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Abstract—Video summarization methods are usually classified 
into shot-level or frame-level methods, which are individually used 
in a general way. This paper investigates the underlying 
complementarity between the frame-level and shot-level methods, 
and a stacking ensemble approach is proposed for supervised 
video summarization. Firstly, we build up a stacking model to 
predict both the key frame probabilities and the temporal interest 
segments simultaneously. The two components are then combined 
via soft decision fusion to obtain the final scores of each frame in 
the video. A joint loss function is proposed for the model training. 
The ablation experimental results show that the proposed method 
outperforms both the two corresponding individual method. 
Furthermore, extensive experimental results on two benchmark 
datasets shows its superior performance in comparison with the 
state-of-the-art methods. 
 

Index Terms—Video summarization, self-attention, stacking 
ensemble learning, shot-level, frame-level 

I. INTRODUCTION 

ith the rapid development of the mobile networks, the 
self-media rise results in massive video data. Hence the 

computer vision technology that can efficiently browse, watch 
and summarize videos, referred to as video summarization, has 
attracted more and more attention [1]. Currently, the supervised 
learning methods for video summarization [2][3][4], which use 
the training data that is composed of the ground-truth labels 
manually generated with human preferences, are usually 
superior to the unsupervised methods [5][6][7][8] because they 
can implicitly learn human preferences. 

The current deep learning based approaches for video 
summarization are approximately classified into shot-level and 
frame-level by the partition strategies. The frame-level deep 
learning methods usually rely on Long Short-Term Memory 
(LSTM) or attention mechanism to capture long-term and short-
term dependencies within a video, and use appropriate frame 
scoring networks to predict the probability of each frame being 
selected into the video summary [1][3][9][10]. But the 
prediction scores of the video frames in the same semantic 
segment cannot accurately represent the importance of the 
corresponding segment without temporal consistency 
constraints. And the LSTM-based methods often suffer from 
low variation in prediction probabilities, which would have a 
restricted impact when generating the final summary [11]. 

To solve the problem of temporal consistency, a typical shot-
level method is predicting the selection scores on the segmented 
shots rather than on each frame, which facilitates exploiting 
temporal similarities and dependencies within a video [12-15]. 
However, there are two disadvantages as below for the shot-
level strategy: (1) the evaluation form is relatively simple and  
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Fig. 1. The structure of the proposed approach 

all the frames in same segment are given the same importance 
score, which results in a lack of diversity when generating 
summaries; (2) the importance score predicted by this method 
is not sufficiently accurate due to the errors caused by the 
prediction. And the unimportant frames in the segment may be 
given higher scores. 

Thus, the shot-level and frame-level methods are regarded 
as two different methods and are usually used individually. In 
order to separate the subtask of temporal consistency problem 
from the prediction of the frame-level importance scores and 
refine the importance scores of each frame under the constraints 
of temporal interest segments, we propose an attention-based 
stacking ensemble approach for supervised video 
summarization to learn the underlying contact between the two 
methods based on our previous work [16]. Inspired by the 
temporal interest proposals strategy proposed by [14] and the 
sequence labeling formulation in [2], the proposed model first 
encodes the features via a self-attention mechanism, and then 
uses two predictors to predict the interest segments scores and 
the frame-level importance probabilities simultaneously as the 
intermediate features. Finally, the intermediate features are 
combined as the input to a soft decision fusion model to 
estimate the final scores of each frame in the video. 

The main innovations and contributions of our video 
summarization method are as follow. 

1) A stacking ensemble approach is proposed for supervised 
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video summarization to learn the potential complementarity 
between segment and frame partition. 

2) A joint loss function is proposed to train the stacking 
model with the interest proposal label, the important frame label 
and the important score label. 

3) To the best of our knowledge, this work is the first attempt 
to fuse the frame-level and shot-level strategies for video 
summarization. 

II. APPROACH 

The approach uses soft decision fusion to combine key frame 
probabilities and temporal interest segments. As shown in Fig. 
1, given a video v with T frames. A pre-trained backbone 
network is used to extract the visual features for each video 
frame. After feature extraction, the video feature sequence is 
denoted as d TX   , where d is the feature dimension. To 
capture the temporal long-range dependencies, we use self-
attention mechanism [17] and skip connection to re-encode 
frame features to obtain the final representation. Temporal 
average pooling 1d is used in time dimension with the kernel 
size of 4, 8, 16, 32 and the stride of 1 to avoid temporal warping 
or cropping, which is called multiscale temporal pooling [14]. 
The processing of the pooled features is divided into two 
branches as below. 

(1) The pooled features are fed into the temporal interest 
detection module to obtain the interest segments scores denoted 

as 
11, , ,[ ,..., ,..., ]

n N

T
S s t s T s     , where , nt s  is the 

interest score of the t-th frame dividing into the n-th segment in 
a total of N segments. Thus, the video v that consist of a 
sequence of consecutive frames is temporally divided into N 
disjoint segments, and the frames in each segment are assigned 
the same interest score. 

(2) The combination of the multiscale temporal pooling 
features and the final representation features are put into the 
important frame labeling model to predict the key frame 
probabilities of each frame in video as 

1[ , ..., , ..., ] T
K k kt kTP p p p   , where 

ktp  is the t-th 

frame’s probability of being selected as a key frame. 
Finally,

S  and KP  are integrated into a soft decision fusion 

mechanism to predict the final frame-level scores as 

1[ , ..., , ..., ] T
t TY y y y   , where ty , ranging from 0 to 1, 

is the t-th frame-level score of a video. The higher the score a 
frame obtains, the higher probability the frame will be selected 
into the final summary with. 

A. Feature Extraction 

Following the previous methods [1][2][3], we uniformly 
down-sample the videos to 2 fps. Then we take the output of the 
pool5 layer in the pretrained GoogLeNet [18] as the feature 
descriptor for each video frame. The dimensionality of the 
feature descriptor is 1024. 

B. Temporal interest detection 

Inspired by [14], we directly adopt the temporal interest 
proposals generation strategy to generate temporal interest 

segments scores by pre-defined multi-scale intervals. E.g., at 
the t-th temporal location, K interest proposals are appointed 
with the fixed range [ / ,  / ),  , ,...,   2 2 1 2k kt t k K , where 

k  is the duration of the k-th interest proposal. Therefore, 

K T  interest proposals are totally produced in a video 
sequence with T frames. In the training stage, a proposal is 
positive when its temporal Intersection over Union (tIoU) with 
any ground truth proposal is higher than 0.6, or negative with 
0 tIoU<0.3 . The proposals within 0.3 tIoU<0.6  are 
discarded in loss calculation. kl  is calculated by the conclusive 

equations in [14] as {4, 8, 16, 32} to cover all ground-truth 
proposals with the durations from 1 to 44. 

The details of the model are shown in Fig.2 (a). Fc-1 attempts 
to connect different scaled pooling layers and can effectively 
prevent the overfitting, and includes tanh and layer-
normalization. There are two sibling output subbranches 
following Fc-2. The first outputs importance scores of 
proposals, and the second one outputs the associated center and 
the proposals length offsets. 

Finally, min-max normalization is implemented on refined 
proposals by the non-maximum suppression (NMS) [19] to 
obtain the temporal interest segments scores. 
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Fig. 2. The detailed components of the interest detection model and important 

frame labeling model 

C. Important frame labeling 

Just like semantic segmentation indicating the semantic label 
of the corresponding pixels, important frame labeling model is 
formulated as a sequence labeling problem to indicate the 
semantic label of the corresponding frame in time dimension 
[2]. The details of the model are shown in Fig.2 (b). Fc-3 
attempts to map the multi-layer features into single layer. Fc-4, 
including linear layer and softmax function, attempts to predict 
the frame-level probabilities with the output dimension of 
T C , where T is the number of frames, and C, the dimension 
of the output channel, is 2 since we need scores corresponding 
to 2 classes (keyframe or non-keyframe) for each frame. 



3 
 
 
D. Soft decision fusion 

Temporal interest segments scores and frame-level 
probabilities are integrated as intermediate features into a soft 
decision fusion mechanism to predict the final frame-level 
scores. In this model, the most common method is to average 
the two scores with the same weight. To introduce more 
nonlinearity and achieve higher fusion performance, we use a 
simple multilayer perceptron as the meta-learner that utilizes 
the two intermediate features to fit final ground-truth frame-
level scores. 

E. Learning 

Multi-task loss is proposed to train the model jointly. The 
objective function is obtained as  

cls reg pre mseL L L L L                      (1) 

where clsL  and regL , accounting for the temporal interest 

detection module, are the classification loss and the regression 
loss respectively, preL is the prediction loss of the frame-level 

probabilities for important frame labeling, and mseL  is the 

fitting loss of the meta-learner. The four losses are considered 
to be equally important. 

Specifically, focal loss [20] is used to obtain more accurate 
detection of the interesting proposals as 

1

1
(1 ( )) log( ( ))

N

cls t t
m

L p m p m
N





                        (2) 

exp( [ ])

exp( [ ])
j

t

x class

x j
p 


                                 (3) 

where M  is the total number of predicted proposals (including 
positive and negative proposals), and ( )tp m  is the probability 

of the n-th proposal being classified into the corresponding 
ground-truth interest proposal labels, which is actually 
represented by the softmax function.   is a hyperparameter that 

is artificially set to be 1. 
The regression loss regL  is actually the positioning 

regression for the positive interest proposal, and is obtained as  

1

*

1 1

1 1
( ) ( ( ) ( ))

posN Q

reg t L i i
i qpos

L p i smooth t q t q
N Q 

         (4) 

1

20.5     | | 1,
( )

| | 0.5  
L

x if x
smooth x

x otherwise

 
 


                    (5) 

where posN  is the number of positive interest proposals, ( )tp i  

is the probability of the i-th positive interest proposals being 
classified into the corresponding ground-truth interest proposal 
labels, *( )i it t  is the predicted (ground-truth label) i-th group of 

positioning regression, and each group contains Q parameters. 
The regression loss of positioning regression is calculated by 
the 

1Lsm ooth loss. 

Specifically, the predicted location offset ( , )i i it c l   

contains the center position and the length offsets between the 
generated proposals and the pre-defined proposals. The ground 
truth location offset * * *( , )i i it c l   is obtained as follows. 

* * * *( ) / ,   ln( / )i i i i i i ic c c l l l l                       (6) 

For the prediction loss of frame-level importance scores, the 
weighted focal loss is proposed because the categories of 
temporal important frames and non-important frames are 
extremely unbalanced, which is obtained as 

1

1
( )(1 ( )) log( ( ))

T

pre t t
i

L i p i p i
T




                 (7) 

where T is the total number of temporal frames, ( )tp i  is the 

probability of the i-th frame being classified into the 
corresponding ground-truth label as shown in Eq. (3), ( )i  is 

the category weight of the ground-truth classification ( ) of 

the i-th frame, and
_

t

median freq

freq
  , where tfreq  is the 

number of frames with ground-truth label divided by the total 
number of frames in the video, and median_freq is the median 
of the computed frequencies. 

The mean square error metric is adopted to be the fitting loss 

mseL  of the meta-learner, and the loss function is  
2

2mse tL  y y                                   (8) 

where ty  is the ground-truth frame-level scores vector, and y  

is the meta-learner’s output frame-level scores vector. 

F. Key-shot selection 

The Kernel Temporal Segmentation (KTS) algorithm [21] is 
adopted on the video sequence to calculate the number of shots 
in the video and their region (i.e., the start and end). And the 
shot-level importance score is obtained by averaging the final 
scores output by meta learner in the same shot. Finally, the 
video summaries are produced under the constraint that the total 
length of selected shots is no more than 15% of the original 
video length for a fair comparison with the reference methods, 
which is implemented by Knapsack algorithm. 

III. EXPERIMENTS AND ANALYSIS 

A. Datasets and evaluation metric 

We evaluate our stacking ensemble approach for video 
summarization (SEVS) on two public benchmark datasets, i.e., 
TVSum [22] and SumMe [23]. Up to 39 videos from the 
YouTube dataset and 50 videos from the Open Video Project 
(OVP) dataset [24] are used to augment the training data. Three 
settings as suggested in [1] are adopted to evaluate the method 
as following. (1) Canonical. (2) Augmented. (3) Transfer. 
Training and testing datasets in all the settings are randomly 
divided into 5 splits, and the average performance of the 5 runs 
is achieved. In addition, F-score are used as the metric to assess 
the similarity between the generated summaries and the ground 
truth summaries, and diversity score is used to assess the 
diversity performance of the generated video summaries. 

B. Experiments 

1) Implementation Details 
The non-maximum suppression threshold is set as 0.5 for the 

final result presentation. Our model is trained over 300 epochs 
by using Adam optimizer with a base learning rate of 55 10
and a weight decay of 510 . All the experiments are conducted 
on a Nvidia GTX 1660Ti GPU and implemented by PyTorch. 
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2) Results and Comparisons 

Table I shows the comparison results, where the performance 
of the other methods is obtained from the corresponding 
references. It can be seen that the performance of the canonical 
tests for our model on the two basic datasets is superior to the 
other methods. Specifically, the F-score on TVSum is increased 
by at least 1.3%. It is worthy noting that the parameters of our 
model is fewer than those of most of the models in Table I. 

It can also be seen that our method achieves competitive 
performance compared with the state-of-the-art methods in 
augmented and transfer settings. Among all the methods, our 
ensemble model significantly outperforms the two typical 
methods, i.e., DSNet [14] (a classic temporal interest detection 
model) and FCSN [2] (a model based on sequence labeling 
formulation), which validate the effectiveness of our model. 

In addition, the diversity performance of our method is 
assessed on two datasets, and the results are shown in table II. 
Our method achieves the highest score on SumMe. Compared 
with DSNet, our method achieves an improvement of 5.5% in 
the diversity score. 

TABLE I 
COMPARISONS OF F-SCORE (%) AND PARAMETERS (MILLION) WITH STATE-

OF-ART VIDEO SUMMARIZATION METHODS ON THE SUMME AND TVSUM 

DATASETS UNDER THE CANONICAL (C), AUGMENTED (A) AND TRANSFER 

(T) SETTINGS, RESPECTIVELY 

Methods 
SumMe TVSum 

Params 
C A T C A T 

vsLSTM [1] 37.6 41.6 40.7 54.2 57.9 56.9 2.63 

dppLSTM [1] 38.6 42.9 41.8 54.7 59.6 58.7 2.63 

FCSN [2] 48.8 50.2 45.0 58.4 59.1 57.4 116.49 

VASNet [3] 49.7 51.1 - 61.4 62.4 - 7.35 

SUM-GAN [5] 41.7 43.6 - 56.3 61.2 - 295.86 

DR-DSN [6] 42.1 43.9 42.6 58.1 59.8 58.9 2.63 

M-AVS [9] 44.4 46.1 - 61.0 61.8 - - 

DSNet [14] 50.2 50.7 46.5 62.1 63.9 59.4 8.53 

SABTNet [15] 50.7 - - 61.0 - - 6.31 

SASUMsup [25] 45.3 - - 58.2 - - 44.07 

[26] 51.1 52.1 45.4 61.0 61.5 55.1 - 

DHAVS [27] 45.6 46.5 43.5 60.8 61.2 57.5 - 

[28] 51.7 51.0 44.1 61.5 61.2 58.9 - 

[29] 51.7 - - 59.6 - - - 

CSNetsup [30] 48.6 48.7 44.1 58.5 57.1 57.4 - 

SEVS (Ours) 51.8 51.4 46.7 62.9 63.3 59.0 4.33 

TABLE II 
THE DIVERSITY SCORE OF GENERATED SUMMARIES ON THE SUMME AND 

TVSUM DATASETS 

Dataset dppLSTM DR-DSN DSNet SEVS (Ours) 

SumMe 0.591 0.594 0.642 0.676 

TVSum 0.463 0.464 0.476 0.473 

Notes: The higher the score, the better the diversity of the summary video. 

C. Ablation studies and analysis 

Ablation experiments are conducted to verify the 
effectiveness of our method, and the results are shown in Table 
III. The experiments are tested separately for the two branches, 
i.e., temporal interest segments and frame-level probabilities in 
our model. We also compare different soft decision fusion 

strategies, i.e., averaging the two scores with the same weight 
and meta-learning. It can be seen that no matter which soft 
decision fusion strategy is used, the improvement of the final 
performance is obvious. Meta-learning strategy achieves higher 
generalization performance due to the fact that the concurrent 
learning of segment features and frame-level features makes the 
model more robust with restraining overfitting. 

It can also be seen from Fig. 3 that our method can better fit 
the ground-truth important scores curve compared with other 
strategies in the ablation test, which means that our meta 
learning stacking method could refine the importance scores of 
each frame under the constraints of temporal interest segments. 

The results of the parameter analysis of the NMS threshold 
on the SumMe and TVSum datasets are shown in Fig. 4. By 
comparing the F-score and balancing inference time 
consumption, 0.5 is specified as the final threshold. 

TABLE III 
F-SCORE RESULTS (%) VIA ABLATION STUDIES ABOUT INTEREST 

SEGMENTS, FRAME-LEVEL PROBABILITIES, AVERAGING AND META 

LEARNING STRATEGY 

segments frame Avg. meta 
SumMe TVSum 

C A T C A T 

    50.1 49.7 44.6 62.6 62.4 58.7 

    47.0 48.6 45.9 61.6 61.9 58.5 

    49.8 50.6 46.5 62.8 63.0 58.2 

    51.8 51.4 46.7 62.9 63.3 59.0 

(a) (b)

(c) (d)  
Fig. 3. Comparative step lines via ablation studies about interest segments, 

frame-level probabilities, averaging and meta learning strategy 

 
Fig. 4. Parameter analysis of the NMS threshold on the SumMe and TVSum 

datasets 
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IV. CONCLUSIONS 

A stacking ensemble approach for video summarization is 
proposed to exploit the potential complementarity between 
shot-level and frame-level partition. Comparative experimental 
results demonstrate the superiority of our model, while a series 
of ablation experiments show that interest segments scores and 
frame-level probabilities are potentially correlated, and their 
fusion can result in more proper decisions than a single method. 
In the next step, ensemble learning algorithms for video 
summarization will be further explored. 
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