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Extractive Explanations for Interpretable Text Ranking

JUREK LEONHARDT, L3S Research Center

KOUSTAV RUDRA, Indian Institute of Technology (ISM) Dhanbad

AVISHEK ANAND, Delft University of Technology

Neural document ranking models perform impressively well due to superior language understanding gained

from pre-training tasks. However, due to their complexity and large number of parameters these (typically

transformer-based) models are often non-interpretable in that ranking decisions can not be clearly attributed

to specific parts of the input documents.

In this article, we propose ranking models that are inherently interpretable by generating explanations as a

by-product of the prediction decision. We introduce the Select-And-Rank paradigm for document ranking,

where we first output an explanation as a selected subset of sentences in a document. Thereafter, we solely use

the explanation or selection to make the prediction, making explanations first-class citizens in the ranking

process. Technically, we treat sentence selection as a latent variable trained jointly with the ranker from

the final output. To that end, we propose an end-to-end training technique for Select-And-Rank models

utilizing reparameterizable subset sampling using the Gumbel-max trick.

We conduct extensive experiments to demonstrate that our approach is competitive to state-of-the-art

methods. Our approach is broadly applicable to numerous ranking tasks and furthers the goal of building

models that are interpretable by design. Finally, we present real-world applications that benefit from our sen-

tence selection method.
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1 INTRODUCTION

Information prioritization is an essential and important problem to reduce information overload in
a large multitude of Web-based tasks like question-answering [61], fact verification [76] and conver-
sational search [4]. Prioritizing information relies on retrieving a small set of highly relevant knowl-
edge units from a large source of world knowledge contained in unstructured text collections with
web and textual knowledge bases like Wikipedia that contain documents and articles. The most
common way to address information prioritization is to cast it as a ranking problem, i.e., inducing
a ranking over all documents in the collection and inspect only the top-ranked document(s) to sat-
isfy the information need. This is called the document ranking problem and is a central task in web
search and information retrieval. The objective of the document ranking task is to rank documents
relevant to a user-specified query. Consequently, tasks that require access to world knowledge
rely on effective document ranking techniques for superior performance. This makes document
ranking one of the primitive operations for a large number of knowledge-intensive tasks. Recent
advances in document ranking have been dominated by over-parameterized contextual models
based on tuning pre-trained contextual models like BERT [2, 13, 41, 47], indicating that better
language understanding [77] leads to better document understanding. However, such models are
inherently non-interpretable, as they automatically extract latent and complex query-document
features from large training sets, leading to opaque decision-making that limits understanding in
case of failures or undesirable results. In this article, we focus on proposing interpretable models
for document ranking that have a wide utility in numerous ranking tasks ranging fromweb search
and question answering over fact-checking to argument and entity retrieval.
Although the interpretability of machine learning models has been popular, there are few ap-

proaches for document ranking, mostly focusing on post-hoc interpretability of rankers [67, 68].
However, post-hoc approaches are limited in the sense that their explanations might not accu-
rately reflect the true rationale underlying the model decisions [62]. Further, the collection of
ground-truth data for evaluating explanations is often hindered by human bias [37], making the
evaluation of interpretability techniques difficult. Due to this, post-hoc methods are unreliable and
one cannot be sure about the correctness of the explanations.
Unlike post-hoc approaches, we are specifically interested in ranking models that are inter-

pretable by design.We argue that an interpretable rankingmodel should help us understand which
sentences or passages in the document are used for the relevance estimation. In this article, we
present a document ranking model where each prediction can be unambiguously attributed to a
reason or rationale that is both accurate and human-understandable. We define explanations as
extractive pieces of text from the input document. An example explanation is shown in Figure 1,
where the highlighted sentences serve as an explanation for the relevance of the document. For a
set of additional examples, we refer the reader to Tables 5 and 6.

This article proposes a two-stage approach, which we refer to as Select-And-Rank, for mod-
eling long documents that addresses the above limitations. In the selection phase, we extract
relevant sentences given a query. In the ranking phase, we perform the relevance estimation
only on the extracted evidence. Our idea is based on the observation that not all sentences in
a document are relevant; instead, the document’s relevance signals are typically sparse (refer to
Figure 2). The selection phase essentially acts as a noise removal mechanism, resulting in a suc-
cinct, query-based document representation. As an added advantage, our sentence selection allows
for choosing a concise query-based document representation as input into size-limited models like
BERT, in contrast to other heuristic truncation approaches [13].
Within our modular framework, we consider joint models that are trained end-to-end with

gradient descent. Specifically, we allow the user to regulate the sparsity by setting the number
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Fig. 1. Sentence selection for the query how long to hold bow in yoga, taken from a document in the

MS MARCO corpus marked as relevant by human annotators.

Fig. 2. The Select-And-Rank approach. The document is split into sentences si . The selector assigns a score
to each sentence. The scores determine which of the sentences are selected as input for the ranker.

of sentences k to be selected. The selection is akin to sampling from a latent distribution over
sentences in a document. We use a parameterized model to output such a distribution and apply
theGumbel-max trick. Finally, we use relaxed subset sampling to enforce the user-specified sparsity
k , i.e., the number of sentences to be selected for the summary or explanation. This allows us to
approximate hard masking, i.e., the multiplication of the input with a boolean mask in order to re-
move certain parts, by using soft masking (or continuous masks), where a similar result is achieved,
but the process remains fully differential and thus trainable end-to-end.
We conduct extensive empirical evaluation over three document ranking datasets—TREC-DL,

Core17, and ClueWeb09. Our intention is not to achieve the best performance in document
ranking. Instead, we aim at presenting a ranking model that is interpretable without compro-
mising ranking performance. Firstly, we find that query-specific sparse document representa-
tion by sentence selection can improve the task performance over heuristic sentence selection
approaches [13]. Secondly and more strikingly, our Select-And-Rank models (with 20 selected
sentences) perform on par with and sometimes outperform other document modeling approaches
that model the entire document. We further show how Select-And-Rank can be used to explain
the decisions of BERT rankers that operate only on small parts of the input document.
Additionally, we conduct experiments on twelve diverse datasets provided by the BEIR bench-

mark [75], including tasks such as passage ranking, fact-checking, and argument retrieval. Our ex-
periments show that Select-And-Rankmodels also performwell on corpora consisting of shorter
documents and provide more interpretable results compared to standard approaches like BERT.
Finally, we highlight the utility of Select-And-Rank to human users through a user study and

present real-world applications by showing how the extractive explanations can be used to uncover
model bias or bugs and illustrating their utility in search engines.
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2 RELATEDWORK

We divide the related work into two major categories—text ranking models and interpretability

approaches in IR.

2.1 Ranking Models for Text

Classical approaches in information retrieval for ad-hoc document retrieval are probabilisticquery
likelihood (QL) [38] and term frequency-basedmodels such as BM25 [60] and BM25P [52] models.
More recently, neural models have entered the field of IR. Common approaches include semantic
representation learning [29, 64, 65], query-document cross-interactions [20, 54, 55, 57, 86] or the
exploitation of positional information [30, 31, 50]. [51] employs a combination of the aforemen-
tioned approaches. Nowadays, contextual self-attention-based models such as BERT achieve state-
of-the-art performance in ranking tasks. MacAvaney et al. [47] were the first to replace static word
embeddings in existing document retrieval models with contextualized token embeddings output
by BERT.
Since self-attention models have quadratic time complexity with respect to the input length,

work has been done to address this limitation by splitting the input documents into either pas-
sages [13, 63, 84] or sentences [2] and subsequently labeling those. Doc-Labeled [13] uses passage-
level relevance scores from a fine-tuned BERT model to obtain relevance scores. However, this
approach assumes that all passages inherit their relevance from the corresponding document,
which might be problematic. BERT-3S [2] works similarly, but on a per-sentence level using a
cross-domain transfer model. This leads to a substantially slow inference.
Recently, researchers also focused on the efficiency aspect of document and passage retrieval

along with the performance aspect. The major bottleneck of existing language model-based rank-
ing models is the processing time required during the inference phase. Some of the works use dual-
encoder based models to alleviate the need of document processing during inference [3, 24, 36, 45].
Zhuang and Zuccon [92] proposed a term-independent likelihood model for passage ranking that
relies on both query and document likelihood to rank the documents. This approach pre-computes
and stores the likelihood of terms and thus removes the requirement of running deep language
models during query processing. In recent times, some studies have focused on the mitigation
of positional bias in passage ranking [23] and robustness against misspellings in document re-
trieval [66]. However, these studies do not focus on the interpretability aspects of the ranking
models. We believe that the selection model in our Select-And-Rank approach is modular and
can be used in any text ranking transformers.

2.2 Interpretability of Ranking Models

Interpretability of ranking models focuses on building models that either can be analyzed for in-

terpretability in a post-hoc fashion or are interpretable by design. However, post-hoc approaches
suffer from the limitation that their explanations might not accurately reflect the true rationale
underlying the model decisions [62].
Different from classical feature selection, our aim is at selecting features from a document given

a query, that is, wewant to dynamically select sentences from a document based on the input query.
Such instance-wise feature selection has been explored in the machine learning literature [89],
however, their applicability to modeling documents is limited.
In NLP, similar models have been studied for ensuring interpretability by design [39, 40]. In [44],

the authors use sentence selection to mimic human reading behavior to estimate the relevance of a
document to a query. These worksmainly differ in how they perform end-to-end training. Training
has been done using REINFORCE [40, 44], actor-critic methods [89], pipeline approaches [90], or
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re-parameterization tricks [6]. Lehman et al. [39] use a decoupled rationale generator and predictor.
In [91], additional human annotations are used for task supervision. However, we do not have any
explicit training data to train the selector network and rather use the task supervision signal to
update its parameters. Finally, [43] pursues an idea similar to ours, however, the authors only use
non-trainable selectors and do not consider an end-to-end trainable model.
There exists lots of work on post-hoc analysis of trained neural models on different tasks. Such

kinds of analysis use different methods like probing tasks [80], attention weights [5, 10, 12, 49, 87,
88], or state activation [22, 35, 42]. In previous works, researchers tried to learn attention weights
of different tokens to judge their contribution toward a task prediction and mark the tokens that
got higher attention scores as rationales or explanations. However, recent studies showed that
attentionweights are not explanations [34, 82] andmodels are able tomaintain the same prediction
accuracy even in the absence of those tokens. Sometimes, tokens that get high attention scores do
not correlate well with the human annotated rationales. As recent language models are contextual,
it is very difficult to disentangle the importance of token inputs. Finally, there has been recent work
on devising decoy datasets to measure the utility of explanation methods for NLP models [32].
Recent approaches also tried to de-biasmasked languagemodels with automated bias prompts [21].
A major bottleneck of interpretability studies is the availability of annotated benchmark datasets.
In recent times, many interpretability evaluation benchmark datasets have been introduced for
neural NLP tasks [15, 81]. In this article, our objective is to extend this interpretability aspect
toward the document ranking task.
For the ranking task, most of the work has focused on post-hoc interpretability of text

rankers [16, 68, 69, 78] and learning-to-rank models [67, 71]. In contrast, our Select-And-Rank
models are interpretable by design. The closest to our work is [24], where the authors use cascad-
ing rankers after retrieval. However, cascading rankers differ from our approach in the style of
optimization and the type of interpretability they provide.

3 SELECT-AND-RANK

In this section we formally define the problem of document ranking (Section 3.1). We then give
a high-level overview of our Select-And-Rank framework that aims at generating an extractive

sentence-level summary from the document prior to ranking (cf. Figure 2). Finally, we present our
algorithmic contribution that aims at training the selector and ranker models using gradient-based
optimization in a joint manner (Section 3.3).

3.1 Problem Statement

The usual ranking pipeline consists of two stages: First, given a query, an inexpensive term-
frequency based retriever retrieves a set of documents from the complete, usually very large, collec-
tion. Afterward, a more involved, expensive model re-ranks the result of the first-stage retrieval.
Our objective is to learn a parameterized model for document re-ranking. Specifically, given a

training set of triples {q (i ),d (i ),y (i ) }Ni=1, where q (i ) is a query, d (i ) is a document and y (i ) is a rele-
vance label, our goal is to learn a model that predicts relevance scores ŷ ∈ R for query-document
pairs (q,d ). We denote the set of documents retrieved in the first stage for the query q as Dq .
The resulting predictions are then used to obtain a ranking of all documents d ∈ Dq . Finally, the
rankings corresponding to all queries are evaluated using appropriate ranking metrics.
Wemodel each document as a sequence of sentences, i.e., d =

(
s1, s2, . . . , s |d |

)
. Our Select-And-

Rank approach assumes that only a subset of the constituent sentences actually contribute toward
the relevance estimation. Based on this assumption, the model consists of two components: The
selector Ψ defines a distribution p (s | q,d ) over sentences in d given the input query q, encoding
the relevance of the sentence given the query. This distribution is used to select an extractive,

ACM Transactions on Information Systems, Vol. 41, No. 4, Article 88. Publication date: March 2023.
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query-dependent summary d̂ ⊆ d . The ranker Φ is a relatively involved relevance estimation

model that generates a relevance label ŷ given the query and an extractive document summary d̂ ,
thus taking only parts of the document into account.
The selector Ψ is a parameterized model that takes the query and sentences as input and outputs

a score or weightwi for each sentence, representing its relevance to the query, i.e.,
(
w1, . . . ,w |d |

)
= Ψ (q,d ).

The logit weights wi are normalized using the softmax function, defining a distribution over the
sentences:

p (si | q,d ) = exp (wi )∑ |d |
j=1 exp(w j )

.

Using this distribution, a document summary d̂ ⊆ d is created as a subset of the document’s
sentences based on the selector’s scores, i.e., by dropping some of the lower scoring sentences.
The ranker takes as input the query and the document summary to compute the query-document

relevance ŷ = Φ(q, d̂ ).
Since the selector and ranker are in principle independent models, it is possible to train them in

one of two ways:

(1) Both models are trained separately; the selector is trained to extract a summary from a
document with respect to a query, while the ranker is trained on a ranking dataset. The
models are then applied consecutively to a query-document pair. We refer to this family of
approaches as pipeline approaches.

(2) The models are trained jointly in an end-to-end fashion, where the gradients are propagated
directly from the final outputs back to the selector network. Since this approach includes
a non-differentiable selection operation (arg max), it requires approximated differentiable
subset sampling.

In this article, we analyze and compare the approaches above; furthermore, we implement differ-
ent selector models and compare them. Section 3.2 describes the pipeline approach, Section 3.3
describes the end-to-end approach.

3.2 Pipeline Approach

In this section we apply the Select-And-Rank framework in the aforementioned pipeline setting.
Concretely, this means that the selector and ranker are trained independently of each other. For
sentence selection, we consider multiple approaches from simple termmatching to rather complex
auto-regressive language models:

(1) Term-matching-based selectors:We use tf-idf scores between the query q and sentences
si to determine the best sentences.

(2) Embedding-based selectors: We use semantic similarity scores between the query q and
sentences si to determine the best sentences. Both the query and sentence are represented
as average over the constituent word embeddings.

(3) Neural non-contextual selectors:We build a neural network to define a distribution over
the sentences si .

(4) Contextual selectors:We use BERT to define a distribution over the sentences si .

Term- and embedding-based selectors are non-parameterized. As the other selectors (neural and
contextualized models) are parameterized and need to be trained, we follow a transfer learning
approach and use the MS MARCO passage re-ranking dataset [53] to train each selector on a
passage ranking task. Specifically, the models learn to predict a relevance score given a query and
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a passage (or sentence). This task in itself is very similar to document summarization, supported
by the fact that the passages in this particular dataset were created by splitting documents. We
do not consider summarized documents in the training phase of the ranker. During inference, the
pipeline approach may be described as follows: The selector is applied to the query and document,
outputting a score for each sentence in the document. Along with the query, the k highest scoring
sentences then form the input to the ranker, maintaining their original order as in the source
document. The ranker outputs the final score ŷ that is used to rank the document.

3.3 End-to-End Approach

Existing approaches rely on sampling from a stochastic distribution using the REINFORCE algo-
rithm, resulting in a boolean mask over the sentences. An alternative way to achieve end-to-end
training instead is by allowing a continuous mask over the sentences. This is akin to using a soft-
attention mechanism that is arguably easier to train. However, this approach does not allow for
a reduction of the input sequence length, which can be problematic, especially with Transformer-
based rankers. Additionally, during inference, one would still need a selection of k sentences given
a soft-selection model. This in particular is ineffective, given that soft-selection models still rely
on all sentences for more effective predictions. We, therefore, propose an approach based on the
Gumbel-max trick [48], that enables gradient flow in models where discrete variables must be
sampled.

3.3.1 Feature Attribution andMasking. In interpretability, explaining the model output in terms
of the input features is called feature attribution. Feature attribution (or saliency) methods create
explanations in terms of input feature importance for individual predictions. In our case of text
ranking, a feature refers to a subset of the input, such as a sentence or a passage in the document.
Feature attributions can be soft or hard. Soft attributions are scalar values representing importance
that are assigned to each input feature. The output of an attribution method is typically a vector of
the same dimension as the input with either scalar or boolean values, called amask. A soft mask is
an output of soft attributions that can be viewed as a distribution of word-level or sentence-level
relevance over the document text. However, it has been shown that, for large input length or large
input spaces, humans find it hard to make sense of soft masks and prefer boolean or hard masks
instead. Hard masks are sparse and have no ambiguity or uncertainty in terms of the presence or
absence of a word or sentence in an explanation.

3.3.2 The Gumbel-Max Trick. The Gumbel-max trick provides a simple and efficient way to
parameterize a discrete distribution and draw samples from it. Let X be a random variable. We
wish to parameterize a categorical distribution such that P (X = i ) ∝ wi , where wi is a weight
associated to the ith category. Using the Gumbel-max trick, we can simply draw a sample as

X = argmax
i

(logwi + дi ),

where дi = − log (− logui ) is called a Gumbel random variable and ui ∼ Uniform (0, 1). The result-
ing sample is parameterized by the weights w . In order to completely relax the sampling process
and allow for the propagation of gradients (i.e., end-to-end training), the trick is commonly ex-
tended, replacing arg max with softmax (Gumbel-softmax trick). In detail, the Gumbel-softmax
estimator gives an approximate one-hot sample y with

yi =
exp((logwi + дi )/t )∑k
j=1 exp((logw j + дj )/t )

for i = 1, . . . ,k,

where t is a temperature. By using the Gumbel-softmax estimator, one can generate samples
y = (y1, . . . ,yk ) to approximate the categorical distribution. Furthermore, as the randomness
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д is independent of w , which is usually defined by a set of parameters, the reparameteriza-
tion trick can be used to optimize the model’s parameters using standard backpropagation
algorithms.

3.3.3 Relaxed Subset Sampling. Since we are interested in sampling a subset, i.e., drawing a
number of samples (in our case sentences) without replacement, we employ a relaxed subset
sampling algorithm proposed in [85] that makes use of the aforementioned Gumbel-max trick.
Let a set of items x1, . . . ,xn have associated weights wi and Gumbel variables дi as above. In
order to sample a subset, a Gumbel-max key,

r̂i = logwi + дi

is computed for each item. Since r̂i is a monotonic transformation of wi (fixing ui ), a relaxed
subset sample of the items can be drawn by applying a relaxed top-k procedure directly on r̂ . The
procedure proposed in [59] defines

α1
i := r̂i α j+1

i := α j
i + log

(
1 − p

(
aji = 1

))
,

where p (aji = 1) is the expectation of the distribution

p
(
aji = 1

)
=

exp
(
α j
i /t
)

∑n
m=1 exp

(
α j
m/t
) ,

and t is a temperature. Finally, a relaxed k-hot vector is computed as

v = (v1, . . . ,vn ) vi =
k∑

j=1

p
(
aji = 1

)
.

3.3.4 Training and Inference. In order to train both selector and ranker jointly, we make use of
the relaxed subset sampling as described in Section 3.3.3. We start by obtaining query and docu-
ment representations qemb and demb from a shared embedding E:

qemb = E (q) demb = E (d ).

The selector then operates on these representations and computes a weight wi for each sentence
si , i.e.,

(w1, . . . ,w |d | ) = Ψ(qemb,demb).

We now draw a relaxed k-hot sample ŵ (cf. Section 3.3.3) from the set of sentences using the
weightsw and a temperature t as

(
ŵ1, . . . , ŵ |d |

)
= SubsetSample (w,k, t ).

Finally, the document summary d̂ is selected as the k highest scoring sentences according to ŵ . The

ranker only operates on the document summary d̂ and discards all other sentences. This means
that the ranker needs to assemble its new inputs during the training process. The ordering of the
sentences is maintained irrespectively of their scores. Since our goal is to train both models jointly,
we have to preserve the gradients of the selector (i.e., ŵ) by combining themwith the ranker inputs
in a differentiable way. Let t1, . . . , tn denote the embedded tokens corresponding to some sentence

si ∈ d̂ . We compute the actual input tokens for the ranker as

t̂j = tj �wi .

Note that tj is a vector and wi is a scalar. We use � to denote the multiplication of each ele-
ment in the vector with the scalar. This multiplication changes the input representations, which is
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Fig. 3. The selectors used in the end-to-end approach. The linear selector represents sentences as the average

of their embedded tokens and applies a linear layer. The LSTM selector uses a simple attention mechanism.

undesirable. We mitigate this by making use of the straight-through estimator [7]. The idea is to
use t̂j only during the backward pass, i.e., when computing gradients. The forward pass simply
ignoreswi and considers just tj .

During inference, we do not use relaxed subset sampling. Instead, we simply select the k highest
scoring sentences.

3.3.5 Selectors. In this section, we present the selector networks we use in the end-to-end ap-
proach. Figure 3 illustrates the two selectors.

Linear Selector. The linear selector (Figure 3(a)) simply represents a sequence as the average
of its token embeddings. Query and sentence representation are fed through a single feed-forward
layer. The score is computed as the dot product.

Attentive LSTM Selector. The attentive LSTM selector (Figure 3(b)) is inspired by the QA-LSTM
model proposed in [74]. Query and document are passed through a shared, bidirectional many-to-
many LSTM. On the query side, we obtain the representation q̂ by max-pooling over all LSTM
outputs. On the document side, we split the LSTM outputs into sequences that correspond to the
sentences. Let hij denote the LSTM output corresponding to the jth token of the ith sentence. Prior

to max-pooling, we apply a simple token-level attention mechanism as

mi
j =W1h

i
j +W2q̂,

ĥij = h
i
j exp

(
W3 tanh

(
mi

j

))
,

whereW1,W2, andW3 are trainable parameters. We finally compute the sentence representation ŝi
by max-pooling over all ĥij . The score of each sentence is the cosine similarity of its representation

to the query representation.
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Fig. 4. The distribution of document and sentence lengths of the TREC datasets. Outliers omitted.

3.4 Ranker

Throughout all of our experiments, we use a BERTbase model as the ranker. The model is fine-

tuned according to [56]: For a query q = (q1, . . . ,qn ) and a document summary d̂ = (d̂1, . . . , d̂m )

(produced by the selector), where qi and d̂i denote input tokens, the ranker input is

[CLS],q1, . . . ,qn , [SEP], d̂1, . . . , d̂m , [SEP].

We impose a limit of 512 input tokens, i.e., n +m + 3 ≤ 512. Consequently, long documents are
truncated to fit within this limit. We take the output o of BERT, which corresponds to the [CLS]
input token, and discard the rest. It is fed through dropout and a single feed-forward layer that
outputs the final score

ŷ = σ (Wo + b).

W and b denote the trainable parameters of the feed-forward layer and σ is the sigmoid function.

4 EXPERIMENTAL SETUP

In this section, we describe our datasets, baselines, and evaluation procedure.

4.1 Datasets

First, we consider the following diverse TREC datasets with varying properties:

(1) TREC-DL: The TREC-DL document ranking task uses the MS MARCO document corpus.
We use the test set from 2019 for our experiments. Our models use training and validation
data from theMSMARCO document ranking task. For each of the 43 queries in the TREC-DL
test set, we re-rank the top-100 retrieved documents.

(2) ClueWeb09:We consider the ClueWeb09 dataset shared in [13]. The dataset contains 200
queries distributed uniformly in five folds and the top-100 documents for each query are
retrieved using QL [73].

(3) Core17: The Core17 dataset contains 50 queries with sub-topics and descriptions. Queries
are accompanied by a collection of 1.8M documents. We retrieve the top-1, 000 documents
for each query using QL.

Characteristics in terms of the document and sentence lengths of these datasets are illustrated in
Figure 4.We observed that the distribution of the number of tokens per sentence is almost identical
among all three datasets. In particular, approximately 50% of all sentences have less than 25 tokens,
and 90% of all sentences have less than 50 tokens. We use these findings to choose k = 20 for our
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Fig. 5. The distribution of document and sentence lengths of the datasets from the BEIR benchmark. Outliers

omitted.

experiments, based on the rough estimation that in this way, all 512 available input tokens of the
BERT ranker will be used in most cases, while in the remaining cases, the number of inputs does
not exceed the limit by a lot.
Second, we consider a wide variety of additional IR datasets provided by the BEIR bench-

mark [75]. These include classical ranking datasets, such as MS MARCO (passage ranking), fact
checking tasks, such as FEVER or SciFact, and others. In contrast to the experiments on the TREC
ranking datasets, we perform zero-shot evaluation, i.e., we train a single model on the MSMARCO
training set provided by BEIR and use it to evaluate on each test set. As before, we set k = 20 for
training. An important difference compared to the ranking datasets above is the average length
of the documents (or passages). Figure 5 shows plots of the distribution of the number of words
per sentence and the number of sentences per document for each of the datasets. Overall, the
documents are shorter compared to the web retrieval corpora. This means that the limitation of
the input length of BERT-based models does not always apply here. We conduct experiments to
analyze how sentence selection within those short passages influences both performance and
interpretability.

4.2 Baselines and Competitors

Since prior studies [2, 47] already established the effectiveness of contextual neural rankers over
non-contextual ones, we consider the following contextual language model-based rankers as our
baselines:

(1) Doc-Labeled [13] splits the documents into passages of 150 words with an overlap of 75
words between consecutive passages and considers 30 passages (first, last and 28 random
passages). The relevance label of a query-document pair is then transferred to each of its
query-passage pairs. This setup is used to train the models with passage-level annotation,
and finally, passage-level scores are aggregated to come up with document-level scores dur-
ing inference.

(2) BERT-3S [2] is a BERT-based transfer model trained on MS MARCO and Microblog1

to compute the scores of query-sentence pairs. The query-document level score and the

1We only consider MS MARCO to ensure a fair comparison.
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top-three query-sentences score are taken into account to compute the final relevance score
of that query-document pair.

(3) BERT-CLS [56] uses a vanilla BERT model to rank the documents, which are truncated to
512 tokens.

Additionally, the first-stage retrieval model, the query likelihood model [38], is also considered as
a ranking baseline.

4.3 Training Details

We train and validate using consistent and common experimental design. The neural models are
trained using a pairwise max-margin loss; we consider triples (q,d+,d−) of a query and two doc-
uments, where d+ is more relevant to q than d−. The loss is computed as

L = max
{
0,m − R (q,d+) + R (q,d−)},

where m is the margin and R is the model. Training triples are sampled in a balanced way such
that each query is represented evenly in the training set. We train the models using the AdamW
optimizer [46] with linear warmup during the first 1,000 batches (10,000 on TREC-DL). Validation
is performed using MAP over the validation set to choose the best model. We use a fixed random
seed for all experiments.

4.3.1 Hyperparameters. In our experiments we use hyperparameters commonly found in ear-
lier works; the ranker is an uncased 768-dimensional BERTbase model with a maximum sequence
length of 512. We use a learning rate of 3×10−5, dropout of 0.1, and a batch size of 32. The selectors
(cf. Section 3.3.5) use 256-dimensional hidden representations throughout.

For performance reasons, we restrict the maximum number of query tokens to 50 and the max-
imum number of document tokens to 5,000. Similarly, no more than the first 500 sentences in a
single document are considered by the selector. We set the loss margin tom = 0.2 and the temper-
ature to t = 1.0. As described in Section 4.1, we set k = 20 for training and inference.

5 RESULTS

In this section, we analyze the effectiveness and interpretability of our approaches.We first conduct
an extensive evaluation of the different selectors, including both pipeline and end-to-end models.
Next, we highlight the benefits of our proposed end-to-end modeling scheme (S&R-LIN and S&R-
ATT). Our experiments aim at answering the following questions:

(1) How well do Select-And-Rank models perform in document and passage ranking tasks
(Sections 5.1 and 5.2)?

(2) How comprehensive are explanations from Select-And-Rank models, i.e., how important
are the selected sentences for the model decision (Section 5.3)?

(3) How faithful are Select-And-Rank explanations and what is their utility to human users
(Section 5.4)?

(4) Does sentence selection lead to sparsification of the input documents, resulting in more
interpretable ranking decisions (Sections 5.5 and 5.6)?

(5) Can Select-And-Rank models be used to explain rankers that focus only on the head of the
documents due to limitations, such as BERT (Section 5.6)?

5.1 Variation of Selectors

In this section we first briefly describe four different hard selection strategies used by the pipeline
models. Next, we compare the pipeline strategies and the two proposed end-to-end variants (cf.
Section 3.3.5) of our approach.
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Table 1. Retrieval Performance with k = 20

TREC-DL Core17 ClueWeb09

MAP nDCG@20 MRR MAP nDCG@20 MRR MAP nDCG@20 MRR

PL-RND 0.231 0.492*# 0.754 0.173 0.345*# 0.649 0.138 0.236*# 0.495
PL-BERT 0.237 0.501*# 0.822 0.200 0.399 0.759 0.169 0.294 0.529
PL-LSTM 0.257 0.558* 0.827 0.194 0.399 0.788 0.166 0.289 0.552
PL-BM25 0.264 0.568 0.893 0.196 0.412 0.727 0.171 0.297 0.555
PL-SEM 0.265 0.571 0.920 0.207 0.414 0.768 0.167 0.286 0.534

S&R-LIN 0.269 0.597 0.946 0.203 0.411 0.710 0.174 0.303 0.535
S&R-ATT 0.271 0.590 0.924 0.205 0.403 0.714 0.168 0.292 0.518

PL-RND refers to the selection of k random sentences. Significant improvements (nDCG@20) at a level of 95% are

indicated by ∗ (S&R-LIN) and # (S&R-ATT).

The hard selection approaches are described as follows:

(1) PL-BERT: The similarity or relevance between a query and a sentence is computed using
the approach proposed by Akkalyoncu Yilmaz et al. [2]. The model is trained on the MS
MARCO passage re-ranking dataset according to Nogueira and Cho [56]. Finally, it is used
to infer query-sentence level relevance scores for each query-document pair.

(2) PL-LSTM: It is similar to PL-BERT, but uses an LSTM instead of BERT. We limit the input
to 1,000 words for this configuration, similar to BERT’s limit of 512 tokens. The model is
trained on the MSMARCO passage re-ranking dataset and the trained model is used to infer
the relevance score of query-sentence pairs.

(3) PL-BM25: We use a simple BM25-based term matching function2 to obtain the score be-
tween the query and the sentence.

(4) PL-SEM: Semantic similarity score between query and sentence is computed using 300-
dimensional GloVe embeddings.

These models apply the selection strategy only during the inference phase, i.e., trained models
are used to predict the relevance of pairs of queries and summarized documents. The ranker itself
is simply trained without any selection, i.e., documents are truncated to fit. We refer to these
strategies as pipeline (PL). They can be seen as an implementation of the method proposed in [43].

To analyze the effectiveness of the above-mentioned selection approaches, we also measure
the performance of a simple strategy, PL-RND, where we randomly select k sentences from the
document. Table 1 shows the results at k = 20 and highlights the effectiveness of the proposed
approaches over the random selection on the TREC datasets. We also tried other values, but k = 20
gives consistent performance for all three datasets. This may be attributed to the token limitation
of the ranker.
It is interesting to note that our lightweight selection strategies such as PL-BM25 and PL-SEM

perform better than heavy parameterized and time-consuming neural selection models such as
PL-BERT and PL-LSTM. PL-SEM shows the best or comparable performance for all three datasets.
PL-BM25, while slightlyworse, also shows promising performance. This compact representation of
documents also helps in developing computationally efficient ranking models and reducing noise.
Our end-to-end models, S&R-LIN and S&R-ATT, show improvements over the pipeline models

in most cases. Surprisingly, the linear, more lightweight selector often matches or exceeds the
performance of the attention-based one.

2https://pypi.org/project/rank-bm25/.
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Table 2. Retrieval Performance

TREC-DL Core17 ClueWeb09

MAP nDCG@20 MRR MAP nDCG@20 MRR MAP nDCG@20 MRR

QL 0.237 0.487*# 0.785 0.203 0.395 0.686 0.165 0.277 0.487

Doc-Labeled 0.203 0.434*# 0.731 0.237 0.437 0.742 0.165 0.284 0.503
BERT-3S 0.245 0.519*# 0.799 0.204 0.406 0.694 0.178 0.306 0.544

BERT-CLS 0.260 0.581 0.874 0.196 0.419 0.749 0.178 0.313 0.572
PL-SEM 0.265 0.571 0.920 0.207 0.414 0.768 0.167 0.286 0.534

S&R-LIN 0.269 0.597 0.946 0.203 0.411 0.710 0.174 0.303 0.535
S&R-ATT 0.271 0.590 0.924 0.205 0.403 0.714 0.168 0.292 0.518

Select-And-Rank models use k = 20. For Doc-Labeled, we report the best strategy (FirstP, MaxP, AvgP for TREC-DL,

Core17 and ClueWeb09 respectively). Significant improvements (nDCG@20) at a level of 95% are indicated by

∗ (S&R-LIN) and # (S&R-ATT).

Table 3. Neural Baselines on TREC-DL

MAP nDCG@10

MatchPyramid 0.232 0.567
CO-PACRR 0.231 0.550
CONV-KNRM 0.241 0.565
TKL-2k 0.264 0.634

S&R-LIN 0.269 0.646
S&R-ATT 0.271 0.639

Select-And-Rank models use k = 20. Results

are taken from [25]. TKL-2k refers to TKL

operating on 2,000 tokens.

We also perform statistical pairwise t-tests [18] for nDCG@20 between pipeline approaches and
S&R-LIN and S&R-ATT.We do not observe significant improvements for Core17 and ClueWeb09.
However, end-to-end models perform significantly better than PL-BERT and PL-LSTM.

5.2 Performance of Select-And-Rank

In this section, we compare the performance of our proposed models to state-of-the-art models.
We further compare our end-to-end approaches, S&R-LIN and S&R-ATT, to a simple BERT base-
line, denoted by BERT-CLS, which uses truncation of the document instead of sentence selection.
First, each model is trained (fine-tuned) and evaluated on TREC-DL, as it offers an abundance of
training data. For Core17 and ClueWeb09, we use the model from the TREC-DL experiment as
initialization. This helps us to properly train the selector, as, unlike the BERT ranker, it does not
start from a pre-trained model.
The results are illustrated in Table 2. Table 3 shows additional neural baselines [14, 25, 31, 58]

evaluated on TREC-DL. The pipeline model works quite well on the Core17 dataset, but falls
short on TREC-DL and ClueWeb09 compared to the end-to-end models. In the pipeline model, the
selection phase is independent of the ranking phase; hence, the selection strategy does not receive
any feedback from the ranking phase. It is evident from Table 2 that the end-to-end approach
improves the ranking process.
By selecting sentences from the complete document, our approaches perform similarly to

stand-alone rankers that operate only on the head of the documents, specifically BERT-CLS. This
indicates that most documents contain redundant information (likely in the form of summaries)
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Fig. 6. Ranking results (nDCG@10) on datasets from the BEIR framework using zero-shot evaluation with

models trained on the MS MARCO dataset. The lines show the difference between S&R-LIN and BERT-CLS

performance. Positive improvement indicates that S&R-LIN performs better, negative improvement indicates

the opposite.

near the beginning that BERT-CLS is able to exploit. We confirm this in Section 5.5 by showing
that there is little overlap between the document head and the sentences selected by S&R-LIN.
Thus, in Section 5.6 we use a Select-And-Rank model to explain the predictions of BERT-CLS by
specifically selecting sentences from just the head of the documents.
Next, we evaluate our S&R-LIN model on various datasets provided by the BEIR framework

and compare it to sparse retrieval methods (BM25) and a standard BERT-CLS model. The models
are trained on MS MARCO, i.e., only the results on that dataset are in-domain, whereas the other
datasets are evaluated in a zero-shot fashion. The contextual models are used to re-rank the top-
100 BM25 results, which we retrieved using Elasticsearch. The results are illustrated in Figure 6. It
is evident that S&R-LIN and BERT-CLS show similar ranking performance on most datasets with
only a few exceptions. It is interesting to note that, in some cases, contextual re-ranking models
fail to improve BM25 ranking. We assume the reason for this to be a lack of domain knowledge
due to the zero-shot setup.
As shown in Section 4.1, the datasets contain mostly short documents (or passages). As a con-

sequence, selecting as many as k = 10 sentences might already select the complete document in
some cases. We thus perform additional experiments on some of the datasets, decreasing k all the
way to a single selected sentence. Figure 7 shows the results. This experiment nicely illustrates
the controllable tradeoff between performance and interpretability: On each of the datasets, the
performance plateaus once a certain number of selected sentences is reached, which depends on
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Fig. 7. Ranking results (nDCG@10) using S&R-LIN with decreasing number of selected sentences (k).

the document lengths of the dataset. On the other hand, the performance drops when the number
of selected sentences is decreased, which in turn makes the ranking decision more interpretable.

5.3 On the Comprehensiveness of Select-And-Rank

Comprehensiveness [15] is a metric that evaluates the quality of rationales, i.e., parts of the model
input that aim at explaining the corresponding output. Specifically, a contrast example x̃i = xi \ ri
is constructed for each input xi , where the rationales ri are removed. Comprehensiveness is then
computed as

Comp(xi ) =m(xi )j −m(x̃i )j ,

wherem(·)j is the model output or prediction corresponding to the class j.
Intuitively, comprehensiveness measures the degree of influence the rationales have on the fi-

nal prediction by computing how much worse the model performs without them. In or case, xi
is a query-document pair. However, due to the length of the documents and limitation of ranking
models, the ranker does not see the complete document in the vast majority of cases. Thus, com-
puting the exact comprehensiveness is difficult. Instead, we use a proxy to get an idea about the
comprehensiveness of Select-And-Rank models: During evaluation, we remove the N highest
scoring (as assigned by the selector) sentences (out of k selected sentences) from the input and
observe the drop in performance. We then compare the results to

(1) the performance with all k sentences and
(2) the performance when N random sentences are removed instead.

The results on TREC-DL with k = 20 are illustrated in Figure 8. They show that removing high-
scoring sentences has a higher impact on overall performance than removing random sentences.
This suggests that higher scoring sentences have a higher impact on the model predictions.

5.4 On the Faithfulness and Utility of Select-And-Rank for Human Users

Generally speaking, the faithfulness of interpretations refers to the degree to which they accurately
represent the reasoning of themodel [33]. In the case of Select-And-Rank, this corresponds to the
question how well the selected sentences represent the document they originate from. This problem
is closely tied to the actual utility and usefulness of Select-And-Rank models for human users;
the idea is that the users should be able to comprehend a ranking decision solely based on the
selected sentences, i.e., the explanation. In order to assess how faithful the explanations are for
human users, we have conducted a study which is described in this section.

5.4.1 Study Setup. We randomly selected 30 queries from the TREC-DL test set for our study.
For each of these queries, we randomly sampled one relevant and one irrelevant document from
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Fig. 8. Ranking results (nDCG@20) on TREC-DL using S&R-LINwithk = 20, whereN sentences are removed

(leaving k − N sentences). We compare removing random sentences and the highest scoring sentences.

the official query relevance judgments. We used the selector of a trained S&R-LIN model (from
Section 5.2) to selectk ∈ {5, 10, 15} sentences for each document (with respect to the corresponding
query), resulting in four variations of each query-document pair. In total, we ended up with 240
(q,d,k ) instances (where k can be null, representing no sentence selection). We employed 80
participants for the study, each of which judged 12 individual (q,d,k ) instances (i.e., 960 relevance
judgments in total). Thus, each instance was judged approximately four times.3 Instances were
allocated to participants randomly, making sure that no participant ever saw two instances with
the same query and document.
The user interface presents the query at the top and the document just below. Within the doc-

ument, a line break is inserted after every sentence. At the bottom, the participant is asked to
indicate

(1) whether or not the document is relevant to the query and
(2) whether they used their browser’s integrated search function for this instance.

We further measure and record the time taken for each relevance judgment. After each instance,
an intermediate page prompts the participant to take a break before the next instance if necessary,
such that the recorded times are less noisy.
Our study is implemented using the oTree framework [9] and was conducted on the Prolific4

platform. Additional details can be found in Appendix A.

5.4.2 Study Results. The results are illustrated in Figure 9. It is apparent that the longer the
documents are (in terms of the number of sentences), the more the average time taken to judge
the relevance of a single query-document pair increases. Additionally, participants resort to
the usage of their browser’s search function more often, but this is not enough to compensate
for the increased length and keep the time down. Moreover, the participants’ accuracy remains
roughly stable across all settings, peaking at k = 15. We assume the drop in accuracy for the full
documents could be caused by participants relying too much on term matching provided by their
browsers rather than reading the complete documents.
Overall, our study highlights the utility of Select-And-Rank models to humans: The sentences

extracted by our approach serve as faithful explanations to users, as is apparent from the accuracy.
At the same time, it enables them to judge documents more quickly using only a small subset of
sentences.

3Due to some participants never finishing the study, this number can vary in rare cases; however, each instance has been

judged at least three times.
4https://www.prolific.co/.
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Fig. 9. The results of our user study to determine the faithfulness of Select-And-Rank explanations. Par-

ticipants were presented with a query-document pair, where the document was either unaltered (full) or

k ∈ {5, 10, 15} sentences were selected using a the selector of a trained S&R-LINmodel. The query-document

pairs originate from TREC-DL. We plot the average accuracy, the fraction of instances where participants

used their browser search and the time taken to complete a single query-document relevance judgment.

5.5 The Effect of Token Limitation

In this section, we analyze the token limitation that is inherent to the BERT ranker and further
the role the selection strategy has in mitigating that limitation. In other words, we answer the
following question: How many input tokens of the selected sentences would not have been seen by

BERT without selection due to length restrictions? In general, existing research assumes that most
of the information relevant to the query is present in the first part of the document [56]. The
BERT-CLS baseline also works based on that assumption. However, recent strategies [26] show
that some information also exists beyond this token limit. In [13], the authors try to handle this by
selecting the first, last, and 28 random passages in their Doc-Labeled approach, but this heuristic
does not always work. To that end, we choose the top-20 sentences based on PL-SEM and S&R-
LIN and measure what fraction of these tokens exceeds the usable BERT input, i.e., is lost when
we only consider the head of a document. Figure 10 shows the cumulative distribution of the ratio
of missed tokens for TREC-DL. The distribution pattern is similar for both methods: Less than
10% of the query-document pairs do not miss any of the selected tokens. Given the performance
of the models shown in Section 5.2, this suggests that relevant information is repeated within the
documents, such that multiple selections exist which result in similar performance.

5.6 Explaining BERT-CLS

In Section 5.5, we showed that S&R-LIN and the standard BERT-CLS model operate on different
parts of the input documents, yet they achieve comparable performance (cf. Table 2). In this sec-
tion, we explore whether Select-And-Rank models can be used to further sparsify the head of a
document and thus explain the predictions of BERT-CLS.
To that end, we conduct a set of experiments where we limit the available sentences for the selec-

tor to choose from to the first 20 of each documents based on our length estimation (cf. Section 4.1).
We then vary k to compare the performance with respect to sparsity. The results are illustrated in
Figure 11 in terms of nDCG@20. We observe that the performance plateaus for roughly k ≥ 10
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Fig. 10. CDF of tokens on TREC-DL that would have been missed without sentence selection.

Fig. 11. The performance of S&R-LIN (nDCG@20) applied only to the first 20 sentences of each document,

which approximates selecting sentences from the input of BERT-CLS.

(slightly later for TREC-DL) and approximately matches BERT-CLS. For lower values of k , the
performance drops.
In addition, we compare the above result to a simpler strategy, where, instead of using Select-

And-Rank to select sentences, we limit the length of the ranker input by simply truncating it to a
constant number of tokens. This is identical to the BERT-CLS approach, but instead of 512 tokens,
we use smaller numbers. Figure 12 shows the comparison of the two methods (S&R-LIN with k
sentences and BERT-CLS truncated to T tokens). On the far right side of each of the plots, i.e.,
k = 20 and T = 512, there is no selection or truncation, thus both models have roughly the same
performance. However, decreasing k or T , respectively, it becomes evident that by selecting rel-
evant sentences using Select-And-Rank, substantially higher performance can be reached with
similar numbers of input tokens. For example, comparing k = 10 andT = 256, both of which drop
(roughly) half of the tokens, Select-And-Rank achieves an nDCG value of 0.569, while BERT-CLS
only reaches 0.363. This suggests that Select-And-Rank is able to select representative summaries
of the documents that are sufficient for the ranker to output similar performance. Truncation, on
the other hand, does not have the same effect, which ultimately reflects in the performance.
Overall, these experiments show that sentence selection may be used even in combination with

models that only operate on the head of documents to achieve interpretability while maintaining
performance.

5.7 The Effect of First-stage Retrieval

From Sections 5.2 and 5.6 it is evident that the performance of S&R-LIN is on par with the base-
lines, while maintaining the interpretability aspect of the approach. However, the re-ranking
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Fig. 12. Ranking performance (nDCG@20) on TREC-DL, where the length of the input to the ranker is limited

in two ways. On the left, Select-And-Rank is used to select k sentences from the head of the document (i.e.,

from the first 20 sentences). On the right, inputs are simply truncated, i.e., the ranker only sees T tokens in

total, which includes the query and the first part of the document. For BERT-CLS, T = 512 is the default

setting and is consistent with the results in Table 2 and Figure 11.

Table 4. Performance Over Two First Stage Retrieval Models, QL and

QL+RM3 at Depth 100 on the TREC-DL Test Set Using k = 20

QL QL+RM3

MAP nDCG@20 MAP nDCG@20

QL(+RM3) 0.237 0.487*# 0.272 0.513*#

Doc-Labeled 0.203 0.434*# 0.219 0.426*#

BERT-3S 0.245 0.519*# 0.281 0.539

BERT-CLS 0.260 0.581 0.279 0.559
PL-SEM 0.265 0.571 0.268 0.537

S&R-LIN 0.269 0.597 0.286 0.568
S&R-ATT 0.271 0.590 0.284 0.563

Significant improvements (nDCG@20) at a level of 95% are indicated by ∗
(S&R-LIN) and # (S&R-ATT).

performance of the models is computed over the top-100 documents per query, retrieved using
a QL model. One obvious question is, whether this performance is lost with a better first stage
retrieval system. To answer this question, we re-retrieve the top-100 documents with QL and RM3
and apply the models to that set. Table 4 shows the results on TREC-DL. Note that the models are
not re-trained, i.e., the models from previous experiments are used. There is no significant influ-
ence of RM3 on the performance of baselines; rather, performance drops to some extent in terms
of nDCG. We assume that the reason for this is the fact that the models were not re-trained using
the documents retrieved by QL and RM3.

5.8 Anecdotal Examples

In Table 5, we present an anecdotal example of the top sentence for each document, selected by our
Select-And-Rank approaches in both pipeline and end-to-end variants. The documents marked
as relevant are the ground-truth documents as assessed by TREC annotators. We see that the se-
lected sentences already provide an insight into the what evidence is considered important by the
overall rankingmodel. Specifically, the rank 5 prediction by S&R-ATT happens because it mistakes
bow pose in yoga with bows and arrows. It is clear from the selected sentence of PL-SEM that it
does not consider the duration aspect of the query. A key aspect of Select-And-Rank is that the
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Table 5. Example Rankings from the TREC-DL Dataset with the Most Relevant Selected Sentences

Rank Document Most Relevant Sentence

S&R-ATT
1 D970461+ How long do I hold yoga poses?
2 D3378721+ How Long to Hold Bikram Yoga Poses.
3 D970460+ How Long You Should Hold A Yoga Posture?
4 D1211050+ How Long To Hold Yoga Pose To Gain All The Benefits?
5 D337672− One way to build strength and endurance is to pull your hunting bow [...] before releasing the arrow [...]
6 D2587656− Traditional Closing of a Yoga Practice [...] the teacher will say “namaste” & bow to students.
7 D1125612− Consult your doctor before beginning these new flexibility exercises [...]
8 D520508− Yoga should be done with an open, gentle, and non-critical mind [...] working on one’s limits

PL-SEM
1 D3378723− [...] Bow Pose is an intermediate yoga backbend that deeply opens the chest and the front of the body.
2 D970458+ In the style of hatha yoga I teach there are longer holds in the poses.
3 D3378725− [...] After a brief break, you move into the last eight standing exercises [...] of the Bikram yoga sequence
4 D970461+ How long do I hold yoga poses?
5 D337672+ [...] isolate the muscles needed to pull the bow back and hold the bow up [...]
6 D2285733+ Straighten your legs, so that your body makes a ‘V’ shape and hold this position for 2 to 5 breaths.
7 D1930297− IF YOU ARE A BEGINNER, YOU OUGHT TO BEND YOUR KNEES SLIGHTLY TO ACCOMPLISH THIS.
8 D520508− Iyengar yoga can be good for physical therapy [...] easier for some people to get into the yoga postures.

Query: how long to hold bow in yoga (query ID 1132213)

Document IDs have a suffix (+/-) indicating the relevance of the corresponding TREC judgments.

decision of the final ranker can be unambiguously attributed to these extracted sentences, provid-
ing interpretability to the model decision. Note that we cannot completely explain the decision-
making of the final ranker, since it could select a further subset of the selected sentences.
Moreover, we present examples from the FEVER dataset in Table 6. It shows the two relevant

documents for a query (here: a fact), each split into sentences. These sentences are then ranked
by their scores w.r.t. the query as assigned by the selector model (S&R-LIN). Finally, the 5 highest
scoring sentences are selected as input for the ranker. This setting is consistent with the experi-
ments in Section 5.2 and Figure 6. The part corresponding to the first document depicts the case
where the sentence selection works well: The sentence that contains the answer to the query is
scored high and thus selected. The ranker receives the selected sentences and is able to rank the
document high (rank 3). On the contrary, in the second relevant document, the selector misses
the only relevant sentence and does not include it in the selection. Thus, the ranker does not see
the relevant part of the document and consequently ranks it lower (rank 23). This example further
illustrates how each ranking decision can be attributed to a small fraction of the input document.

6 APPLICATIONS OF SELECT-AND-RANK

In this section, we highlight several real-world applications of Select-And-Rank models.

6.1 Discovering Biased or Buggy Ranking Decisions

Neural rankers, just like any other machine learning model, are susceptible to bias or bugs in their
ranking decisions [1]. Such models can achieve high performance, but the rationale (or reasoning)
behind the model decisions is often incorrect, i.e., the models are right for the wrong reasons.
In a similar fashion, a line of work employs adversarial attacks to craft model inputs, which are
often merely slightly modified examples from real datasets, that yield highly unexpected model
decisions or outputs [79, 83].

In this section, we conduct an experiment to show how the Select-And-Rank paradigm can be
employed to uncover such biased or even buggy decisions of the ranking model. Specifically, we
enforce biased ranking decisions by augmenting the MS MARCO corpus to include label leakage;
this means that, for every query-document pair (q,d ) in the training and test set, where d is rele-
vant toq, we replaced byd ′, whered ′ is simply a copy of the original document with one additional
sentence injected. This process is illustrated in Figure 13. As a result, a ranking model trained on
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Table 6. Example Selections of Sentences from Relevant Documents w.r.t. a Query from the

FEVER Dataset by S&R-LIN

Rank Sentence

Document: Commodore_(rank), Rank: 3

se
le
ct
ed

1 A commodore’s ship is typically designated by the flying of a Broad pennant, as opposed to an admiral’s flag.
2 Commodore is a naval rank used in many navies that is superior to a navy captain, but below a rear admiral.
3 It is sometimes abbreviated: as “Cdre” in British Royal Navy, “CDRE” in the US Navy [...]
4 Commodore (rank).
5 Non-English-speaking nations often use the rank of flotilla admiral or counter admiral [...]

6 As an official rank, a commodore typically commands a flotilla or squadron of ships [...]
7 Traditionally, “commodore” is the title for any officer assigned to command more than one ship [...]
8 It is often regarded as a one-star rank with a NATO code of OF-6 [...]

Document: Rear_admiral, Rank: 23

se
le
ct
ed

1 In the German Navy the rank is known as Konteradmiral, superior to the flotilla admiral (Commodore in other navies).
2 In the Royal Netherlands Navy, this rank is known as schout-bij-nacht (lit.
3 [...] and in the Canadian Forces’ French rank translations, the rank of rear admiral is known as contre-amiral.
4 In some European navies (e.g.,
5 In many navies it is referred to as a two-star rank (OF-7).

... ...
13 Rear admiral is a naval commissioned officer rank above that of a commodore and captain, and below [...]
14 Each naval squadron would be assigned an admiral as its head, who would command from the centre vessel [...]

Query: Commodore is ranked above a rear admiral. (query ID 204575)

The selector selects the highest scoring k = 5 sentences from each document. The final rank of a document is

computed using only these sentences. The sentences that contain the answer are highlighted.

this data simply learns to rank documents that contain the injected sentence high (independently
of the query). In fact, the model reaches a MAP of 0.39, nDCG@20 of 0.66, and MRR of 1.00 on
the TREC-DL test set (cf. Table 2) due to the label leakage. Figure 14 shows how the explanations
provided by an S&R-LIN model uncover the bias in the ranking decisions; specifically, it illustrates
how the selector assigns the highest importance to the sentence containing the label leakage (and
hence includes it in the explanation) in all but very few cases. As a result, an examination of the
ranking explanations immediately uncovers this bug.

6.2 Improving Search Engines

In general, search engines do not give end-users much of an idea about the reasoning behind
marking a document as relevant or ranking one document higher than another. Instead, users have
to rely on the results of the search engines. In turn, most search engines use the click information
of users to judge the relevance of a document and iteratively update their search and ranking
algorithm [11]. This introduces bias in determining the importance of web pages. Content creators
may use clickbait [8, 19] to attract users and increase the importance of their content or web page,
even though it does not contain the relevant content. This is also a challenging task for search
engine optimization.
Our Select-And-Rank-based document ranking architecture can be used to alleviate the above-

mentioned two problems to an extent:

(1) The Select-And-Rank paradigm identifies the relevance of a document with respect to a
query and also extracts relevant snippets from the document. If the system highlights those
snippets along with the document, users can make their click decisions more accurately,
helping them to skip clickbait contents.

(2) It is very difficult to judge the relevance of a document just from the title. For this reason,
search engines display snippets of documents on the results page. These snippets are often
relatively short (i.e., one or two sentences or parts of sentences) and are supposed to high-
light why the user might be interested in the document. Usually, these snippets are based on
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Fig. 13. An example illustrating label leakage for the query how long to hold bow in yoga. For each
document that is relevant to the query (a), we prepend the sentence THIS IS A BUG (b). As irrelevant

documents are unaffected, this simulates label leakage for training and test data. The highlighted sentences

correspond to the part of the document that provides the answer to the query.

Fig. 14. This example shows how label leakage can be discovered using Select-And-Rank models. The plots

illustrate the sentence selections on the TREC-DL test set by an S&R-LIN model using a modified corpus to

simulate label leakage (cf. Figure 13). Evidently, the extractive explanations (selected sentences) provided by

our model reliably uncover the the label leakage by including the leakage sentences.

term-matching with the query, i.e., matching terms in the snippet are printed bold.
Select-And-Rank could be used as an alternative way of generating these snippets (for
small values of k) such that they also explain the reasoning behind the ranking itself. The
highlighting of matching terms could then be performed on the selected sentences as well.

7 CONCLUSION

In this article, we proposed Select-And-Rank, a ranking framework that is interpretable by de-
sign. Our selection and ranking models are trainable end-to-end by gradient-based optimization
techniques using a combination of the gumbel-max trick and reparameterizable subset sampling.
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In our experiments we found that, by enforcing sparsity in document representations by select-
ing a subset of sentences, we still perform on par with state-of-the-art models, while being in-
terpretable. We showed how Select-And-Rank can be used to explain the decisions for a large
number of ranking tasks from the BEIR dataset in the zero-shot setting. This proves its potential of
wide-ranging utility in a large number of knowledge-intensive tasks. We showed that there is no
considerable performance difference in the case of complex selectors, indicating that simple and
fast selectors can be used instead. We also found that there is a sweet spot in the choice of sparsity
that varies depending on the dataset. We performed a user study to highlight the utility of our
extractive explanations to human users. We believe that the applicability of a sparsity-inducing
component can extend beyond document ranking to other ranking [27, 28, 72], graph [17], and
web tasks [4, 61, 70].

APPENDIX

A USER STUDY DETAILS

In this section, we present our user study (as described in Section 5.4) in more detail.

A.1 Interface

The main part of the study consists of three pages:

(1) The instructions page (Figure 15) familiarizes the participant with the task and provides ex-
amples.

(2) The task page (Figure 16) presents a query-document pair to the participant and records
their response. In the background, we record how much time the participant has spent on
this page in order to measure the time it took to judge the query-document pair.

(3) The break page (Figure 17) is a simple intermediate page that is shown in between two con-
secutive task pages. The reason for this is that we want participants to only take breaks
between two tasks, so that our time measurements are as accurate as possible.

The study is structured in rounds; a round consists of a task page and a subsequent break page. In
our experiment, each participant completed 12 rounds. Before the first round, the instructions are
shown.

A.2 Collection and Usage of Data

We collect three data points during each round:

(1) The relevance judgment (boolean),
(2) the usage of browser search (boolean) and
(3) the time taken to come up with the relevance judgment (float).

The data is inserted into a database after each page. This allows users to take a break from the
study and continue where they left off later, even if they closed their browser in the meantime.

A.2.1 Computation of Metrics. In the results (Section 5.4) we present the following metrics:

(1) Accuracy: This is simply the number of correctly judged instances divided by the total
number of instances. Correctness is determined using the official TREC query relevances R,
which are converted to binary according to the official guidelines, i.e., irrelevant (R (q,d ) = 0)
or relevant (R (q,d ) > 0).

(2) Search function usage: Similarly to accuracy, we divide the number of instances where
participants have indicated the usage of their browser’s search function by the total number
of instances.
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Fig. 15. The instructions page. This page is only displayed once and includes a task description along with

some examples.

(3) Time taken to complete a relevance judgment: The time is measured as the difference
between two-time stamps: The first one is recorded when the participant leaves the break
page, and the second one is when the user completes the task page.
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Fig. 16. The task page. It shows a query-document pair and gathers the participant’s response (whether the

document is relevant to the query) along with whether or not they used the browser search for this instance.

Fig. 17. The break page. It is displayed between two consecutive task pages.
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