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CNNFlow: Memory-driven Data Flow Optimization
for Convolutional Neural Networks

QI NIE and SHARAD MALIK, Princeton University

Convolution Neural Networks (CNNs) are widely deployed in computer vision applications. The datasets are

large, and the data reuse across different parts is heavily interleaved. Given that memory access (SRAM and

especially DRAM) is more expensive in both performance and energy than computation, maximizing data

reuse to reduce data movement across the memory hierarchy is critical to improving execution efficiency.

This is even more important for the common use case of CNNs on mobile devices where computing/memory

resources are limited. We propose CNNFlow, a memory-driven dataflow optimization framework to auto-

matically schedule CNN computation on a given CNN architecture to maximize data reuse at each level of

the memory hierarchy. We provide a mathematical calculation for data reuses in terms of parameters includ-

ing loop ordering, blocking, and memory-bank allocation for tensors in CNN. We then present a series of

techniques that help prune the large search space and reduce the cost of the exploration. This provides, for

the first time, an exact and practical search algorithm for optimal solutions to minimize memory access cost

for CNN. The efficacy is demonstrated for two widely used CNN algorithms: AlexNet and VGG16 with 5 and

13 convolution layers, respectively. CNNFlow finds the optimal solution for each layer within tens of minutes

of compute time. Its solution requires about 20% fewer DRAM accesses and 40%–80% fewer SRAM accesses

compared to state-of-the-art algorithms in the literature.
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1 INTRODUCTION

Convolutional neural networks (CNN) are the main class of algorithms used for vision tasks
such as image classification, object detection, and localization. They are increasingly used in mobile
devices where the computing/memory resources are limited. Further, mobile devices require high
performance but are power-constrained, which drives the need to improve the energy efficiency
of executing CNNs. The datasets of CNN are large, and their memory access time (SRAM and
especially DRAM) dominate performance and energy efficiency in comparison with computation
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[1]. Therefore, to improve the energy efficiency, we need to reduce the number of data movements
across the memory hierarchy during the CNN computation.

Many novel processors/accelerators have been proposed to execute CNN with reduced data
movement. Some consider increasing the local memory size [2]. Others utilize more efficient and
lighter-weight machine learning algorithms [3, 4]. In-memory computing also helps with eliminat-
ing the data movement between the storage and compute units [5]. However, for a given algorithm
and hardware resources, the number of data movements is controlled by the degree of data reuse
in each level of the memory hierarchy, including datapath registers in the processors/accelerators,
program-managed on-chip SRAM, and DRAM. This is further controlled by how the computation
is scheduled. The schedule determines when and where each operation happens in the architecture.
We need to orchestrate a dataflow to maximize the data reuse in the lowest levels of the memory
and thus better utilize the local memory for storing the intermediate results of the computation.

The programmer/compiler is responsible for managing the dataflow across the memory hier-
archy [6–9]. This is currently done using heuristic algorithms. These algorithms exploit several
degrees of freedom to maximize data reuse—loop ordering in the computation, blocking data, and
allocation of memory banks to specific tensors. However, it is done heuristically without any guar-
antee of optimality as the search space, for these degrees of freedom is large. In this work, we
improve on this by providing an exact solution to a precise problem formulation that minimizes
memory access cost. Specifically, this work presents CNNFlow, a dataflow optimization framework
for optimally mapping CNN to accelerators that have a spatial array of processing elements and a
global on-chip buffer (SRAM). In doing so, this work makes the following contributions:

• It defines an optimization problem for minimizing memory access cost for a given CNN
kernel and a target architecture.
• It provides mathematical models to efficiently evaluate the memory access cost for each

point in the search space.
• It proposes a set of techniques to prune the search space and find the optimal solution

efficiently.
• It demonstrates its efficacy for two important CNN algorithms, AlexNet and VGG16, each

with multiple kernels. CNNFlow finds the optimal solution within tens of minutes of com-
pute time. This solution requires about 20% fewer DRAM accesses and 40%–80% fewer SRAM
accesses compared to state-of-the-art algorithms in the literature.

This article is organized as follows: We start by reviewing related work in Section 2. This is
followed by the overview of the CNNFlow Framework in Section 3. In this section, we cover the
architecture and application templates used in our problem formulation, a discussion of the com-
plete parameter space, and the analytical formulation of the optimization problem for optimizing
accesses across the memory hierarchy. Following this, Section 4 provides an analytical calculation
of the number of DRAM accesses for a given point in the parameter space. This replaces the need
to perform a simulation of the application on the architecture for each point in the parameter
space. Next, Section 5 discusses how the large parameter space can be pruned using a set of algo-
rithms for the DRAM accesses. This is extended to include SRAM accesses in Section 6. Section 7
provides the results of the experimental evaluation of these algorithms. Finally, Section 8 provides
some concluding remarks.

2 RELATED WORK

Accelerator Design: There are many accelerator designs targeting CNNs. They customize func-
tion units, datapath interconnect, memory organization, and controllers for different CNN ker-
nels. Work in References [4, 10–15] adopt a parallel array of processing elements (PEs). The
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specialization of PE-based architecture is largely reflected in the interconnect of PEs. Besides the
commonly used systolic array where PEs are connected by a 2D mesh [15], some designs only use
1D interconnect [11, 13] but others may allow PEs to communicate with their diagonal neighbors
[16]. Designs generally have software-controlled SRAM as on-chip local memory but the SRAM
partitioning is fixed for all computation primitives being executed [4, 12, 15, 17, 18]. However,
as Chen and Anderson [19] point out, customizing the local memory partitioning based on the
algorithm could improve the utilization of memory bandwidth.

Besides the hardware, accelerators also make decisions about the computation scheduling. In
terms of partitioning the CNN computation to reuse the accelerator, most designs adopt the layer-
by-layer computation in that the execution of one layer will not start until the completion of
previous layer [14, 17], while some designs allow multiple layers being simultaneously processed
on the chip [20–22]. Within each layer, scheduling needs to allocate the parallelism across differ-
ent data arrays. Some designs only consider parallelism within convolution kernels [23, 24], while
other designs also consider parallelism in computing multiple output images [25]. The design in
Reference [26] considers both types of parallelism. With the 2D PE array, data from two tensors
move horizontally or vertically across PEs, and those from the other tensor will stay within each
PE. Some designs keep the weights data stationary in PEs [18, 23, 25, 27], while other designs
make the output data stationary [12, 15, 28, 29]. The FlexFlow approach [30] presents both an ar-
chitecture as well are corresponding dataflow that provides additional flexibility based on certain
compute patterns. The compute patterns consider different forms of parallelism, and the dataflow
optimizes transfers from the on-chip buffers to the PEs. In contrast, CNNFlow provides an analyti-
cal formulation and mathematical optimization for maximizing reuse that is not based on a specific
set of compute patterns and considers multiple levels of memory hierarchy across DRAM, SRAM,
and PE Register Files.

Automatic Scheduling of Computation: The optimum choice of computation scheduling de-
pends on the algorithm and available hardware resources, as pointed out in MemFlow [31, 32].
Handcrafting the design for each case is very time-consuming. Thus, there are many previ-
ous works investigating automation and optimization for hardware generation and computation
scheduling [11, 14, 28, 33–36]. High-level Synthesis (HLS) automates the hardware generation
through providing a high-level behavioral input for hardware designers. However, HLS focuses
on designing the datapath for local computation where data are already in Block RAM (BRAM).
Advanced HLS tools such as SDAccel [37] provide a framework to optimize data movement across
the memory hierarchy. However, it only offers support for emulation and profiling, but requires
manual effort to select the design parameters impacting dataflow across the memory hierarchy.
Zhang et al. [38, 39] and Motamedi et al. [26] utilize a roofline model to identify the optimal de-
sign. DeepBurning [40] takes neural network descriptions and generates the hardware and the
control flow to meet the given area/power constraints. DNNBuilder [20] maps neural networks to
FPGAs in a layered-pipeline implementation and balances the allocation of compute and memory
resources across layers. These designs do not explicitly optimize the mapping to improve the local
memory utilization. Work in Reference [15] sets loops being mapped to the PE array, the PE array
dimension, and blocking size as configurable parameters. AngelEye [41] optimizes block partition-
ing and memory mapping in its compiler. Work in Reference [38] and Caffine [39] has one-level
blocking, and it selects tile size based on computation-to-communication ratio. Eyeriss [1] config-
ures a set of mapping parameters that are essentially blocking size. These works only explore a
limited design space and miss other parameters that could affect the dataflow across the memory
hierarchy. Work in Reference [29] does consider the larger design space with loop unrolling, loop
blocking, and loop interchange. But it assumes that only one data block from each tensor stays
in on-chip SRAM. Further, it randomly samples the design space to select the best combination
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of parameters. Timeloop [42] tunes block dimensions and loop permutation, but its optimization
is also based on random sampling. TENET [43] is a modeling framework using a novel relation-
centric approach that provides for analytical computation for various “volume” metrics relating to
accesses of the tensor across the processing elements (PEs) in a spatial architecture including
their reuse across the PEs and the minimum data size that needs to be transferred between PEs
and scratchpad (SRAM). As an application of this framework, the article presents a simple pruning
strategy for considering the dataflow design space exploration and “leave a more efficient design
space exploration as future work.” The article does not consider DRAM accesses or a complete
optimization of accesses across the memory hierarchy. The SmartShuttle approach [44] does pro-
vide an analysis based algorithm that selects the tile size and one of three scheduling schemes
for each layer in the CNN. However, this is done using empirical rules rather than mathematical
algorithms to minimize DRAM accesses. Further, it does not consider minimizing SRAM accesses
and does not have a comprehensive treatment of all the parameters considered in this article. The
CoSA framework [45] is similar to CNNFLow in that it uses mathematical optimization (MILP)
for the scheduling. However, it assumes each tensor is at a specific level in the memory and does
not consider architectures that move data across the memory hierarchy as with CNNFlow. The
article provides as example of this: “dedicated input and weight buffers for input activation and
weight, respectively, while providing a shared global buffer to store input and output activations.”
The objective functions considered in CoSA are “maximizing buffer utilization or achieving better
parallelism.” This is in constrast to CNNFlow’s optimizing accesses across the memory hierarchy.
GAMMA [46] provides a genetic algorithm for mapping layers onto an accelerator such that the
mapping fits in the available resources, and with a focus similar to CoSA on maximizing parallelism.
It considers on-chip and PE buffers, but not DRAM. Again, it is unclear how this can be extended
to a precise formulation of optimizing accesses across the memory hierarchy. In contrast, CNN-
Flow considers the complete optimization space, precisely formulates an optimization problem for
minimizing memory access cost for this space, and provides an exact solution for this problem.

3 CNNFLOW FRAMEWORK

Layer-by-layer computation. In CNNFlow, the neural network is executed layer-by-layer. The
computation of one layer generally does not start until the completion of its preceding layer. While
it is possible to start the next layer before the preceeding layer is complete, there are good reasons
for this layer-by-layer ordering. After computing a block of results in layer 1, starting the execution
of layer 2 could reuse intermediate results just generated from layer 1. However, inputs to layer 1
are still alive and could be further reused to generate other results of layer 1. Proceeding with layer
2 needs to bring other new input data to the local memory, which may potentially evict live data
from layer 1. Given that local memory is limited and unable to accommodate the working-set data
of a single layer, working with more than one layer at a time does not have an obvious advantage
in maximizing data reuse for all tensors. Thus, we assume that one layer finishes before the next
starts. This is consistent with almost all implementations of CNNs.

3.1 Application Template

Each CNN layer implements operations on tensors (multidimensional arrays), drawn from a lim-
ited set of operations such as convolution, matrix multiplication, pooling, and local response nor-
malization, as shown in Figure 1. Each layer can be captured by an application template that in-
cludes a nested loop, termed as algorithm loops, and a macro operation (MacroOp) in each
iteration of the nested loop. These layers share two common characteristics: (1) algorithm loops
are deep; (2) the MacroOp is simple. The algorithm loops are independent of each other and are
interchangeable. This provides a high degree of parallelism and massive data reuse in MacroOp
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Fig. 1. CNN layers displaying the application template.

execution. Each MacroOp computes one scalar result, and it may or may not have loops in its defi-
nition (in Figure 1, (1)–(3) do not, (4) does). Loops within a MacroOp are not interchangeable with
the algorithm loops. The input parameters to CNNFlow from the application level are: (1) the type
of MacroOp, (2) the algorithm loops represented by the set of loop indicators Iin = i1, . . . , im , and
(3) their input dimensions Bd = Bd

l1
, . . . ,Bd

lm
.

3.2 Architecture Template

The accelerator architecture we target consists of a uniform software-controlled SRAM scratchpad
memory and a spatial array of processing elements (PE), as shown in Figure 2. Each PE has
function units (FU) for computation and a small software-controlled register file scratchpad.
The accelerator communicates with DRAM through DMA, and data can move between DRAM
and SRAM. SRAM can talk to each PE through the row and column buses in the PE array. Each
PE can talk to its neighbors in all four directions. SRAM has a very limited number of ports in
each bank. To avoid port conflict among tensors, one SRAM bank is only assigned to store one
tensor. Further, to simplify memory control, SRAM and the register file in the PE are partitioned
such that each tensor has a fixed region to hold its own data in one kernel execution. This memory
partitioning is determined at the program level.

This architecture can help with the high degree of parallelism and data reuse in our targeted
applications and is commonly used by other CNN accelerators [1, 47, 48]. The accelerator tem-
plate in CNNFlow is configured by the following input parameters: (1) the number of SRAM banks
N sb

in , (2) the bank size Msb , (3) the register file size in each PE Mr
in , and (4) the PE array dimen-

sion D
pe
1 ×D

pe
2 . Note that the impact of memory organization and access times is captured through

(i) the SRAM bank parameters being an input to the overall optimization and (ii) the access time ra-
tio between DRAM and SRAM indicated by the input parameterw , as shown in Equation (5) below.

3.3 Computation Mapping

The input data of the application layer are initially stored in DRAM and need to be moved to
the FUs in the PEs for computation. Executing the applications in Figure 1 on the architecture
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Fig. 2. Architecture template. Fig. 3. Computation mapping.

in Figure 2 is about scheduling the data movement across the memory hierarchy. The execution
essentially specifies the data and the path of data moving through the memory and PEs. The goal
of computation mapping is to reduce the overall cost of data movement needed for computation.
We consider scheduling data movements between DRAM and SRAM, between SRAM and register
files, and between register files in the PEs. Figure 3 shows the hierarchical computation mapping,
where the design parameters we optimize are marked in red.

The input data are first partitioned into SRAM-level blocks such that each block can fit in SRAM.
The block dimension variables are given as Bs = Bs

i1
, . . . ,Bs

im
, where Bs

i is the block dimension for

loop i ∈ Iin . The data blocking increases local data reuse in SRAM. Each block dimension controls
the maximum degree of data reuse one tensor could have. Through adjusting block dimensions,
we can balance the data reuse between tensors. To avoid SRAM bank conflict, we allocate one
complete SRAM bank to one tensor. We can control the utilization of SRAM size and bandwidth
through adjusting how SRAM banks as well as its ports are partitioned among tensors. The design
variables N sb = {N sb

t }t ∈T are used to represent the SRAM partitioning, where tensor t from the

operand setT has N sb
t SRAM banks. Given N sb

in as the total number of SRAM banks, the sum of N sb
t

equals to N sb
in ,
∑

t ∈T N sb
t = N sb

in . We define the SRAM Block Computation as the computation that
takes one SRAM-level data block from each operand tensor and produces and stores the resulting
data block in SRAM. The execution of the SRAM Block Computation will use up all the SRAM
ports and PE resources; thus, they are scheduled one after the other in sequence. Their execution
ordering is determined by the ordering of SRAM blocking loops, as shown in Figure 3. We use

ordered list Id = [io1, . . . , iom] to indicate the loop ordering, where iol ∈ Iin is the loop indicator
for the lth SRAM blocking loop.

The second level of blocking is to further partition the SRAM-level data block into PE-level data
blocks with block dimensions given by Br = Br

j1
, . . . ,Br

jm
. The PE Block Computation operates

on PE-level data blocks and is executed inside one PE. Due to the limited number of PEs in the
datapath, the PE Block Computations of one SRAM Block Computation are mapped to the PE array

in batches. Each batch executes D
pe
1 × D

pe
2 PE Block Computations in parallel, and the ordering

of batch execution is determined by the ordering of PE blocking loops as marked in Figure 3. The
ordered list I s = [jo1, . . . , jom], jol ∈ Iin , sets loop jl as the lth PE blocking loop.

We use variables Ps = Ps
j1
, . . . , Ps

jm
to represent the PE batch dimension. They are given as

the step size of PE blocking loops in Figure 3. The product of Ps
j for all loops should equal to the

number of physical PEs available,
∏

j ∈Iin
Ps

j = D
pe
1 × D

pe
2 . To simplify the mapping, we let each
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batch dimension be completely mapped to either D
pe
1 or D

pe
2 . Thus, the product of Ps

j for loops

in a subset I1 ⊂ Iin is equal to D
pe
1 ,
∏

j ∈I1 P
s
j = D

pe
1 , and the product of others is equal to D

pe
2 ,∏

j ∈Iin−I1 P
s
j = D

pe
2 . This mapping rule captures the common inter-PE dataflow strategies used by

other designs. In the systolic-array-based designs, data of one tensor are moved horizontally and
reused across PEs in the same row while data in another tensor are moved vertically and reused
across same-column PEs. For a fully connected layer, data in tensors I, W, and O are reused with
the batch dimension of Ps

y , Ps
x , and Ps

f
, respectively. We could realize the systolic array by setting

one batch dimension from Ps
y , Ps

x , and Ps
f

equal to D
pe
1 , one equal to D

pe
2 , and the other equal to

1. For example, Ps
f
= 1, Ps

x = D
pe
1 , Ps

y = D
pe
2 corresponds to the systolic-array dataflow where

partial sums are reused locally inside the PEs and two operand tensors are reused across PEs. For
convolution layer, the Weight Stationary [10] scheduling keeps filter weights to stay stationary

inside the PEs and input and output tensors move across PEs. This is represented as Ps
m = D

pe
1 ,

Ps
n = D

pe
2 , Ps

k
= Ps

f
= Ps

x = Ps
y = Ps

c = 1 in our mapping framework. Similarly, Output Stationary

[10] makes output elements stay in PEs while moving input tensor and filter weights across PEs,

which corresponds to Ps
f
= D

pe
1 , Ps

k
= D

pe
2 , Ps

m = Ps
n = Ps

x = Ps
y = Ps

c = 1 in our framework.

3.4 Problem Statement

DRAM accesses have dominant cost in terms of time and energy consumption over SRAM accesses
and computation, and thus, the main optimization goal is to reduce the number of DRAM accesses.
DRAM accesses include compulsory ones and the additional ones caused by data eviction from
SRAM. Compulsory DRAM accesses consist of the initial read for input tensors and write-back of
the output tensor. Its total number is equal to the sum of tensor sizes, which is independent of
dataflow. However, each tensor requires additional DRAM accesses when subsequent data evict
their previous copies in local SRAM memory. It is these additional DRAM accesses that we optimize
through the dataflow. The additional DRAM accesses of input tensors equals to the number of
data spilled during computation. However, for data in output tensors, the eviction requires first
writing back the current value and then re-fetching it from DRAM at its next use. Each data spill
for an output tensor costs one DRAM write and one DRAM read. Equation (1) summarizes the
components of the additional DRAM accesses.Tin andTout are the sets of input and output tensors,
respectively.Ad

t and Ed
t are the number of additional DRAM accesses and the number of data spilled

to DRAM from tensor t . The set of parameters affecting Ad is Xs , which includes: (1) SRAM-level

block dimensionsBs ; (2) the ordering of loops Id ; (3)N sb = {N sb
t }t ∈Tin∪Tout

describing how SRAM

is partitioned so tensor t has N sb
t SRAM banks.

Ad (Xs ) =
∑

t ∈Tin∪Tout

Ad
t =
∑

t ∈Tin

Ed
t +

∑
t ∈Tout

2 · Ed
t (1)

The secondary target for optimization is the number of SRAM accesses As . SRAM accesses in-
clude compulsory accesses Asc and additional accesses due to data spilling from register files Asa .
The compulsory accesses in each SRAM Block Computation are composed of SRAM reads for ini-
tially moving input data from SRAM to the datapath registers and SRAM writes for moving back re-
sults. The number of compulsory accesses of each SRAM Block Computation is equal to the sum of
the operand data block size and the result data block size. Equation (2) shows the calculation ofAsc ,
where N s,db represents the number of SRAM Block Computations andCs

t gives SRAM data block
of tensor t . Therefore, Cs

t , and thus Asc , is determined by SRAM-level blocking dimensions Bs .

Asc (Xs ) = N s,db
∑

t ∈Tin∪Tout

Cs
t (2)

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 3, Article 40. Pub. date: March 2023.



40:8 Q. Nie and S. Malik

The additional SRAM accesses are caused by data eviction in register files. Similarly, each eviction
of data in output tensors requires one SRAM read and one SRAM write. Equation (3) gives the
total number of additional SRAM accesses Asa . N s,db represents the number of SRAM Block Com-
putations and Es

t is the number of data spilled from registers to SRAM in one SRAM Block Compu-
tation of tensor t . Besides Xs , its other parameters Xr include: (1) PE-level block dimensions Br ;
(2) PE Block Computation batch dimensions Ps ; (3) the loop ordering I s ; (4)Mr = {Mr

t }t ∈Tin∪Tout

describing how each register file is partitioned so tensor t has Mr
t space for its own data.

Asa (Xs ,Xr ) = N s,db ��
�

∑
t ∈Tin

Es
t +
∑

t ∈Tout

2 · Es
t
��
�

(3)

Equation (4) gives the objective function for minimizing the number of SRAM accesses As , which
includes both compulsory SRAM accesses and additional SRAM accesses due to data spilling from
register files.

As (Xs ,Xr ) = Asc (Xs ) +Asa (Xs ,Xr ) (4)

To optimize the overall local memory utilization, we aggregate the number of DRAM accesses
and SRAM accesses into one optimization objective by calculating their weighted total, as Prob-

lem 0 defined in Equation (5). (The weight w can be determined based on the specific hardware
design/technology used.)

Problem 0: minimize
Xs ,Xr

Ad (Xs ) +w · As (Xs ,Xr )

subject to 1 ≤ Br
l ≤ Bs

l ≤ Bd
l ,
∑

t

N sb
t = N sb

in ,
∑

t

Mr
t = Mr (5)

The straightforward method for solving Problem 0 is sweeping the entire parameter space
of Xs ∪ Xr . For each point in this space, we can simulate the memory system during execution
and count the total memory accesses at each level. However, this method is not practical for real
cases, given the enormous size of the design space. Consider the first convolution layer in AlexNet
with input dimension for f , c,k,x ,y,m,n, stride as 1, 3, 96, 227, 227, 11, 11, 4 and a typical setting
of memory including 27 4 KB SRAM banks, 260 registers in one PE, and a 12 × 14 PE array. (We
refer to this instance as AN1, short for AlexNet layer 1, in the rest of the article.) The size of the
design space for AN1 is about 1030. Sweeping a design space with this size is impractical within a
feasible amount of compute time. Further, at each of these design points, we will need an expensive
memory system simulation to count the number of memory accesses at each level. In the following
sections, we will introduce approaches for addressing both aspects of the search cost: (1) the cost
of memory system simulation to evaluate the objective function value for a given design point and
(2) the large number of design points.

For ease of explanation, we first look at a simpler version of Problem 0, referred to as Problem

1 that is restricted to optimizing DRAM accesses. As shown in Equation (6), Problem 1 only
optimizes the number of additional DRAM accessesAd (Xs ). However, solving Problem 1 involves
all the techniques for solving Problem 0 and thus, we start with this to ease explanation. For the
application and architecture example mentioned before, the size of Xs is about 1.85 × 1014 for
Problem 1. Figure 4 gives an overview of our solution to Problem 1 and where each part of the
solution is covered in the next two sections.

Problem 1: minimize
Xs

Ad (Xs )

subject to 1 < Bs
i < Bd

i ,
∑

t

N sb
t = N sb

in

(6)
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Fig. 4. An overview of the solution to Problem 1.

4 ANALYTICAL COMPUTATION OF DRAM ACCESSES

As shown in Figure 4, in this section, we provide an efficient analytical calculation for the number
of additional DRAM accesses Ad for a given set of design parameters Xs to avoid simulating the
memory system. Between DRAM and SRAM, data are moved to provide operand data blocks for
SRAM Block Computation. When SRAM is fully occupied by data that still have a future use, a
new block used by SRAM Block Computation needs to evict existing data in SRAM to be allocated.
Based on the optimum spilling strategy [49], the optimum data to evict are those with furthest
next reuse. This result is key to our analytical calculation of memory accesses. For CNN-layer
computations, the data use pattern is regular and periodic due to the loop structure, for which we
can efficiently determine the optimum dataset to evict in each step.

To better understand this, we will first explain how loops affect the data reuse pattern. From the
view of tensor t , loops can be classified into three categories as follows:

(1) Reuse loop: The loop does not provide any coordinate to the tensor’s element. The data
blocks get reused when the loop iterates. For instance, in convolution, loops {k}, {f ,x ,y},
{c,m,n} are reuse loops for tensors I ,W ,O , respectively.

(2) Related loop: The loop independently provides a coordinate to the tensor’s element. While
the loop is iterating, different data blocks get used. For convolution layer, loops {f , c},
{k, c,m,n}, {f ,k,x ,y} are related loops for tensors I ,W ,O , respectively.

(3) Partial reuse loop: The loop determines a coordinate of the tensor’s element together with
other loops. While the loop is iterating, the next data block in use will have partial overlap
with the current one. For convolution, loops {x ,y,m,n} are partial reuse loops for tensor I
and tensorsW , O do not have partial reuse loops.
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Fig. 5. An example of reuse group (red cross represents data being evicted.)

The loop types and their relative ordering together define the pattern of data reuse in tensor t .
In adopting the optimum data spilling strategy, the loop configuration further decides the pattern
of data spilling. We explain this by considering different forms of data reuse pattern.

Complete Reuse Group

Complete reuse group is defined as a group of data blocks being reused alternately. This reuse
pattern is formed by having one reuse loop followed by a few related loops. Figure 5 shows an
example of six data blocks that are alternately reused for four times. We term one round of data
block usage as a use round. In this example, there are four use rounds, and data blocks 1–6 get
used in order in each use round.

To avoid data spilling, SRAM needs to be able to hold all six blocks. Otherwise, data blocks will
evict each other. Belady’s replacement policy [49] states that the optimal replacement policy is
one that evicts the block that will be used furthest in the future. This policy can be used in our
context, since the block access pattern is known statically. Assume SRAM can hold up to three
data blocks. In the initial use round, the memory is full when we allocate the fourth data block,
and the data block we choose to evict is block 3, as its next use is later than that for block 1 and
2. In Figure 5, we use a red cross to represent a data block being evicted. Similarly, allocation of
block 5 will evict block 4, and allocation of block 6 will evict block 5, as they both have later next
use compared to block 1 and 2. In the following rounds of data use, the data block gets reused in
SRAM if SRAM holds its previous copy; otherwise, it will evict the data block being used most
recently. The data block eviction forms a periodic pattern that enables the total amount of spilling
to be analytically determined. We term one iteration of data block reuse and spilling in the cyclic
pattern as a spilling cycle. Let the data block size be Sb , the number of data blocks in the group
be N b , the reuse times be R. We only need to consider the spilling between reuse rounds 1 to
R − 1, as data blocks in the last round do not have future use. Let Sb,r be the size of the data block
being reused. For complete reuse group, Sb,r = Sb but we will see other cases in the following. Let
D be the size difference between the use round and the spilling cycle. For complete reuse group,
D = Sb . Let Mef f be the effective memory size used to store data with future reuse. For complete
reuse group, all data in each use round has the next reuse, thus Mef f is equal to the memory size
allocated to the tensor. Equation (7) captures the number of spills in the complete reuse group. SPc ,
N c , S last_c , SP last_c represent the number of spills in each spilling cycle, the number of spilling
cycles, the length of the last residual spilling cycle, and its number of spills, respectively.

E (Sb,r ,N b ,D,R,Mef f ) = SPc · N c + SP last_c

SPc =max (0,N b · Sb,r −Mef f ))

N c = (R − 1) · N b · Sb,r /(N b · Sb,r − D))

SP last_c =max (0, S last_c − (Mef f − D))

S last_c = (R − 1) · N b · Sb,r %(N b · Sb,r − D)

(7)
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Fig. 6. An example of partial reuse group (Red cross represents data eviction.)

We define spill-free memory size as the minimum SRAM size required to eliminate the data
spilling in a reuse group, denoted as Msf . For complete reuse group, Msf is equal to Sb · N b .

Partial Reuse Group

A partial reuse loop followed by a few related loops will define rounds of data block use where
each data block only partially overlaps with the one in the previous round. Figure 6 shows an
instance of partial reuse group where blocks 4, 5, 6 in the second use round partially overlap with
blocks 1, 2, 3. Unlike the complete reuse group case where the exact same set of data are being
reused in each round, in the partial reuse group case, the data instances being reused in each
round are different. However, the size of the dataset being reused across rounds stays the same.
After using each data block, we only need to keep in SRAM the part of data with use in the next
round and can erase other data without future use.

We call the portion of a data block that has next reuse as a block’s reuse section and the other
part as its non-reuse section. As with the complete reuse group, we use Sb and N b to represent
the data block size and the number of data blocks in the group. Sb,r is the size of the block’s reuse
section. Thus, for partial reuse group, Sb,r < Sb . To avoid data spilling, SRAM at least needs to
hold: (1) all data being reused across use rounds, of which the size is N b · Sb,r ; (2) the non-reuse
section of the current data block, with size Sb −Sb,r . Therefore, the spill-free memory size Msf for
a partial reuse group is equal to Sb,r · (N b − 1) + Sb .

When SRAM is smaller than Msf , data spilling occurs. In the example of Figure 6, assume SRAM
has size Sb +Sb,r and it is able to hold one full data block and one block’s reuse section. In the first
round, after using block 1 and 2, their reuse sections will stay in SRAM. But the execution of block
3 needs SRAM space to hold the full data block. Thus, the partial block 2 in SRAM will be evicted, as
its subsequent reuse is later than block 1’s. The eviction is also marked as a red cross in the figure.
SRAM space of size Sb − Sb,r is allocated for the non-reuse section of the current data block. The
rest of SRAM space is for storing data being reused across use rounds. Thus, the effective memory
size for resolving data spilling Mef f in partial reuse group is equal to M − (Sb −Sb,r ). As there are
two blocks’ reuse sections that can stay in SRAM, the blocks’ reuse section will evict each other.
Following the optimal replacement rule, the optimum reuse section to evict is still the one being
used most recently. Therefore, the data spilling displays a periodic pattern as with the complete
reuse group case except now Sb,r � Sb and Mef f � M . Accordingly, the size difference between
use round and spilling cycle D is equal to Sb,r . Equation (7) captures the number of data evictions.

Embedded Reuse Group

For deeply nested loops, the reuse, partial reuse, and related loops may appear alternately, re-
sulting in a embedded structure of reuse groups. Instead of a data block as a reuse unit, such as in
Figures 5 and 6, a reuse group can be further reused by its higher-level loops.
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Fig. 7. Embedded reuse group.

Figure 7 gives an example of a two-level embedded reuse group. Figure 7(a) shows four inner-
most loops of a convolution layer as c, y, f, x. Figure 7(b) gives the data layout of tensor I along
four dimensions. Figure 7(c) shows the data block reuse pattern when four loops iterate. Loops
y and x are I’s partial reuse loops. Loops c and f are I’s related loops. Therefore, the execution
of loops y and c forms a partial reuse group. Different partial reuse groups get invoked as loop f
iterates. Then, loop x’s next iteration will invoke a new set of partial reuse groups, but each one
will partially overlap with the previous one. We name the inner group as the subgroup of the
outer one. For each subgroup on the outer use rounds 1 to R−1, data that are not reused inside the
subgroup will be reused in the next outer use round. The data spilling now includes the spilling
inside each subgroup and the spilling of the outer reuse group.

We still call the portion of the subgroup that has subsequent reuse across outer rounds as its
reuse section and the other portion as its non-reuse section. Sb,r and N b represent the size of the
subgroup’s reuse section and the number of subgroups, respectively. To eliminate data spilling,
SRAM first needs to hold all the data being reused across outer rounds, with size equal to N b ·Sb,r .
Second, SRAM needs an extra space to make each subgroup spilling free. The size of this extra

space could be smaller than subgroup’s spill-free memory size Msf , denoted as M
sf

b
, as the set of

data being reused in the subgroup and over outer rounds could overlap. We useDb,sf to represent
the initial dataset in a subgroup that fully occupies its spill-free memory size. Thus, the size of
Db,sf is equal to Mb,sf . We use S () to represent the size of a dataset, then S (Db,sf ) = Mb,sf .
We use Db,r to represent the set of data in a subgroup that are reused across outer round. Thus,
S (Db,r ) = Sb,r . The extra SRAM space required to eliminate spilling in the subgroup is equal to
S (Db,sf − Db,r ). Therefore, the spill-free memory size Msf of the outer reuse group is equal to
N b · Sb,r + S (Db,sf − Db,r ).
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If SRAM size is smaller than Msf , then data spilling happens. In the example of Figure 7, SRAM
size is set to Sb,r + Mb,sf . Besides holding one subgroup’s reuse section, SRAM can eliminate
data spilling inside the subgroup. After the execution of subgroup 1, its reuse section is left in
SRAM for use in the second outer round. The execution of subgroup 2 could utilize the remaining
SRAM space to eliminate its own spilling. However, subgroup 2’s reuse section could not stay
in SRAM, as the execution of subgroup 3 will evict space occupied by subgroup 2. Following the
optimum replacement strategy, data reused inside a subgroup has a higher priority in taking SRAM
space over data only with reuse across outer use rounds. The eviction aims to make the subgroup
spill-free first. Only if there is still extra SRAM space, the spilling of the outer group will be handled.
In the first outer use round, subgroup i evicts data from subgroup i − 1 to get the SRAM space of
sizeMb,sf that makes itself spill-free. Subgroup n+1 in the second outer round can reuse subgroup
1’s reuse section that is in SRAM. And as mentioned earlier, this reuse section overlaps with the
dataset being reused inside subgroup n + 1 by size S (Db,sf ∩ Db,r ). To eliminate its data spilling,
subgroup n+1 only needs an extra SRAM space of size S (Db,sf −Db,r ). Therefore, subgroup n can
still keep in SRAM a portion of its reuse section, of which the size is S (Db,sf ∩ Db,r ). Subgroup
n + 2 and following subgroups in the second round will then evict data of size Mb,sf from the
previous subgroup to make itself spill-free. We see that for the outer group, its data spilling still
forms a cyclic pattern that can be captured by Equation (7). The size difference of the use round
and the spilling cycle D is equal to S (Db,sf ∩ Db,r ). The effective memory used for holding data
being reused across outer rounds is equal to Mef f = M − S (Db,sf − Db,r ).

When memory is smaller than Mb,sf , spilling happens inside each subgroup. Each subgroup
will fully occupy the SRAM and evict all data from its preceding subgroup. No data can stay in
SRAM across the use rounds of the outer group. Thus, the outer group displays full data spilling,
with the number of data being spilled equal to N b · Sb,r · (R − 1).

To summarize, data spilling of the embedded reuse group consists of spilling inside each sub-
group and spilling of the outer group. When memory size is unable to eliminate the subgroup’s
spilling, all data reused across outer group’s use rounds are spilled. The data spilling inside each
subgroup decreases as memory size increases. Each subgroup’s spilling count is identical and can
be calculated with Equation (7). When memory size meets the value of Mb,sf , the subgroup be-
comes spill-free. If memory size further increases, then spilling generated in the outer group starts
decreasing. The embedded reuse group is entirely free of spilling when SRAM size is equal to its
spill-free memory size Msf .

Hierarchical Reuse Groups

More generally, deeply nested loops will deliver a hierarchy of reuse groups. The subgroup may
have its subgroups. The spilling numbers in the subgroup further depends on if SRAM can make its
subgroup spill-free. Figure 8(a) gives an example loop structure that corresponds to five-level reuse
groups, as shown in Figure 8(b). The total number of data spilling includes spilling from each level
of reuse groups. Figure 8(c) plots how the total number of data spilling is reduced as the memory
size increases. If the memory size is between the spill-free memory size of the group in level i + 1
and group in level i , then the data spilling are generated from groups in level i and above while all
groups of level i + 1 and below are spill-free. In this case, the group above level i needs to spill all
its data reused across its use rounds, which gives its maximum number of data spilling. A group
in level i could achieve some data reuse with Equation (7) describing its relation to the memory
size. Equation (8) summarizes the calculation of total spilling number Ad

t for a given memory size

Mt . N
д
i represents the number of instances for the group in level i . Ad

t,i gives the number of data

spilling from one group instance in level i . Each group in level i has Ri use rounds and N b
i level-

(i + 1) groups as subgroups in each use round that are in level i + 1. Each subgroup has a set of
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Fig. 8. Hierarchical reuse groups.

dataDb,r
i being reused across outer use rounds and the dataset size is Sb,r

i . As subgroup is in level

i + 1, Dsf
i+1 gives the spill-free dataset of the subgroup.

Ad
t (Mt ) =

∑
i

N
д
i · A

d
t,i (Mt )

Ad
t,i (Mt ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, if Mt >= M
sf
i

Ni · Sb,r
i · (Ri − 1), else if Mt < M

sf
i+1,

E (Sb,r
i ,N

b
i , S (Db,sf

i ∩ Db,r
i ),Ri ,Mt − S (Db,sf

i − Db,r
i )), otherwise

(8)

Algorithm 1 gives how to evaluate the data spilling in tensor t for given loop ordering Id , block

dimensions Bs , and the SRAM size for the tensor Mt . Loop ordering Id and block dimensions Bs

will define a hierarchy of reuse groups. For each group level i , they specify the type of reuse group
and in each group, the number of use rounds Ri , the number of subgroups in each round N b

i , the

dataset of subgroup being reused Db,r
i and its size Sb,r

i . The other two pieces of information of

group in level i used in Equation (8) are the number of group instances N
д
i and its subgroup’s

spill-free dataset Db,sf
i , also represented as Dsf

i+1. N
д
i depends on the upper-level reuse groups.

We update N
д
i of each level starting from the top group level. In contrast, Dsf

i+1 is determined by
lower-level reuse groups. We make another pass on the reuse group hierarchy from bottom up to

update Dsf
i+1 of each level as shown in Algorithm 1.

5 PRUNING THE PARAMETER SEARCH SPACE

Algorithm 1 provides an analytical calculation for the number of DRAM accesses, Ad , for a given
point in the parameter space Xs . This avoids expensive memory access simulation for each point
in this space. However, this solves only part of the problem, as the parameter space is still large,
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ALGORITHM 1: Spilling Calculation

function GetSpilling(Id ,Bs ,Mt )

Build reuse group hierarchy with Id ,Bs

Id ,Bs give Nb
i , Ri , Db,r

i , Sb,r
i of group level i

i = 1

while i � lmax do

N
д
i+1 = N

д
i · N

b
i · Ri , i + +

Dsf
i = one data block, i − −

while i � 1 do

if group_type == “complete” then

Dsf
i = D

r
i

else

Dsf
i = Dr

i ∪ D
sf
i+1

return Ad
t (Mt )

e.g., 1.85 × 1014 for the example instance AN1 in Section 3. We tackle this by developing a set of
techniques for pruning this search space.

5.1 Automatic Memory Partitioning

As shown in Figure 4, in this section, we introduce the first pruning technique. For a given loop

ordering Id and block dimensions Bs , this pruning helps us avoid sweeping the full range of
SRAM partitioning parameters N sb . The problem of SRAM partitioning is defined as optimizing
the number of SRAM banks each tensor has, denoted asN sb

t , so the total number of DRAM accesses

from all tensors is minimized, as summarized in Equation (9). Msb and N sb
in are the SRAM bank

size and the input number of SRAM banks, respectively.

minimize
N sb

∑
t

Ad
t (N sb

t ·Msb ) subject to
∑

t

N sb
t = N sb

in (9)

The principle used here is to allocate SRAM space to the tensor where this piece of memory can
hold more data uses. This guarantees memory being best utilized for resolving data spilling. For
every tensor, its data spilling decreases as the SRAM size it has increases, but the level of decrease,
or the sensitivity, varies with the tensor, the design parameters, and the memory size. We will show
the monotonicity of the spilling sensitivity and how we can utilize that for allocating memory.

More formally, we define the sensitivity function of DRAM accesses for tensor t as Fd,sen
t (m)

in Equation (10). Ad
t (m) is the number of DRAM accesses from tensor t for SRAM size m. As

introduced in Section 3.3, each SRAM bank is completely occupied by one tensor, thus, we only

consider Fd,sen
t (m) values whenm is a multiple of SRAM bank size Msb . The initial value form is

N sb0
t · Msb , where N sb0

t is the minimum number of SRAM banks required to hold one tensor t’s

data block. Then,m increases in steps of SRAM bank size Msb . Lemma 5.1 states that Fd,sen
t (m) is

a non-increasing function.

Fd,sen
t (m) =

Ad
t (m) −Ad

t (m +Msb )

Msb
, m = i ·Msb ,N sb0

t ≤ i ≤ N sb
in , i ∈ N (10)

Lemma 5.1. For tensor t , the DRAM accesses sensitivity Fd,sen
t (m) does not increase asm, the SRAM

size available for tensor t , increases.
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ALGORITHM 2: Memory Partitioning

function MemoryPartition(F d,sen )

for t in T do N sb
t = N sb0

t , Mt = N sb0
t ·Msb ,

N sb = 0

while N sb < N sb
in do

fc = 0, tc = NULL

for t in T do

if F sen
t (Mt ) > fc then

fc = Fd,sen
t (Mt ), tc = t

if tc ! = NULL then Mtc+ = Msb , N sb
t + +, N sb + +

return N sb

Proof. Assume the spill-free memory sizes for groups in an n-level hierarchy from the bottom

to top are M
sf
n , . . . ,M

sf
1 and M

sf
i+1 < M

sf
i for i < n. Whenm, the SRAM size allocated for tensor t ,

falls in the range [M
sf
i+1,M

sf
i ), the groups located in level i + 1 and below are spilling free. When

m increases in this range, the number of data spilling in level-i reuse groups decreases but that in

groups above level i will remain the same. Therefore, the value of Fd,sen
t (m) for m ∈ [M

sf
i+1,M

sf
i )

is controlled by reuse groups in level i .
From Equations (7) and (8), for data spilling from level-i reuse groups, its sensitivity towards

memory size change can be computed as N
д
i · N c

i as given in Equation (11). N
д
i is the number of

reuse group instances in level i . N c
i is the number of spilling cycles in each reuse group.

Fd,sen
t (m)

m∈[Msf
i+1,M

sf
i )
= N

д
i · N

c
i (11)

Equation (12) calculatesN
д
i+1, the number of reuse group instances in level i+1.Ri andN b

i represent
the number of use rounds and the number of subgroups in each round for level-i groups. Therefore,
each level-i group has N b

i · Ri subgroups, which are in level i + 1. For reuse group in level i , its

number of spilling cycles N c
i is upper bounded by N b

i ·Ri , as shown in Equation (13). By combining

Equations (12) and (13), we see that the sensitivity in the range [M
sf
i+2,M

sf
i+1) is greater than that

in [M
sf
i+1,M

sf
i ), as given in Equation (14).

N
д
i+1 = N

д
i · N

b
i · Ri (12)

N c
i <= (Ri − 1) · N b

i /(N
b
i − 1) < N b

i · Ri (13)

Fd,sen
t (m)

m∈[Msf
i+2,M

sf
i+1 )
= N

д
i+1 · N

c
i+1 > N

д
i · N

c
i = Fd,sen

t (m)
m∈[Msf

i+1,M
sf
i ) (14)

�

This lemma forms the basis of Algorithm 2, which gives the procedure of allocating SRAM space
to each tensor. N sb

t and Mt are the number of SRAM banks and the corresponding SRAM size
tensor t gets. Initially, each tensor gets several SRAM banks required for holding only one data
block, given by N sb0

t . We use N sb to track the number of SRAM banks already being allocated.

When N sb is still smaller than N sb
in , the total number of SRAM banks available, we pick the tensor

tc that has the greatest Fd,sen
t value at Mt and assign an extra SRAM bank to it. The sensitivity

value represents the efficiency of utilizing the piece of SRAM space to eliminate the data spills.
Algorithm 2 selects the tensor with maximum efficiency to assign the next piece of memory. The
non-increasing characteristic of the sensitivity function guarantees that other tensors will not give
better efficiency of using this memory, and the selected tensor is the optimum choice.
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Theorem 5.2. Algorithm 2 returns the optimum solution to memory partitioning problem defined

in Equation (9).

Proof. Ad
t (N sb

t · Msb ) of tensor t can be calculated by subtracting from Ad
t (N sb0

t · Msb ) the

number of DRAM accesses decreased when the SRAM size is expanded fromN sb0
t ·Msb toN sb

t ·Msb ,
as given in Equation (15).

Ad
t (N sb

t ·Msb ) = Ad
t (N sb0

t ·Msb ) −
N sb

t ·Msb∑
m=N sb0

t ·Msb

Fd,sen
t (m) (15)

Ad
t (N sb

t ·Msb ) of each tensor is constant for given Id andBs . The objective function for memory

partitioning now becomes maximizing
∑

t

∑N sb
t ·Msb

m=N sb0
t ·Msb

Fd,sen
t (m). With constraint

∑
t N

sb
t = N sb

in ,

there are N sen = N sb
in −
∑

t N
sb0
t number of Fd,sen values being accumulated in the new objective.

This is maximized if the N sen largest Fd,sen
t values from all tensors are selected. Lemma 5.1 es-

sentially states that Fd,sen
t values in tensor t are ranked from high to low. If x Fd,sen

t values are

selected from tensor t , then they must be the first x ones. Thus, we can get the N sen largest Fd,sen
t

values by merging the ranking from all tensors and picking the first N sen candidates, as done in
Algorithm 2. �

After applying memory partitioning, CNNFlow can reduce the size of the parameter space of
the specific problem instance AN1 from 1.8 × 1014 to 5.7 × 1011.

5.2 Block Dimension (BD) Pruning

The second pruning technique helps with reducing the sweeping of block dimensions Bs . For
determining the value of block dimension Bs

i of loop i , we do not need to sweep every integer

value between 1 to the input dimension size Bd
i . For Bs

i values that cannot fully divide Bd
i , we pad

the last data block. Note that to simplify data movement, a data block with or without padding
occupies the same SRAM space. The memory space allocated to padding data is not utilized to
resolve data spilling. Thus, block dimensions causing less padding use memory more efficiently.
Among a set of block dimensions that result in the same number of iterations, the one that requires
minimum padding has the lowest data spilling. Thus, from 1 to Bd

i , we only need to consider each

smallest Bs
i value that yields a new number of loop iterations N s

i = �
Bd

i

Bs
i
	.

Lemma 5.3. The optimum block dimension for loop i with input dimension Bd
i will be in list V s

i =

1, 2, . . . , �
√
Bd

i 	, . . . , �
Bd

i

3 	, �
Bd

i

2 	,B
d
i .

Proof. The number of iterations of loop l , N s
i , is calculated as N s

i = �
Bd

i

Bs
i
	. Bs

i with value in the

range [V s
i [j],V s

i [j + 1]) results in the same number of loop iterations as V s
i [j]. Assume loop i is a

related loop for tensor t . It forms a reuse or partial reuse group together with the closest reuse loop
or partial reuse loop above. The number of loop iterationsN s

i of i controls the number of subgroups

N b
i in each group’s use round. The block dimension Bs

i controls the size of data being reused in

each subgroup Sb,r
i . Based on Equation (7), the total number of DRAM accesses is increased with

the same N b
i but larger Sb,r

i . For computation kernels that we target, loop i is a related loop for at
least one tensor. Therefore, among Bs

i that give the same N s
i , the minimum value of Bs

i will give
the minimum number of data spilling. The data spilling when Bs

i = V
s
i [j] must be lower than that

with Bs
i ∈ (V s

i [j],V s
i [j + 1]). �
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Fig. 9. Pruning search tree with branch and bound.

The number of points to sweep in block dimension Bs
i is reduced to O (
2

√
Bd

i �) from O (Bd
i ).

The design space for AN1 is further reduced from 5.7 × 1011 to 1.9 × 109.

5.3 Branch and Bound Search

As shown in Figure 4, in this section, we further prune the design space formed with loop indicator

Id and pruned blocking dimensionsBs . We can use a search tree to represent the search space such
that at each level in the search tree, we explore the values of one parameter. As shown in Figure 9,
from top down in the tree, we explore values of loop indicator il and block dimension Bs

il
for the

lth loop. Instead of fully traversing every path in the tree, we propose using a branch-and-bound
algorithm that uses the best solution found thus far to prune the search. At each node, we evaluate
the objective function lower bound Ld its subtree could achieve. If Ld is already larger than Ad

min ,
the best objective value seen so far, then we can skip searching in this subtree. Otherwise, the
search continues in the subtree, as it may have a better solution. When we reach a leaf node in the

tree, we have a specific value for Id and Bs for that path. Thus, we can run memory partitioning
as given in Algorithm 2 to compute Ad for this path. We update Ad

min if Ad is smaller for this path.
Algorithm 3 provides the branch-and-bound algorithm. Function LoopInd(l ) explores indicator

candidates for the lth loop. For each branch, it estimates the subtree lower bound using Function

GetL( ˙Id , Ḃs ). ˙Id and Ḃs represent the partially determined loop ordering Id and block dimensions
Bs for the non-leaf node. If the subtree could possibly update the best objective found so far, then it
calls Function LoopBlock(l ,i). Function LoopBlock(l ,i) explores block dimensions for loop i at the
lth location. If the lth loop is already the inner most loop, then it runs memory partitioning given
in Algorithm 2 to get the objective value for the current configuration path. Otherwise, it estimates
the subtree lower bound and continues exploring indicators for (l +1)th loop if the objective could
further be improved in the subtree.

The main challenge in the branch-and-bound algorithm is the lower bound estimation for the

non-leaf node, given in Function GetL( ˙Id , Ḃs ). We construct the lower bound of total DRAM

accesses L( ˙Id , Ḃs ) as the sum of lower bound of DRAM accesses for each tensor, L( ˙Id , Ḃs ) =∑
t Lt ( ˙Id , Ḃs ). Tensor t can maximally reduce its DRAM accesses if: (1) it gets the maximum

SRAM size Mu
t ; (2) loops are ordered and blocked in a way that the data spilling is minimized

when Mt = Mu
t . Therefore, to estimate Lt , the DRAM accesses lower bound for tensor t , we first

need to estimate its memory size upper bound Mu
t and then find the optimum loop ordering and

blocking for tensor t . Each of these tasks is addressed in one subsection in the following, as shown
in Figure 4.
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ALGORITHM 3: Branch and bound algorithm

˙Id = [], Ḃs = [], Ic = Iin , LoopInd(0)

function LoopInd(l )
for i ∈ Ic do

˙Id [l] = i , Ic .erase (i )

if GetL(
˙Id , Ḃs ) < Amin then LoopBlock(l , i)

function LoopBlock(l , i)
for b in BD pruned values do

Ḃs [i] = b, UpdateFsenu(i , t ), UpdateFsenl(i , t )
if l == Iin .size() then A = MemoryPartition(F d,sen ), update Ad

min

else if GetL(
˙Id , Ḃs ) < Ad

min then LoopInd(l + 1)

function UpdateFsenu(i , t )
for t in T do

if i is reuse loop then pu
t = q

u
t , j + +

else if i is partial reuse loop then

Db,sf → data in first round, qu
t = S (Db,sf )

form in [pu
t , qu

t ] do Fd,sen_u
t [m] = N

д
д · N c

д

pu
t = q

u
t , j + +

else

Db,sf → data in subgroup, qu
t = S (Db,sf )

form in [pu
t , qu

t ] do Fd,sen_u
t [m] = N

д
д · N c

д

function UpdateFsenl(i , t )
for t in T do

if i is reuse loop then

j + +, Dsf → current group, pl
t = S (Dsf )

else if i is partial reuse loop then

j + +, adjust ql
t = min dblk size

form in [0, ql
t ] do Fd,sen_l

t [m] = MAX_INT

Dsf → first round, pl
t = S (Dsf )

else

adjust ql
t = min dblk size

form in [0, ql
t ] do Fd,sen_l

t [m] = MAX_INT

form in [ql
t , pl

t ] do Fd,sen_l
t [m] = N

д
д · N c

д

function GetL(
˙Id , Ḃs )

for t in T do

Mu
t = MemoryPartition(Fd,sen_u

t , {Fd,sen_l
i }i�t )

Id , Bs in subtree configured as I t_opt , Bt_opt

Lt =
∑

i≤ic Ad
t,i , ic is lowest defined group level

L+ = Lt

return L

5.3.1 Estimate Mu
t - SRAM Size Upper Bound for Tensor t . In memory partitioning, the mem-

ory bank is assigned to tensors based on the spilling sensitivity function Fd,sen of each tensor.

This sensitivity function is fully determined by design parameters of loop ordering Id and block

dimensions Bs . ˙Id , Ḃs on a search path can partially define Fd,sen for each tensor. For each ten-

sor, we maintain a maximum sensitivity function Fd,sen_u
t (m) and a minimum sensitivity function
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Fd,sen_l
t (m) that upper bounds and lower bounds Fd,sen

t , respectively. To get the maximum mem-
ory size Mu

t for tensor t , we use t ’s maximum sensitivity function and the other tensors’ minimum
sensitivity function as input for memory partitioning during the search.

With ˙Id , Ḃs being specified in the search tree, the reuse groups are gradually defined from top
to bottom in the hierarchy. The group level i determines the value of Fd,sen (m) in the scope of m

starting from the spill-free memory size of its subgroup M
sf
i+1 to its own M

sf
i . We initialize Fd,sen_u

t

with value +INF and Fd,sen_l
t with value 0 over the full memory range. We then update Fd,sen_u

t

and Fd,sen_l
t in each step of determining a loop indicator and its block dimension using the new

information we obtained during the search.

Maintaining Fd,sen_u
t . A newly declared group level, say, the jth level, updates the sensitivity

function in the range ofM
sf
j+1 andM

sf
j . As we mentioned in Algorithm 1 for the spilling calculation,

Dsf
j and its size M

sf
j of a level-j group recursively depends on its subgroups. As loops are specified

from the outer-most one to the inner ones in the search tree, and thus the group levels are declared

from the higher one to the lower ones, we are unable to determine the exact value ofDsf
j and M

sf
j

based on partial information on the search tree path. Instead, we estimate M
sf _u
j , the upper bound

of M
sf
j , and use it to identify the range of sensitivity functions we could update. For each group

level j being declared, we update the sensitivity function in the range ofM
sf _u
j+1 andM

sf _u
j . Function

UpdateFsenu(i , t ) in Algorithm 3 implements the Fd,sen_u
t update.

M
sf
j of a level-j group is upper bounded by the group data size. M

sf _u
1 , the upper bound of

spill-free memory size for groups in the top level, is estimated as the input tensor size. Assume
the most recently declared group level is level j, before the next reuse/partial reuse loop appears

to define level j + 1, we need to estimate M
sf _u
j+1 and update Fd,sen_u

t between the range of M
sf _u
j+1

and M
sf _u
j . M

sf _u
j+1 is initialized with the value of M

sf _u
j and gets adjusted as the new loop being

specified. Assume the next loop is a related loop, its loop blocking reduces the data size of groups

in level j + 1, therefore reduces the value of M
sf _u
j+1 . If the next loop is a partial reuse loop, then

groups in level j + 1 are partial reuse groups. The current M
sf _u
j+1 is estimated with the data size

of the group. However, for partial reuse group, its spill-free memory size is upper bounded by the

data size of one use round. Therefore, we can update M
sf _u
j+1 to obtain a tighter bound estimation.

If next loop is a reuse loop, then it declares group level j + 1 as complete reuse group without

changing the estimation of M
sf _u
j+1 . After the appearance of either partial reuse loop or reuse loop,

the current group level is switched to level j+1, and the task then is to estimate the value of M
sf _u
j+2 .

As shown in Function UpdateFsenu(i , t ), we use pointer pu
t to indicate the estimation of M

sf _u
j

and pointer qu
t to indicate the estimation of M

sf _u
j+1 . pu

t and qu
t are initialized to be the tensor size

and are adjusted accordingly as each new loop is specified.
At each step, the value of sensitivity function between qu

t and pu
t is decided by groups in level j.

As shown in Equation (11), it is estimated as the product of N
д
j , the number of group instances in

level j, and N c
j , the number of spilling cycles in each level-j group. As given in Equation (12), N

д
j

depends on N
д
j−1, which further depends on upper group levels. As the group levels are declared

from top down, we can obtain the exact value of N
д
j . However, we can only obtain the upper

bound estimate of N c
j . From Equation (7), N c

j = N b
j · S

b,r
j · (R j − 1)/(N b

j · S
b,r
j − D j ). D j is the

size of intersection set betweenDsf
j+1 andDb,r

j , D j = S (Dsf
j+1 ∩D

b,r
j ).Db,r

j represents the dataset
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in a subgroup that are being reused across current use rounds and its size is Sb,r
j . Their values

can be fully determined by the specified loops on the search path. Dsf
j+1 is the spill-free dataset

of the subgroup. It depends on inner reuse groups that are not specified yet. Thus, Dsf
j+1 can only

be estimated with its superset, just as its sizeMsf
j+1 being estimated with an upper-bound value.

Therefore, we can only obtain the upper bound value of D j and N c
j . Thus, the sensitivity value we

estimate between qu
t and pu

t is the upper bound of the real sensitivity value that is given by the
current group level.

Maintaining Fd,sen_l
t (m). To maintain Fd,sen_l

t (m), for a new group level being declared, say,

level j, we update the sensitivity function between M
sf _l
j+1 and M

sf _l
j . M

sf _l
j is the lower bound

estimation of M
sf
j . Function UpdateFsenl(i , t ) in Algorithm 3 implements the Fd,sen_l

t update.

To obtain M
sf _l
j+1 , we assume the current group level is the lowest group level such that its sub-

group is the data block. The data block size is estimated with its minimum value assuming the
block value for all undetermined related loop and partial reuse loops is equal to 1. The correspond-

ing spill-free datasetDsf
j+1 is then a data block instance. M

sf _l
j is estimated as the size of data being

reused in level-j group Sr
j . In Function UpdateFsenl(i , t ), we use pointer pl

t to indicate M
sf _l
j and

pointer ql
t for M

sf _l
j+1 , which essentially estimates the minimum data block size. Pointer pl

t and ql
t

are updated as each new loop is specified. For a related loop, if its blocking dimension is greater
than 1, then the minimum data block size increases, thus, we expand both pl

t and ql
t . For a reuse

loop, it does not change the estimation of data block size, but it declares a new level of reuse group,

level j + 1. M
sf _l
j+1 is not estimated as the data block size, as it is lower bounded by Sr

j+1, the size

of data being reused in level j + 1. We then estimate M
sf _l
j+2 with data block size and update M

sf _l
j+1

accordingly. For partial reuse loop, it expands the data block and also declares a new group level.
As SRAM needs to hold at least one data block, the spilling sensitivity value within ql

t is set as

+INF. The sensitivity value between ql
t and pl

t is decided by the current group level. The estimation

of sensitivity value is lower than its real value, as we use the subset of Dsf
j+1, which yields an

underestimation of N c
j .

Lemma 5.4. Fd,sen_u
t (m) and Fd,sen_l

t (m) give an upper and lower bound, respectively, for

Fd,sen
t (m) of tensor t . Mu

t is the upper bound of memory size tensor t can have.

Proof. Assume the partially defined İd , Ḃs specifies a partial hierarchy of reuse groups with j

levels. In the range [M
sf _u
j+1 ,M

sf _u
j ], the value of Fd,sen_u

t is updated by Equation (11). M
sf _u
j is the

upper bound of M
sf
j for groups in level j. The calculation of Fd,sen () utilizes D j = S (Dsf

j+1 ∩D
b,r
j ).

With Dsf
j+1 being estimated with a superset of its real set, the value of the sensitivity function for

reuse group in level j is overestimated, as shown in Equation (16).

Fd,sen_u
t (m1)

m1∈[Msf _u
j+1 ,M

sf _u
j ]

>= Fd,sen
t (m2)

m2∈[Msf
j+1,M

sf
j ]
, j ∈ [1,n] (16)

Further, Lemma 5.1 states the value of Fd,sen does not increase with the memory size, as de-
scribed in Equation (17).

Fd,sen
t (m2)

m2∈[Msf
j+1,M

sf
j ]
>= Fd,sen

t (m2)
m2∈[Msf _u

j+1 ,M
sf _u
j ]
, j ∈ [1,n] (17)
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Combining Equations (16) and (17), we show that Fd,sen_u gives the upper bound of Fd,sen for

each of its step regions starting with M
sf _u
n+1 . Within M

sf _u
n+1 , Fd,sen_u is set with +INF, which should

upper bound Fd,sen as well.

Similarly, Fd,sen_l estimates the sensitivity value of group level j betweenM
sf _l
j+1 andM

sf _l
j .M

sf _l
j

is the lower bound estimation of M
sf
j . As D j is estimated with its lower bound, the calculation of

Fd,sen_l underestimates the real sensitivity value of the current group level. Combined with the
non-increasing property of the sensitivity function given in Lemma 5.1, Fd,sen_l provides the lower
bound of Fd,sen . �

5.3.2 Optimum Loop Ordering and Blocking for Tensor t . Equation (18) gives the configuration

of unexplored Id and Bs in the subtree with which tensor t will have the lowest number of DRAM
accesses. The loops from candidate sets are ranked as related loops followed by partial reuse loops
and then followed by reuse loops. The loop-blocking dimension is one for related and partial reuse
loops and is equal to the input size for reuse loops.

I t_opt = [It_r elated
c ,It_par tial

c ,It_r euse
c ]

Bt_opt [l] =

{
1 if l ∈ It_r elated

c ∪ It_par tial
c

Bd
l

else

(18)

Lemma 5.5. Given partially defined
˙Id and Ḃs for tensor t with local memory size Mu

t , selecting

the rest of Id and Bs as I t_opt and Bt_opt gives the minimum number of data spilling in tensor t .

Proof. Blocking and ordering of reuse loops. Assume loop i is a reuse loop for tensor t and
its input dimension is Bd

i . Loop i declares a level of complete reuse groups. Its blocking dimension

Bs
i only affects the number of use rounds the complete reuse group has. Having Bs

i = Bd
i only gives

one use round and eliminates the data spilling. Loops with just one iteration have the same effect
on the data use pattern regardless of their ordering relative to other loops. We can put all reuse
loops as the innermost loops.

Blocking of related loops. Assume partial reuse loops ip and related loops ir are ordered as
ip1 , ir1 , . . . , ir3 , ip2 , ir4 , . . . , ir j , ip3 . . . , ipn from the outer most one to the inner ones. ipk , k ∈ [1,n],
and its following related loops form the kth group level with the type being partial reuse group.

Ad
t,i (Mt ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, if Mt >= M
sf
i

N
д
i · N b

i · S
b,r
i · (Ri − 1), else if Mt < M

sf
i+1,

N
д
i · N c

i · SPi , otherwise

N c
i =

N b
i · S

b,r
i · (Ri − 1)

N b
i · S

b,r
i − S (Db,r

i ∩ Dsf
i+1)
, SPi = N b

i · S
b,r
i + S

(
Dsf

i+1 − D
b,r
i

)
−Mu

t

(19)

The blocking dimensions of level k’s related loops affect the data spilling generated in levels k and
below. From the spilling calculation given in Equations (7) and (8), the number of data spilling from
groups in level i , represented byAd

t,i , is given in Equation (19). N
д
i is the number of group instances

in level i , and it is determined by blocking of loops above level i . N b
i is the number of subgroups in

one use round of the level-i group, and it is decided by the blocking of level i’s related loops.Db,r
i

is the dataset from one subgroup that is being reused in level-i group, and Sb,r
i gives its size. Db,r

i

and Sb,r
i are decided by blocking dimension of loops in the current level and levels above. Dsf

i+1
represents the spill-free dataset of the subgroup, and its size is also affected by blocking dimension
of loops in the current level and levels above.
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In the example with ip1 , ir1 , . . . , ir3 , ip2 , ir4 , . . . , ir j , ip3 . . . , ipn , related loop ir j controls the reuse
groups in the second level. Assume loop ir j is blocked with block size Bs

r j
and yields loop iterations

N s
r j

. In the following, we show how this loop’s blocking affects reuse groups in level 2, in levels

below and levels above. This proof can be applied to related loops other than ir j .

(1) Effect of Bs
r j

on group level 2: Bs
r j

adjusts the subgroup size and the number of subgroups. If

Bs
r j

increases by x times, then the number of subgroups N b
2 decreases x times while the items

related to subgroup size, including Sb,r
2 , S (Db,r

2 ∩D
sf
3 ) and S (Dsf

3 −D
b,r
2 ), all increase by x

times. If Mu
t < M

sf
3 , then Ad

t,2 does not change with Bs
r j

. But if Mu
t is between M

sf
3 and M

sf
2 ,

then Ad
t,2 increases with Bs

r j
as both N c

2 and SP2 increase. Thus, data spilling from level-2

reuse groups benefits from Bs
r j
= 1.

(2) Effect ofBs
r j

on group levels below:Bs
r j

controls the number of group instances and data block

size for group levels below. We use group level 3 as example for explanation. If Bs
r j

increases

by x times, then the instance number of level-3 group N
д
3 is reduced by x times. However, the

block dimension increasing x times makes Sb,r
3 , S (Db,r

3 ∩D
sf
4 ) and S (Dsf

4 −D
b,r
3 ) all increase

by x times. If Mu
t < M

sf
4 , then Ad

t,3 does not change with Bs
r j

. However, if Mu
t is between

M
sf
4 andM

sf
3 , then SP2 increases by more than x times, and even with N

д
3 decreasing x times,

Ad
t,3 still increases with Bs

r j
. Thus, data spilling from levels below also benefits from Bs

r j
= 1.

(3) Effect of Bs
r j

on group levels above: Bs
r j
= 1 gives a smaller data block size than Bs

r j
> 1. With

the dependency Dsf
i = Dr

i ∪ D
sf
i+1, Bs

r j
= 1 may yield a smaller Dsf

i for group level i . Both

N c
i and SPi benefit from smaller Dsf

i+1. Thus, Bs
r j
= 1 also benefits the reuse groups in levels

above.

By considering the effects of Bs
r j

on reuse groups in level 2 itself, levels below and above, we can

conclude Bs
r j
= 1 results in fewer data spilling than Bs

r j
> 1. Thus, related loops are blocked with

blocking size equal to 1.
Ordering of related loops. We want to prove that moving ir j from following ip2 to preceding

ip2 can benefit both groups in level 2 and above.

(1) Effect of ir j ordering on group level 2: By moving ir j from following ip2 to preceding ip2 , the
number of level-2 reuse groups N

д
2 increases, but the number of subgroups in the use round

N b
2 decreases. The number of loop iterations of ir j is represented as N s

r j
. Thus, N

д
2 increases

by N s
r j

times and N b
2 decreases by N s

r j
times. We can prove that with Mu

t −S (Dsf
3 −D

b,r
2 ) >

S (Dsf
3 ∩D

b,r
2 ), equivalentlyMu

t > M
sf
3 , N c

3 ·SP3 decreases by more than N s
r j

times. Thus, the

total data spilling of group level 2 benefits from moving ir j from following ip2 to preceding
ip2 .

(2) Effect of ir j ordering on group above: Having ir j belonging to level 1 increases its number of
subgroups N b

1 but decreases its subgroup size. Both changes are by a factor of N s
r j

. This has

the same effect as reducing the block dimension of a level-1 related loop by N s
r j

times. We

have shown that a group level benefits from its related loop having a smaller block dimension.
Thus, groups above level 2 also benefit from moving loop ir j .

Therefore, groups in level 2 and above benefit from moving related loop ir j from level 2 to level
1. Groups in levels below are not affected by this loop movement. The same proof can be applied
to moving other related loops. We have all related loops preceding partial loops in I t_opt . Their
relative order can be arbitrarily defined, as they are within the same reuse group.
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Blocking and ordering of partial reuse loops. After moving all related loops upward, par-
tial reuse loops ip1 , ip2 , . . . , ipn are ordered as the inner-most loops. Assume partial reuse loop ip1

defines reuse group level j and partial reuse loop ipk defines group level j + k − 1. Without related
loops, there is only one subgroup in each use round. The partial loop’s blocking dimension Br

pk

determines the number of reuse times R j+k−1 and the data block size.
The partial reuse groups are spill-free if the memory size Mu

t is greater than the spill-free mem-

ory size of top-level partial groups M
sf
j . In this case, the data spilling are from group levels above j,

which are defined by specified loops on the search path. Configuring partial reuse loops in the sub-

tree to give the minimum value ofM
sf
j can provide the minimum number of data spilling. However,

if Mu
t is smaller than the minimum value of M

sf
j , then data spilling will occur in partial group level

j. Reuse groups above level j require full data spilling. Thus, their total number is independent of

M
sf
j . The minimum number of data spillings from level j and its lower levels requires exploration

towards both ordering and blocking dimension of partial loops in the subtree. To simplify lower
bound estimation, we only include data spilling above level j that are led by specified reuse/partial

reuse loops on the search path. Its lowest number is reached at M
sf
j getting its minimum value.

The spill-free memory size M
sf
j of the top partial reuse group in the subtree is determined by

both the ordering and blocking of partial loops ip1 , ip2 , . . . , ipn . For each loop ordering, having the

block dimension of all partial loops as 1, Br
pk
= 1, decreases M

sf
j . But it still requires exploring the

loop ordering of ip1 , ip2 , . . . , ipn to search for the minimum value of M
sf
j . �

Theorem 5.6. Given partially defined Id and Id as
˙Id and Ḃs , L =

∑
t Lt ( ˙Id , Ḃs ) gives the lower

bound of Ad (Id ,Bs ). The branch-and-bound algorithm in Algorithm 3 is complete.

Proof. For each tensor t , with any configuration, its data spilling decreases as the memory size
allocated to it increases. Having memory size upper bound Mu

t for tensor t gives the spilling lower
bound for any configuration. Lemma 5.5 shows I t_opt and Bt_opt give the optimum configuration
for any value Mu

t may be. Using I t_opt , Bt_opt and Mu
t to calculate the tensor spilling gives the

spilling lower bound.
The subtree is pruned only when the spilling lower bound is already higher than the best objec-

tive value found. This pruning will not miss the optimum solution. Thus, Algorithm 3 is a complete
algorithm for searching the configuration space. �

For the scenario mentioned before, with only memory partitioning and BP pruning, the number
of design points for AN1 is 1.9 × 109, which is also the number of leaves in the search tree. The
total number of nodes in the search tree (tree size) is 2.7× 1012. The degree of pruning is instance-
specific, as it depends on how the objective function values are distributed in the design space. For
this specific example, after applying the branch-and-bound algorithm, the pruned search tree size
is only 2.1 × 104.

Therefore, after applying the memory partitioning, BD pruning, and brand-and-bound search
tree pruning, we reduced the search space from a computationally impractical 1.85 × 1014 points
to a very manageable 2.1 × 104 points.

6 INTEGRATED OPTIMIZATION

This section shows how we apply the same set of optimization techniques for solving Problem

0 but with the analytic calculation of memory accesses and the lower bound estimation being
updated accordingly. Figure 10 shows how the solutions used for Problem 1 are updated to handle
Problem 0 and where each part of the updates is addressed in this section.
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Fig. 10. An overview of solution for Problem 0.

6.1 Analytic Calculation for SRAM Accesses

As shown in Figure 10, to efficiently evaluate the objective function of one design point, in addi-
tion to the analytical calculation of Ad introduced in Section 4, we need analytical evaluation of
As , the number of SRAM accesses, as well. The SRAM accesses include compulsory ones and also
additional ones caused by data spilling from registers. Equation (2) in Section 3.4 gives the calcula-
tion of the number of compulsory SRAM accessesAsc . Next, we consider the number of additional
SRAM accesses, Asa .

The number of additional SRAM accesses from each PE Block Computation is the same, given
that they are controlled by the same I s and Br and that the PEs have uniform register partitioning.

However, Asa
t is not simply equal to the number from one PE, denoted as A

sa_pe
t , times the total

number of PEs. In CNNFlow, PEs can spatially share data blocks. We only need to re-fetch one
copy of evicted data being shared by PEs from SRAM, and broadcast them to all PEs that use them.
As introduced in Section 3, a batch of PE Block Computations is physically mapped to the PE array,
and the batch dimension is given by the design parameter Ps . With the batch dimension j, if each

PE needs a data block with dimension B
pe
j but the datapath only needs to access SRAM for a block

of dimension B
dp
j due to data sharing across PEs, then the ratio between Asa

t and A
sa_pe
t given by

dimension j is equal to
B

dp
j

B
pe
j

. Considering all loops, we use ft,i to represent the ratio between the

number of data spilling in group level i generated from all PEs and that from one PE. As each loop

can contribute to the batch dimension, ft,i =
∏

j f
j

t,i where f j
t,i represents the ratio contributed

by batch dimension j. We list the computation of f j
t,i for reuse loop, related loop, and partial reuse

loops in the following items:
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Fig. 11. Example of partial spatial data sharing.

• f j
t,i of reuse loop: If the batch dimension j is formed by a reuse loop, then all PEs on this

direction share the same data. Therefore, f j
t,i = 1.

• f j
t,i of related loop: Ps

j PEs in the direction of related loop j do not share their evicted data.

Therefore, f j
t,i = Ps

j .

• f j
t,i of partial reuse loop: For the targeted CNN layers given in Figure 1, only tensor I in

the convolution layer and the pooling layer have partial reuse loops x , y,m, and n. Figure 11
shows an example of spatial data sharing on the batch dimensions of x andm, with batch size
equal to 2 on both dimensions (Ps

x = 2, Ps
m = 2). The adjacent PEs on the batch dimension

of x overlap their data blocks by dimension Br
m −U , as blocks in PE00 and PE10 in the figure.

Adjacent PEs on batch dimension m overlap their data blocks by dimension U · (Br
x − 1),

as blocks in PE00 and PE20. We use B
r sp
i to represent the spatial overlapping dimension on

batch dimension i . Then, B
r sp
x = Br

m −U , B
r sp
m = U · (Br

x − 1).
Tensor I’s block size on the third dimension is given by loop blocking of x and m. We label

the tensor I’s third dimension as xm. We use B
pe
xm to represent the third dimension size of

each data block inside PE. Similarly, we use B
dp
xm to represent the third dimension size of the

data block formed by all PEs in the datapath. Then, we have B
pe
xm = U · (Br

x − 1) + (Br
m − 1)

and B
dp
xm = U · (Ps

x · Br
x − 1) + (Ps

m · Br
m − 1).

To distinguish from the spatial data reuse occurring across multiple physical PEs, we name
the data reuse across use rounds inside each PE as temporal data reuse. We use Br t i

j to repre-

sent the dimension that data blocks in two adjacent iterations overlap inside one PE (tempo-

ral reuse dimension). For loop x , Br t i
x = B

pe
xm − Ps

x · (B
pe
xm − B

r sp
x ). If Br t i

j is smaller than zero,

then the temporal data reuse effect is eliminated inside the PE. Loop j behaves as a related
loop of the reuse group above. Otherwise, loop j still leads a partial reuse group level inside
PE.
Data blocks overlap with each other on the batch dimension of x andm. x andm together will
give a magnifying factor f xm

t,i for groups in level i . The value of f xm
t,i depends on group level i .
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Fig. 12. Magnifying factor of partial reuse loop.

Figure 12 explains the choice of magnifying factor. Figure 12(a) gives the loop configuration
that defines the temporal reuse group hierarchy inside each PE. Figure 12(b) shows the tem-
poral data reuse pattern inside the first PE. There are two levels of partial reuse groups that
are led by loop y and x . Data marked with the dot pattern are reused in the group level of x ,
while data marked in the strip pattern are reused in group level of y. Figure 12(c) combines
data being reused in two group levels from each PE.
– For reuse groups formed by loop x or m, assuming they are in level ix and level im ,

data blocks temporally overlap over tensor I’s third dimension in each PE. As shown in
Figure 12(c), data blocks from different PEs do not share the temporally used data within
each PE. Therefore, f xm

t,ix
= f xm

t,im
= Ps

x · Ps
m .

– For reuse groups formed by other reuse or partial reuse loops, temporally reused data in-
side each PE can be spatially shared. As in Figure 12(c), each PE needs additional SRAM

accesses for data with dimension B
pe
xm . With spatial sharing, the datapath only needs

to access SRAM for data with dimension B
dp
xm . f xm

t,i =
B

dp
xm

B
pe
xm

for level i except ix and

level im .
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Fig. 13. Pruning integrated search tree with branch and bound.

6.2 Integrated Optimization

Problem 0 optimizes the weighted total of the number of DRAM accesses Ad and the number of
SRAM accessesAs . Besides parameters inXs that affectAd ,As depends on parameters inXr , which
includes the loop ordering I s , block dimensions Br , and step sizes Ps for PE blocking loops as well
as the partitioning of the register file in each PEMr . Therefore, in this section, we exploreXs and
Xr in an integrated way to optimize the objective function of Problem 0. Algorithm 2, used for
SRAM partitioning, is updated to address the register file partitioning. The same BD pruning given
in Section 5.2 can be applied to prune redundant sweeping for values of Br and Ps . The branch-
and-bound approach introduced in Section 5.3 is also updated to prune the integrated search tree.
As shown in Figure 10, the following two subsections provide updates to the memory partitioning
and branch-and-bound pruning, respectively.

6.2.1 Register File Partitioning. We adopt the same memory partitioning in Algorithm 2 that is
used for SRAM to partition the register file in each PE. It utilizes a function describing how the
data spilling sensitivity changes versus local memory size change for each tensor t . We define the
sensitivity function of SRAM accesses for tensor t as F r,sen

t (m) in Equation (20). As all PEs have
the same register file partitioning, m in Equation (20) represents the register file size tensor t has
in one PE. Nevertheless,As

t gives the total number of data spilling generated in all PEs from tensor
t .

F r,sen
t (m) = As

t (m) −As
t (m + 1), 1 ≤ m ≤ Mr

in ,m ∈ N (20)

Similar to Fd,sen
t in Section 5, the sensitivity value of F r,sen

t in the range between M
sf
i+1 and M

sf
i

is determined by reuse groups in level i . For only one PE, F r,sen
t in this range is equal to N

д
i · N c

i ,

where N
д
i is the number of group instances in level i and N c

i is the number of spilling cycles
each level-i group has. With the effect of a PE batch, F r,sen

t is magnified by factor ft,i , as given in
Equation (21). ft,i gives the ratio between the number of data spilling in level-i groups generated

from all PEs and from one PE. As introduced in Section 6.1, ft,i equals to the product of f j
t,i , which

represents the magnifying factor of loop j on data spilling from group level i .

F r,sen
t (m)

m∈[Msf
i+1,M

sf
i ]
= ft,i · N д

i · N
c
i (21)

6.2.2 Integrated Branch and Bound. The integrated search tree is built up by sweeping values
for one parameter in each layer. As sketched in Figure 13, from root to the leaves, the parameters
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are ordered as follows: the loop indicator il for the lth SRAM blocking loop (Id [l] = il ) and its

blocking dimension Bs
il

for l from 1 to m, with SRAM partitioning done after Id and Bs are fully

specified, then followed by the loop indicator jl for the lth PE blocking loop (I s [l] = jl ), its PE
batch dimension Ps

jl
and blocking dimension Br

jl
for l from 1 tom, with RF partitioning applied at

the leaf node. The tree is also pruned using branch and bound. The lower bound estimation needs
to be modified from what we used in solving Problem 1, since the objective function has changed.
For nodes above the SRAM partitioning level, at the SRAM partitioning level, and below SRAM
partitioning level, we evaluate their subtree lower bounds as Ls2d , Lspar , and Lr 2s , respectively.
Ls2d : Ls2d is estimated as the weighted sum of DRAM accesses lower bound Ld and the compul-

sory SRAM accesses lower bound Lsc , as given in Equation (22). Ld is obtained with the algorithm
given in Section 5. The compulsory SRAM accesses Asc

t of tensor t is given in Equation (2). N s,db ,
the number of SRAM Block Computation used in Equation (2), is computed as

∏
l ∈Iin

N s
l

, where
N s

l
is the number of iterations of SRAM blocking loop l . Asc

t is lower bounded by the input tensor
size St times the product of tensor t ’s reuse loop iterations, as shown in Equation (23). For par-
tially defined loop blocking, having all unspecified loops are blocked with its input dimension can
guarantee Lsc as the Asc lower bound.

Ls2d = Ld +w · Lsc (22)

Lsc =
∑

t

��
�
St ·

∏
t ′s reuse loop l

N s
l
��
�
≤
∏

l ∈Iin

N s
l ·

∑
t ∈Tin∪Tout

Cs
t = Asc (23)

Lspar : At the SRAM partition node where Id and Bs are fully defined, the objective lower bound
is estimated as Lspar given in Equation (24). The exact value of DRAM accesses and compulsory
SRAM accesses can be obtained at this point. Lspar is estimated by simply assuming the number
of additional SRAM accesses is zero.

Lspar = Ad +w · Asc (24)

Lr 2s : At nodes when not all parameters of the PE Block Computation are determined, the lower
bound is estimated as Lr 2s , as shown in Equation (25). Besides exact Ad and Asc , it also estimates
the lower bound of additional SRAM accesses Lsa based on the partial information I s , Br , and Ps .

Lr 2s = Ad +w · (Asc + Lsa ) (25)

Lsa is the lower bound number of additional SRAM accesses. As we obtained Ld in Section 5, Lsa

is estimated by
∑

t L
sa
t , where Lsa

t is the lower bound of the number of addition SRAM accesses
generated by tensor t . Tensor t can have the least number of data spilling if it can occupy the
maximum possible size of the register file in PEs, represented asMr,u

t , and the loops are configured
in a way that benefits tensor t the most. Therefore, as shown in Figure 10, we use two steps to obtain
the value of Lsa

t , with each step being addressed by one subsection below.

6.2.2.1 Estimate Mr,u
t - Register File Size Upper Bound for Tensor t . To estimate the upper bound

of register size for tensor t , as in estimating the SRAM size upper bound, we use an upper bound

sensitivity function F r,sen_u
t for tensor t and lower bound sensitivity function F r,sen_l

t ′ for other

tensors t ′. Therefore, we maintain an upper bound sensitivity function F r,sen_u
t and a lower bound

sensitivity function F r,sen_l
t for each tensor t . The algorithm for maintaining F r,sen_u

t and F r,sen_l
t is

modified from that of maintaining Fd,sen_u
t and Fd,sen_l

t to include the effect of PE batch dimensions
Ps . Ps controls the size of data being reused inside each PE and the sensitivity value of data
spillings from all PEs. As the sensitivity function takes the register size of one PE as its x-axis but
the sensitivity value of data spillings from all PEs as its y-axis, Ps adjusts its ranges on both x-axis
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and y-axis. For related loops and partial reuse loops, the step size greater than one reduces the
tensor size being reused inside one PE but increases the number of PEs generating data spilling.
The former is reflected on the x-axis, while the latter gets reflected on the y-axis.

Maintaining F r,sen_u
t . For maintaining F r,sen_u

t , we assume, for each unspecified loop i in the
subtree, its block size Br

i equals to its input dimension Bs
i . Compared to the actual quantities Br

i ·
Ps

i = Bs
i , this may overestimate the size of reuse groups in each PE. After the actual values of

Br
i and Ps

i are determined, we adjust the range of F r,sen_u
t along the x-axis to obtain a tighter

sensitivity bound. We use B
s,pe
i to represent the total data dimension over the direction of loop

i for all the data blocks being used in one PE. Its size depends on the actual value of Br
i and Ps

i .

With evaluating Br
i as Bs

i , the reuse groups disclosed so far also evaluate B
s,pe
i as Bs

i in maintaining
F r,sen_u

t . Therefore, after specifying Br
i and Ps

i in each step, we then shrink F r,sen_u
t along its x-axis

by the ratio between Bs
i and B

s,pe
i . The value of B

s,pe
i is evaluated as below.

• B
s,pe
i of related loop: B

s,pe
i = �Bs

i

P s
i
	.

• B
s,pe
i of partial reuse loop: B

pe
i is the dimension of data block in one PE. B

r sp
i and Br t i

i repre-

sent the dimension shared spatially and temporally, respectively. B
s,pe
i = B

pe
i + (N r

i −1) (B
pe
i −

Br t i
i ). N r

i is the number of loop iterations, N r
i = �

Bs
i

Br
i ·P

s
i
	.

For the specified group level j that is above level i , as in Equation (21), its sensitivity value is
estimated as ft, j ·N д

j ·N c
j . We assume the PE batch magnifying factor ft, j for every group level j is

equal to its maximum value limited by the number of physical PEs D
pe
1 ·D

pe
2 . The number of group

instances N
д
j is determined by group levels above j, which is not affected by Br

i and Pr
i of its lower

group level i . Br
i determines the size of subgroup being reused Sb,r

j and the spill-free memory size

of subgroup M
sf
j . Based on Equation (7), N c

j does not change with Br
i as well. Thus, after knowing

the actual value of Br
i and Ps

i , we do not need to adjust the magnitude of sensitivity values that
have been updated.

Maintaining F r,sen_l
t . For F r,sen_l

t , setting both block dimension and step size to 1 guarantees
the lower bound. For related loop and partial reuse loop, we need to correct the underestimation
towards their input dimension in disclosed reuse groups. In contrast to the F r,sen_u

t case, we now
expand the function along the x-axis based on group size underestimation and increase the func-
tion value along the y-axis based on sensitivity value underestimation.

Lemma 6.1. F r,sen_u
t (m) and F r,sen_l

t (m) give an upper and lower bound, respectively, for F r,sen
t (m)

of tensor t . Mr,u
t is the upper bound of memory size tensor t can have.

Proof. Assume the partially defined I s , Br , and Ps specify a partial hierarchy of reuse groups

with i levels. In the range [M
sf _u
i+1 ,M

sf _u
i ], the value of F r,sen_u

t is updated by ft,i · N д
i · N c

i . ft,i is
the aggregated PE batch magnifying factor for level-i group. Similar to the proof for Lemma 5.4,

we only need to show M
sf _u
i is the upper bound of M

sf
i and the sensitivity value we updated for

level i is the upper bound of its real value. Then, together with non-decreasing property of the
sensitivity function, we can prove F r,sen_u

t (m) is the upper bound of F r,sen
t (m).

Estimating Br
l

as Bs
l

for unknown loop l makes M
sf _u
i the upper bound value of its actual value.

ft,i = D
pe
1 · D

pe
2 is also the upper bound of ft,i ’s real value. Similar to the case of estimating

Fd,sen_u
t , N c

i uses Di = S (Dsf
i+1 ∩D

b,r
i ). WithDsf

i+1 being the superset of its actual dataset, N c
i also

gives the upper bound of its actual value. Therefore, the sensitivity value for level-i reuse groups
is overestimated.
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Similarly, F r,sen_l
t (m) estimates the sensitivity value of group level i between M

sf _l
i+1 and M

sf _l
i .

M
sf _l
i is the lower bound estimation ofM

sf
i . AsDi is estimated with its lower bound, the calculation

of F r,sen_l
t underestimates the actual sensitivity value of the current group level. With proof similar

to that used for Fd,sen_l
t , F r,sen_l

t gives the lower bound of F r,sen
t . �

6.2.2.2 Optimum Loop Configuration for Tensor t .

I
opt
t = [It_r elated

c ,It_par tial
c ,It_r euse

c ]

Bopt
t [l] =

{
1 if l ∈ It_r elated

c ∪ It_par tial
c

Bd
l

else

Popt
t [l] =

{
1 if l = It_par tial

c ∪ It_r euse
c

max (D
pe
1 ,D

pe
2 ) else

(26)

For tensor t , I s and Br in the subtree define the remaining reuse group hierarchy inside each PE.
Ps in the subtree determines the spilling magnifying factor caused by the PE batch. For any given
Ps , we can estimate Lsa

t , the lower bound number of data spilling from tensor t , by accumulating
data spillings from level ic and above, when loops in the subtree are configured as (1) loops in
subtree are ordered as related loops above partial reuse loop and above reuse loop; (2) blocking
dimensions of related loop and partial reuse loop set to 1 and the relative ordering of partial reuse
loops is explored. Level ic is the lowest group level led by specified reuse/partial reuse loops on the
search path. To obtain Lsa

t with considering Ps , for each partial loop ordering, we need to obtain
the optimum Ps to minimize Lsa

t . In the following, we show how Ps could affect the lower bound
estimation of Lsa

t .
PE batch dimension for Lsa

t . With related loops and partial reuse loops having block dimen-
sion as 1, if their batch dimension is 1, then their loop iteration number is equal to the SRAM block
dimension. For loop j, having PE batch dimension Ps

j > 1 decreases the number of loop iterations

N r
j that may reduce data being temporally reused inside PE but increases PE batch magnifying

factor f j
t as multiple PEs generate data spilling on its batch dimension.

If loop j is related loop, then having Ps
j > 1 increases its magnifying factor f j

t by Ps
j . Its number

of loop iterations N r
j is decreased by Ps

j . Loop j is located in reuse group level ic , the lowest group

level defined by specified loop on the search path. We investigate how the change of N r
j affects

data spilling generated in level ic and its upper levels. For group level ic , N r
j controls its number

of subgroups N b
ic . If the memory size is between M

sf
ic+1 and M

sf
ic , based on Equation (19), then data

spilling in level ic is reduced by more than Ps
j times if N b

ic decreases Ps
j times. Therefore, in this

case, level ic benefits from having Ps
j > 1. If level ic requires full data spilling, then its number of

data spilling reduces by Ps
j times. In this case, having Ps

j > 1 does not affect spilling in level ic .

For the upper group level i < ic , N r
j controls its subgroup size Sb,r

i . Its number of data spilling is

decreased by more than Ps
j times if it is the lowest group level requiring data spilling. If it requires

full spilling, then its number of data spilling will then decrease by just Ps
j times. In summary, for

any loop configuration, having Ps
j > 1 if loop j is a related loop could give smaller value of Lsa

t .

If loop j is partial reuse loop, then having Ps
j > 1 magnifies the number of data spilling generated

in level ic and above by B
dp
j /B

pe
j times. Having Ps

j > 1 decreases the number of loop iterations

N r
j by Ps

j times. For groups in level i ≤ ic , N r
j controls the subgroup size Sb,r

i through adjusting

B
s,pe
j , the effective input dimension for all data used in one PE. As mentioned before, B

s,pe
j =

B
pe
j + (N r

j −1) (B
pe
j −Br t i

j ). Br t i
j =max (0,B

pe
j −Ps

j (B
pe
j −B

r sp
j )). We could prove the effective input
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Table 1. Memory Accesses in AlexNet

Layer

Tensor #MAC Total DRAM acc DRAM acc due to spilling Total SRAM acc Opt

size ops Eyeriss CNNFlow ↓ Eyeriss CNNFlow ↓ Eyeriss CNNFlow ↓ time

(MB) (G) (MB) (MB) % (MB) (MB) % (MB) (MB) % (mins)

Conv1 3.58 0.42 6 3.58 40 2.42 0.00 100 18.5 16.48 11 16.8

Conv2 2.36 0.90 5.4 4.13 24 3.04 1.77 42 77.6 29.35 62 7.6

Conv3 2.62 0.60 5 4.78 4 2.38 2.16 9 50.2 37.69 25 4.7

Conv4 2.09 0.45 3.9 3.69 5 1.81 1.60 12 37.4 28.27 24 4.8

Conv5 1.50 0.30 2.6 2.48 5 1.10 0.98 11 24.9 18.85 24 3.5

Total 12.15 2.67 22.9 18.66 19 10.75 6.51 40 208.6 130.64 37 -

↓ Represents Reduction.

dimension reduces less than B
dp
j /B

pe
j times by having Ps

j > 1. Therefore, the optimum value of Ps
j

to obtain the minimum Lsa
t is equal to 1 if loop j is a partial reuse loop.

7 RESULTS

We have implemented the CNNFlow framework in C++. The framework contains (i) the tool
for analytically calculating the memory accesses and (ii) an optimizer incorporating the pruning
techniques.

We demonstrate the efficacy of our methods through comparing with other state-of-the-art ac-
celerator designs and tools. We choose AlexNet [50] and VGG-16 [51] as benchmarks, as they are
two popular CNN architectures with results reported by other works. They have 5 and 13 convo-
lution layers, respectively, so, effectively, we are running CNNFlow on 18 test cases. To provide a
fair comparison, we set the hardware resources in CNNFlow, such as on-chip SRAM size, PE array
dimensions, and register file size, to be the same, as they are in the competing works.

7.1 AlexNet

We compare the solution generated by CNNFlow with Eyeriss[1] for AlexNet. Eyeriss has a 108 KB
global buffer, 12×14 PE array, and a scratchpad with size 24 B, 448 B, and 48 B for Ifmap, filter, and
partial sum in each PE. The data bit width is 16 b. The memory settings of CNNFlow are 108 KB
on-chip SRAM organized in 27 banks with 4 KB for each bank, 12× 14 PE array, and 520 B register
file in each PE. With 16-bit data width, each SRAM bank can hold 2k data and each register file
can hold 260 data. Table 1 shows the results of the convolution layers in AlexNet given by Eyeriss
and CNNFlow. As in Eyeriss, the number of batches in CNNFlow, Bd

f
, is set to 4. In total, we reduce

about 19% DRAM accesses and 37% SRAM accesses. Subtracting the compulsory DRAM accesses
that equal the input tensor size, CNNFlow can reduce 40% DRAM accesses caused by data spills.

The optimization for the layers is run in parallel, with each layer optimized with a single core.
The max optimization time CNNFlow used is about 17 minutes.1

7.2 VGG16

We also compare VGG-16 with Eyeriss, as shown in Table 2. The hardware setting is the same as in
the AlexNet experiment but the number of batches is 3, as used in Eyeriss. The solutions given by
CNNFlow can reduce 86% SRAM accesses compared to Eyeriss. In Eyeriss, data are stored using a
sparse representation in DRAM and are only decoded into full length before they are loaded into
on-chip memory. Thus, the DRAM accesses they report in MB are with compressed data size. We
focus on dataflow optimization and do not consider sparsity in this work. The DRAM accesses

1CNNFlow is run on a server with Intel Xeon CPU E5-2643 v3 at 3.40 GHz.
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Table 2. Memory Accesses in VGG16

Layer
Tensor #MAC Total DRAM acc Total SRAM acc Opt

size ops Eyeriss (MB) CNNFlow Eyeriss CNNFlow ↓ time
(MB) (G) /Ifmap zero% (MB) (MB) (MB) % (mins)

Conv11 19.25 0.26 15.4/1.6 19.25 112.6 38.54 66% 3.3

Conv12 37.14 5.55 54.0/47.4 37.99 2,402.8 135.35 94% 10.1

Conv21 14.08 2.77 33.4/24.8 19.19 1,201.4 85.87 93% 7.4

Conv22 18.98 5.55 48.5/38.7 47.55 2,402.8 171.75 93% 18.8

Conv31 7.62 2.77 20.2/39.7 24.17 607.4 78.75 87% 12.6

Conv32 10.64 5.55 32.2/58.1 45.47 1,214.8 209.50 83% 53.8

Conv33 10.64 5.55 30.8/58.7 45.57 1,214.8 209.50 83% 53.8

Conv41 5.86 2.77 17.8/64.3 24.52 321.8 91.14 72% 22.0

Conv42 9.43 5.55 28.6/74.7 46.91 643.7 186.08 71% 45.4

Conv43 9.43 5.55 22.8/85.4 46.91 643.7 186.08 71% 46.3

Conv51 5.82 1.39 6.3/79.4 11.81 90 50.30 44% 7.71

Conv52 5.82 1.39 5.7/87.4 11.81 90 50.30 44% 7.71

Conv53 5.82 1.39 5.6/88.5 11.81 90 50.30 44% 7.71

Total 160.53 46.04 - 392.96 11,035.80 1,543.46 86% -

↓ Represents Reduction.

Fig. 14. DRAM accesses in VGG-16.

CNNFlow reports assumes each data is in its full length, i.e., 16 bits. Given this difference, we
cannot fairly compare the decrease in the percentage of DRAM accesses but, overall, we still do
better even considering the compression due to the sparse representation in Eyeriss.

For VGG-16, we also provide a comparison with the results in Reference [29], which also op-
timizes loop unrolling, tiling, and interchanging for reducing memory accesses. However, they
couple the block dimension with the on-chip buffer size and only randomly sample the design
space for optimization.

Figure 6 in Reference [29] shows how its total number of DRAM accesses changes with the on-
chip buffer size. In Figure 14, we plot DRAM access points in Reference [29]’s Figure 6 as black dots.
We also show the solution generated by CNNFlow as red dots. The blue line at the bottom is the
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sum of tensor size, which is the minimum number of DRAM accesses that can be achieved. Overall,
CNNFlow requires fewer DRAM accesses for a given SRAM size than Reference [29]. Further,
CNNFlow realizes the minimum DRAM accesses possible with 10 Mbits SRAM, while the design
in Reference [29] requires about 20 Mbits SRAM.

The results shown above demonstrate that the exact optimal solutions found by CNNFlow have
fewer DRAM/SRAM accesses than competing designs where the results are obtained using heuris-
tic methods and/or sampling. Further, they show that CNNFlow’s optimal algorithm runs in rea-
sonable time for practical instances.

8 CONCLUSION

This work addresses the problem of automatically mapping the CNN computation on a CNN archi-
tecture such that remote memory access is minimized and data reuse in local memory is maximized.
This is done through optimally controlling the dataflow through hierarchical data blocking, loop
ordering, as well as local memory partitioning for the CNN tensors. We provide a precise math-
ematical formulation for optimizing the memory access in terms of these parameters. We then
provide a solution to this problem that has two key contributions: (1) it uses an analytical method
to calculate the number of DRAM and SRAM accesses for a given value of the above parameters;
(2) it prunes the search space of these parameters using a set of techniques to make the solution
search manageable. We demonstrate the efficacy of this exact solution method in both computa-
tional efficiency and quality of results. It provides exact solutions in reasonable compute time (tens
of mins). In comparison with the state-of-the-art methods for CNN mapping, CNNFlow can realize
20% fewer DRAM accesses and 40%–80% fewer SRAM accesses for well-known CNN applications.
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