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Knowledge graphs (KGs) can provide users with semantic information and relations among numerous en- 

tities and nodes, which can greatly facilitate the performance of recommender systems. However, existing 

KG-based approaches still suffer from severe data sparsity and may not be effective in capturing the preference 

features of similar entities across domains. Therefore, in this article, we propose a P reference-aware G raph 

A ttention network model with C ollaborative K nowledge G raph ( PGACKG ) for cross-domain recommenda- 

tions. Preference-aware entity embeddings with some collaborative signals are first obtained by exploiting 

the graph-embedding model, which can transform entities and items in the collaborative knowledge graph 

into semantic preference spaces. To better learn user preference features, we devise a preference-aware graph 

attention network framework that aggregates the preference features of similar entities within domains and 

across domains. In this framework, multi-hop reasoning is employed to assist in the generation of preference 

features within domains, and the node random walk based on frequency visits is proposed to gather similar 

preferences across domains for target entities. Then, the final preference features of entities are fused, while 

a novel C ross-domain B ayesian P ersonalized R anking ( CBPR ) is proposed to improve cross-domain rec- 

ommendation accuracy. Extensive empirical experiments on four real-world datasets demonstrate that our 

proposed approach consistently outperforms state-of-the-art baselines. Furthermore, our PGACKG achieves 

strong performance in different ablation scenarios, and the interaction sparsity experiments also demonstrate 

that our proposed approach can significantly alleviate the data sparsity issue. 
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 INTRODUCTION 

ecommender systems can assist users to quickly find the desired information from a large
mount of data in many application scenarios, such as book recommendations on Amazon, paper
ecommendations on AMiner, and video recommendations on YouTube. However, the inherent
ata sparsity issue still seriously hinders performance improvement of existing recommendation
pproaches [ 1 ]. Therefore, cross-domain recommendations (CDRs) provide another promising
olution [ 2 , 3 ], which can leverage preference knowledge in the source domain to assist in
mproving entity recommendation performance in the target domain. Despite many research
fforts devoted to developing CDRs, most existing approaches [ 4 , 5 ] consider interactive rating
ecords based only on overlapping entities, which makes it difficult to substantially improve the
ccuracy of recommendations. 
A knowledge graph (KG) is a heterogeneous information network [ 6 ] that can capture structured

emantic information and contextual preference features between nodes, where nodes correspond
o entities, items, and so forth, and edges correspond to relations. Essentially, knowledge graph
mbedding (KGE) can expose user preference features to some extent and yield satisfactory rep-
esentations for network training [ 7 ]. Therefore, collaborative knowledge graphs with rich pref-
rence information in some of the literature [ 8 , 9 ] have been demonstrated to effectively improve
ecommendation performance. 
Currently, most KG-based recommendations are mainly classified into two categories: path-

ased schemes and embedding-based schemes. Path-based schemes can extract higher-order
onnectivity information of nodes carrying rich preference signals, which often requires manual
esign of traversal principles. While these approaches contribute to the interpretability of rec-
mmendations, their performance relies heavily on domain knowledge, resulting in less reliable
calability. Recently, motivated by the development of deep training networks, embedding-
ased schemes that aggregate the feature embeddings for entities in knowledge graphs have
een proposed to improve recommendation performance in an end-to-end manner. However,
hese schemes still have too many parameter dependencies and are limited to single-domain
ecommendations [ 10 ], which cannot be applied well to cross-domain scenarios. 
To tackle this challenge, in this artic le, we attempt to expose preference signals from entity

nteractions in the collaborative knowledge graph to learn similar preference features within and
cross domains for target entities, which can enhance the recommendation performance of the
arget domain. Figure 1 illustrates our cross-domain recommendation between music and movie
omains with the collaborative knowledge graph. Suppose that for a given overlapping user u 3 in
he movie domain B, our recommender system needs to recommend movies that the user may like.
ince u 3 also belongs to users in the music domain A, according to a known path u 3 → i 2 → e 2 → i 3
n the collaborative knowledge graph, the system judges that u 3 is likely to prefer i 3 . Then, based
n the preferences of overlapping entities across domains, we can generate final predictions for the
arget entity u 3 . Similarly, for those non-overlapping entity preferences, we can use overlapping
ntities as bridging nodes to connect the two domains to make preference predictions. 
Therefore, in this article, we propose a novel preference-aware graph attentive model with a

ollaborative knowledge graph for cross-domain recommendations that is equipped with knowl-
dge graphs to capture entity semantic information and user potential long-distance preferences
cross domains. Specifically, we leverage a trainable and personalized graph representation scheme
o transform entities or items into preference-aware embeddings. Considering the limitations
f existing solutions, a preference-aware graph attention network is then devised to aggregate
reference features of similar entities within domains and across domains. Finally, the fused
ntity features with rich contextual preference information are obtained, and the cross-domain
ayesian personalized ranking is proposed to generate predictive results for different cross-domain
CM Transactions on Information Systems, Vol. 41, No. 3, Article 80. Publication date: February 2023. 
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Fig. 1. An illustration of our cross-domain recommendation between music and movie domains with the 

collaborative knowledge graph. 
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ecommendation scenarios. In addition, experimental results also show that our proposed
 reference-aware G raph A ttention network model with C ollaborative K nowledge G raph
 PGACKG ) achieves significant gains over state-of-the-art approaches in recommendation ac-
uracy. 
Our work makes the following main contributions: 

• We propose the PGACKG, a new cross-domain recommendation framework based on graph
attention networks, which can leverage similar entity preferences across domains to im-
prove prediction performance in target domains. To the best of our knowledge, this is the
first attempt to apply knowledge graphs to cross-domain recommender systems to enhance
their performance. 

• We propose to learn preference-aware embeddings for network training by exploiting a
graph representation model. Some collaborative preference signals are exposed to learn
entities with different preferences in the collaborative knowledge graph. 

• We propose a preference-aware graph attention network model to aggregate the prefer-
ences from similar entities within domains and across domains. Intuitively, we employ a
multi-hop reasoning process to extract entity preference features within domains, and de-
velop a node random walking scheme to model preference features across domains. 

• We conduct extensive experiments on several real datasets to demonstrate the effectiveness
of the PGACKG. Experimental results indicate that our proposed PGACKG consistently
outperforms state-of-the-art baseline recommendation approaches. Meanwhile, the data
sparsity issue is greatly alleviated to improve recommendation performance in the target
domain. 

The remainder of this article is organized as follows. Section 2 reviews some latest works rele-
ant to our research topic. Section 3 introduces the formulation of the cross-domain recommen-
ation problem studies in this article. Section 4 presents our proposed PGACKG model in detail.
ACM Transactions on Information Systems, Vol. 41, No. 3, Article 80. Publication date: February 2023. 
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xtensive experiments performed on four real-world datasets demonstrate the effectiveness of our
pproach in Section 5 . Our conclusions and future research directions are summarized in Section 6 .

 RELATED WORK 

n this section, we review some existing works related to our research, graph neural networks,
ecommendations with knowledge graphs, and cross-domain recommendations. 

.1 Graph Neural Networks 

ased on the differences in graph representation training architecture, most graph neural network
GNN) models are divided into graph convolutional neural networks and graph generative neural
etworks. 
Graph convolutional neural networks (GCNs) can leverage convolution operations to generalize

omplex types of data into graph data, which is the basis for many derived GNN models. In the re-
ent literature, spectral-based solutions have attracted considerable attention, and they generally
ormalize convolution operations for graph representations from the perspective of graph signal
rocessing. For example, the authors of [ 11 ] propose a new spectral domain convolutional architec-
ure, which can efficiently compute spectral filters on graphs by handling different constructions
f Laplacian operators. To train learnable parameters and consider graph signals of multiple di-
ensions, the authors of [ 12 ] devise spectral convolution layers to constrain channel filters. The
uthors of [ 13 ] and [ 14 ] define a convolutional filter as Chebyshev polynomials of the diagonal
atrix of eigenvalues. Compared with these spectral GCNs, non-spectral GCN solutions can di-
ectly employ graph convolution operations to propagate node information and relations along
hose edges. The authors of [ 15 ] and [ 16 ] pioneered spatial-based frameworks, which can recur-
ively stack and propagate representations of node neighborhoods to memorize interlayer infor-
ation. To enhance the inherent transduction of nodes and naturally generalize to unseen nodes,
he authors of [ 17 ] present a novel general inductive framework, GraphSAGE, which leverages
ode feature information to efficiently generate node embeddings by sampling and aggregating
eatures from a node’s local neighborhood. The learnable graph convolutional layer is employed
o automatically select neighbor nodes to perform convolution operations on generic graphs [ 18 ].
The graph-generating neural network (GGN) is a generative learning architecture that aims

t re-encoding node or graph information to generate plausible structures from data. Many ap-
roaches to GGNs exploit observed data distributions to learn plausible data representations. For
nstance, the authors of [ 19 ] propose a novel deep training scheme for learning generative models
ver graphs, which can leverage GNNs to express probabilistic dependencies for nodes and edges,
hereby learning distributions over any arbitrary graph and updating the graph representation.
he literature [ 20 ] applies generative adversarial networks to generate discrete output samples
y learning the distribution of biased random walks over the input graph. To address meaning-
ess training constraints, the authors of [ 21 ] and [ 22 ] adopt different graph generative models to
onsistently encode graph structure information for node embeddings. 

.2 Recommendations with Knowledge Graphs 

n general, existing KG-based recommendations aim to leverage KGs to improve prediction ac-
uracy. These approaches are almost all applied to single-domain recommender systems and are
oughly categorized into two groups: embedding-based solutions and path-based solutions. 
Embedding-based solutions leverage the KG embedding model to capture KG structure or se-
antic information and then learn the entity embeddings to achieve the final recommendation. For
xample, a novel collaborative knowledge embedding model [ 23 ] is proposed to learn item latent
epresentations in collaborative filtering and entity representations from KGs that can boost the
CM Transactions on Information Systems, Vol. 41, No. 3, Article 80. Publication date: February 2023. 
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ecommendation performance. To further optimize the knowledge base embeddings, the authors
f [ 24 ] leverage knowledge-guided interaction sequences to enhance the representation power in
apturing complicated entity preferences for improving sequential recommendations. In [ 25 ], con-
idering KGs as the source of side information, entity latent features and their interactions can be
ssociated by cross-compress units through the KG embedding mechanism. The authors of [ 26 ]
ropose a new translation-based representation model that can transfer entity relation informa-
ion in KGs and jointly train them with a KG completion model. However, due to the lack of explicit
odeling capabilities, embedding-based schemes are not guaranteed to capture long-range node
ependencies and find it difficult to interpret high-order semantic relations between entities for
ecommendations. 
Path-based solutions extract entity paths rich in high-order node information in the KG to pro-

ide some preference signals for entity recommendations. For instance, knowledge-aware path
ecurrent networks [ 8 ] are exploited to recursively generate path representations to discriminate
he importance of different paths by composing the semantics of both entities and relations for
xplainable recommendations. In [ 27 ], the meta-path–based context is constructed to learn effec-
ive representations for entities in heterogeneous information networks, whereas a co-attention
echanism is adopted to assist in improving Top-N recommendations. Similarly, the authors of

 28 ] leverage the matrix factorization and factorization machine to generate latent features for
ntities in heterogeneous information networks, thereby automatically learning from the known
atings to efficiently select useful feature-based meta-graphs. Meta-path–based random walking
nd heterogeneous skip-gram strategies are proposed to further enable structural and semantic
ssociations of entities in KGs [ 29 ]. Some other approaches [ 30 –32 ] have also explored various pat-
erns of connections in KGs to assist various recommendation scenarios. While these approaches
acilitate and enrich the diversity of recommendations in an intuitive way, they heavily rely on do-
ain knowledge and manually designed path-based patterns, making them difficult for large-scale

ndustrial applications. 
Recently, some promising reinforcement learning (RL)–based approaches over the KG have also
een proposed to improve recommendation performance. For example, the authors of [ 33 ] de-
ise a demonstration-based KG reasoning framework for explainable recommendation, and also
ropose an ADversarial Actor-Critic model for demonstration-guided path finding. To improve
ampling efficiency and user experiences, the prior knowledge of item correlations learned from
Gs is exploited to enrich item representations, and user preferences are propagated for interac-
ive recommender systems [ 34 ]. Motivated by the availability of KGs, the authors of [ 35 ] propose a
nowledge-guided RL model to fuse KG information into the RL architecture for sequence recom-
endations. The authors of [ 36 ] develop a negative sampling model in which a KG policy network

s designed to explore high-quality negative samples. Naturally, deep RL-based recommendation
odels over the KG have shown strong advantages in solving complex tasks and dealing with com-
lex data. However, these methods cannot be applied to cross-domain recommendation scenarios
ue to distribution drift and data sparsity issues. 

.3 Cross-Domain Recommendations 

DRs aim to leverage rich data from auxiliary domains to assist in solving the long-standing data
parsity issue in the target domain to improve recommendation accuracy. According to different
nowledge transfer strategies [ 37 ], most existing CDR approaches are mainly divided into two
ategories: feature-based solutions and content-based solutions. 
Feature-based solutions mainly attempt to exploit collaborative filtering techniques or some
eep training models to simultaneously learn entity latent features of the two domains to improve
he recommendation performance of the target domain. For example, the authors of [ 38 ] propose
ACM Transactions on Information Systems, Vol. 41, No. 3, Article 80. Publication date: February 2023. 
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 deep transfer collaborative filtering architecture in which the collective matrix factorization and
eep transfer learning techniques are integrated to generate efficient entity latent representations
or CDRs. To alleviate data sparsity, the authors of [ 39 ] employ a multilayer perceptron to capture
he nonlinear mapping relationship across domains and then learn the domain-specific features
f entities. In [ 40 ], a deep sparse autoencoder recommendation framework based on adversarial
earning is proposed to enhance the quality of recommendations in a CDR system. In addition,
he authors of [ 41 ] devise a CDR model based on a probabilistic knowledge transfer mechanism
o profile both domain-shared and domain-specific entity features, thereby improving recommen-
ation accuracy. However, although many example solutions [ 42 –46 ] have also been proposed to
nalyze entity features and provide some preference knowledge for sparse target domains, how to
enerate accurate representations for entities is still a crucial challenge. 
Content-based solutions tend to leverage content information (entity attributes, side informa-

ion, semantic associations, social relations, etc.) to connect the auxiliary domain and target do-
ain to generate the preference knowledge for recommendations in the target domain. For in-
tance, the authors of [ 47 ] introduce a novel CDR model based on tag semantic association, which
an automatically capture the semantic relationship between nonidentical tags, and similar en-
ities across domains are identified for recommendations by transferring preference knowledge
rom the auxiliary domain. Targeting improvement of the accuracy of CDRs, multiple types of
edia information are exploited to transfer user interests through a proposed Bayesian hierarchi-
al scheme based on Latent Dirichlet Allocation [ 48 ]. Nevertheless, these recommendation effects
re not always as expected in various application scenarios. Therefore, a framework of content-
ased metadata features is implemented with various classifiers to segment different user groups
nd provide recommendations for target domains in [ 49 ]. The authors of [ 50 ] employ an unsuper-
ised domain adaptation technique to analyze cross-domain relations and preference behaviors
mong entities based on the historical contents browsed by users. In addition, there are some re-
ent content-based approaches [ 51 –54 ] that can leverage explicit or implicit attributes to improve
he quality of CDRs at different levels. 

 PROBLEM FORMULATIONS 

n those typical CDR scenarios, it is assumed that there is a dense source domain S and a sparse
arget domain T . Generally, each domain has a set of M users U = { u 1 , u 2 , . . . u m 

}, a set of N items
 = { i 1 , i 2 , . . . i n }, and an interaction rating matrix R ∈ R 

M×N . r mn = 1 indicates some historical
reference behavior (browsing, liking, forwarding, etc.) of user u m 

on item i n ; otherwise, r mn = 0 .
dditionally, the existence of some shared entities (users or items) in the source domain and the
arget domain is a prerequisite for CDRs. For convenience, we assume that the two domains have
ome overlapping users in this article. 
Collaborative Knowledge Graph (CKG). Inspired by previous work [ 55 ], a collaborative KG

s defined to facilitate our work, which can encode and project user behaviors and item informa-
ion into a multi-relational graph. The CKG not only reflects the preference interaction between
sers and items in the recommendation system, but also exposes the relationship between enti-
ies in the real world. Normally, it is composed of entity-relation-entity triples ( h, r , t ), where
 ∈ E, r ∈ Ω, t ∈ E denote the head entity, relation, tail entity of a knowledge triple, and E and Ω,
espectively, represent the set of entities and relationships in the C KG. For example, the triplet
 V i n Di e s e l , ActorO f , Fas t & Fu riou s 9 ) presents the fact that Vin Diesel is an actor of the movie
Fast & Furious 9.” Items in the recommender system are regarded as a special type of entity in
he CKG, that is, i belongs to E. 
Problem Description. Given a dense source domain interaction matrix X , a sparse target do-
ain interaction matrix Y and the CKG G c , we aim to predict whether user u in the target domain
CM Transactions on Information Systems, Vol. 41, No. 3, Article 80. Publication date: February 2023. 
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Table 1. Main Symbols Used in This Article 

Symbol Description 
U set of users in recommender systems 
I set of items in recommender systems 
S dense source domain 
T sparse target domain 
R interaction rating matrix 
E set of entities in the KG 

Ω set of relations in the KG 

h entity in E
e h preference embedding for h 

e r preference embedding for r
Γ, Γ′ golden and negative triplet sets 
τ , τ ′ golden and negative triplets 
ϑ margin separating golden and negative triplets 
v node in the KG 

N u (v ) set of similar neighbors of node v
h v vector feature of node v
h k vector feature of node k
W vk shared attention parameter for h v and h k 

a vk preference attention coefficient for nodes v and k
h 

c 
v preference attentive embedding across domains 

h 

w 

v preference attentive embedding within domains 

h 

f 
v fused preference representation 
Θ all trainable parameters 
η regularization parameter that constrains entities and relations 
L PGACKG 

final objective function 

Y  

p
w  

t

4

I  

i  

m  

a  

g  

(  

d  

m

4

T  

d  

t  
 has potential interest with which the user has had no interaction before. In other words, the
roblem to be solved in this article is to predict the probability that u in the target domain Y 

ould adopt item i based on the known rating matrices in the source and target domains. We list
he main symbols used in this article in Table 1 . 

 THE PROPOSED METHOD 

n this section, we present the proposed PGACKG approach, the architecture of which is shown
n Figure 2 . Our framework consists of four main components: (a) preference embedding transfor-
ation that transforms entities and nodes in the CKG into vector representations; (b) preference-
ware graph attention layer that propagates and leverages embeddings from the source and tar-
et domains to generate user-attentive preference features within domains and across domains;
c) entity feature fusion that aggregates the preference features of similar entities from different
omains; and (d) model prediction that employs the CKG to construct cross-domain prediction
odels and outputs the predictable matching ratings. 

.1 Preference Embedding Transformation 

he graph-embedding model can provide users with semantic preference information for cross-
omain recommendations while preserving the graph structure of the CKG. The different at-
ributes of entity nodes in the graph reveal different interaction preferences of users. Therefore, we
ACM Transactions on Information Systems, Vol. 41, No. 3, Article 80. Publication date: February 2023. 
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Fig. 2. The architecture of our proposed cross-domain recommendation PGACKG. 
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mploy an advanced embedding model TransD [ 56 ] to characterize user preferences. To be more
pecific, based on the well-known transformation principle e r 

h 
+ e r = e 

r 
t , multi-type attributes of

ntities and relations are learned if and only if a triple ( h, r , t ) exists in the KG. Therefore, the score
unction for a given triple is defined as follows. 

f ( h, r , t ) = ‖ W rh e h + e r −W r t e t ‖ 2 2 . (1)

Herein, W rh and W r t are two mapping matrices that can project entities from entity spaces into
he relation spaces. e h , e r and e t are the preference embeddings for h , r , and t , respectively. As
an be seen from Equation ( 1 ), a lower score reveals that the triple is more likely to be true, and
ice versa. 
To obtain real training results, the training of TransD encodes all available triples in the KG,

ncluding the golden triples and negative triples. Thus, the margin-based ranking loss is defined
s the objective function to train the sample set. Γ and Γ′ denote the golden and negative triplet
ets, respectively: 

L CKG 

= 
∑ 

τ ∈Γ

∑ 

τ ′ ∈Γ′ 
( ϑ + f ( τ ) − f ( τ ′ ) ) , (2)
CM Transactions on Information Systems, Vol. 41, No. 3, Article 80. Publication date: February 2023. 
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here τ and τ ′ are the golden and negative triplets, respectively. ϑ represents the margin sep-
rating golden triplets and negative triplets. We can employ the preference embeddings as input
o guide the generation of user preferences within domains and across domains, and L CKG 

can be
tilized as the regularization to constrain the training of entities and relations to accelerate con-
ergence and avoid overfitting. The main reason that TransD is adopted as our KG representation
pproach is that it can capture multi-type relations of entities and use fewer training parameters.
his makes it possible to apply large-scale KGs in CDR systems. 

.2 Preference-Aware Graph Attention Layer 

4.2.1 Attentive Preference Generation within Domains. User preference features within domains
lay a fundamental role in modeling the ultimate preferences of a target user because intra-domain
ode relations can reveal its intrinsic intentions. Therefore, the intra-domain preference acquisi-
ion of the target user needs to aggregate the preferences from similar neighbor nodes in the same
omain. In this article, a multi-hop reasoning mechanism [ 57 ] is adopted to aggregate similar
eighbors of target nodes in the same domain. Motivated by the advantages of the Transformer
rchitecture [ 58 ] in capturing node semantics, the graph attention approach is leveraged to learn
he preference weights of nodes in different aspects. In addition, there may be multiple relations
etween two entities, and target users may be interested in items because of a certain relation. To
his end, assume that Ω′ is the set of relations between the two entities and N u (v ) is the set of
imilar neighbors of node v within domains. Then, the preference attention weight of node v for
ach neighbor in N u (v ) is calculated as follows. 

e ( vk ) 
r 
= A 

(
W ( vk ) 

r 
· h v ‖ W ( vk ) 

r 
· h k 

)
, k ∈ N u ( v ) & r ∈ Ω′ , (3)

here W ( vk ) 
r 
is the shared attention parameter for the vector features of nodes h v and h k . ‖ denotes

 concatenation operation of low-dimensional vectors. A(·) denotes the attention function, which
an expose the similarity between different grouped nodes to some extent. In our approach, dot-
roduct attention is adopted as an attention function because it can be much faster and more space
fficient. We can normalize the preference attention weight as follows: 

a ( vk ) 
r 
= 

exp 
(
Le akyRe LU 

(
e ( vk ) 

r 

))

∑ 

j ∈N u ( v ) exp 
(
Le akyRe LU 

(
e ( v j ) 

r 

)) . (4)

The preference attention coefficient a ( vk ) 
r 
shows the contribution degree of the node k within

omains to the preference weight of the central node v under the constraints of the relation r .
n other words, it can directly reveal the differentiated preferences between different nodes and
he central node in a separate domain. Then, the low-dimensional preference representations of
imilar nodes within domains are weighted and summed to obtain a new preference embedding
f node v in a separate domain: 

h 

w 

v = σ
��
�

∑ 

k ∈N u ( v ) 

a ( vk ) 
r 
W h k 

��
�
. (5)

Note that these attentive preference embeddings are generated based on a first-order preference-
ware graph attention mechanism within domains. Thus, to capture more semantic preferences of
imilar neighbors in a separate domain, a k-hop–based approach [ 59 ] is utilized to explore high-
rder user preferences. Finally, high-order preference embeddings are obtained and injected with
ollaborative preference signals into representation learning and network training. 
ACM Transactions on Information Systems, Vol. 41, No. 3, Article 80. Publication date: February 2023. 
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4.2.2 Attentive Preference Generation Across Domains. Intuitively, similar user preferences
cross domains can transfer and provide similar preference information for cold-start users in
he target domain, thereby alleviating the low recommendation accuracy of the target domain. In
iew of the domain heterogeneity and the difference in data distribution in two different recom-
endation systems, a node-walking approach [ 60 ] is adopted to explore the cross-domain similar
odes in the collaborative KG. This scheme aims to aggregate the preference features of similar
odes across domains to more accurately model the profiles of target users and enhance the gen-
ralization performance of the overall model. In Equation ( 6 ), we assume that t is a cross-domain
imilar neighbor of the target node, N 

′ 
u (v ) is the set of all cross-domain similar neighbors, r is the

elation between two entities, and n is the number of cross-domain similar neighbors. Based on
he attention mechanism, Mean Aggregator [ 61 ] is employed to obtain the attentive preference
ectors across domain of target nodes. 

h a cro ss = 
1 

n 

∑ 

t ∈N 

′ 
u ( v ) 

(
A 

(
W ( vt ) 

r 
h t 

))
, r ∈ Ω′′ , (6)

here W ( vt ) 
r 
denotes the trainable attentive weight to distill preference information for propaga-

ion, A(·) denotes the attention function, and Ω′′ is the set of relations between the two entities.
he low-dimensional embeddings of the current target node v are propagated and combined to
erceive user preferences, and the final attentive preference embeddings across domains are ob-
ained through the representation propagation of the multi-full connection layer. 

h 

c 
v = Le akyRe LU ( [ h v ‖ h a cro ss ] ) , (7)

here h 

c 
v is the preference attentive embedding across domains. The neighbors of the cold-start

odes may not have nodes across domains and the multi-hop reasoning model has difficulty finding
ross-domain similar neighbors of such nodes. As a result, the node-walking algorithm across
omains based on frequency visits (F VN W) is designed for our cross-domain scenario, as shown
n Algorithm 1 . 

LGORITHM 1 : F VN W 

Input: The target node t , the length of the global walk L , the sampling number of a node n and the set of 

edges in a graph E 

Output: The collection of similar nodes across domains for the target node N 

′ 
u (v ) 

1: Initialize the collection of similar nodes across domains N 

′ 
u (v ) 

2: For walkingStep = 0 , . . . , L do 

3: currNode = t 

4: For j = 1 , . . . , walkingLength do 

5: t Next = Samples randomly from the edge set of the current graph E 

6: IF t Next ∈ N Cross 

7: n + +; t Next → N 

′ 
u (v ) 

8: Else: n + +

9: End For 

10: End For 

11: Return N 

′ 
u (v ) 

The following acquisition process of the target node’s similar neighbors across domains is
ainly as follows. Given the current target node t , the next neighbor node is randomly selected
o start the deep walk. When the target node walks the specified length L, the visited nodes are
orted according to the visited frequency of nodes during the whole walk. Then, the algorithm
udges whether the traversed node belongs to a cross-domain node. Finally, the nodes with higher
CM Transactions on Information Systems, Vol. 41, No. 3, Article 80. Publication date: February 2023. 
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requency are selected as the similar neighbors of the target node to assist in remodeling the prefer-
nce attentive embeddings across domains. The advantage of our proposed F VN W approach is that
t can better assist cold users in finding cross-domain similar neighbors, explore more preferred
tems across domains, and enhance the generalization ability of entity preferences. Therefore,
lgorithm 1 is the premise and foundation for acquiring attentive embeddings across domains.
 well-designed attentive preference–generation approach essentially reflects high-quality cross-
omain similar neighbor sets. 

.3 Entity Preference Feature Fusion 

aturally, the preference features of similar entities from different domains have different con-
ributions to remodeling the user’s final preferences. Based on the embeddings of similar nodes
ithin domains and across domains for the target node v , its new preference representations are
nally fused by nonlinear mapping as shown next. 

h 

f 
v = Le akyRe LU 

[
ξh 

w 

v + ( 1 − ξ ) h 

c 
v 

]
, (8)

here ξ denotes a balance parameter of preference representations, which is used to control the
egree of preference transfer across domains. In particular, when ξ is set to 1, the nodes across
omains do not participate in the model learning, that is, any cross-domain entity and item infor-
ation is not exploited to provide preference features for recommendations. In contrast, when ξ

s controlled to 0, preference learning of the target node originates from cross-domain nodes and
he feature information of similar nodes within domains will not be applied to the final prefer-
nce predictions. Therefore, a new user preference–aware representation approach that merges
he preferences of similar neighbors within domains and across domains (UPRWA) is shown in
lgorithm 2 . 
The main steps of Algorithm 2 are as follows. First, some nodes are randomly selected from the

ntity set to form a batch. Then, according to the sampling depth, the corresponding P-order similar
eighbors within domains and Q-order similar neighbors across domains are obtained based on
he mapping representation function. In accordance with the aggregated similar neighbors, new
ow-dimensional representations of target nodes are generated to facilitate the network training,
hile propagating entity representations from first-order to higher-order connections can assist
he model in more reasonably exploring user potential preference features in a deeper and broader
ay. Finally, based on the devised preference-aware graph attention layer, the fused embeddings
re obtained to model user final preferences. 

.4 Cross-domain Recommendation and Model Optimization 

aturally, the preference features of similar entities from different domains have different con-
ributions to remodeling the user’s final preferences. Based on the embeddings of similar nodes
ithin domains and across domains for the target node v , its new preference representations are
nally fused by nonlinear mapping as shown here. 
After performing L layers in cross-domain node propagation, multiple representations are ob-

ained for user and item nodes in the source domain, that is, { e (1 ) u s , e 
(2 ) 
u s , . . . , e 

( L 1 ) 
u s } and {e (1 ) i s 

, e (2 ) i s 
, . . . ,

 

( L 1 ) 
i s 
}. Similar to the multiple node representations in the source domain, { e (1 ) u t , e 

(2 ) 
u t , . . . , e 

( L 2 ) 
u t } and

 e (1 ) i t 
, e (2 ) i t 
, . . . , e ( L 2 ) i t 

} are obtained for the multiple representations of user and item nodes in the

arget domain under the constraint L 2 = L − L 1 . Since the embeddings of nodes on different layers
mphasizes the preference messages over different connections, they have different contributions
o the final fusion preferences of the target node. Therefore, the layer-aggregation strategy [ 62 ] is
ACM Transactions on Information Systems, Vol. 41, No. 3, Article 80. Publication date: February 2023. 
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ALGORITHM 2 : UPRWA 

Input: The Original node representation h , sampling depth within domains P , sampling depth across 

domains Q and the mapping representation function O 

Output: The new user preference–aware representation h f v 
1: Initialize intra-domain and inter-domain preference representations h w 

v and h 
c 
v of the target node u 

2: For i = 1 , . . . , P do 

3: N 

i 
u ( v ) ← N 

i −1 
u ( v ) + O w 

(u ) 

4: [ h w 

u ] 
i ← [ h w 

u ] 
i −1 

5: End For 

6: For j = 1 , . . . , Q do 

7: [N 

′ 
u ( v ) ] 

j ← [N 

′ 
u ( v ) ] 

j −1 
+ O c (u ) 

8: [h c u ] 
j ← [h c u ] 

j −1 
9: End For 

10: Obtaining the new user preference–aware representation h f v using Equation ( 8 ) 

11: Return h f v 
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dopted to concatenate the representations within domains and across domains, respectively. 

e ∗u s = e 
( 0 ) 
u s 

���
���e 
( 1 ) 
u s . . . 

���
��� e 

( L 1 ) 
u s , e 

∗
i s 
= e ( 0 ) i s 

���
���e 
( 1 ) 
i s 
. . . 

���
��� e 

( L 1 ) 
i s 

(9)

e ∗u t = e 
( 0 ) 
u t 

���
���e 
( 1 ) 
u t . . . 

���
��� e 

( L 2 ) 
u t , e 

∗
i s 
= e ( 0 ) i t 

���
���e 
( 1 ) 
i t 
. . . 

���
��� e 

( L 2 ) 
i t 
, (10)

here s and t denote the source and target domain labels, respectively. | | is the concatenation
peration. Based on this processing, we can not only obtain the preference-aware representations
f similar nodes within domains and across domains, but also flexibly control the propagation
ange by adjusting L 1 and L 2 . In addition, the advantage of the concatenation mechanism is that it
oes not need to learn too many parameters, plus the training process is very simple and efficient.
herefore, the user and item representations of the source and target domains are respectively
onducted inner products to obtain their respective matching scores: 

ˆ y s ( u s , i s ) = [ e 
∗
u s 
] T e ∗i s (11)

ˆ y t ( u t , i t ) = [ e 
∗
u t 
] T e ∗i t . (12)

The Bayesian personalized ranking (BPR) strategy as an advanced baseline recommendation
odel [ 63 ] is often exploited to learn model parameters and predict entity ratings. Its basic prin-
iple is that the observed entity ratings, which can better expose users’ true preferences, should
e given a higher predictive weight than unobserved ones in a single-domain recommendation
ystem. Therefore, based on the analysis presented earlier, a Cross-domain Bayesian Personalized
anking method is proposed that can add similar preference features in the source domain as
 regularization term to the BPR for predicting the unobserved interaction ratings in the target
omain: 

L CBPR = 
∑ 

( u t ,i t , j t ) ∈κ
−I nσ ( ̂  y t ( u t , i t ) − ˆ y t ( u t , j t ) ) + λ

∑ 

( u s ,i s , j s ) ∈κ′ 
−I nσ ( ̂  y s ( u s , i s ) − ˆ y s ( u s , j s ) ) , 

(13)

here κ and κ ′ denote the training samples in the source and target domains, respectively; σ (·)
s the sigmoid function; λ is the regularization parameter controlling the fusion degree of similar
references across domains. Thus, the final objective function is presented as follows: 

L PGACKG 

= L CBPR + ηL CKG 

+ β | | Θ| | 2 2 , (14)
CM Transactions on Information Systems, Vol. 41, No. 3, Article 80. Publication date: February 2023. 
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here Θ represents all trainable parameters and η is a regularization parameter that constrains
ntities and relations in the collaborative KG. In order to improve training efficiency, the Mini-
atch Gradient Descent strategy [ 64 ] is adopted to optimize the embedding loss and the proposed
ross-domain prediction model. For a batch of randomly sampled triples, their preference rep-
esentations within domains and across domains are established after multi-step propagations.
inally, the proposed model updates the parameters by the gradients of the prediction function.
he optimization process of the proposed PGACKG approach is summarized in Algorithm 3 . 

LGORITHM 3 : PGACKG Optimization 

Input: Observed source domain interactions X s , observed target domain interactions Y t , collaborative 

Knowledge Graph G 
Output: Prediction function F (u t , i; Θ) 
1: Initialize all trainable parameters 

2: Construct the training sets ˆ X s and ˆ Y t based on X s and Y t 
3: For p s = 1 , 2 , 3 , . . . , M do 

4: For q t = 1 , 2 , 3 , . . . , N do 

5: Sample a mini-batch of training data D s from 

ˆ X s ; 

6: Sample a mini-batch of training data D t from 

ˆ Y t ; 
7: Parameter gradients computed by back-propagation according to Equations ( 13 ) and ( 14 ); 

8: Updated Θ by Gradient Descent based on tuples in D s and D t ; 

9: End For 

10: End For 

11: Return F (u t , i; Θ) 

 EXPERIMENTS 

n this section, we conduct empirical experiments on real datasets to verify the effectiveness of
ur proposed approach and answer the following research questions: 

� RQ1: Does our proposed PGACKG method achieve better performances on different
datasets than existing advanced baseline recommendations? 

� RQ2: How does the PGACKG perform over different user groups with different interaction
sparsity levels? 

� RQ3: How do different parameter settings (e.g., Model Depth, Iteration Times for Layers,
Dropout, Random Walks) affect the proposed PGACKG? 

� RQ4: How do different variants or key components affect the PGACKG? 
� RQ5: How does the PGACKG perform in visualization experiments? 

.1 Dataset Descriptions 

o effectively verify the recommendation performance of our proposed PGACKG approach and
ome baseline methods, four public real-world datasets are adopted as our experimental datasets:
hree Amazon datasets 1 (AmazonMusic, AmazonMovie, AmazonBook) and the Book-Crossing
ataset. 2 For these datasets, we keep only those items that have more than 10 interactions with
he users to ensure that the model has enough dense entities for training. This article mainly
ocuses on how CKGs can improve the prediction accuracy of cross-domain recommendations,
 http://jmcauley.ucsd.edu/data/amazon/ . 
 http://w w w2.informatik.unifreiburg.de/ ∼cziegler/BX/ . 
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Table 2. Statistics of the Four Experimental Datasets 

Book-Crossing Amazon 
Domains Books Books Movie Music
# Users 16,327 75,872 42,763 2,876 
# Items 17,915 89,640 6,029 4,901 
# Interactions 143,007 10,651,427 4,760,416 59,327 
# Entities 21,341 64,228 38,225 7,573 
# Relations 14 31 19 48 
# CKG triples 52,832 113,705 150,094 12,799 
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ather than how to construct knowledge maps. Thus, Microsoft Satori, 3 a widely used structured
ool, is adopted to directly construct a CKG for each dataset. 

✩ Book-Crossing is an online book community. Its original dataset can provide over 1 mil-
lion ratings (explicit/implicit) about more than 270,000 books. The constructed CKG con-
tains 21,341 entities, 14 relations, and 52,832 CKG triples. 

✩ Amazon is one of the largest online e-commerce companies in the United States, where
users are free to rate products from 1 to 5. In the experiment, we use data from three
domains to verify recommendation performance: books, music, and movies. The statistics
for these datasets are shown in Table 2 . 

.2 Experimental Settings 

5.2.1 Setup and Metrics. Based on partially overlapping user or item entities, three cross-
omain recommendation tasks in different scenarios are designed to more comprehensively verify
he validity of our proposed approach. Their detailed tasks are described here. 

� Task 1: Book-Crossing (BCr) versus AmazonBook (ABo); there are some overlapping item
entities. 

� Task 2: AmazonBook (ABo) versus AmazonMovie (AMo); there are some overlapping user
entities. 

� Task 3: AmazonMovie (AMo) versus AmazonMusic (AMu); there are some overlapping
user entities. 

For task 1, when BCr is used as auxiliary data, ABo is treated as the target data and vice versa.
ur proposed PGACKG framework and those baseline approaches are implemented on Tensor-
low. For fair comparison, we optimize the parameters of our proposed model and those of the
aselines in their original articles. For example, the embedding size is fixed to 64 as suggested in
 62 ], and all models are optimized by exploiting the Adam optimizer. According to the grid search,
he learning rate is tuned in {0.00001, 0.0001, 0.001, 0.01}, the regularization parameter is searched
n {0.001, 0.002, 0.004, 0.008, 0.01}, and the mini-batch size is set to 1024. To better model preference
ignals encoded in multi-order connectivity and reduce some incidental noise, the node depth of
he proposed PGACKG is controlled at 2. Furthermore, for each dataset, 70% of entity interaction
ecords are randomly selected for model training, while the two remaining 15% of entity interac-
ion records are used for parameter fine-tuning and testing data, respectively. 
To effectively observe Top-K performance and preference ranking, two commonly used ranking

ndicators are adopted to evaluate recommendation quality: Hit Ratio (HR@K) and Normalized
iscounted Cumulative Gain (NDCG@K) [ 65 ]. The HR@K measures whether the predicted item
 https://searchengineland.com/library/bing/bing-satori . 
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s in the Top-K list, whereas the NDCG@K measures the ranking quality of the hit position. As we
ll know, higher values of these metrics reveal better ranking results. To obtain a fairer ranking
esult, the evaluation protocols adopted in our experiments are the full-ranking protocols during
esting. This is because although the sampled protocols can speed up the computation of ranking
etrics during testing, the model generally only receives biased results, which can hardly reflect
he real tendency of recommendation performance, as mentioned in the literature [ 66 ]. Therefore,
he full-ranking protocols are adopted to evaluate the recommendation quality of the proposed
GACKG and those baseline approaches during testing. 

5.2.2 Baseline Methods. To demonstrate the effectiveness, we compare our proposed PGACKG
ith the following7 baseline approaches in two groups: Single-Domain Recommendations (NGCF,
GAT, and CGAT) and Cross-Domain recommendations (KerKT, SemStim, GFM, and CD-GNN).
ll baseline models are representative or advanced methods in terms of KG or graph structure
nabling recommendations. Their detailed descriptions are as follows. 
NGCF [ 62 ]: This approach can leverage graph structure to project collaborative signals to an

mbedding propagation process based on a user-item KG, and a sufficient entity-embedding mech-
nism can be generated to promote a collaborative filtering recommendation. 
KGAT [ 55 ]: This is a recommendation scheme that combines matrix factorization and KG tech-
iques, which can model high-order connectivities in the KG and recursively refine the node em-
eddings by employing a graph attention network. 
CGAT [ 67 ]: It is a state-of-the-art single-domain recommendation framework in which both

ocal and non-local graph contexts are captured simultaneously by exploiting graph attention net-
orks in the item KG. 
KerKT [ 42 ]: This is a representative cross-domain recommendation solution. In this solution,
iffusion kernel completion is used to associate the source and target domain knowledge to im-
rove the accuracy of rating prediction based on overlapping entities. 
SemStim [ 68 ]: This approach exploits semantic links generated in a KG (e.g., DBpedia) to

ssist the target domain in making cross-domain recommendations with an unsupervised graph
lgorithm. 
GFM [ 69 ]: This model applies graph factorization machines on the KG structure to compute en-

ity embeddings by propagating and aggregating multi-order interactions from the neighborhood
n the source and target domains. 
CD-GNN [ 70 ]: This framework adopts a graph neural network encoder to capture more repre-

entations for inactive entities and relations; the preference features of multi-order neighbors in
he KG are considered for cross-domain recommendations. 

.3 Performance Comparison (for RQ1) 

o answer RQ1, we observe the average experimental results and compare the performance of our
roposed PGACKG model with those of other baselines. The top number of full-ranking item lists
or these approaches is set to 5, 15, and 30, respectively. Note that for single-domain recommen-
ation models (NGCF, KGAT, and CGAT), we train them and report their results on each domain.
ables 3 to 5 show the performance of all methods for the three tasks, followed by a summary of
ur observations. 

✩ The CGAT outperforms other SDR models in all datasets. For example, it improves over the
NGCF with regard to NDCG@5,15,30 by 7.61%, 7.23%, 9.17%, when Book-Crossing is used
as the target domain in task 1. By contrast, the PGACKG outperforms other CDR models in
all datasets. For example, it improves over the KerKT with regard to HR@5,15,30 by 9.90%,
10.77%, 11.26%, when AmazonBook is used as the target domain in task 1. The reason for
ACM Transactions on Information Systems, Vol. 41, No. 3, Article 80. Publication date: February 2023. 
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Table 3. Comparative Performance for Task 1 

Methods Book-Crossing AmazonBook 

HR NDCG HR NDCG 

5 15 30 5 15 30 5 15 30 5 15 30 

NGCF 0.4012 0.4064 0.4155 0.2901 0.2958 0.3020 0.3317 0.3363 0.3426 0.2189 0.2230 0.2252 

KGAT 0.4040 0.4091 0.4177 0.3100 0.3143 0.3168 0.3361 0.3419 0.3466 0.2200 0.2231 0.2284 

CGAT 0.4078 0.4119 0.4194 0.3126 0.3172 0.3297 0.3406 0.3432 0.3485 0.2241 0.2269 0.2311 

KerKT 0.4305 0.4343 0.4381 0.3334 0.3376 0.3428 0.3545 0.3567 0.3583 0.2428 0.2440 0.2472 

SemStim 0.4287 0.4313 0.4374 0.3351 0.3408 0.3443 0.3672 0.3696 0.3727 0.2409 0.2431 0.2453 

GFM 0.4336 0.4384 0.4427 0.3439 0.3475 0.3499 0.3720 0.3754 0.3786 0.2462 0.2499 0.2533 

CD-GNN 0.4373 0.4424 0.4465 0.3481 0.3530 0.3572 0.3748 0.3775 0.3807 0.2508 0.2536 0.2581 

PGACKG 0.4513 0.4549 0.4595 0.3604 0.3639 0.3688 0.3896 0.3951 0.3987 0.2734 0.2763 0.2810 

Table 4. Comparative Performance for Task 2 

Methods AmazonBook AmazonMovie 

HR NDCG HR NDCG 

5 15 30 5 15 30 5 15 30 5 15 30 

NGCF 0.5342 0.5375 0.5416 0.4109 0.4141 0.4180 0.5802 0.5840 0.5888 0.4557 0.4599 0.4624 

KGAT 0.5383 0.5424 0.5467 0.4135 0.4174 0.4211 0.5846 0.5873 0.5931 0.4590 0.4642 0.4683 

CGAT 0.5416 0.5455 0.5498 0.4163 0.4215 0.4240 0.5885 0.5937 0.5970 0.4627 0.4654 0.4691 

KerKT 0.5672 0.5731 0.5764 0.4400 0.4436 0.4483 0.5988 0.6001 0.6035 0.4747 0.4769 0.4820 

SemStim 0.5704 0.5750 0.5799 0.4421 0.4468 0.4516 0.6032 0.6068 0.6122 0.4721 0.4763 0.4806 

GFM 0.5727 0.5765 0.5790 0.4456 0.4481 0.4539 0.6137 0.6174 0.6208 0.4933 0.4975 0.5008 

CD-GNN 0.5801 0.5843 0.5879 0.4532 0.4566 0.4590 0.6145 0.6190 0.6200 0.4979 0.5032 0.5064 

PGACKG 0.5930 0.5977 0.6006 0.4635 0.4679 0.4710 0.6326 0.6379 0.6424 0.5161 0.5184 0.5109 

Table 5. Comparative Performance for Task 3 

Methods AmazonMovie AmazonMusic 

HR NDCG HR NDCG 

5 15 30 5 15 30 5 15 30 5 15 30 

NGCF 0.4730 0.4768 0.4821 0.3327 0.3364 0.3418 0.4126 0.4165 0.4190 0.2848 0.2867 0.2900 

KGAT 0.4764 0.4790 0.4825 0.3363 0.3387 0.3436 0.4154 0.4189 0.4207 0.2876 0.2924 0.2975 

CGAT 0.4817 0.4850 0.4883 0.3389 0.3441 0.3476 0.4188 0.4234 0.4279 0.2921 0.2967 0.3020 

KerKT 0.5031 0.5072 0.5118 0.3600 0.3637 0.3685 0.4305 0.4340 0.4376 0.3104 0.3142 0.3179 

SemStim 0.5024 0.5060 0.5099 0.3576 0.3613 0.3655 0.4321 0.4346 0.4387 0.3123 0.3170 0.3204 

GFM 0.5105 0.5137 0.5186 0.3638 0.3660 0.3728 0.4419 0.4452 0.4487 0.3236 0.3271 0.3330 

CD-GNN 0.5164 0.5200 0.5242 0.3687 0.3724 0.3755 0.4439 0.4501 0.4542 0.3306 0.3453 0.3480 

PGACKG 0.5305 0.5341 0.5387 0.3832 0.3854 0.3893 0.4716 0.4848 0.4900 0.3764 0.3805 0.3848 

 

 

 

 

 

 

A

these phenomena may be that the graph attention mechanism can better assist the models
to obtain the context preference of the target entities in the KG, which can significantly
improve the prediction performance of the recommendation system. 

✩ The CDR approaches (KerKT, SemStim, GFM, CD-GNN, and PGACKG) yield better per-
formance than the SDR methods (NGCF, KGAT and CGAT) in three tasks. Further exper-
imental results show that, compared with the pure KG-free solution (KerKT), other cross-
domain models based on KG or graph structure achieve better predictive performance
CM Transactions on Information Systems, Vol. 41, No. 3, Article 80. Publication date: February 2023. 
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than the pure cross-domain, especially our proposed PGACKG. Furthermore, our proposed
PGACKG model exploits preference-aware entity embeddings within domains and across
domains to more accurately capture user preference features, whereas other baseline mod-
els employ only aligned entity embeddings. The reason might be that other baselines fail to
fully explore the preference information of entities and our proposed approach can better
capture preference signals in the collaborative KG based on attentive preference generation
mechanisms within domains and across domains. 

✩ The PGACKG performs consistently better than other baseline approaches in all three
tasks. Our PGACKG improves over the best-performing baseline (with results marked in
Tables 3 to 5 ) with regard to HR@5, 15, 30 by 6.24%, 7.71%, 7.88%; NDCG@5, 15, 30 by
13.85%, 10.19%, 10.57%, when the AmazonMusic is used as the target domain in task 3. By
stacking multiple preference embedding layers, the PGACKG is capable of capturing the
preference features of higher-order entity nodes in the collaborative KG for recommenda-
tions, while the CD-GNN explores the preference of only first-order neighbors to guide the
embedding learning. Moreover, compared with other baselines, the PGACKG also considers
preference-aware graph attention layers to encode more preference signals into the embed-
ding network for training. Therefore, we naturally conclude that our proposed PGACKG
outperforms all baseline models in terms of cross-domain rating predictions. 

.4 Interaction Sparsity Study (for RQ2) 

he advantage of incorporating the collaborative KG into cross-domain recommendation is that
t can help alleviate the data sparsity issue in the target domain, which always limits the im-
rovement of recommendation performance. In scenarios with insufficient interactions, models
ave difficulty learning strong representations for item predictions. Therefore, we observe the
erformance of the proposed PGACKG and three other cross-domain baseline approaches with
G (SemStim, GFM, CD-GNN) in alleviating the data sparsity issue. 
To this end, we perform experiments over user groups with different sparsity levels and further

edefine three specific tasks in the experimental setting section. BCr, ABo, and AMo in the three
asks are sequentially used as the target domains; the other three datasets are used as the source
omains. Each target domain is divided into four groups { < 10, [10, 40), [40, 80), > = 80} based on
nteraction number per user in the test set, while keeping the interaction number in the source
omain unchanged. Figure 3 exhibits the results measured by NDCG@15 on different user groups
nder the three tasks. 
The PGACKG usually outperforms other KG-based cross-domain baseline models, especially
n fairly sparse user groups in all three tasks. These experimental results demonstrate the effec-
iveness of the PGACKG in alleviating the data sparsity issue. The potential reason is that the
roposed PGACKG can not only aggregate the preference features of similar entities within do-
ains but also aggregate the preference features of similar entities across domains to model the
references of target users, which can adequately leverage the rich knowledge from the source
omain and improve the prediction performance for target users. 

.5 Study of PGACKG (for RQ3) 

o answer RQ3 and observe the effect of different parameter settings on our proposed PGACKG
pproach, we investigate its impact on recommendation performance. First, we explore the effect
f model depth on network training. Then, we analyze the influence of iteration times for layers
n prediction performance. Finally, we study the influence of node dropout. 

5.5.1 Effect of Model Depth. To investigate whether the PGACKG can benefit from the prefer-
nce embedding transformation, the model depth L is changed from 1 to 4. BCr, ABo, and AMo
ACM Transactions on Information Systems, Vol. 41, No. 3, Article 80. Publication date: February 2023. 
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Fig. 3. Performance comparison in different interaction sparsity levels of user groups on three tasks. 

Table 6. Effect of Model Depth Under Different Tasks 

Task 1 (ABo → BCr) Task 2 (AMo → ABo) Task 3 (AMu → AMo) 
HR@15 NDCG@15 HR@15 NDCG@15 HR@15 NDCG@15 

PGACKG-1 0.3108 0.2035 0.4322 0.3109 0.3704 0.2538 
PGACKG-2 0.3271 0.2140 0.4374 0.3157 0.3742 0.2580 
PGACKG-3 0.3297 0.2209 0.4420 0.3218 0.3801 0.2635 
PGACKG-4 0.3316 0.2224 0.4433 0.3186 0.3817 0.2649 
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n three tasks are sequentially used as the target domains; the other three datasets are used as the
ource domains. Table 6 shows the experimental results from all three tasks; some conclusions are
ummarized as follows. 
As the model depth increases, our PGACKG can continuously enhance the performance of rec-
mmendations. Obviously, the PGACKG-3 and PGACKG-2 consistently perform better than the
GACKG-1 across all three tasks. This may be because multi-order neighbors across domains can
apture more entity preference signals for training than only first-order neighbors. 
In addition, we can find that the PGACKG-4 achieves marginal improvements only by further

tacking one more layer over the PGACKG-3, and it appears to be overfitting in task 2. These
esults indicate that preference collaborative signals can be adequately captured by considering
hird-order entity relations, which is consistent with some findings in [ 71 ]. 

5.5.2 Effect of Iteration Times for Layers. To further investigate how the number of iterations
ffects recommendation performance, we set K to 15 and use AmazonBook as the target domain in
CM Transactions on Information Systems, Vol. 41, No. 3, Article 80. Publication date: February 2023. 
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Fig. 4. Effect of different iteration times under AmazonBook used as target domain in task 1. 
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ask 1. Since the performance trends of other tasks are similar to those of task 1, Figure 4 presents
nly the changing trend of HR@15 and NDCG@15with different iteration times in task 1. From
igure 4 , we have the following observations. 
Before the smoothness, more iterations consistently yield better performance, and the proposed
GACKG approach also continues to gain better convergence properties accordingly. The perfor-
ance of our proposed model becomes gradually stable when the number of iterations is 6. Such an
bservation demonstrates the efficiency of performing preference-aware embedding propagation
nd the better model capacity of the PGACKG. 
We can also see from Figure 4 and Table 6 that the effect of the number of iterations on the
roposed PGACKG approach is slightly smaller compared with the model depth in the previous
ubsection. This may be that multiple epochs of network training result in our proposed model
aving a smaller and faster iterative convergence. 

5.5.3 Effect of Dropout. To prevent overfitting, message dropout and node dropout techniques
re adopted to train our proposed model along with the previous work [ 62 ]. For our three tasks,
he experimental performance is averaged to observe the influence of message dropout ratio and
ode dropout ratio on our proposed PGACKG approach, as shown in Figure 5 . 
For both dropout strategies, Figure 5 shows that node dropout achieves better performance

han message dropout in most cases. For example, setting the Dropout Ratio (DR) to 0.2 yields
he highest HR@15 of 0.377, which is 3.01% higher than that of message dropout. One possible
eason is that dropping out the drifting noise from the high-order propagation process makes the
reference-aware embedding capture more preference signals for recommendations. Hence, it can
e seen that node dropout is a more effective strategy than message dropout to solve the overfitting
n GNNs. 

5.5.4 Effect of Random Walks. The proposed PGACKG approach employs the random walk al-
orithm to aggregate similar nodes across domains in a collaborative KG. To investigate its impact
n our proposed method, we observe and analyze the walking length L and the sampling num-
er N for random walks. Tables 7 and 8 exhibit the performance of the PGACKG with respect to
ifferent settings of L and N in random walk exploration. NDCG@15 is adopted to evaluate the
erformance of our proposed approach on three tasks. 
As can be seen from Table 7 , better performance can be achieved by setting the walking length

 around 16. Further increasing L introduces more noise and training complexity, resulting in
ACM Transactions on Information Systems, Vol. 41, No. 3, Article 80. Publication date: February 2023. 
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Fig. 5. Effect of node dropout and message dropout ratios under different tasks. 

Table 7. Performance of the PGACKG With Respect to Different 

Walking Lengths L for Random Walks 

Auxiliary Datasets L = 4 L = 8 L = 16 L = 32 L = 64 
ABo (Task 1) 0.3368 0.3419 0.3587 0.3531 0.3475
AMo (Task 2) 0.5210 0.5345 0.5416 0.5362 0.5279
AMu (Task 3) 0.2181 0.2247 0.2309 0.2275 0.2218

Table 8. Performance of the PGACKG With Respect to Different 

Sampling Numbers N for Random Walks 

Auxiliary Datasets N = 3 N = 6 N = 12 N = 24 N = 48 
ABo (Task 1) 0.3018 0.3083 0.3125 0.3214 0.3150 
AMo (Task 2) 0.4739 0.4847 0.4913 0.4982 0.4921 
AMu (Task 3) 0.1900 0.1974 0.2028 0.2135 0.2056 

l  

a  
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2

A

ower model performance. In addition, it can be seen from the results in Table 8 that our approach
chieves the best performance when performing 24 random walk samplings. This indicates that the
ost similar nodes across domains can be captured by setting the sampling number N to around
4 for random walks. 
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Table 9. Recommendation Performance Achieved by PGACKG Variants on Different Tasks 

Metrics PGACKG /GA PGACKG /WP PGACKG /AP PGACKG 

Task 1 

(ABo → BCr) 

HR@15 0.2285 0.1802 0.2896 0.3031 

NDCG@15 0.1379 0.0924 0.1933 0.2154 
Task 2 

(AMo → ABo) 

HR@15 0.3226 0.3047 0.3900 0.4126 

NDCG@15 0.2568 0.2381 0.3104 0.2914 

Task 3 

(AMu → AMo) 

HR@15 0.2705 0.2569 0.3463 0.3620 

NDCG@15 0.1688 0.1328 0.2401 0.2757 
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.6 Ablation Study (for RQ4) 

o investigate and expose the importance of each key components of PGACKG, we perform ab-
ation studies to evaluate the performance of the following three variants. Each variant of our
roposed approach is described here in detail. 
PGACKG /GA deletes the collaborative KG and graph attention mechanism from PGACKG, and

onsiders and aggregates only the preference features of similar neighbors of the target entity to
ake recommendations based on partially overlapping entities. 
PGACKG /WP removes the attentive preference features within domains from the final fusion

eatures, and considers only the attentive preference features across domains to generate cross-
omain recommendations. 
PGACKG /AP retains the attentive preference features within domains, which is contrary to
GACKG /WP , and deletes the attentive preference features across domains from the final fusion
eatures to generate the final recommendation. 
Additionally, we design three tasks to validate the comparative results of ablation studies. In

he three tasks, BCr, ABo, and AMo are sequentially used as the target domain datasets, and ABo,
Mo, and AMu are sequentially used as the source domain datasets. The number of interactions
f each entity used in the target domain is no more than 5 to ensure data sparsity, whereas the
umber of interactions of each entity used in the source domain is more than 15 to ensure the
ichness of knowledge. The ablation results are shown in Table 9 . 
In all comparisons, PGACKG /GA is slightly better than PGACKG /WP , which achieves the worst
erformance. This indicates that exploiting only similar preferences across domains cannot cap-
ure the target entity’s preference features well and is even inferior to some previous models that
irectly aggregate similar preference features. 
Compared with PGACKG /GA and PGACKG /WP , PGACKG /AP has greatly improved the recom-
endation performance, indicating that the attentive preference features within domains are es-
ential for recommendations. Additionally, our PGACKG outperforms PGACKG /AP , indicating that
reference-aware embeddings within domains and across domains cooperate to enhance the qual-
ty of recommendations. 
In summary, PGACKG is consistently superior to other variants on all tasks in terms of HR@15

nd NDCG@15 metrics. Such results demonstrate that the collaborative KG can significantly facil-
tate the improvement of cross-domain recommendation accuracy, thus showing the effectiveness
f the graph attention mechanism in our approach. 

.7 Visualization (for RQ5) 

n this section, we attempt to investigate preference embedding in the target domain feature space
o further analyze the reason why the PGACKG can improve the performance of the model. ABo
ACM Transactions on Information Systems, Vol. 41, No. 3, Article 80. Publication date: February 2023. 
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Fig. 6. Visualization of transformed user embeddings derived from a CD-GNN and PGACKG. 
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s used as the source dataset and BCr is used as the target dataset. Four categories of users are
andomly selected to implement visualization experiments, following the default setting of the t-
NE [ 72 , 73 ] in Scikit-learn. Additionally, the best cross-domain baseline CD-GNN is adopted to
ompare the performance of our proposed PGACKG. 
As can be seen from Figure 6 (a), different user embeddings in a CD-GNN do not have discernible
oundaries and clusters, and the transformed embeddings are scattered across target domain fea-
ure space. However, in Figure 6 (b), different user embeddings exhibit distinct clusters, which
emonstrates that user embeddings transformed by the PGACKG can inject some preference sig-
als into representation learning. The visual experiments also explain the fundamental reason why
he PGACKG can achieve better performance. 

 CONCLUSION 

n this work, we devise a novel cross-domain recommendation framework that can employ
reference-aware graph attention networks in the CKG to explore high-order semantic preferences
mong entities, thereby improving cross-domain recommendation accuracy. The PGACKG lever-
ges the graph embedding model to transform and obtain the preference-aware embeddings with
ich semantic preference signals. A preference-aware graph attention network model is proposed
o aggregate the preferences of similar entities within domains and across domains in the CKG via
ulti-hop reasoning and frequency visits–based node random walk model, respectively. We fuse
ntity preference features within domains and across domains to remodel user final preferences,
nd the CBPR is newly proposed to generate the cross-domain recommendations. Compared with
tate-of-the-art baselines, the superiority of the PGACKG has been verified by extensive experi-
ents on four real-world datasets. 
For future work, we would like to explore the PGACKG on more KG-based cross-domain rec-
mmendation scenarios. We also intend to develop different preference aggregation strategies to
apture the dynamic interactions of entities in temporal KGs. 

EFERENCES 

[1] Zhiqiang Pan, Fei Cai, Wanyu Chen, and Honghui Chen 2021. Graph Co-Attentive session-based recommendation.

ACM Transactions on Information Systems 40, 4 (2021), 1–31. 

[2] Paolo Cremonesi, Antonio Tripodi, and Roberto Turrin. 2011. Cross-domain recommender systems. In Proceedings of

the International Conference on Data Mining Workshops (ICDMW’11) . ACM, 496–503. 

[3] Iván Cantador, Ignacio Fernández-Tobías, Shlomo Berkovsky, and Paolo Cremonesi. 2015. Cross-domain recom-

mender systems. In Recommender Systems Handbook (2015), 919–959. 
CM Transactions on Information Systems, Vol. 41, No. 3, Article 80. Publication date: February 2023. 



Preference-aware Graph Attention Networks 80:23 

 

 

 

 

 

 

 

 

[  

 

[  

[  

[  

 

[  

[  

[  

 

[  

[  

 

[  

[  

 

[  

[  

[  

 

[  

 

[  

 

[  

 

[4] Feng Zhu,Yan Wang, Jun Zhou, Chaochao Chen, Longfei Li, and Guanfeng Liu. 2021. A unified framework for cross-

domain and cross-system recommendations. IEEE Transactions on Knowledge and Data Engineering (2021). 

[5] Pan Li and Alexander Tuzhilin. 2021. Dual metric learning for effective and efficient cross-domain recommendations.

IEEE Transactions on Knowledge and Data Engineering (2021) 

[6] Chuan Shi Binbin Hu, Wayne Xin Zhao, and S. Yu Philip. 2018. Heterogeneous information network embedding for

recommendation. IEEE Transactions on Knowledge and Data Engineering 31, 2 (2018), 357–370. 

[7] Quan Wang, Zhendong Mao, Bin Wang and Li Guo. 2017. Knowledge graph embedding: A survey of approaches and

applications. IEEE Transactions on Knowledge and Data Engineering 29, 12 (2017), 2724–2743. 

[8] Xiang Wang, Dingxian Wang, Canran Xu, Xiangnan He, Yixin Cao, and Tat-Seng Chua. 2019. Explainable reasoning

over knowledge graphs for recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI’19) .

AAAI Press, 5329–5336. 

[9] Rui Sun, Xuezhi Cao, Yan Zhao, Junchen Wan, Kun Zhou, Fuzheng Zhang, Zhongyuan Wang, and Kai Zheng. 2020.

Multi-modal knowledge graphs for recommender systems. In Proceedings of the ACM International Conference on

Information & Knowledge Management (CIKM’20) . ACM, 1405–1414. 

10] Qingyu Guo, Fuzhen Zhuang, Chuan Qin, Hengshu Zhu, Xing Xie, Hui Xiong, and Qing He. 2020. A survey on

knowledge graph-based recommender systems. IEEE Transactions on Knowledge and Data Engineering 34, 8 (2020),

3549–3568. 

11] Ron Levie, Federico Monti, Xavier Bresson, and Michael M. Bronstein. 2019. CayleyNets: Graph convolutional neural

networks with complex rational spectral filters. IEEE Transactions on Signal Processing 67, 1 (2019), 97–109. 

12] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral networks and locally connected net-

works on graphs. arXiv preprint arXiv:1312.6203 (2014). 

13] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional neural networks on graphs with

fast localized spectral filtering. In Proceedings of the 30th International Conference on Neural Information Processing

Systems (NIPS’16) . ACM, 3844–3852. 

14] Thomas N. Kipf and Max Welling. 2017. Semi-supervised classification with graph convolutional networks. arXiv

preprint arXiv:1609.02907 (2017). 

15] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. 2009. The graph

neural network model. IEEE Transactions on Neural Networks and Learning Systems 20, 1 (2009), 61–80. 

16] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. 2017. Neural message pass-

ing for quantum chemistry. In Proceedings of the International Conference on Machine Learning (ICML’17). PMLR,

1263–1272. 

17] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation learning on large graphs. In Advances

in Neural Information Processing Systems (NIPS’17) . ACM, 1024–1034. 

18] Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. 2018. Large-scale learnable graph convolutional networks. In

Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD’18) . ACM,

1416–1424. 

19] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. 2018. Learning deep generative models of

graphs. arXiv preprint arXiv:1803.03324 (2018). 

20] Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, and Stephan Günnemann. 2018. NetGAN: Generating

graphs via random walks. In Proceedings of the International Conference on Machine Learning (ICML’18). PMLR,

610–619. 

21] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. 2018. GraphRNN: A deep generative model

for graphs. In Proceedings of International Conference on Machine Learning (ICML’18) . 

22] Tengfei Ma, Jie Chen, and Cao Xiao. 2018. Constrained generation of semantically valid graphs via regularizing

variational autoencoders. In Advances in Neural Information Processing Systems (NIPS’18) . ACM, 7110–7121. 

23] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma. 2016. Collaborative knowledge base

embedding for recommender systems. In Proceedings of the ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD’16) . ACM, 353–362. 

24] Jin Huang, Wayne Xin Zhao, Hongjian Dou, Ji-Rong Wen, and Edward Y. Chang. 2018. Improving sequential recom-

mendation with knowledge-enhanced memory networks. In Proceedings of the International ACM SIGIR Conference

on Research & Development in Information Retrieval (SIGIR’18) . ACM, 505–514. 

25] Hongwei Wang, Fuzheng Zhang, Miao Zhao, Wenjie Li, Xing Xie, and Minyi Guo. 2019. Multi-task feature learn-

ing for knowledge graph enhanced recommendation. In Proceedings of the International World Wide Web Conference

(W W W’19) . ACM, 2000–2010. 

26] Yixin Cao, Xiang Wang, Xiangnan He, Zikun Hu, and Tat-Seng Chua. 2019. Unifying knowledge graph learning and

recommendation: Towards a better understanding of user preferences. In Proceedings of the International World Wide

Web Conference (W W W’19) . ACM, 151–161. 
ACM Transactions on Information Systems, Vol. 41, No. 3, Article 80. Publication date: February 2023. 



80:24 Y. Li et al. 

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

 

[  

 

[  

 

[  

 

[  

[  

 

[  

 

[  

[  

[  

 

[  

 

[  

[  

 

[  

A

27] Binbin Hu, Chuan Shi, Wayne Xin Zhao, and Philip S. Yu. 2018. Leveraging meta-path based context for top-n recom-

mendation with a neural co-attention model. In Proceedings of the ACM SIGKDD International Conference on Knowl-

edge Discovery & Data Mining (KDD’18) . ACM, 1531–1540. 

28] Huan Zhao, Quanming Yao, Jianda Li, Yangqiu Song, and Dik Lee. 2017. Meta-graph based recommendation fusion

over heterogeneous information networks. In Proceedings of the International Conference on Knowledge Discovery and

Data Mining (KDD’17) . ACM, 635–644. 

29] Yuxiao Dong, Nitesh V. Chawla, and Ananthram Swami. 2017. Metapath2vec: Scalable representation learning for

heterogeneous networks. In Proceedings of the International Conference on Knowledge Discovery and Data Mining

(KDD’17) . ACM, 135–144. 

30] Xiao Yu, Xiang Ren, Yizhou Sun, Quanquan Gu, Bradley Stuart, Urvashi Khandelwal, Brandon Norick, and Jiawei

Han. 2014. Personalized entity recommendation: A heterogeneous information network approach. In Proceedings of

the ACM International Conference on Web Search and Data Mining (ICDMW’14) . ACM, 283–292. 

31] Chuan Shi, Zhiqiang Zhang, Ping Luo, Philip S. Yu, Yading Yue, and Bin Wu. 2015. Semantic path based person-

alized recommendation on weighted heterogeneous information networks. In Proceedings of the ACM International

Conference on Information and Knowledge Management (CIKM’15) . ACM, 453–462. 

32] Zhu Sun, Jie Yang, Jie Zhang, Alessandro Bozzon, Long-Kai Huang, and Chi Xu. 2018. Recurrent knowledge graph

embedding for effective recommendation. In Proceedings of the ACM Conference on Recommender Systems (RecSys’12) .

ACM, 297–305. 

33] Kangzhi Zhao, Xiting Wang, Yuren Zhang, Li Zhao, Zheng Liu, Chunxiao Xing, and Xing Xie. 2020. Lever-

aging demonstrations for reinforcement recommendation reasoning over knowledge graphs. In Proceedings of

the International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’20) . ACM,

239–248. 

34] Sijin Zhou, Xinyi Dai, Haokun Chen, Weinan Zhang, Kan Ren, Ruiming Tang, Xiuqiang He, and Yong Yu. 2020.

Interactive recommender system via knowledge graph-enhanced reinforcement learning. In Proceedings of the Inter-

national ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’20) . ACM, 179–188. 

35] Pengfei Wang, Yu Fan, Long Xia, Wayne Xin Zhao, Shaozhang Niu, and Jimmy Huang. 2020. KERL: A knowledge-

guided reinforcement learning model for sequential recommendation. In Proceedings of the International ACM SIGIR

Conference on Research and Development in Information Retrieval (SIGIR’20) . ACM, 209–218. 

36] Xiang Wang, Yaokun Xu, Xiangnan He, Yixin Cao, Meng Wang, and Tat-seng Chua. 2020. Reinforced negative sam-

pling over knowledge graph for recommendation. In Proceedings of the International World Wide Web Conference

(W W W’20) . ACM, 99–109. 

37] Feng Zhu, Wang Yan, Chaochao Chen, Jun Zhou, Longfei Li, and Guanfeng Liu. 2021. Cross-domain recommendation:

Challenges, progress, and prospects. arXiv preprint arXiv:2103.01696 . 

38] Sibo Gai, Feng Zhao, Yachen Kang, Zhengyu Chen, Donglin Wang, and Ao Tang. 2019. Deep transfer collaborative

filtering for recommender systems. In Proceedings of Pacific Rim International Conference on Artificial Intelligence

(PRICAI’19) . Springer, 515–528. 

39] Tong Man, Huawei Shen, Xiaolong Jin, and Xueqi Cheng. 2017. Cross-domain recommendation: An embedding and

mapping approach. In Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI’17) . ACM,

2464–2470. 

40] Yakun Li, Jiadong Ren, Jiaomin Liu, and Yixin Chang. 2021. Deep sparse autoencoder prediction model based on

adversarial learning for cross-domain recommendations. Knowledge-Based Systems 220, 5 (2021), 1–14. 

41] Qian Zhang, Dianshuang Wu, Jie Lu, and Guangquan Zhang. 2018. Cross-domain recommendation with probabilistic

knowledge transfer. In International Conference on Neural Information Processing (NeurIPS’18) . 208–219. 

42] Qian Zhang, Jie Lu, Dianshuang Wu, and Guangquan Zhang. 2018. A cross-domain recommender system with kernel-

induced knowledge transfer for overlapping entities. IEEE Transactions on Neural Networks and Learning Systems 30,

7 (2018), 1998–2012. 

43] Cheng Zhao, Chenliang Li, Rong Xiao, Hongbo Deng, and Aixin Sun. 2020. CATN: Cross-domain recommendation

for cold-start users via aspect transfer network. In Proceedings of the International ACM SIGIR Conference on Research

and Development in Information Retrieval (SIGIR’20) . ACM, 229–238. 

44] Lile Li, Quan Do, and Wei Liu. 2019. Cross-domain recommendation via coupled factorization machines. In Proceed-

ings of the AAAI Conference on Artificial Intelligence (AAAI’19) . AAAI Press, 9965–9966. 

45] Ming He, Jiuling Zhang, Peng Yang, and Kaisheng Yao. 2018. Robust transfer learning for cross-domain collaborative

filtering using multiple rating patterns approximation. In Proceedings of the ACM International Conference on Web

Search and Data Mining (ICWDM’18) . ACM, 225–233. 

46] Hyunwoo Hwangbo and Yangsok Kim. 2017. An empirical study on the effect of data sparsity and data overlap on

cross domain collaborative filtering performance. Expert Systems with Applications 89 (2017), 254–265. 
CM Transactions on Information Systems, Vol. 41, No. 3, Article 80. Publication date: February 2023. 



Preference-aware Graph Attention Networks 80:25 

[  

 

[  

[  

[  

 

[  

[  

 

[  

[  

[  

 

[  

[  

[  

 

[  

 

[  

 

[  

 

[  

 

[  

[  

 

[  

[  

[  

 

[  

 

[  
47] Qian Zhang, Peng Hao, Jie Lu, and Guangquan Zhang. 2019. Cross-domain recommendation with semantic corre-

lation in tagging systems. In Proceedings of the International Joint Conference on Neural Networks (IJCNN’19) . IEEE,

1–8. 

48] Shulong Tan, Jiajun Bu, Xuzhen Qin, Chun Chen, and Deng Cai. 2014. Cross domain recommendation based on

multi-type media fusion. Neurocomputing . 127 (2014), 124–134. 

49] Shaghayegh Sahebi and Trevor Walker. 2014. Content-based cross-domain recommendations using segmented mod-

els. In CBRecSys@ RecSys . 57–64. 

50] Heishiro Kanagawa, Hayato Kobayashi, Nobuyuki Shimizu, Yukihiro Tagami, and Taiji Suzuki. 2019. Cross-domain

recommendation via deep domain adaptation. In Proceedings of European Conference on Information Retrieval

(ECIR’19) . 20–29. 

51] Guangneng Hu, Yu Zhang, and Qiang Yang. 2018. MTNet: A neural approach for cross-domain recommendation with

unstructured text. KDD Deep Learning Day (KDD’18) . 1–10. 

52] Wenjing Fu, Zhaohui Peng, Senzhang Wang, Yang Xu, and Jin Li. 2019. Deeply fusing reviews and contents for cold

start users in cross-domain recommendation systems. In Proceedings of the AAAI Conference on Artificial Intelligence

(AAAI’19) . AAAI Press, 94–101. 

53] Anu Taneja and Anuja Arora. 2018. Cross domain recommendation using multidimensional tensor factorization.

Expert Systems with Applications 92 (2018), 304–316. 

54] Shampa Chakraverty and Mala Saraswat. 2017. Review based emotion profiles for cross domain recommendation.

Multimedia Tools and Applications 76, 24 (2017), 25827–25850. 

55] Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. 2019. KGAT: Knowledge Graph Attention

Network for Recommendation. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining (KDD’19) . ACM, 950–958. 

56] Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao. 2015. Knowledge graph embedding via dynamic mapping

matrix. In Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL’15) . 687–696. 

57] Xi Victoria Lin, Richard Socher, and Caiming Xiong. 2018. Multi-hop knowledge graph reasoning with reward shap-

ing. arXiv preprint arXiv:1808.10568 . 

58] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and Dustin Tran. 2018.

Image transformer. In Proceedings of the International Conference on Machine Learning (ICML’18) . PMLR, 4055–4064.

59] Yikun Xian, Zuohui Fu, Shan Muthukrishnan, Gerard De Melo, and Yongfeng Zhang. 2019. Reinforcement knowl-

edge graph reasoning for explainable recommendation. In Proceedings of the International ACM SIGIR Conference on

Research and Development in Information Retrieval (SIGIR’19) . ACM, 285–294. 

60] Jaehun Jung, Jinhong Jung, and U. Kang. 2021. Learning to walk across time for interpretable temporal knowledge

graph completion. In Proceedings of the ACM SIGKDD Conference on Knowledge Discovery & Data Mining (KDD’21) .

ACM, 786–795. 

61] Yunpeng Weng, Xu Chen, Liang Chen, and Wei Liu. 2020. GAIN: Graph Attention and Interaction Network for in-

ductive semi-supervised learning over large-scale graphs. IEEE Transactions on Knowledge and Data Engineering 34,

9 (2020), 4257–4269. 

62] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019. Neural graph collaborative filtering. In

Proceedings of the International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’19) .

ACM, 165–174. 

63] Ruining He and Julian McAuley. 2016. VBPR: Visual Bayesian personalized ranking from implicit feedback. In Pro-

ceedings of the AAAI Conference on Artificial Intelligence (AAAI’16) . AAAI Press. 

64] Yuqi Cui, Dongrui Wu, and Jian Huang. 2020. Optimize TSK fuzzy systems for classification problems: Mini-batch

gradient descent with uniform regularization and batch normalization. IEEE Transactions on Fuzzy Systems 28,

12 (2020), 3065–3075. 

65] Shulong Tan, Jiajun Bu, Xuzhen Qin, Chun Chen, and Deng Cai. 2014. Cross domain recommendation based on

multi-type media fusion. Neurocomputing 127 (2014), 124–134. 

66] Walid Krichene and Steffen Rendle. 2020. On sampled metrics for item recommendation. In Proceedings of the ACM

SIGKDD Conference on Knowledge Discovery & Data Mining (KDD’20) . ACM, 75–83. 

67] Yong Liu, Susen Yang, Yonghui Xu, Chunyan Miao, Min Wu, and Juyong Zhang. 2021. Contextualized graph attention

network for recommendation with item knowledge graph. IEEE Transactions on Knowledge and Data Engineering 35,

1 (2021), 181–195. 

68] Benjamin Heitmann and Conor Hayes. 2016. SemStim: Exploiting knowledge graphs for cross-domain rec-

ommendation. In Proceedings of IEEE International Conference on Data Mining Workshops (ICDMW’16) . ACM,

999–1006. 

69] Dongbo Xi, Fuzhen Zhuang, Yongchun Zhu, Pengpeng Zhao, Xiangliang Zhang, and Qing He. 2020. Graph factor-

ization machines for cross-domain recommendation. arXiv preprint arXiv: 2007.05911 . 
ACM Transactions on Information Systems, Vol. 41, No. 3, Article 80. Publication date: February 2023. 



80:26 Y. Li et al. 

[  

 

 

[  

[  

 

[  

 

R

A

70] Ziqi Liu, Yue Shen, Xiaocheng Cheng, Qiang Li, Jianping Wei, Zhiqiang Zhang, Dong Wang, Xiaodong Zeng, Jinjie

Gu, and Jun Zhou. 2021. Learning representations of inactive users: A cross domain approach with graph neural

networks. In Proceedings of the ACM International Conference on Information and Knowledge Management (CIKM’21) .

ACM, 3278–3282. 

71] Lei Sang, Min Xu, Shengsheng Qian, and Xindong Wu. 2021. Knowledge graph enhanced neural collaborative rec-

ommendation. Expert Systems with Applications 164, 2 (2021), 1–13. 

72] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor Darrell. 2014. Decaf:

A deep convolutional activation feature for generic visual recognition. In Proceedings of the International Conference

on Machine Learning (ICML’14) . PMLR, 647–655. 

73] Yongchun Zhu, Zhenwei Tang, Yudan Liu, Fuzhen Zhuang, Ruobing Xie, Xu Zhang, Leyu Lin, and Qing He. 2022.

Personalized transfer of user preferences for cross-domain recommendation. In Proceedings of the ACM International

Conference on Web Search and Data Mining (WSDM’22) . ACM, 1507–1515. 
eceived 10 March 2022; revised 13 August 2022; accepted 22 November 2022 

CM Transactions on Information Systems, Vol. 41, No. 3, Article 80. Publication date: February 2023. 


	1 INTRODUCTION
	2 RELATED WORK
	2.1 Graph Neural Networks
	2.2 Recommendations with Knowledge Graphs
	2.3 Cross-Domain Recommendations

	3 PROBLEM FORMULATIONS
	4 THE PROPOSED METHOD
	4.1 Preference Embedding Transformation
	4.2 Preference-Aware Graph Attention Layer
	4.3 Entity Preference Feature Fusion
	4.4 Cross-domain Recommendation and Model Optimization

	5 EXPERIMENTS
	5.1 Dataset Descriptions
	5.2 Experimental Settings
	5.3 Performance Comparison (for RQ1)
	5.4 Interaction Sparsity Study (for RQ2)
	5.5 Study of PGACKG (for RQ3)
	5.6 Ablation Study (for RQ4)
	5.7 Visualization (for RQ5)

	6 CONCLUSION
	REFERENCESendgraf 

