛 =

𝜂

𝑚𝐿

∑
𝑖∈𝑈𝑡

𝑛𝑖 according to Eq (8), so

𝑛 ∼ 𝒩 (0, 𝜂
2𝜎2𝑆2

𝑚𝐿2
). Let 𝜂2𝜎2𝑆2

𝑚𝐿2
= 𝜎′2𝑆 ′2 such that 𝑛 ∼ 𝒩 (0, 𝜎′2𝑆 ′2).

Since 𝑆 ′ = 𝜂𝑆

𝐿𝑚
, the equivalent global noise level is 𝜎′2 = 𝜎2𝑚, i.e.,

𝜎′ = 𝜎
√
𝑚. Then, we use 𝑝𝑞 to represent instance-level sampling

probability,𝑇 to represent FL training rounds, 𝜎
√
𝑚 to represent the

equivalent global noise level. The rest of the proof follows (1) RDP
subsampling amplification [75], (2) RDP composition for privacy
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Table 3: Table of notations.

Notation Description

𝑁 number of FL users

𝐷1, . . . , 𝐷𝑁 local datasets of 𝑁 users

𝐷 {𝐷1, . . . , 𝐷𝑁 } clean FL dataset

𝑇 total number of communication rounds

𝜂 learning rate

𝐸 local epochs

𝑞 user sampling probability

𝑚 number of selected users at each round

𝑈𝑡 selected user set at round 𝑡

𝑤𝑡 global model at round 𝑡

Δ𝑤𝑖
𝑡 local update of client 𝑖 at round 𝑡

𝐷′ poisoned FL dataset

𝑘 number of adversarial users or adversarial instances

𝑆 clipping threshold

𝜎 noise level

𝛿 DP privacy parameter

𝜖 DP privacy budget

ℳ DPFL training protocol

ℳ(𝐷) clean DPFL model at round 𝑇

ℳ(𝐷′) poisoned DPFL model at round 𝑇

𝑓𝑐 (ℳ(𝐷), 𝑥) confidence for class 𝑐 on test sample 𝑥

𝐹𝑐 (ℳ(𝐷), 𝑥) expected confidence for class 𝑐 on test sample 𝑥

𝐻 (ℳ(𝐷), 𝑥) prediction, i.e., top-1 class based on the expected confidence

𝐶 (ℳ(𝐷′)) attack cost on the poisoned modelℳ(𝐷′)
𝐽 (𝐷′) expected attack cost on the poisoned modelℳ(𝐷′)
𝐶 bound on attack cost 𝐶 (·)
𝑔(𝑥 𝑗 ) clipped gradient for sample 𝑥 𝑗 in InsDP-FedSGD
𝑔 noise-perturbed and clipped gradient for sample 𝑥 𝑗 in InsDP-FedAvg
𝛾 scale factor in model replacement attack

𝑂 number of Monte Carlo samples

𝜓 one-sided error tolerance in Monte-Carlo sampling

K theoretical upper bound for the number of adversarial users/instances that can satisfy the certified prediction

𝐽 (𝐷′) theoretical lower bound of the attack cost for poisoned DPFL model based on the certified cost

𝜖 (𝛼) RDP parameter

𝛼 RDP order

budget accumulation over 𝑇 rounds based on the RDP composi-

tion [55] and (3) transferring RDP guarantee to DP guarantee based

on the conversion theorem [5]. □

A.3 InsDP-FedAvg
Next, we will first consider the special case of one FL training round

(i.e., 𝑇 = 1) to showcase the privacy cost aggregation. Then, we
will combine local privacy cost accumulation in each user and the

privacy cost aggregation in the server for the general case with any

𝑡 FL rounds. When𝑇 = 1, the relationship between the privacy cost

of the local model 𝜖𝑖 , 𝑖 ∈ [𝑁 ] and the privacy cost of global model

𝜖 for one FL training round is characterized in Lemma 1. For the

general case of any 𝑡 FL rounds, we provide the privacy guarantee

by combing the RDP accountant for the local model and the parallel

composition for the global model in Proposition 2.

Lemma 1 (InsDP-FedAvg Privacy Guarantee when 𝑇 = 1). In
Algorithm 3, when 𝑇 = 1, suppose local mechanism ℳ𝑖 satisfies
(𝜖𝑖 , 𝛿𝑖 )-DP, then global mechanism ℳ satisfies (max𝑖∈[𝑁 ] 𝜖

𝑖 , 𝛿𝑖 )-
DP.

Proof. We can regard FL as partitioning a dataset 𝐷 into 𝑁

disjoint subsets {𝐷1, 𝐷2, . . . , 𝐷𝑁 }. 𝑁 local randomized mechanisms

{ℳ1, . . . ,ℳ𝑁 } are operated on these 𝑁 parts separately and each

ℳ𝑖
satisfies its own 𝜖𝑖 -DP for 𝑖 ∈ [1, 𝑁 ]. Without loss of generality,

we assume the modified data sample 𝑥 ′ (𝑥 → 𝑥 ′ causes 𝐷 → 𝐷′) is
in the local dataset of 𝑘-th client 𝐷𝑘 . Then 𝐷, 𝐷′ are two neighbor-

ing datasets, and𝐷𝑘 , 𝐷
′
𝑘
are also two neighboring datasets. Consider

a sequence of outcomes (i.e., local model updates) from local mech-

anisms {𝑧1 = ℳ1 (𝐷1), 𝑧2 = ℳ2 (𝐷2; 𝑧1), 𝑧3 = ℳ3 (𝐷3; 𝑧1, 𝑧2), . . .}.
The global mechanism consists of a series of linear operators on

the sequence 𝑧 = ℳ(𝐷) = 𝑤0 + 1

𝑚

∑𝑁
𝑖=1

𝑧𝑖 . Note that if 𝑖-th user is
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Algorithm 2: InsDP-FedSGD.

1

Input: Initial model𝑤0, user sampling probability 𝑞, privacy pa-

rameter 𝛿 , local clipping threshold 𝑆 , local noise level 𝜎 ,

local datasets 𝐷1, ..., 𝐷𝑁 , learning rate 𝜂, batch sampling

probability 𝑝 .

Output: FL model𝑤𝑇 and privacy cost 𝜖

2 Server executes:
for each round 𝑡 = 1 to 𝑇 do

3 𝑚 ← max(𝑞 · 𝑁, 1);
4 𝑈𝑡 ← (random subset of𝑚 clients);

5 for each user 𝑖 ∈ 𝑈𝑡 in parallel do
6 Δ𝑤𝑖

𝑡 ← UserUpdate(𝑖,𝑤𝑡−1) ;

7 𝑤𝑡 ← 𝑤𝑡−1 + 1

𝑚

∑
𝑖∈𝑈𝑡

Δ𝑤𝑖
𝑡 ;

8 ℳ.accum_priv_spending(
√
𝑚𝜎, 𝑝𝑞, 𝛿)

9 𝜖 = ℳ.get_privacy_spent() ;
10 return𝑤𝑇 , 𝜖

11 Procedure UserUpdate(𝑖,𝑤𝑡−1)
12 𝑤 ← 𝑤𝑡−1 ;

13 𝑏𝑖𝑡 ←(uniformly sample a batch from 𝐷𝑖 with probability 𝑝 =

𝐿/|𝐷𝑖 |);
14 for each 𝑥 𝑗 ∈ 𝑏𝑖𝑡 do
15 𝑔(𝑥 𝑗 ) ← ∇𝑙 (𝑤 ;𝑥 𝑗 );
16 𝑔(𝑥 𝑗 ) ← Clip(𝑔(𝑥 𝑗 ), 𝑆) ;

17 𝑔← 1

𝐿

(∑
𝑗 𝑔(𝑥 𝑗 ) +𝒩

(
0, 𝜎2𝑆2

) )
;

18 𝑤 ← 𝑤 − 𝜂𝑔 ;

19 Δ𝑤𝑖
𝑡 ← 𝑤 −𝑤𝑡−1 ;

20 return Δ𝑤𝑖
𝑡

21 Procedure Clip(Δ, 𝑆)
22 return Δ/max

(
1,
∥Δ∥

2

𝑆

)

not selected, 𝑧𝑖 = 0. According to the parallel composition [71], we

have

Pr[ℳ(𝐷 ) = 𝑧 ]
= Pr[ℳ1 (𝐷1 ) = 𝑧1 ] · Pr[ℳ2 (𝐷2;𝑧1 ) = 𝑧2 ] · · ·

· Pr[ℳ𝑁 (𝐷𝑁 ;𝑧1, . . . , 𝑧𝑁 −1 ) = 𝑧𝑁 ]

≤
(
exp(𝜖𝑘 ) Pr[ℳ𝑘 (𝐷 ′

𝑘
;𝑧1, . . . , 𝑧𝑘−1

) = 𝑧𝑘 ] + 𝛿𝑘
)

·
∏
𝑖≠𝑘

Pr[ℳ𝑖 (𝐷𝑖 ;𝑧1, . . . , 𝑧𝑖−1 ) = 𝑧𝑖 ]

= exp(𝜖𝑘 ) Pr[ℳ𝑘 (𝐷 ′
𝑘

;𝑧1, . . . , 𝑧𝑘−1
) = 𝑧𝑘 ]

∏
𝑖≠𝑘

Pr[ℳ𝑖 (𝐷𝑖 ;𝑧1, . . . , 𝑧𝑖−1 ) = 𝑧𝑖 ]

+
∏
𝑖≠𝑘

Pr[ℳ𝑖 (𝐷𝑖 ;𝑧1, . . . , 𝑧𝑖−1 ) = 𝑧𝑖 ]𝛿𝑘

= exp(𝜖𝑘 ) Pr[ℳ(𝐷 ′ ) = 𝑧 ] +
∏
𝑖≠𝑘

Pr[ℳ𝑖 (𝐷𝑖 ;𝑧1, . . . , 𝑧𝑖−1 ) = 𝑧𝑖 ]𝛿𝑘

≤ exp(𝜖𝑘 ) Pr[ℳ(𝐷 ′ ) = 𝑧 ] + 𝛿𝑘

So ℳ satisfies 𝜖𝑘 -DP when the modified data sample lies in the

subset 𝐷𝑘 . Considering the worst case where the modified data

samples are sampled, we derive that ℳ satisfies (max𝑖∈[𝑁 ] 𝜖
𝑖 )-

DP. □

Next, we recall Proposition 2 and present its proof.

Algorithm 3: InsDP-FedAvg.

1

Input: Initial model𝑤0, user sampling probability𝑞, privacy param-

eter 𝛿 , local clipping threshold 𝑆 , local noise level 𝜎 , local

datasets𝐷1, ..., 𝐷𝑁 , local steps𝑉 , learning rate 𝜂, batch sam-

pling probability 𝑝 .

Output: FL model𝑤𝑇 and privacy cost 𝜖

2 Server executes:
for each round 𝑡 = 1 to 𝑇 do

3 𝑚 ← max(𝑞 · 𝑁, 1);
4 𝑈𝑡 ← (random subset of𝑚 users);

5 for each user 𝑖 ∈ 𝑈𝑡 in parallel do
6 Δ𝑤𝑖

𝑡 , 𝜖
𝑖
𝑡 ← UserUpdate(𝑖,𝑤𝑡−1) ;

7 for each user 𝑖 ∉ 𝑈𝑡 do
8 𝜖𝑖𝑡 ← 𝜖𝑖

𝑡−1
;

9 𝑤𝑡 ← 𝑤𝑡−1 + 1

𝑚

∑
𝑖∈𝑈𝑡

Δ𝑤𝑖
𝑡 ;

10 𝜖𝑡 = ℳ.parallel_composition({𝜖𝑖𝑡 }𝑖∈[𝑁 ] )
11 𝜖 = 𝜖𝑇 ;

12 return𝑤𝑇 , 𝜖

13 Procedure UserUpdate(𝑖,𝑤𝑡−1)
14 𝑤 ← 𝑤𝑡−1 ;

15 for each local step 𝑣 = 1 to 𝑉 do
16 𝑏 ←(uniformly sample a batch from 𝐷𝑖 with probability

𝑝 = 𝐿/|𝐷𝑖 |);
17 for each 𝑥 𝑗 ∈ 𝑏 do
18 𝑔(𝑥 𝑗 ) ← ∇𝑙 (𝑤 ;𝑥 𝑗 );
19 𝑔(𝑥 𝑗 ) ← Clip(𝑔(𝑥 𝑗 ), 𝑆) ;

20 𝑔← 1

𝐿
(∑𝑗 𝑔(𝑥 𝑗 ) +𝒩

(
0, 𝜎2𝑆2

)
);

21 𝑤 ← 𝑤 − 𝜂𝑔 ;

22 ℳ𝑖 .accum_priv_spending(𝜎, 𝑝, 𝛿) ;
23 𝜖𝑖𝑡 = ℳ𝑖 .get_privacy_spent() ;
24 Δ𝑤𝑖

𝑡 ← 𝑤 −𝑤𝑡−1 ;

25 return Δ𝑤𝑖
𝑡 , 𝜖

𝑖
𝑡

26 Procedure Clip(Δ, 𝑆)
27 return Δ/max

(
1,
∥Δ∥

2

𝑆

)

Proposition 2 (InsDP-FedAvg Privacy Guarantee). In Algorithm 3,
during round 𝑡 , the local mechanism ℳ𝑖 satisfies (𝜖𝑖𝑡 , 𝛿𝑖 )-DP, and
the global mechanismℳ satisfies

(
max𝑖∈[𝑁 ] 𝜖

𝑖
𝑡 , 𝛿

𝑖
)
-DP.

Proof. Again, without loss of generality, we assume the modi-

fied data sample 𝑥 ′ (𝑥 → 𝑥 ′ causes𝐷 → 𝐷′) is in the local dataset of
𝑘-th user 𝐷𝑘 . We first consider the case when all users are selected.

At each round 𝑡 , 𝑁 mechanisms are operated on 𝑁 disjoint parts,

and eachℳ𝑖
𝑡 satisfies its own 𝜖

𝑖
-DP where 𝜖𝑖 is the privacy cost for

accessing the local dataset 𝐷𝑖 for one round (not accumulating over

previous rounds). Let𝐷, 𝐷′ be two neighboring datasets (𝐷𝑘 , 𝐷
′
𝑘
are

also two neighboring datasets). Suppose 𝑧0 = ℳ𝑡−1 (𝐷) is the ag-
gregated randomized global model at round 𝑡 − 1, and {𝑧1, . . . , 𝑧𝑁 }
are the randomized local updates at round 𝑡 , we have a sequence

of computations {𝑧1 = ℳ1

𝑡 (𝐷1; 𝑧0), 𝑧2 = ℳ2

𝑡 (𝐷2; 𝑧0, 𝑧1), 𝑧3 =

ℳ3

𝑡 (𝐷3; 𝑧0, 𝑧1, 𝑧2) . . .} and 𝑧 = ℳ𝑡 (𝐷) = 𝑧0 + 1

𝑚

∑𝑁
𝑖 𝑧𝑖 . We first

consider the sequential composition [22] to accumulate the pri-

vacy cost over FL rounds to gain intuition. According to parallel

composition, we have
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Pr[ℳ𝑡 (𝐷) = 𝑧]

= Pr[ℳ𝑡−1 (𝐷) = 𝑧0] ·
𝑁∏
𝑖=1

Pr[ℳ𝑖
𝑡 (𝐷𝑖 ; 𝑧0, 𝑧1, . . . , 𝑧𝑖−1) = 𝑧𝑖 ]

= Pr[ℳ𝑡−1 (𝐷) = 𝑧0] · Pr[ℳ𝑘
𝑡 (𝐷𝑘 ; 𝑧0, 𝑧1, . . . , 𝑧𝑘−1

) = 𝑧𝑘 ]

·
∏
𝑖≠𝑘

Pr[ℳ𝑖
𝑡 (𝐷𝑖 ; 𝑧0, 𝑧1, . . . , 𝑧𝑖−1) = 𝑧𝑖 ]

≤ exp(𝜖𝑡−1) Pr[ℳ𝑡−1 (𝐷′) = 𝑧0]

· exp(𝜖𝑘 ) · Pr[ℳ𝑘
𝑡 (𝐷′𝑘 ; 𝑧0, 𝑧1, . . . , 𝑧𝑘−1

) = 𝑧𝑘 ]

·
∏
𝑖≠𝑘

Pr[ℳ𝑖
𝑡 (𝐷𝑖 ; 𝑧0, 𝑧1, . . . , 𝑧𝑖−1) = 𝑧𝑖 ]

= exp(𝜖𝑡−1 + 𝜖𝑘 ) · Pr[ℳ𝑡 (𝐷′) = 𝑧]

Therefore,ℳ𝑡 satisfies 𝜖𝑡 -DP, where 𝜖𝑡 = 𝜖𝑡−1 +𝜖𝑘 . Because the
modified data sample always lies in 𝐷𝑘 over 𝑡 rounds and 𝜖0 = 0,

we can have 𝜖𝑡 = 𝑡𝜖𝑘 , which means that the privacy guarantee of

global mechanism ℳ𝑡 is only determined by the local mechanism

of 𝑘-th user over 𝑡 rounds.

Moreover, RDP accountant [75] is known to reduce the privacy

cost from 𝒪(𝑡) to 𝒪(
√
𝑡). We can use this advanced composition,

instead of the sequential composition, to accumulate the privacy

cost for local mechanism ℳ𝑘
over 𝑡 FL rounds. In addition, we

consider user selection. As described in Algorithm 3, if the user 𝑖 is

not selected at round 𝑡 , then its local privacy cost is kept unchanged

at this round.

Take the worst case of where 𝑥 ′ could lie in, at round 𝑡 ,ℳ satis-

fies 𝜖𝑡 -DP, where 𝜖𝑡 = max𝑖∈[𝑁 ] 𝜖
𝑖
𝑡 , local mechanismℳ𝑖

satisfies

𝜖𝑖𝑡 -DP, and the local privacy cost 𝜖𝑖𝑡 is accumulated via local RDP

accountant in 𝑖-th user over 𝑡 rounds.

□

B EXPERIMENTAL DETAILS AND
ADDITIONAL RESULTS

B.1 Experimental Details
B.1.1 Additional Implementation Details. We simulate the feder-

ated learning setup (1 server and N users) on a Linux machine with

Intel® Xeon® Gold 6132 CPUs and 8 NVidia® 1080Ti GPUs. All

code is implemented in Pytorch [59].

B.1.2 Training Details. Next, we summarize the privacy guaran-

tees and clean accuracy offered when we study the certified pre-

diction and certified attack inefficacy, which are also the training

parameters setups when 𝑘 = 0 in Figure 1, 4, 7, 6, 12, 10, 5.

User-level DPFL. In order to study the user-level certified

prediction under different privacy guarantees, for MNIST, we set

𝜖 to be 0.2808, 0.4187, 0.6298, 0.8694, 1.8504, 2.8305, 4.8913, 6.9269,

which are obtained by training UserDP-FedAvg FL model for

3 rounds with noise level 𝜎 = 3.0, 2.3, 1.8, 1.5, 1.0, 0.8, 0.6, 0.5,

respectively (Figure 1(a)). For CIFAR, we set 𝜖 to be

0.1083, 0.1179, 0.1451, 0.2444, 0.3663, 0.4527, 0.5460, 0.8781, which

are obtained by training UserDP-FedAvg FL model for one

round with noise level 𝜎 = 10.0, 8.0, 6.0, 4.0, 3.0, 2.6, 2.3, 1.7,

respectively (Figure 1(b)). For Sent140, we set 𝜖 to be

0.2234, 0.2238, 0.2247, 0.4102, 0.579, 0.7382, 1.7151, which are

obtained by training UserDP-FedAvg FL model for three rounds

with noise level 𝜎 = 5, 4, 3, 2, 1.7, 1.5, 1, respectively (Figure 1(c)).

The clean accuracy (average over 1000 runs) of UserDP-FedAvg
under non-DP training (𝜖 = ∞) and DP training (varying 𝜖) on

MNIST, CIFAR, and Sent140 are reported in Table. 4, Table. 5 and

Table. 6 respectively. We note that smaller 𝜖 results in lower accu-

racy, but we evaluate small 𝜖 only to study the relationship between

privacy and certified accuracy in Figure 1, so as to show the trade-

off. Such extreme cases are not required for certification. For other

evaluations on our paper (such as Figure 4, Figure 7), we use normal

𝜖 with reasonable clean accuracy.

To certify the attack inefficacy under the different number of

adversarial users 𝑘 (Figure 4), for MNIST, we set the noise level

𝜎 to be 2.5. When 𝑘 = 0, after training UserDP-FedAvg for 𝑇 =

3, 4, 5 rounds, we obtain FL models with privacy guarantee 𝜖 =

0.3672, 0.4025, 0.4344 and clean accuracy (average over 𝑂 runs)

86.69%, 88.76%, 88.99%. For CIFAR, we set the noise level 𝜎 to be

3.0. After training UserDP-FedAvg for 𝑇 = 3, 4 rounds under 𝑘 = 0,

we obtain FL models with privacy guarantee 𝜖 = 0.5346, 0.5978 and

clean accuracy 78.63%, 78.46%. For Sent140, we set the noise level

𝜎 to be 2.0. After training UserDP-FedAvg for 𝑇 = 3 rounds under

𝑘 = 0, we obtain FL models with privacy guarantee 𝜖 = 0.4102 and

clean accuracy 58.00%.

With the interest of certifying attack inefficacy under different

user-level DP guarantees (Figure 7, Figure 12), we explore the empir-

ical attack inefficacy, and the certified attack inefficacy lower bound

given different 𝜖 . For MNIST, we set the privacy guarantee 𝜖 to be

1.2716, 0.8794, 0.6608, 0.5249, 0.4344, which are obtained by training

UserDP-FedAvg FL models for five rounds under noise level

𝜎 = 1.3, 1.6, 1.9, 2.2, 2.5, respectively, and the clean accuracy for the

corresponding models are 99.50%, 99.06%, 96.52%, 93.39%, 88.99%.

For CIFAR, we set the privacy guarantee 𝜖 to be

1.600, 1.2127, 1.0395.0.8530, 0.7616, 0.6543, 0.5978, which are

obtained by training UserDP-FedAvg FL models for four rounds

under noise level 𝜎 = 1.5, 1.8, 2.0, 2.3, 2.5, 2.8, 3.0, respectively,

and the clean accuracy for the corresponding models are

85.59%, 84.52%, 83.23%, 81.90%, 81.27%, 79.23%, 78.46%. For Sent140,

we use the same set of 𝜖 as in certified prediction.

Instance-level DPFL. To certify the prediction for

instance-level DPFL under different privacy guar-

antees, for MNIST, we set privacy cost 𝜖 to be

0.2029, 0.2251, 0.2484, 0.3593, 0.4589, 0.6373, 1.0587, 3.5691,

which are obtained by training InsDP-FedAvg FL models

for 3 rounds with noise level 𝜎 = 15, 10, 8, 5, 4, 3, 2, 1, respec-

tively (Figure 5(a)). For CIFAR, we set privacy cost 𝜖 to be

0.3158, 0.3587, 0.4221, 0.5130, 0.6546, 0.9067, 1.4949, 4.6978, which

are obtained by training InsDP-FedAvg FL models for one round

with noise level 𝜎 = 8, 7, 6, 5, 4, 3, 2, 1, respectively (Figure 6(a)).

The clean accuracy (average over 1000 runs) of InsDP-FedAvg
under non-DP training (𝜖 = ∞) and DP training (varying 𝜖) on

MNIST and CIFAR are reported in Table 7 and Table 8 respectively.

With the aim to study certified attack inefficacy under the dif-

ferent number of adversarial instances 𝑘 , for MNIST, we set the

noise level 𝜎 to be 10. When 𝑘 = 0, after training InsDP-FedAvg
for 𝑇 = 4 rounds, we obtain FL models with privacy guarantee
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Table 4: Clean accuracy of UserDP-FedAvg on MNIST

𝜎 0 0.5 0.6 0.8 1.0 1.5 1.8 2.3 3.0

𝜖 ∞ 6.9269 4.8913 2.8305 1.8504 0.8694 0.6298 0.4187 0.2808

Clean Acc. 99.66% 99.72% 99.69% 99.71% 99.59% 98.86% 97.42% 89.15% 72.79%

Table 5: Clean accuracy of UserDP-FedAvg on CIFAR

𝜎 0 1.7 2.3 2.6 3.0 4.0 6.0

𝜖 ∞ 0.8781 0.546 0.4527 0.3663 0.2444 0.1451

Clean Acc. 81.90% 81.82% 80.09% 79.27% 77.89% 73.07% 64.36%

Table 6: Clean accuracy of UserDP-FedAvg on Sent140

𝜎 0 1 1.5 1.7 2.0 3.0

𝜖 ∞ 1.7151 0.7382 0.579 0.4102 0.2247

Clean Acc. 64.33% 62.64 % 60.76 % 59.57% 58.00% 55.28%

Table 7: Clean accuracy of InsDP-FedAvg on MNIST

𝜎 0 1 2 3 4 5 8 10 15

𝜖 ∞ 3.5691 1.0587 0.6373 0.4589 0.3593 0.2484 0.2251 0.2029

Clean Acc. 99.85% 99.73% 99.73% 99.70% 99.65% 99.57% 97.99% 93.30% 77.12%

Table 8: Clean accuracy of InsDP-FedAvg on CIFAR

𝜎 0 1 2 3 4 5 6 7 8

𝜖 ∞ 4.6978 1.4949 0.9067 0.6546 0.513 0.4221 0.3587 0.3158

Clean Acc. 91.15% 87.91% 86.02% 83.85% 81.43% 77.59% 72.69% 66.47% 62.26%

𝜖 = 0.2383 and clean accuracy (average over 𝑂 runs) 96.40% (Fig-

ure 5(b)(c)). For CIFAR, we set the noise level 𝜎 to be 8.0. After

training InsDP-FedAvg for one round under 𝑘 = 0, we obtain FL

models with privacy guarantee 𝜖 = 0.3158 and clean accuracy

61.78% (Figure 6(b)(c)).

In order to study the empirical attack inefficacy and cer-

tified attack inefficacy lower bound under different instance-

level DP guarantees, we set the privacy guarantee 𝜖 to be

0.5016, 0.311, 0.2646, 0.2318, 0.2202, 0.2096, 0.205 for MNIST, which

are obtained by training InsDP-FedAvg FL models for six

rounds under noise level 𝜎 = 5, 8, 10, 13, 15, 18, 20, respec-

tively, and the clean accuracy for the corresponding mod-

els are 99.60%, 98.81%, 97.34%, 92.29%, 88.01%, 80.94%, 79.60% (Fig-

ure 5 (d)(e)). For CIFAR, we set the privacy guarantee 𝜖 to be

1.261, 0.9146, 0.7187, 0.5923, 0.5038, 0.4385, which are obtained by

training InsDP-FedAvg FL models for two rounds under noise level

𝜎 = 3, 4, 5, 6, 7, 8, respectively, and the clean accuracy for the corre-

sponding models are 84.47%, 80.99%, 76.01%, 68.65%, 63.07%, 60.65%

(Figure 6 (d)(e)).

With the intention of exploring the upper bound for 𝑘 given

𝜏 under different instance-level DP guarantee, for MNIST, we

set noise level 𝜎 to be 5, 8, 10, 13, 20, respectively, to obtain

instance-DP FL models after ten rounds with privacy guaran-

tee 𝜖 = 0.6439, 0.3937, 0.3172, 0.2626, 0.2179 and clean accuracy

99.58%, 98.83%, 97.58%, 95.23%, 85.72% (Figure 10(a)). For CIFAR,

we set noise level 𝜎 to be 3, 4, 5, 6, 7, 8 and train InsDP-FedAvg
for 𝑇 = 3 rounds to obtain FL models with privacy guarantee

𝜖 = 1.5365, 1.1162, 0.8777, 0.7238, 0.6159, 0.5361 and clean accuracy

84.34%, 80.27%, 74.62%, 66.94%, 62.14%, 59.75% (Figure 10(b)).

B.1.3 Detailed Setup for Different User-level DPFL Algorihtms. For
MNIST (CIFAR, Sent140), we set 𝜖 to be 0.6319 (0.5346, 0.4089),

which is obtained by training all DPFL algorithms with the same

noise level 𝜎 = 2.3 (𝜎 = 3.0, 𝜎 = 2.0) for same number of rounds. For

flat clipping and per-layer clipping, we set 𝑆 = 0.7 (𝑆 = 1, 𝑆 = 0.5)

on MNIST (CIFAR, Sent140). Except for local epoch 𝐸 = 1, other FL

parameter setups are the same as in Table 2. We set 𝐸 = 1 because

we find that the FL model in our experiments can be trained with
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Figure 11: Certified accuracy of UserDP-FedAvg on CIFAR
under 80% confidence with 𝜖𝑂 = 10.15.

median norm clipping approaches [28] only when the number of

the local epoch is small. Recall that in the server aggregation step,

the noise is sampled from𝒩 (0, 𝜎2𝑆2), so 𝑆 cannot be too large in

order to keep the amount of noise reasonable and preserve a good

model utility. As more local epoch leads to a larger norm of model

updates, we set the local epoch as 1 to keep the median norm small.

B.2 Additional Experimental Results
B.2.1 Running Time Analysis for the Certifications. Compared to

non-DP FL, the mechanisms introduced by DPFL, i.e., clipping and

noise addition, are low-cost and easy to implement. In our experi-

ments, the averaged running time for each communication round

on Sent140 dataset is 6.06s for FedAvg and 6.11s for UserDP-FedAvg
(averaged over 1000 times), based on a Linux machine with Intel 8

Core i7-7820X CPU and 4 NVidia 2080Ti GPUs. The major overhead

of our certifications comes from re-training the DPFL algorithm 𝑂

times for Monte-Carlo approximation (see Section 6.1.5). Notably,

re-training is a common requirement when providing certifications

against poisoning attacks [65, 76]. Also, multiple runs of training

are parallelizable and can be speeded up with multiple GPUs. Given

all trained models and the inference results from each model, run-

ning the certifications (e.g., averaging class confidence, and making

predictions) has negligible costs, which is 0.04s on the Sent140

dataset.

B.2.2 Certifications with Moderate Overall Privacy Budget. Certi-
fied robustness can be achieved under a moderate overall privacy

budget and robustness confidence. As shown in the Figure 11, on

CIFAR, when 𝜖 = 0.1451 and 𝑂 = 70, the overall privacy cost is

about 𝜖𝑂 = 10.15. Under the confidence level of 80%, the maximal

number of adversaries that can be certified is about 𝑘 = 4.

B.2.3 Empirical Robust Accuracy against State-of-the-art Poisoning
Attacks. In this section, we evaluate our certificationmethod against

state-of-the-art poisoning attacks and report the empirical accuracy

and certified accuracy. Specifically, we consider the following at-

tacks. Static Optimization (STAT-OPT) attack [67] solves adversarial

optimization problems to find optimal poisoned local model updates.

We consider the “agnostic” setting of STAT-OPT attack, where the

gradients of benign devices and the server’s aggregation algorithm

are unknown to the attacker, based on the attacker’s knowledge of

our settings. We evaluate two variants of STAT-OPT attack: STAT-
OPT (Min-Max) and STAT-OPT (Min-Sum); for details please refer

to [67]. We also consider backdoor attack (BKD) and label flipping

attack (LF ) under model replacement strategy with a scale factor

𝛾 to boost malicious local update [4, 8]. For our UserDP-FedAvg
certification approach, denoted as UserDP-FedAvg-cert, the predic-
tion for each test sample is calculated based on Equation 4, and we

train UserDP-FedAvg algorithms 𝑂 = 100 times for Marto-Carlo

approximation of the expected class confidence in Equation 4.

From Table 9, we see that the empirical robust accuracy of our

certification method on CIFAR is high and remains stable in the

presence of 𝑘 = 2, 3, 5, 10 attackers under various attacks (i.e., less

than 1%∼2% accuracy drop compared with the no-attacker setting).

It shows that our DPFL certification is empirically robust against

poisoning attacks.

Table 9 also shows that the certified accuracy of UserDP-FedAvg-
cert serves as the lower bound for its empirical robust accuracy. We

notice that under relatively strong attack settings such as 𝑘 = 5, 10,

our DPFL certification cannot provide non-trivial certified accuracy.

Nevertheless, our DPFL certification approach still exhibits strong
empirical effective robustness, even without theoretical guarantees.

The gap between certified robust accuracy and empirical robust ac-

curacy indicates potential advancements either in crafting stronger

poisoning attacks to further reduce empirical robust accuracy, or in

developing tighter robustness certification techniques to improve

theoretical lower bound.

B.2.4 Comparison to Empirical FL Defenses. Here, we compare

the empirical robust accuracy of our certification method with

six FL robust aggregations, including Krum [11], Multi-krum [11],

Trimmed-mean [83], Median [83], Bulyan [23], RFA [61].

show that our certification method UserDP-FedAvg-cert
achieves similar and even higher accuracy than empirical defenses

under state-of-the-art poisoning attacks, while providing privacy

and robustness guarantees. Specifically, under the optimization-

based attacks STAT-OPT (Min-Max) and STAT-OPT (Min-Sum),

UserDP-FedAvg-cert consistently achieves higher empirical ro-

bust accuracy than other FL robust aggregation methods when

𝑘 = 2, 3, 5, 10; under BKD and LF attacks, UserDP-FedAvg-cert ex-
hibits similar robustness as FL robust aggregation methods. Note

that Multi-Krum, Trimmed-mean, and Bulyan require specifying

the number of attackers in their aggregation rules to detect the out-

liers, while our approach does not require such knowledge about

attackers during DPFL training.

We also notice that when 𝜖 is too small (e.g., 𝜖 = 0.3205),

UserDP-FedAvg-cert has lower empirical robust accuracy than ro-

bust aggregation defenses. This is mainly because of the noise level

being large during UserDP-FedAvg training to achieve a strong

privacy guarantee, which hurts the utility of the DPFL model, as we

can see in the no-attack setting. Therefore, we recommend adopting

a reasonable 𝜖 with good utility to achieve robustness, as elaborated

in Section 6.2.1.

B.2.5 Additional Robustness Evaluation of User-level DPFL. Here
we further explore the impacts of 𝜖 on the certified attack inefficacy.

Similar to the results of label flipping attacks in Figure 7 (a-c), the

results of backdoor attacks in Figure 12 show that as the privacy

guarantee becomes stronger, i.e. smaller 𝜖 , the model is more robust,

achieving higher 𝐽 (𝐷′) and 𝐽 (𝐷′).
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Table 9: Comparison of empirical robust accuracy between our certification approach and empirical FL defenses against
state-of-the-art poisoning attacks on CIFAR. “UserDP-FedAvg-cert” denotes our certification approach based on UserDP-FedAvg.
UserDP-FedAvg-cert provides similar or even higher empirical robust accuracy than empirical defenses. The certified accuracy
of UserDP-FedAvg-cert serves as the lower bound for its empirical robust accuracy.

𝑘=2 𝑘=3

Empirical Robust Acc. Certified

Robust Acc.

Empirical Robust Acc. Certified

Robust Acc.

No Attack

STAT-OPT [67]

(Min-Max)

STAT-OPT [67]

(Min-Sum)

BKD [4]

(𝛾 = 100)

LF [8]

(𝛾 = 100)

STAT-OPT [67]

(Min-Max)

STAT-OPT [67]

(Min-Sum)

BKD [4]

(𝛾 = 100)

LF [8]

(𝛾 = 100)

FedAvg [52] 88.08% 87.29% 87.35% 65.73% 65.47% / 86.36% 86.55% 58.39% 58.07% /

Median [83] 87.76% 87.09% 87.16% 87.73% 87.74% / 86.22% 86.42% 87.74% 87.75% /

Trimmed-mean [83] 88.08% 87.28% 87.35% 87.98% 87.98% / 86.36% 86.55% 87.94% 87.94% /

Krum [11] 85.97% 85.84% 85.96% 85.87% 85.87% / 85.12% 85.4% 85.85% 85.85% /

Multi-Krum [11]% 88.02% 87.23% 87.29% 87.99% 87.99% / 86.31% 86.51% 87.98% 87.98% /

Bulyan [23] 88.02% 87.24% 87.3% 87.93% 87.94% / 86.31% 86.52% 87.89% 87.89% /

RFA [61] 87.97% 87.21% 87.28% 87.94% 87.94% / 86.29% 86.49% 87.96% 87.95% /

UserDP-FedAvg-cert (𝜖 = 0.7693) 88.05% 87.65% 88% 88.05% 87.8% 17.65% 87.15% 87.5% 87.8% 87.85% 1.4%

UserDP-FedAvg-cert (𝜖 = 0.648) 87.35% 87.8% 87.6% 87.9% 87.5% 28.15% 86.45% 87.6% 87.2% 87.6% 4.3%

UserDP-FedAvg-cert (𝜖 = 0.5346) 86.45% 86.5% 87% 87.15% 86.8% 37.75% 87.05% 86.65% 87.15% 87.15% 11.45%

UserDP-FedAvg-cert (𝜖 = 0.3205) 85.2% 85.15% 86.05% 85.1% 85.7% 48.5% 83.9% 85.85% 85.8% 84.95% 21.85%

𝑘=5 𝑘=10

Empirical Robust Acc. Certified

Robust Acc.

Empirical Robust Acc. Certified

Robust Acc.

No Attack

STAT-OPT [67]

(Min-Max)

STAT-OPT [67]

(Min-Sum)

BKD [4]

(𝛾 = 100)

LF [8]

(𝛾 = 100)

STAT-OPT [67]

(Min-Max)

STAT-OPT [67]

(Min-Sum)

BKD [4]

(𝛾 = 100)

LF [8]

(𝛾 = 100)

FedAvg [52] 88.08% 84.58% 85.75% 54.69% 54.35% / 80.89% 84.52% 51.17% 51.21% /

Median [83] 87.76% 84.5% 85.67% 87.69% 87.69% / 80.86% 84.5% 87.56% 87.56% /

Trimmed-mean [83] 88.08% 84.58% 85.75% 87.8% 87.8% / 80.89% 84.52% 87.44% 87.43% /

Krum [11] 85.97% 83.78% 85% 85.85% 85.85% / 80.62% 84.29% 85.89% 85.88% /

Multi-Krum [11] 88.02% 84.54% 85.72% 87.94% 87.95% / 80.88% 84.52% 87.92% 87.92% /

Bulyan [23] 88.02% 84.54% 85.72% 87.79% 87.79% / 80.88% 84.52% 87.66% 87.66% /

RFA [61] 87.97% 84.54% 85.71% 87.93% 87.93% / 80.87% 84.51% 87.82% 87.82% /

UserDP-FedAvg-cert (𝜖 = 0.7693) 88.05% 86.2% 86.35% 87.4% 87.3% 0% 85.25% 86.5% 86.95% 86.75% 0%

UserDP-FedAvg-cert (𝜖 = 0.648) 87.35% 86.2% 86.3% 87.15% 87.4% 0% 85.1% 85.75% 86.75% 85.85% 0%

UserDP-FedAvg-cert (𝜖 = 0.5346) 86.45% 85.6% 86.1% 87.05% 87.1% 0% 84.65% 85.2% 86.65% 85.1% 0%

UserDP-FedAvg-cert (𝜖 = 0.3205) 85.2% 83.4% 85.25% 84.5% 85.35% 0.35% 82.35% 84.95% 84.2% 85.6% 0%

(a) MNIST (k=4) (b) CIFAR (k=4)

𝐽
(𝐷
′ )

0.5 0.6 0.7 0.8 0.9
0
1
2
3
4
5
6
7
8
9

lower bound
BKD = 1
BKD = 50
BKD = 100

0.75 1.00 1.25 1.50
0

1

2

3

4

lower bound
BKD = 1
BKD = 50
BKD = 100

𝜖 𝜖

Figure 12: Certified attack inefficacy of UserDP-FedAvg with differ-
ent 𝜖 under backdoor attack.

B.2.6 Robustness Evaluation on 10-class Classification. Here we
report the robustness evaluation of user-level DPFL under backdoor

attacks on 10-class classification problems. Figure 13 presents the

certified accuracy under different 𝜖 . We observe the interplay be-

tween 𝜖 and certified accuracy onMNIST. On CIFAR, larger 𝑘 can be

certified with smaller 𝜖 . The certified K is relatively small because

we set large 𝜖 to preserve a reasonable accuracy for 10-class classi-

fication. Our results suggest that advanced DP mechanisms would

be preferred to provide tighter privacy guarantees (i.e., smaller 𝜖)

while achieving a similar level of accuracy. In terms of certified

attack inefficacy, as shown in Figure 14 and Figure 15, the trends

are similar to the 2-class results in Figure 7 and Figure 4,

(a) MNIST (k=4) (b) CIFAR (k=4)
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Figure 13: Certified accuracy of FL UserDP-FedAvg on 10-class clas-
sification.
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Figure 14: Lower bound of 𝑘 on 10-class classification under user-
level 𝜖 given attack effectiveness 𝜏 .



Unraveling the Connections between Privacy and Certified Robustness in FL Against Poisoning Attacks CCS ’23, November 26–30, 2023, Copenhagen, Denmark

(a) MNIST BKD (𝜖 = 0.67) (b) CIFAR BKD (𝜖 = 0.12) (c) MNIST BKD 𝑘 = 3 (d) CIFAR BKD 𝑘 = 1
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Figure 15: Certified attack inefficacy of UserDP-FedAvg on 10-class classification given the different number of malicious instances 𝑘 (a)(b) and
different 𝜖 (c)(d).

C PROOFS OF CERTIFIED ROBUSTNESS
ANALYSIS

We restate our Definition 2 here.

Definition 2 (Group DP). For mechanismℳ that satisfies (𝜖, 𝛿)-
DP, it satisfies (𝑘𝜖, 1−𝑒𝑘𝜖

1−𝑒𝜖 𝛿)-DP for groups of size 𝑘 . That is, for any
𝑑, 𝑑′ ∈ 𝒟 that differ by 𝑘 individuals and any 𝐸 ⊆ Θ, it holds that

Pr[ℳ(𝑑) ∈ 𝐸] ≤ 𝑒𝑘𝜖 Pr

[
ℳ

(
𝑑′

)
∈ 𝐸

]
+ 1 − 𝑒𝑘𝜖

1 − 𝑒𝜖 𝛿. (2)

Proof. We denote 𝑑 as 𝑑0, 𝑑
′
as 𝑑𝑘 . 𝑑𝑖 differ 𝑖 individuals with

𝑑0. For any 𝑖 ∈ [1, 𝑘], 𝑑𝑖 and 𝑑𝑖−1 differ by one individual, thus

Pr[𝑀 (𝑑𝑖−1)] ≤ 𝑒𝜖 Pr[𝑀 (𝑑𝑖 )] + 𝛿. (9)

By iteratively applying Eq. (9) 𝑘 times, we have

Pr[𝑀 (𝑑0)] ≤ 𝑒𝑘𝜖 Pr[𝑀 (𝑑𝑘 )] + (1 + 𝑒𝜖 + 𝑒2𝜖 + . . . + 𝑒 (𝑘−1)𝜖 )𝛿

= 𝑒𝑘𝜖 Pr[𝑀 (𝑑𝑘 )] +
1 − 𝑒𝑘𝜖
1 − 𝑒𝜖 𝛿

□

Before we prove Theorem 1, we introduce the following lemma:

Lemma 2. Suppose a randomized mechanismℳ satisfies user-level
(𝜖, 𝛿)-DP. For two user sets 𝐵 and 𝐵′ that differ by one user, 𝐷 and
𝐷′ are the corresponding training datasets. For a test input 𝑥 , for
any 𝑐 ∈ [𝐶] , 𝑓𝑐 (ℳ(𝐷), 𝑥) ∈ [0, 1] is the class confidence, then the
expected class confidence 𝐹𝑐 (ℳ(𝐷), 𝑥) := E[𝑓𝑐 (ℳ(𝐷), 𝑥)] meets
the following property:

𝐹𝑐 (ℳ(𝐷), 𝑥) ≤ 𝑒𝜖𝐹𝑐 (ℳ(𝐷′), 𝑥) + 𝛿 (10)

Proof. Define Θ(𝑎) := {𝜃 : 𝑓𝑐 (𝜃, 𝑥) > 𝑎}. Then
𝐹𝑐 (ℳ(𝐷), 𝑥) = E[𝑓𝑐 (ℳ(𝐷), 𝑥)]

=

∫
1

0

P [𝑓𝑐 (ℳ(𝐷), 𝑥) > 𝑎] 𝑑𝑎

=

∫
1

0

P [ℳ(𝐷) ∈ Θ(𝑎)] 𝑑𝑎

≤
∫

1

0

(
𝑒𝜖P

[
ℳ(𝐷′) ∈ Θ(𝑎)

]
+ 𝛿

)
𝑑𝑎

=

∫
1

0

𝑒𝜖P
[
𝑓𝑐 (ℳ(𝐷′), 𝑥) > 𝑎

]
𝑑𝑎 +

∫
1

0

𝛿𝑑𝑎

= 𝑒𝜖𝐹𝑐 (ℳ(𝐷′), 𝑥) + 𝛿
□

We recall Theorem 1.

Theorem 1 (Certified Prediction under One Adversarial User).
Suppose a randomized mechanism ℳ satisfies user-level (𝜖, 𝛿)-
DP. For two user sets 𝐵 and 𝐵′ that differ by one user, let 𝐷 and
𝐷′ be the corresponding training datasets. For a test input 𝑥 , sup-
pose A,B ∈ [𝐶] satisfy A = arg max𝑐∈[𝐶 ] 𝐹𝑐 (ℳ(𝐷), 𝑥) and
B = arg max𝑐∈[𝐶 ]:𝑐≠A 𝐹𝑐 (ℳ(𝐷), 𝑥). Then, it is guaranteed that
𝐻 (ℳ(𝐷′), 𝑥) = 𝐻 (ℳ(𝐷), 𝑥) = A if:

𝐹A (ℳ(𝐷), 𝑥) > 𝑒2𝜖𝐹B (ℳ(𝐷), 𝑥) + (1 + 𝑒𝜖 )𝛿, (5)

Proof. According to Lemma 2,

𝐹A (ℳ(𝐷), 𝑥) ≤ 𝑒𝜖𝐹A (ℳ(𝐷′), 𝑥) + 𝛿 (11)

𝐹B (ℳ(𝐷′), 𝑥) ≤ 𝑒𝜖𝐹B (ℳ(𝐷), 𝑥) + 𝛿. (12)

Then

𝐹A (ℳ(𝐷′), 𝑥) ≥
𝐹A (ℳ(𝐷), 𝑥) − 𝛿

𝑒𝜖
(Because of Eq. 11)

≥ 𝑒2𝜖𝐹B (ℳ(𝐷), 𝑥) + (1 + 𝑒𝜖 )𝛿 − 𝛿
𝑒𝜖

(Because of the given condition Eq. 5)

= 𝑒𝜖𝐹B (ℳ(𝐷), 𝑥) + 𝛿

≥ 𝑒𝜖
(
𝐹B (ℳ(𝐷′), 𝑥) − 𝛿

𝑒𝜖

)
+ 𝛿

(Because of Eq. 12)

= 𝐹B (ℳ(𝐷′), 𝑥),
which indicates that the prediction ofℳ(𝐷′) at 𝑥 isA by definition.

□

Before we prove Theorem 2, we introduce the following lemma:

Lemma 3. Suppose a randomized mechanismℳ satisfies user-level
(𝜖, 𝛿)-DP. For two user sets 𝐵 and 𝐵′ that differ 𝑘 users, 𝐷 and 𝐷′ are
the corresponding training datasets. For a test input 𝑥 , for any 𝑐 ∈ [𝐶]
, 𝑓𝑐 (ℳ(𝐷), 𝑥) ∈ [0, 1] is the class confidence, then the expected class
confidence 𝐹𝑐 (ℳ(𝐷), 𝑥) := E[𝑓𝑐 (ℳ(𝐷), 𝑥)] meets the following
property:

𝐹𝑐 (ℳ(𝐷), 𝑥) ≤ 𝑒𝑘𝜖𝐹𝑐 (ℳ(𝐷′), 𝑥) +
1 − 𝑒𝑘𝜖
1 − 𝑒𝜖 𝛿. (13)

and

𝐹𝑐 (ℳ(𝐷′), 𝑥) ≤ 𝑒𝑘𝜖𝐹𝑐 (ℳ(𝐷), 𝑥) +
1 − 𝑒𝑘𝜖
1 − 𝑒𝜖 𝛿.
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Proof. Define Θ(𝑎) := {𝜃 : 𝑓𝑐 (𝜃, 𝑥) > 𝑎}. Then

𝐹𝑐 (ℳ(𝐷 ), 𝑥 ) =
∫

1

0

P [ 𝑓𝑐 (ℳ(𝐷 ), 𝑥 ) > 𝑎] 𝑑𝑎

=

∫
1

0

P [ℳ(𝐷 ) ∈ Θ(𝑎) ] 𝑑𝑎

≤
∫

1

0

(
𝑒𝑘𝜖P

[
ℳ(𝐷 ′ ) ∈ Θ(𝑎)

]
+ 1 − 𝑒𝑘𝜖

1 − 𝑒𝜖 𝛿

)
𝑑𝑎

(Because of Group DP property in Definition 2)

=

∫
1

0

𝑒𝑘𝜖P
[
𝑓𝑐 (ℳ(𝐷 ′ ), 𝑥 ) > 𝑎

]
𝑑𝑎 +

∫
1

0

1 − 𝑒𝑘𝜖
1 − 𝑒𝜖 𝛿𝑑𝑎

= 𝑒𝑘𝜖𝐹𝑐 (ℳ(𝐷 ′ ), 𝑥 ) +
1 − 𝑒𝑘𝜖
1 − 𝑒𝜖 𝛿

Similarly, due to the symmetric property of adjacent datasets in the DP

definition (Definition 1) and Group DP definition (Definition 2), 𝐷 and 𝐷 ′

are interchangeable, and therefore we have

𝐹𝑐 (ℳ(𝐷 ′ ), 𝑥 ) =
∫

1

0

P
[
𝑓𝑐 (ℳ(𝐷 ′ ), 𝑥 ) > 𝑎

]
𝑑𝑎

=

∫
1

0

P
[
ℳ(𝐷 ′ ) ∈ Θ(𝑎)

]
𝑑𝑎

≤
∫

1

0

(
𝑒𝑘𝜖P [ℳ(𝐷 ) ∈ Θ(𝑎) ] + 1 − 𝑒𝑘𝜖

1 − 𝑒𝜖 𝛿

)
𝑑𝑎

(Because of Group DP property in Definition 2)

=

∫
1

0

𝑒𝑘𝜖P [ 𝑓𝑐 (ℳ(𝐷 ), 𝑥 ) > 𝑎] 𝑑𝑎 +
∫

1

0

1 − 𝑒𝑘𝜖
1 − 𝑒𝜖 𝛿𝑑𝑎

= 𝑒𝑘𝜖𝐹𝑐 (ℳ(𝐷 ), 𝑥 ) +
1 − 𝑒𝑘𝜖
1 − 𝑒𝜖 𝛿

□

We recall Theorem 2.

Theorem 2 (Upper Bound of 𝑘 for Certified Prediction). Sup-
pose a randomized mechanism ℳ satisfies user-level (𝜖, 𝛿)-DP.
For two user sets 𝐵 and 𝐵′ that differ by 𝑘 users, let 𝐷 and
𝐷′ be the corresponding training datasets. For a test input 𝑥 ,
suppose A,B ∈ [𝐶] satisfy A = arg max𝑐∈[𝐶 ] 𝐹𝑐 (ℳ(𝐷), 𝑥)
and B = arg max𝑐∈[𝐶 ]:𝑐≠A 𝐹𝑐 (ℳ(𝐷), 𝑥), then 𝐻 (ℳ(𝐷′), 𝑥) =

𝐻 (ℳ(𝐷), 𝑥) = A, ∀𝑘 < K where K is the certified number of adver-
sarial users:

K =
1

2𝜖
log

𝐹A (ℳ(𝐷), 𝑥) (𝑒𝜖 − 1) + 𝛿
𝐹B (ℳ(𝐷), 𝑥) (𝑒𝜖 − 1) + 𝛿 (6)

Proof. According to Lemma 3, we have

𝐹A (ℳ(𝐷), 𝑥) ≤ 𝑒𝑘𝜖𝐹A (ℳ(𝐷′), 𝑥) +
1 − 𝑒𝑘𝜖
1 − 𝑒𝜖 𝛿 (14)

𝐹B (ℳ(𝐷′), 𝑥) ≤ 𝑒𝑘𝜖𝐹B (ℳ(𝐷), 𝑥) +
1 − 𝑒𝑘𝜖
1 − 𝑒𝜖 𝛿. (15)

We can re-write the given condition 𝑘 < K according to Eq. (6) as

𝑒2𝑘𝜖𝐹B (ℳ(𝐷), 𝑥) + (1 + 𝑒𝑘𝜖 )
1 − 𝑒𝑘𝜖
1 − 𝑒𝜖 𝛿 < 𝐹A (ℳ(𝐷), 𝑥). (16)

Then

𝐹A (ℳ(𝐷 ′ ), 𝑥 ) ≥
𝐹A (ℳ(𝐷 ), 𝑥 ) − 1−𝑒𝑘𝜖

1−𝑒𝜖 𝛿

𝑒𝑘𝜖
(Because of Eq. 14)

>
𝑒2𝑘𝜖𝐹B (ℳ(𝐷 ), 𝑥 ) + (1 + 𝑒𝑘𝜖 ) 1−𝑒𝑘𝜖

1−𝑒𝜖 𝛿 − 1−𝑒𝑘𝜖
1−𝑒𝜖 𝛿

𝑒𝑘𝜖

(Because of the given condition Eq.16)

= 𝑒𝑘𝜖𝐹B (ℳ(𝐷 ), 𝑥 ) +
1 − 𝑒𝑘𝜖
1 − 𝑒𝜖 𝛿

≥ 𝑒𝑘𝜖
©«
𝐹B (ℳ(𝐷 ′ ), 𝑥 ) − 1−𝑒𝑘𝜖

1−𝑒𝜖 𝛿

𝑒𝑘𝜖
ª®¬ + 1 − 𝑒𝑘𝜖

1 − 𝑒𝜖 𝛿

(Because of Eq. 15)

= 𝐹B (ℳ(𝐷 ′ ), 𝑥 ),

which indicates that the prediction of ℳ(𝐷 ′ ) at 𝑥 is A by definition. □

We recall Theorem 3.

Theorem 3 (Attack Inefficacy with 𝑘 Attackers). Suppose a ran-
domized mechanism ℳ satisfies user-level (𝜖, 𝛿)-DP. For two user
sets 𝐵 and 𝐵′ that differ 𝑘 users, 𝐷 and 𝐷′ are the corresponding
training datasets. Let 𝐽 (𝐷) be the expected attack inefficacy where
|𝐶 (𝜃 ) | ≤ 𝐶 , ∀𝜃 . Then,

min{𝑒𝑘𝜖 𝐽 (𝐷) + 𝑒𝑘𝜖 − 1

𝑒𝜖 − 1

𝛿𝐶,𝐶} ≥ 𝐽 (𝐷′)

≥ max{𝑒−𝑘𝜖 𝐽 (𝐷) − 1 − 𝑒−𝑘𝜖
𝑒𝜖 − 1

𝛿𝐶, 0}, if 𝐶 (·) ≥ 0

min{𝑒−𝑘𝜖 𝐽 (𝐷) + 1 − 𝑒−𝑘𝜖
𝑒𝜖 − 1

𝛿𝐶, 0} ≥ 𝐽 (𝐷′)

≥ max{𝑒𝑘𝜖 𝐽 (𝐷) − 𝑒𝑘𝜖 − 1

𝑒𝜖 − 1

𝛿𝐶,−𝐶}, if 𝐶 (·) ≤ 0

(7)

Proof. We first consider 𝐶 (·) ≥ 0. Define Θ(𝑎) = {𝜃 : 𝐶 (𝜃 ) >
𝑎}.

𝐽 (𝐷) =
∫ 𝐶

0

P [𝐶 (ℳ(𝐷)) > 𝑎] 𝑑𝑎

=

∫ 𝐶

0

P [ℳ(𝐷)) ∈ Θ(𝑎)] 𝑑𝑎

≤
∫ 𝐶

0

(
𝑒𝑘𝜖P

[
ℳ(𝐷′)) ∈ Θ(𝑎)

]
+ 1 − 𝑒𝑘𝜖

1 − 𝑒𝜖 𝛿

)
𝑑𝑎

(Because of Group DP property in Definition 2)

=

∫ 𝐶

0

𝑒𝑘𝜖P
[
ℳ(𝐷′)) ∈ Θ(𝑎)

]
𝑑𝑎 + 1 − 𝑒𝑘𝜖

1 − 𝑒𝜖 𝛿𝐶

=

∫ 𝐶

0

𝑒𝑘𝜖P
[
𝐶 (ℳ(𝐷′)) > 𝑎

]
𝑑𝑎 + 1 − 𝑒𝑘𝜖

1 − 𝑒𝜖 𝛿𝐶

= 𝑒𝑘𝜖 𝐽 (𝐷′) + 1 − 𝑒𝑘𝜖
1 − 𝑒𝜖 𝛿𝐶

i.e.,

𝐽 (𝐷′) ≥ 𝑒−𝑘𝜖 𝐽 (𝐷) − 1 − 𝑒−𝑘𝜖
𝑒𝜖 − 1

𝛿𝐶.

Switch the role of 𝐷 and 𝐷′, we have

𝐽 (𝐷′) ≤ 𝑒𝑘𝜖 𝐽 (𝐷) + 1 − 𝑒𝑘𝜖
1 − 𝑒𝜖 𝛿𝐶.
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Also note that 0 ≤ 𝐽 (𝐷′) ≤ 𝐶 trivially holds due to 0 ≤ 𝐶 (·) ≤ 𝐶 ,

thus

min{𝑒𝑘𝜖 𝐽 (𝐷) + 𝑒𝑘𝜖 − 1

𝑒𝜖 − 1

𝛿𝐶,𝐶} ≥ 𝐽 (𝐷′)

≥ max{𝑒−𝑘𝜖 𝐽 (𝐷) − 1 − 𝑒−𝑘𝜖
𝑒𝜖 − 1

𝛿𝐶, 0}.

Next, we consider 𝐶 (·) ≤ 0. Define Θ(𝑎) = {𝜃 : 𝐶 (𝜃 ) < 𝑎}.

𝐽 (𝐷) = −
∫

0

−𝐶
P [𝐶 (ℳ(𝐷)) < 𝑎] 𝑑𝑎

= −
∫

0

−𝐶
P [ℳ(𝐷)) ∈ Θ(𝑎)] 𝑑𝑎

≥ −
∫

0

−𝐶

(
𝑒𝑘𝜖P

[
ℳ(𝐷′)) ∈ Θ(𝑎)

]
+ 1 − 𝑒𝑘𝜖

1 − 𝑒𝜖 𝛿

)
𝑑𝑎

(Because of Group DP property in Definition 2)

= −
∫

0

−𝐶
𝑒𝑘𝜖P

[
ℳ(𝐷′)) ∈ Θ(𝑎)

]
𝑑𝑎 − 1 − 𝑒𝑘𝜖

1 − 𝑒𝜖 𝛿𝐶

= −
∫

0

−𝐶
𝑒𝑘𝜖P

[
𝐶 (ℳ(𝐷′)) < 𝑎

]
𝑑𝑎 − 1 − 𝑒𝑘𝜖

1 − 𝑒𝜖 𝛿𝐶

= 𝑒𝑘𝜖 𝐽 (𝐷′) − 1 − 𝑒𝑘𝜖
1 − 𝑒𝜖 𝛿𝐶

i.e.,

𝐽 (𝐷′) ≤ 𝑒−𝑘𝜖 𝐽 (𝐷) + 1 − 𝑒−𝑘𝜖
𝑒𝜖 − 1

𝛿𝐶.

Switch the role of 𝐷 and 𝐷′, we have

𝐽 (𝐷′) ≥ 𝑒𝑘𝜖 𝐽 (𝐷) − 1 − 𝑒𝑘𝜖
1 − 𝑒𝜖 𝛿𝐶.

Also note that−𝐶 ≤ 𝐽 (𝐷′) ≤ 0 trivially holds due to−𝐶 ≤ 𝐶 (·) ≤ 0,

thus

min{𝑒−𝑘𝜖 𝐽 (𝐷) + 1 − 𝑒−𝑘𝜖
𝑒𝜖 − 1

𝛿𝐶, 0} ≥ 𝐽 (𝐷′)

≥ max{𝑒𝑘𝜖 𝐽 (𝐷) − 𝑒𝑘𝜖 − 1

𝑒𝜖 − 1

𝛿𝐶,−𝐶}

□

We recall Corollary 1.

Corollary 1 (Lower Bound of 𝑘 Given 𝜏 , extended from [50]). Sup-
pose a randomized mechanismℳ satisfies user-level (𝜖, 𝛿)-DP. Let
attack inefficacy function be 𝐶 (·), the expected attack inefficacy be
𝐽 (·). In order to achieve 𝐽 (𝐷′) ≤ 1

𝜏 𝐽 (𝐷) for 𝜏 ≥ 1when 0 ≤ 𝐶 (·) ≤ 𝐶 ,

or achieve 𝐽 (𝐷′) ≤ 𝜏 𝐽 (𝐷) for 1 ≤ 𝜏 ≤ − 𝐶
𝐽 (𝐷 ) when −𝐶 ≤ 𝐶 (·) ≤ 0,

the number of adversarial users should satisfy the following:

𝑘 ≥ 1

𝜖
log

(𝑒𝜖 − 1) 𝐽 (𝐷)𝜏 +𝐶𝛿𝜏
(𝑒𝜖 − 1) 𝐽 (𝐷) +𝐶𝛿𝜏

or 𝑘 ≥ 1

𝜖
log

(𝑒𝜖 − 1) 𝐽 (𝐷)𝜏 −𝐶𝛿
(𝑒𝜖 − 1) 𝐽 (𝐷) −𝐶𝛿

,

Proof. We first consider 𝐶 (·) ≥ 0. According to the lower

bound in Theorem 3, when 𝐵′ and 𝐵 differ 𝑘 users, 𝐽 (𝐷′) ≥
𝑒−𝑘𝜖 𝐽 (𝐷) − 1−𝑒−𝑘𝜖

𝑒𝜖−1
𝛿𝐶 . Since we require 𝐽 (𝐷′) ≤ 1

𝜏 𝐽 (𝐷), then
𝑒−𝑘𝜖 𝐽 (𝐷) − 1−𝑒−𝑘𝜖

𝑒𝜖−1
𝛿𝐶 ≤ 1

𝜏 𝐽 (𝐷). Rearranging gives the result.
Next, we consider𝐶 (·) ≤ 0. According to the lower bound in The-

orem 3, when 𝐵′ and 𝐵 differ 𝑘 users, 𝐽 (𝐷′) ≥ 𝑒𝑘𝜖 𝐽 (𝐷) − 𝑒𝑘𝜖−1

𝑒𝜖−1
𝛿𝐶 .

Since we require 𝐽 (𝐷′) ≤ 𝜏 𝐽 (𝐷), then 𝑒𝑘𝜖 𝐽 (𝐷)− 𝑒𝑘𝜖−1

𝑒𝜖−1
𝛿𝐶 ≤ 𝜏 𝐽 (𝐷).

Rearranging gives the result.

□

We note that all the above robustness certification-related proofs

are built upon the user-level (𝜖, 𝛿)-DP property and the Group DP

property. According to Definition 3 and Definition 4, the definition

of user-level DP and instance-level DP are both induced from DP

(Definition 1) despite the different definitions of adjacent datasets.

By applying the definition of instance-level (𝜖, 𝛿)-DP and follow-

ing the proof steps of Theorem 1, 2, 3 and Corollary 1, we can

derive similar theoretical conclusions for instance-level DP, leading

to Theorem 4 to achieve the certifiably robust FL given the DP

property.

D CERTIFIED ROBUSTNESS ANALYSIS VIA
RÉNYI DP AND RANDOMIZED SMOOTHING

D.1 Preliminary
We start by providing preliminaries on Rényi Differential Pri-

vacy [55] and the 𝑓 -divergence-based randomized smoothing [20],

which is a relaxation of ℓ𝑝 -norm-based randomized smoothing [19].

Definition 5. (Rényi Divergence) For two probability distributions
𝜌 and 𝜈 , the Rényi divergence of order 𝛼 > 1 is

𝐷𝛼 (𝜌 ∥𝜈) ≜
1

𝛼 − 1

log E𝑥∼𝜈

(
𝜌 (𝑥)
𝜈 (𝑥)

)𝛼
(17)

Definition 6. ((𝛼, 𝜖𝑅,𝛼 )-RDP [55]) A randomized mechanismℳ :

𝒟 → Θ with domain 𝒟 and output set Θ satisfies (𝛼, 𝜖𝑅,𝛼 ) Rényi
Differential Privacy (RDP) if for any pair of two adjacent datasets
𝑑, 𝑑′ ∈ 𝒟, it holds that

𝐷𝛼 (ℳ(𝑑)∥ℳ(𝑑′)) ≤ 𝜖𝑅,𝛼 (18)

Definition 7. (Group Rényi DP [55]) For mechanismℳ that satisfies
(𝛼, 𝜖𝑅,𝛼 )-RDP, it satisfies (𝛼/2𝑘 , 3𝑘𝜖𝑅,𝛼 )-DP for groups of size 𝑘 . That
is, for any 𝑑, 𝑑′ ∈ 𝒟 that differ by 𝑘 individuals, it holds that

𝐷𝛼/2𝑘 (ℳ(𝑑)∥ℳ(𝑑
′)) ≤ 3

𝑘𝜖𝑅,𝛼 (19)

Lemma 4. (Rényi DP and DP conversion [55]) The mechanismℳ
that satisfies (𝛼, 𝜖𝑅,𝛼 )-RDP 𝛼 > 1, also satisfies (𝜖𝑅,𝛼 +

log 1/𝛿
𝛼−1

, 𝛿)-DP
for any 0 < 𝛿 < 1.

Lemma 5. (Certificates for Rényi-divergence [Table 4 of [20]]) Given
two distributions 𝜌 and 𝜈 with bounded Rényi divergences (𝛼 ≥ 0)
𝐷𝛼 (𝜌 ∥𝜈) ≤ 𝜖𝑅,𝛼 , and two probabilities 𝑝𝑎 , 𝑝𝑏 that satify 𝑝𝑎, 𝑝𝑏 ≥ 0,
𝑝𝑎 + 𝑝𝑏 ≤ 1, and define the class of specification 𝑆 as

𝑆 =

{
𝜙 : 𝒳 → {−1, 0, +1} s.t. P

𝑥∼𝜌
[𝜙 (𝑥 ) = +1] ≥ 𝑝𝑎, P

𝑥∼𝜌
[𝜙 (𝑥 ) = −1] ≤ 𝑝𝑏

}
.

(20)

It is certified that E𝑥∼𝜈 [𝜙 (𝑥)] ≥ 0 for all 𝜈 and 𝜙 ∈ 𝑆 if

𝜖𝑅,𝛼 ≤ − log (1 − 𝑝𝑎 − 𝑝𝑏 + 2𝜂) ,with 𝜂 =
©«
𝑝
(1−𝛼 )
𝑎 + 𝑝 (1−𝛼 )

𝑏

2

ª®¬
( 1

1−𝛼 )
.
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D.2 Main Results on RDP-based Certified
Prediction

We present our main results for certified robustness against FL

poisoning attacks based on Rényi DP (RDP) [55] and Randomized

Smoothing via Rényi Divergence [20]. Theorem 5 states the certifi-

cation under one adversarial user and Theorem 6 further extends

the certification to 𝑘 adversarial suers.

Theorem 5 (RDP-based Certified Prediction under One Adver-

sarial User). Suppose a randomized mechanism ℳ satisfies user-
level (𝛼, 𝜖𝑅,𝛼 )-RDP, which also satisfies user-level (𝜖𝑅,𝛼 +

log 1/𝛿
𝛼−1

, 𝛿)-
DP, where 𝛼 > 1 and 0 < 𝛿 < 1. For two user sets 𝐵 and 𝐵′

that differ by one user, let 𝐷 and 𝐷′ be the corresponding train-
ing datasets. Define the classifier as ℎ : (𝜃,R𝑑 ) → [𝐶] with the
finite set of labels [𝐶], and the randomly smoothed classifier ℎ𝑠 as
ℎ𝑠 (ℳ(𝐷), 𝑥) := arg max𝑐∈[𝐶 ] P[ℎ(ℳ(𝐷), 𝑥) = 𝑐]. For a test input
𝑥 , suppose that

P[ℎ(ℳ(𝐷), 𝑥) = A] ≥ 𝑝𝑎 ≥ 𝑝𝑏 ≥ arg max

𝑐∈[𝐶 ]:𝑐≠A
P[ℎ(ℳ(𝐷), 𝑥) = 𝑐] .

Then, it is guaranteed that ℎ𝑠 (ℳ(𝐷′), 𝑥) = ℎ𝑠 (ℳ(𝐷), 𝑥) = A if:

𝜖𝑅,𝛼 ≤ − log

©«1 − 𝑝𝑎 − 𝑝𝑏 + 2
©«
𝑝
(1−𝛼 )
𝑎 + 𝑝 (1−𝛼 )

𝑏

2

ª®¬
( 1

1−𝛼 )ª®®¬ .
Theorem 6 (RDP-based Certified Prediction under 𝑘 Adversarial

User). Using the same setting as in Theorem 5 but let two user sets 𝐵
and 𝐵′ differ by 𝑘 users, and 𝐷 and 𝐷′ be the corresponding training
datasets. Then, it is guaranteed thatℎ𝑠 (ℳ(𝐷′), 𝑥) = ℎ𝑠 (ℳ(𝐷), 𝑥) =
A if:

𝜖𝑅,𝛼 ≤ −
1

3
𝑘

log

©«1 − 𝑝𝑎 − 𝑝𝑏 + 2
©«
𝑝
(1−𝛼/2𝑘 )
𝑎 + 𝑝 (1−𝛼/2

𝑘 )
𝑏

2

ª®¬
(

1

1−𝛼/2𝑘

)ª®®®¬ .
Remark. From Theorem 5 and Theorem 6, we observe that (1)

RDP-based certifications are more complex than DP-based certifi-

cations due to the additional tunable parameter, the RDP order 𝛼 ,

and its foundational Rényi Divergence-based privacy definition. (2)
Theorem 6 presents a more intricate RHS, making it challenging to

derive a simple closed-form upper bound K for the certified num-

ber of attackers where 𝑘 < K, as seen in Theorem 2. Nevertheless,

Theorem 6 can be utilized to perform a binary check for certified ro-

bustness by verifying if the current RDP privacy budget satisfies the

inequality. (3) Different from DP-based certifications in Theorem 1

and Theorem 2 that are built upon the expected class confidence 𝐹𝐴
and 𝐹𝐵 , RDP-based certifications are built upon the probability of
model prediction, e.g., the probability of the model predicting a cer-

tain class P[ℎ(ℳ(𝐷), 𝑥) = A], where ℎ(ℳ(𝐷), 𝑥) is the predicted
class. To compute RDP-based certifications in practice, one can also

use Marto Carlo sampling to approximate P[ℎ(ℳ(𝐷), 𝑥) = A].

D.3 Proofs
We now provide the proofs for Theorem 5 and Theorem 6 below.

Proof for Theorem 5. Recall that we define the classifer ℎ :

(𝜃,R𝑑 ) → [𝐶] with the finite set of labels [𝐶], and the randomly

smoothed classifer ℎ𝑠 as

ℎ𝑠 (ℳ(𝐷), 𝑥) := arg max

𝑐∈[𝐶 ]
P[ℎ(ℳ(𝐷), 𝑥) = 𝑐], (21)

where 𝑥 is a test sample, ℳ(𝐷) is the stochastic model trained

from the randomized DP mechanismℳ on a training dataset 𝐷 .

For a test input 𝑥 , suppose that

P[ℎ(ℳ(𝐷), 𝑥) = A] ≥ 𝑝𝑎 ≥ 𝑝𝑏 ≥ arg max

𝑐∈[𝐶 ]:𝑐≠A
P[ℎ(ℳ(𝐷), 𝑥) = 𝑐] .

Therefore, A = ℎ𝑠 (ℳ(𝐷), 𝑥).
Let B = arg max𝑐∈[𝐶 ]:𝑐≠A P[ℎ(ℳ(𝐷), 𝑥) = 𝑐]. We define the

specification 𝜙A,B as follows:

𝜙A,B (ℳ(𝐷)) =


+1 if ℎ(ℳ(𝐷), 𝑥) = A
−1 if ℎ(ℳ(𝐷), 𝑥) = B
0 otherwise

(22)

Based on the certificates for Rényi-divergence in Lemma 5 and

Definition 6 for Rényi DP, if

𝜖𝑅,𝛼 ≤ − log (1 − 𝑝𝑎 − 𝑝𝑏 + 2𝜂) ,with 𝜂 =
©«
𝑝
(1−𝛼 )
𝑎 + 𝑝 (1−𝛼 )

𝑏

2

ª®¬
( 1

1−𝛼 )
,

and if the mechanismℳ satisfies (𝛼, 𝜖𝑅,𝛼 )-RDP (𝛼 > 1)
𝐷𝛼 (ℳ(𝐷)∥ℳ(𝐷′)) ≤ 𝜖𝑅,𝛼 , (23)

it is certified that E[𝜙A,B (ℳ(𝐷′))] = P[ℎ(ℳ(𝐷′), 𝑥) = A] −
P[ℎ(ℳ(𝐷′), 𝑥) = B] ≥ 0, that is,

P[ℎ(ℳ(𝐷′), 𝑥) = A] ≥ P[ℎ(ℳ(𝐷′), 𝑥) = B] .
It further implies that

ℎ𝑠 (ℳ(𝐷′), 𝑥) = ℎ𝑠 (ℳ(𝐷), 𝑥) = A.
Finally, we can convert Rényi DP to DP by Lemma 4 □

Proof for Theorem 6. According to the group Rényi DP in Def-

inition 7, the mechanismℳ that satifies user-level (𝛼, 𝜖𝑅,𝛼 )-RDP
also satifies user-level (𝛼/2𝑘 , 3𝑘𝜖𝑅,𝛼 )-RDP for two user sets 𝐵 and

𝐵′ that differ by 𝑘 users. That is,

𝐷𝛼/2𝑘 (ℳ(𝐷)∥ℳ(𝐷
′)) ≤ 3

𝑘𝜖𝑅,𝛼 . (24)

For a test input 𝑥 , suppose that

P[ℎ(ℳ(𝐷), 𝑥) = A] ≥ 𝑝𝑎 ≥ 𝑝𝑏 ≥ arg max

𝑐∈[𝐶 ]:𝑐≠A
P[ℎ(ℳ(𝐷), 𝑥) = 𝑐] .

Then, according to Lemma 5 and following similar steps in the

proofs of the Theorem 5, if

3
𝑘𝜖𝑅,𝛼 ≤ − log (1 − 𝑝𝑎 − 𝑝𝑏 + 2𝜂) ,

with 𝜂 =
©«
𝑝
(1−𝛼/2𝑘 )
𝑎 + 𝑝 (1−𝛼/2

𝑘 )
𝑏

2

ª®¬
(

1

1−𝛼/2𝑘

)
,

it is certified that

ℎ𝑠 (ℳ(𝐷′), 𝑥) = ℎ𝑠 (ℳ(𝐷), 𝑥) = A.
□
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