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Figure 1: Experience ReNeLiB: A framework transforming human-webcam interactions through 3D motion and Mel frequency
analysis, enabling interactive virtual agents to adapt to user behavior based on multimodal social cues.

ABSTRACT
Flexible and natural nonverbal reactions to human behavior remain
a challenge for socially interactive agents (SIAs) that are predomi-
nantly animated using hand-crafted rules. While recently proposed
machine learning based approaches to conversational behavior gen-
eration are a promising way to address this challenge, they have not
yet been employed in SIAs. The primary reason for this is the lack
of a software toolkit integrating such approaches with SIA frame-
works that conforms to the challenging real-time requirements of
human-agent interaction scenarios. In our work, we for the first
time present such a toolkit consisting of three main components:
(1) real-time feature extraction capturing multi-modal social cues
from the user; (2) behavior generation based on a recent state-of-
the-art neural network approach; (3) visualization of the generated
behavior supporting both FLAME-based and Apple ARKit-based in-
teractive agents. We comprehensively evaluate the real-time perfor-
mance of the whole framework and its components. In addition, we
introduce pre-trained behavioral generation models derived from
psychotherapy sessions for domain-specific listening behaviors.
Our software toolkit, pivotal for deploying and assessing SIAs’ lis-
tening behavior in real-time, is publicly available. Resources, includ-
ing code, behavioural multi-modal features extracted from thera-
peutic interactions, are hosted at https://daksitha.github.io/ReNeLib

CCS CONCEPTS
• Human-centered computing→ Human computer interac-
tion (HCI).

1 INTRODUCTION
Socially-aware Interactive Agents (SIAs) are autonomous systems
proficient in engaging in natural language dialogues and interacting
with their environment [30]. The increasing importance of human-
machine interaction in everyday life necessitates the development
of SIAs that can actively listen and respond to users in a believable
and context-dependent manner. The Media Equation theory posits
that individuals treat computers, televisions, and new media simi-
larly to real people and places [32], suggesting that SIAs displaying
social behaviors, including active listening, can positively impact
user experiences. It is essential to argue that SIAs should operate in
a manner tailored to the context in which they are deployed. This
emphasizes the need for SIAs to demonstrate context-sensitive, be-
lievable, and professional behavior. By doing so, these agents can
create more immersive and natural interactions, ultimately leading
to improved human-SIA communication and user satisfaction.

Facial expressions and head movements are essential compo-
nents of human communication and social interaction, extending
their importance to human-SIA interactions. Bickmore and Cas-
sell [3] evaluated an embodied conversational agent (ECA) that
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used nonverbal cues, such as nodding and eyebrow movements, to
express active listening. Their findings revealed that users perceived
the ECA as more attentive and engaging compared to a version
without these social cues. Context comprehension and accounting
for the multimodal nature of interactions are crucial, as facial ges-
tures and spoken utterances are intrinsically interconnected. For
instance, in psychotherapy, nonverbal synchrony has proven vital,
with head synchrony positively correlating to therapy success [31].
Consequently, incorporating context-dependent facial gestures in
active communicative listening behavior is imperative for fostering
natural human-SIA interactions.

Traditional authoring and assistive frameworks for SIAs have
often relied on predefined scripts to generate non-verbal behavior,
playing a crucial role in the development of conversational agents
and virtual characters. For example, the BEAT toolkit enables the
automatic generation of gestures and facial expressions based on
input text [6]. Moreover, the Behavior Markup Language (BML)
provides a unified framework for generating and controlling mul-
timodal behavior in virtual agents, including facial expressions,
gestures, and gaze direction [20]. Additionally, Pelachaud’s work
on modeling multimodal emotional expression in virtual agents
has contributed to the understanding of how predefined scripts
can be used for generating non-verbal behaviors [29]. However,
these methods may be limited in capturing the natural complexity
and dynamic nature of human-human non-verbal communicative
behavior, necessitating further research on alternative techniques
that can address these limitations.

The advent of deep learning techniques has facilitated data-
driven generative approaches for creating locomotion, dancing,
and facial gestures in avatars [18, 26]. Despite their potential, these
techniques exhibit limited real-time dyadic capabilities, rendering
them unsuitable for direct implementation in SIAs. The importance
of real-time capabilities in practical applications is critical for foster-
ing immersive and engaging human-SIA interactions [37]. As such,
there is a pressing need to address these limitations and develop a
framework using data-driven generative methods that can meet the
real-time dyadic requirements of SIAs, enhancing the naturalness
and efficacy of human-SIA communication across various contexts.

In this paper, we present a novel open-source modular software
toolkit designed to overcome these limitations by facilitating the
integration of data-driven behavior generation with multiple fa-
cial parametric representations. Our approach employs the FLAME
(Faces Learned with an Articulated Model and Expressions) [22], a
highly expressive 3D face parametric representation. To accommo-
date other facial parametric representations, we devise a mapping
function for Apple Inc.’s ARKit ARFaceAnchor [16]. Our toolkit
incorporates state-of-the-art generative models for real-time non-
verbal active listening behaviors in dyadic SIA interactions, dy-
namically adjusting listener behavior according to conversational
context. This framework bridges the gap in existing approaches by
enabling real-time, multimodal feature representation and seam-
less integration of data-driven models. Furthermore, we present
a method to enhance the expressiveness of industrial-standard
SIAs using the commercial VuppetMaster platform, developed by
Charamel [11]. This is achieved by establishing a coherent transfor-
mation between FLAME expression coefficients and Apple ARKit
expressions, enabling seamless integration of generated behavioral

expressions within the VuppetMaster platform. By offering an open-
source framework for data-driven listener behavior generation, our
work paves the way for the development of increasingly sophisti-
cated SIAs and their applications in a wide range of contexts.

2 RELATEDWORK
Our work is related to interactive virtual agents, recent approaches
to data-driven behavior generation, and representation systems for
human visual social behavior.

2.1 Interactive Virtual Agents
Interactive Virtual Agents (IVAs) aim to generate dynamic social
behaviors and maintain user engagement in real-time, fully dyadic
conversations [10, 24, 25]. The significance of interactional motion
within conversational agents has been increasingly recognized, as
it enhances user engagement and fosters more natural communi-
cation experiences. Studies have investigated rapport building in
virtual agents [12, 14], the impact of animated conversations on
user experience [5, 25], and the importance of situated interaction
in IVAs [4]. Additionally, Gebhard and colleagues [10] explore the
role of gestures and body language in improving communication,
proposing a conversational flow for real-time, fully dyadic interac-
tions.

Nonetheless, the majority of prior research has focused on rule-
based methods, employing motion capture sequences or hand-
crafted animations for interactional motion in facial gestures and
speech [4, 10, 25]. These rules encompass gaze behavior [17], turn-
taking management [14], facial expressions [27], gestures and body
language [6], and backchanneling [39]. These approaches exhibit
limitations regarding the range of captured gestures and the sim-
plifying assumptions made for motion generation, rendering them
less suitable for context-dependent dynamic interactions.

2.2 Data-driven Approaches for Behavioral
Animation Synthesis

In response to the limitations of rule-based methods, recent studies
have explored data-driven approaches for generating conversa-
tional behavior in IVAs while leveraging large datasets and ad-
vanced modeling techniques to capture the subtleties of human be-
havior. For example, [21] investigated machine learning techniques
and deep learning models to create more contextually relevant and
natural speaker behaviors. Extending the automatic locomotion
synthesis framework MoGlow [13], the "Let’s face it" [18] study
devised a probabilistic approach for synthesizing facial gestures
that account for interlocutor awareness in dyadic conversations.
However, this method’s efficacy was constrained by not differ-
entiating between speech-related and non-speech-related facial
gestures during feature extraction. In light of the interdependence
between speech and gesture perception, the "Learn2Listen" method
employed transformer-based VQ-VAE and multimodal fusion tech-
niques [26] to predict non-verbal facial behavior, yielding promising
results in capturing facial gesture nuances and efficient behavior
generation. Despite these advancements, the integration of data-
driven approaches into real-time, fully dyadic conversational flows
remains a challenge due to the lack of an appropriate framework
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capable of handling the computational requirements, synchroniz-
ing multi-modal inputs, and facilitating seamless integration with
existing IVA systems [10, 24].

2.3 Behaviour Representation
Advancements in photorealistic virtual humans have led to more
believable and engaging representations, significantly contributing
to the development of intelligent virtual agents [33]. A primary chal-
lenge in this domain, however, is the lack of standardization in agent
animation, which impedes progress in automatically generating
realistic agent behavioral animation using data-driven approaches.
Different systems utilize various techniques, such as blendshape
and bone animation, to define their animation controllers [20]. Ad-
ditionally, creating photorealistic virtual humans for real-time IVAs
demands considerable expertise and resources due to the process’s
inherent complexity [23].

Van der Struijk and colleagues [38] employed the 3D human
model from the open-source FACSHuman1 software add-on to
drive facial motors in real-time using the Facial Action Coding Sys-
tem (FACS) detected with OpenFace [2]. However, their approach
focused on mimicking facial behavior rather than generating social
behavior based on the interactive context in Human-Computer
Interaction setups using IVAs. A limitation of using FACS for facial
action unit representation is its inability to effectively capture subtle
expressions and head rotations [18]. Furthermore, [38] highlighted
the limitations of OpenFace [2] in detecting FACS Action Units
(AUs) and intensity values, as its AU and intensity value predic-
tors are not synchronously trained, leading to inaccuracies. As a
result, manual post-processing was necessary in [38] to fine-tune
the intensity value for activating facial animation.

ARFaceAnchor2 has been developed to enable real-time face
tracking systems on native devices. Projects such as [9] have uti-
lized ARKit to animate socially interactive agents in real-time. How-
ever, using ARKit introduces significant drawbacks due to its device
dependencies, as the facial 3D mesh cannot be employed outside
the native platform. This limitation hinders the extraction of fa-
cial expressions and head movements from large video datasets
recorded with monocular cameras, which are essential for training
generative machine learning models like [18, 26].

Researchers have explored open-source alternatives such as
RingNet [34], which learns to regress 3D face shape and expression
from an image without 3D supervision, offering functionality com-
parable to ARFaceAnchor yet with different animation controllers.
However, RingNet’s complex neural network architecture results
in substantial computational expense [26]. DECA [8], an improved
version of RingNet, leverages the FLAME model [22] and a con-
volutional neural network for efficiently capturing and animating
3D facial expressions from single 2D images. Despite its ability to
generate more realistic facial reconstruction, real-time processing
remains challenging due to DECA’s face-alignment module, which
causes a computational bottleneck. EMOCA [7] extends DECA’s
implementation to improve 3D facial reconstruction with higher

1https://www.michaelgilbert.fr/facshuman/
2https://developer.apple.com/documentation/arkit/arfaceanchor/blendshapelocation

emotional fidelity, employing a deep perceptual emotion consis-
tency loss during training. This novel approach outperforms exist-
ing methods in expression quality and perceived emotional content,
demonstrating the potential of 3D geometry, yet it has not been
extended in reconstructing 3D facial representations for real-time
face tracking and 3D morphing. We extended this method to work
in real-time 3D morphing and develop a novel facial expression
transformation, that aims to bridge the gap between data-driven
techniques and commercially available IVAs, fostering seamless in-
tegration and improved human-computer interaction experiences.

3 FRAMEWORK
Human-to-human communication involves a complex interplay of
verbal and nonverbal cues. Furthermore, the behavior of a listener
during a conversation can depend on the context of the conversa-
tion and the social setting, as evidenced by the nuances observed
in human-to-human communication and real-life therapeutic inter-
actions, as shown in Fig. 1.

Our main objective is to develop a framework that predicts a
socially interactive agent’s listening facial behavior in real-time
based on the user’s multimodal social cues. Specifically, we aim
to predict the interactive agent’s facial expressions, F̂𝑠𝑖𝑎𝑡 , at each
time-step 𝑡 , given the user’s contextual speaking information encap-
sulated in audio features A𝑢𝑠𝑒𝑟

1:𝑡 and facial features F𝑢𝑠𝑒𝑟1:𝑡 , and any
past predicted facial behavior for the agent to process them in an au-
toregressive manner, predict𝑤 listener behavioral sequence F𝑠𝑖𝑎𝑡 :𝑡+𝑤 .
Therefore, we model the distribution 𝑃 of the agent’s predicted fa-
cial behavior, learned from the therapist’s listening behavior F̂𝑡ℎ𝑒𝑟𝑎𝑡

conditioned on audio features from the patient A𝑝𝑎𝑡

1:𝑡 and facial
features F𝑝𝑎𝑡1:𝑡 taking into account the patient’s multimodal contex-
tual information. Therefore, we model the distribution 𝑃 of the
interactive agent’s predicted listening behavior, learned L from the
therapist’s listening behavior, as:

𝑃 (F̂𝑠𝑖𝑎𝑡 | A𝑢𝑠𝑒𝑟
1:𝑡 , F𝑢𝑠𝑒𝑟1:𝑡 ) = L(𝑃 (F̂𝑡ℎ𝑒𝑟𝑎𝑡 | A𝑝𝑎𝑡

1:𝑡 , F
𝑝𝑎𝑡

1:𝑡 )) (1)

Our framework then utilizes 𝑃 distribution for predicting a so-
cially interactive agent’s (SIA) listening facial behavior with the
user’s multimodal social cues processed in real-time. The frame-
work employs deep learning techniques to model the relationship
between user’s audio and facial features and the agent’s facial be-
havior, using a dataset of real-life therapeutic video data recordings
for training. Comprising several interconnected modules, such as
the User with Voice Activity Detector, Real-time Feature Extrac-
tion, Behavior Generator, FASTApi Server with Local-to-Global
Transformation, and LiveFLAME Blender Add-on, the framework
is designed for high throughput and real-time processing support-
ing both FLAME-based and ARKit-based interactive agents. By
leveraging the ZeroMQ3 distributed messaging library and web
sockets for communication, the framework aims to enhance the
expressiveness and responsiveness of listening behavior for the
SIA in various applications, such as telemedicine, mental health
counseling, and customer support.

3
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Figure 2: Overview of the real-time interactive framework modules, utilizing a publisher-subscriber pattern to enable real-time
listener behavior. The framework supports both online and offline modes, allowing for feature extraction from sensors or streaming
from locally saved files. The solid arrows represent the modules used in our evaluation.

3.1 Framework Modules
The proposed framework, depicted in Fig. 2, comprises several
interconnected modules that collaborate to generate the listening
facial behavior of a SIA in real-time. The framework has been
designed to support both online processing, using sensor data, and
offline processing, which allows from prior extracted feature data.
In this section, we present a comprehensive description of each
module. The modules work together to enable the SIA to exhibit
realistic facial behavior.

(1) UserwithVoiceActivity Detector is responsible for detecting
when the user is speaking. Recognizing voice activity activates
the listener behavior for the SIA, enabling more natural and
responsive interactions between the user and the agent.

(2) Real-time Feature Extraction captures and processes audio
and facial features, specifically FLAME and MFCC features, syn-
chronously. Proper alignment between the extracted features
is ensured using timestamps, which helps maintain accurate
temporal information for the input data.

(3) Behavior Generator employs a producer-consumer pattern
using fixed-length double-ended queues for efficient data han-
dling in a multi-threaded environment. This design allows mul-
timodal producers to write data to the queues, while a consumer
thread processes the data within a sliding window, predicting fa-
cial behaviors with an adjustable processing rate and publishing
the data to the subsequent module in the pipeline.

(4) FASTApi Serverwith Local-to-Global Transformation serves
as the back-end for the web-based IVA front-end. It streams
data to a IVA such as VuppetMaster4 or MetaHuman [9], pro-
cessing rotational and facial expression transformations such
as FLAME to ARKit.

(5) Interactive Virtual Agent is a web-based plugin powered by
VuppetMaster, designed for the integration into HTML web
browsers. This could be adjustable to work with another char-
acter animator like MetaHuman [9].

3https://zeromq.org/
4https://www.charamel.com/en/software/vuppetmaster

(6) LiveFLAME Software Add-on is a real-time visualizer of
FLAME parameters within the Blender5 software. Implemented
as a Blender add-on, it enables users to monitor and evaluate
the generated facial behavior by directly mapping the predicted
FLAME parameters to a FLAME-based facial model (e.g., fe-
male or male). This visualization tool provides valuable insights
during the development and testing of the framework.

4 IMPLEMENTATION
In this section, we discuss the implementation of the proposed sys-
tem, also including an evaluation of the trained behavior generative
models and the dataset utilized.

4.1 Facial and Audio Representations
Our framework employs the FLAME statistical 3D head model [22]
and the EMOCA face reconstruction framework [7] to represent
facial expressions and head movements. The FLAMEmodel consists
of three critical components: expression, pose, and shape vectors.
The expression vector 𝜓𝑒 ∈ R1×100 captures variations in facial
expressions, encoding facial muscle movements within a reduced-
dimensional space derived from a 3D scanned dataset using Prin-
cipal Component Analysis (PCA). The pose vector 𝜃 ∈ R1×15 rep-
resents head orientation and rotations of specific joints (e.g., neck,
jaw, eyeballs), describing the overall position and orientation of the
3D head model in 3D space. The shape vector 𝛽 ∈ R1×300 encodes
individual facial identity, encompassing the unique structure and
geometry of the face. This vector defines the base 3D head model,
which is subsequently modified by the expression and pose vectors
to create the final 3D head representation.

For prosodic behavior modeling, we extracted Mel Frequency
Cepstral Coefficients vector MFCC = 𝑐1, 𝑐2, ..., 𝑐𝑙 from the au-
dio as an audio representation, where l represents the number of
coefficients. MFCCs capture phonetic information and provide a
compact representation of the audio signal, making them suitable
for real-time applications with compact data footprints for social
cues via audio. Moreover, MFCCs have been extensively employed

5www.blender.org
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in speech and emotion recognition tasks [36], demonstrating their
efficacy in capturing relevant information from audio signals.

4.2 Real-life Therapy Interaction Dataset
In recent years, the development of virtual therapists has garnered
significant interest, with the aim of providing mental health support
through digital platforms. However, obtaining access to real-life
therapeutic video data, to train data-driven generative models, re-
mains a challenge due to the sensitive nature of such interactions.
To address this issue, we collaborated with [28, 35] to acquire real-
life therapeutic video data recordings. Further details about the
data are listed in Appendix A.

Given the sensitive nature of patient-therapy interactions, it
is crucial to ensure the confidentiality of the data. As such, we
employed a Secure Machine Learning Architecture (SEMLA) [1] for
data processing and machine learning model training. Our primary
objective was to process separate video streams and audio channels
for both patients and therapists, in order to create a feature dataset
for model training.

4.3 Conditional Motion Synthesis of
Conversational Dynamics

This section outlines the training and evaluation processes of unsu-
pervised machine learning models designed for conditional motion
synthesis between a speaker and a listener. The approach by Ng et
al. [26] serves as our foundation. We extend the original method in
two significant ways. Firstly, we replace the DECA 3D Morphable
Face Model [8] with EMOCA [7] to estimate 3D facial expressions.
Secondly, we used the pyanote speaker-diarization method6 for
identifying and separating speakers during interactions. Following
the methodology in [26], our learning task is represented in Eq. 1.
We then proceed with model training.

4.3.1 Model Training. Data were derived from sessions con-
ducted by "TherapistA". This segmentation resulted in intervals:
𝑆backchanneling, 𝑆short-speech, and 𝑆long-speech. Additional details re-
garding speech activity segmentation are presented in Appendix B.
The TherapistA dataset spans 12 hours, recorded at 25 fps, present-
ing split video recordings with the therapist positioned to the right
and the patient to the left. The model training process encompassed
an initial phase of VQ-VAE pre-training and the Predictor module
is trained seperately. The Predictor model is excluded from back-
propagation during E, Z, and D training. The notation employed in
this section is consistent with that found in [26].

Pre-training the VQ-VAE: Our approach employs a transformer-
based encoder (E) and decoder (D) architecture to efficiently capture
the therapist’s facial motion and expression from video data, as
illustrated in Fig. 3. The training process involves the encoder, de-
coder, and codebook (Z) components, utilizing the loss function
described in [26]. The dataset is partitioned into 70% training, 20%
validation, and 10% testing portions. The Adam optimization algo-
rithm is used to fine-tune the model’s parameters with the goal of
minimizing the loss function. After approximately 5,000 training
steps, the best-performing model on the validation set is preserved
for the next phase.

6https://github.com/pyannote/pyannote-audio

Training the Predictor Module: Upon pre-training the VQ-
VAE, the encoder and codebook components are kept fixed, and the
focus shifts to training the transformer-based predictor module, as
depicted in Fig. 4. The predictor is designed to learn temporally long-
range patterns in the input sequence by employing cross-modal
attention to fuse audio features and facial motion features as the
conditioning vector. This process is coupled with the discretized
past listener motion sequence encoding provided by the pre-trained
encoder. The autoregressive predictor outputs a distribution over
the 𝐾 = 200 discrete codebook indices, from which a code for the
subsequent timestep is sampled and then passed to the trained
decoder. We selected values 𝑇 = 64, 𝑡 = 32, and𝑤 = 8, along with
a Mel frequency length of 𝑙 = 128, similar to [26], to evaluate our
model with their pre-trained model.

We applied the model trained on TV interviewer Conan, as es-
tablished by [26], which encompassed a range of participants in
interviews. To evaluate the TherapistA model, a comparative ma-
trix was devised, incorporating both its ground truth data and the
ground truth from interviewees interacting with Conan. The same
assessment was performed for the Conan model using the ground
truth data of patients and interviewees. We calculated L2 loss to en-
sure compatibility with the reference study [26] while their baseline
model achieved an L2 loss of 52.68.

Table 1: L2 Loss values for machine learning models tested
on different datasets

Therapist Interviewer

Dataset L2 Loss L2 Loss

Patients 41.06 89.49
Interviewee 78.85 59.72

4.3.2 Discussion. It is important to recognize that the L2 loss ac-
centuates disparities between predicted and ground truth temporal
FLAME vector sequences, leading to larger error values for sub-
stantial deviations. The results, presented in Table 1, should be
interpreted with the understanding that there are language and
interaction context differences between the two datasets. This high-
lights the significance of behavior modeling within the interaction
context.

4.4 Real-time Framework Application
The models that we developed predict behavior in the FLAME head-
pose and expression format, necessitating a FLAME-compatible
interactive agent for visualization. We utilize the LiveFLAME soft-
ware addon as described in Section 3.1. However, given the rapid
advancements in photorealistic socially interactive agents [9, 11, 33],
each with their unique facial animation systems, our objective is
to enhance the compatibility of our synthesized behaviors with
industry-standard socially interactive agents, such as VuppetMas-
ter [11]. Notably, Charamel [11] supports the research community
by providing IVAs for collaborative projects. VuppetMaster’s visu-
ally appealing full-body agents (see the agent in the upper right
of Figure 3) are animated using VuppetMaster’s animation engine
and deployed as a web-based solution. This engine is based on a
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Figure 3: VQ-VAE training process

Figure 4: Predictor training process

Figure 5: FLAME to ARKit expression mapper

humanoid facial skeletal structure incorporating facial muscle con-
trollers, which enable a comprehensive range of facial expressions
and movements. The controllers’ naming scheme and shape ma-
nipulation capabilities are designed to be compatible with ARKit
facial muscle controllers [16]. However, it should be noted that the
facial muscle controllers in the FLAMEmesh follow a distinct repre-
sentation, necessitating a suitable conversion process for seamless
integration.

4.4.1 Constructing the Global-to-Local Transformation Matrix. In
this work, we introduce a novel real-time linear transformation
designed for efficient execution in real-time applications. While
the FLAME model employs global expressions, simultaneously con-
trolling multiple facial muscles, ARKit utilizes local expressions
that focus on individual muscle control, enabling more localized

facial movements. We aim to develop a computationally efficient
transformationmatrix for real-time scenarios. To facilitate the trans-
formation between FLAME expression coefficients and Apple ARKit
facial expressions, a global-to-local transformation matrix GL is
constructed. Furthermore, the jaw and head poses are indepen-
dently converted from axis angle representation to Euler angles.

The row vectors of GL are derived by mapping extreme FLAME
expressions using multiple corresponding ARKit expressions using
an expression mapper, as shown in Fig. 5. This process is iterated
for selected ±𝐹𝑒 ∈ R∥𝜓𝑒 ∥×2 FLAME expressions, where the "+-"
in the equation indicates the extremes (-3 and 3) of each FLAME
expression.

GL =

[
.
.
.

.

.

.
.
.
.

. . .
.
.
.

𝜋𝑒 (𝑖, 1) 𝜋𝑒 (𝑖, 2) 𝜋𝑒 (𝑖, 3) · · · 𝜋𝑒 (𝑖, 52)

]
(2)

4.4.2 Real-Time Transformation of FLAME Vectors to ARKit Vectors.
Given a batch size 𝑛 of FLAME vectors F , the transformed to 𝑛× 52
ARKit expression matrix A computed using the tranformation
matrix:

A(𝑛 × 52) = normalise(F (𝑛 × 𝐹𝑒 ) × GL(𝐹𝑒 × 52), 0, 1) (3)

For the conversion of rotation angles, the following operations
are performed:

𝒒jaw = axisAngleToQuaternion(𝜶 jaw),
𝒒head = axisAngleToQuaternion(𝜶 head),

𝒆jaw = quaternionToxyzEuler(𝒒jaw),
𝒆head = quaternionToxyzEuler(𝒒head),

(4)

5 EVALUATION
In our system, real-time operation is achieved through parallel
processing and a modular architectural approach. We adopt the
runtime evaluation metrics proposed by "Facsvatar" [38]. Video
features, represented by FLAME, and audio features, denoted by
MFCCs, are extracted concurrently. This simultaneous extraction
ensures seamless streaming of features using ZeroMQ, with times-
tamps to guarantee synchronization. We conducted evaluations of
our system on both high-end (13th generation Intel Core i9 and
GeForce RTX 4090) and mid-range (Intel Core i7 and RTX 1080)
configurations. Notably, while individual modules, such as Mel and
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(a) Feature extractors in parallel (b) Behaviour predictor

(c) FLAME to ARKit GL transformation (d) IVA animation at 30 fps

Figure 6: Network latency plot for each framework module for different frame rates

FLAME for behavior generation, demand processing time, the sys-
tem’s intrinsic parallelism significantly mitigates the latency from a
user’s input to the agent’s response. In this study, we present results
from a test scenario conducted on an i9 platform running Ubuntu
22.04. We thoroughly assessed the performance of the ReNeLiB
framework across various components.

In our design, each module employs a multi-threaded custom
producer-consumer network architecture, using either ZeroMQ
or WebSocket, to ensure independent data processing. This ar-
chitecture utilizes a publisher-subscriber communication pattern,
optimizing module-specific concerns and enabling flexible data
processing speeds. The MFCC extractor adjusts to audio recording
duration 𝑇𝑎𝑢𝑑𝑖𝑜 and sampling rate 𝑅, and publish the data to the
behaviour predictor at𝑀𝑓 𝑝𝑠 . Concurrently, the FLAME extractor
record video from a webcam for a duration 𝑇𝑣𝑖𝑑𝑒𝑜 , batch-processes,
and then publish at 𝐹𝑓 𝑝𝑠 .

The behavior generation module receives these multimodal data
streams parallely to predict the next sequence of behavioral ani-
mation. LiveFLAME visualizer subscriber to this behavior predic-
tor module directly as it can visualise predicted flame sequences.
FastAPI backend handling facial motion transformation and publish
to the VuppetMaster receives data from the backend to animate the
ARKit-based VIA. Throughout this system, each module maintains
low latency in its data receiving data, processing, and publishing
data. Additionally, we quantified the time taken by the interactive
agents to animate 32 behavioral sequences, as depicted in Fig. 6(d).

Performance Results: Using a camera operating at both 30
fps and 24 fps, coupled with a four-microphone array processing
16-bit audio at 16 kHz, our system was configured for optimal

performance.We set𝑇𝑎𝑢𝑑𝑖𝑜 = 0.5s for audio capture and subsequent
Mel frequency processing. For video, 𝑇𝑣𝑖𝑑𝑒𝑜 = 1s was designated,
allowing the FLAME extractor to batch-process and publish 30 or 24
images every second. The audio Mel frequencies were re-sampled
at 4× 𝐹𝑓 𝑝𝑠 ×𝑇𝑎𝑢𝑑𝑖𝑜 fps, ensuring consistent feature processing. We
have selected 𝐹𝑓 𝑝𝑠 = 30 and 𝑀𝑓 𝑝𝑠 = 120, regardless of capturing
image rate. The results are illustrated in Fig. 6.

6 DISCUSSION
We present the first framework that allows for real-time interaction
with virtual avatars driven by deep learning-based behavior gen-
eration. As such, we address a crucial need that is pointed out in
recent publications on neural behavior generation, namely the lack
of a possibility to evaluate, develop, and apply such architectures
in interactive human-agent scenarios [18, 26].

6.1 On Performance
The results, as depicted in Fig. 6(a), elucidate the performance met-
rics of each module in our framework. The Behavior generator
module showcased a swift processing time of 0.06 seconds, under-
scoring its real-time behavior generation efficiency. The Webcam
FLAME extractor module registered batch-wise processing times
of 0.79 and 0.83 seconds, contingent upon image quantity for 3D re-
construction, marking the highest computational latency. Still, this
latency remains conducive for real-time applications as the input
latency is higher than the output throughput. A noteworthy initial
delay of 1s, highlighted in Fig.6 (a), arises from batch processing
of audio-video data. This latency is primarily attributed to 𝑇𝑣𝑖𝑑𝑒𝑜 ,
suggesting potential reductions by optimizing its value, though it’s
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computationally demanding. While the FLAME processing could
match camera frame rates, real-time performance was not feasible
on an i7 machine. Consequently, we opted for batch-wise process-
ing at 1s intervals. Despite an initial 1 s delay, our approach reliably
delivers outputs at either 30 fps or 24 fps.

The Mel frequency extractor demonstrated a swift processing
time of 0.01 seconds, with a capture window rate of 0.00054 per
frame, underscoring its real-time audio data processing efficiency as
depicted in Fig. 6(a). The FastAPI server with GL transformation
module clocked in at 0.0015 seconds for processing and 0.0019
seconds for publishing, highlighting its rapid data transformation
and transmission capabilities. Fig. 6 showcases the animation speeds
for virtual agents, with real-time performance ranging between
20 ms to 50 ms. The animation frame rate is modifiable in our
framework to achieve realistic transformed facial motions.

Interpreting these results necessitates an understanding of system-
specific processing variability. Our framework emphasizes real-time
suitability in interactive settings by ensuring low latency and ef-
fective data processing. The adjustable delays (𝑇𝑣𝑖𝑑𝑒𝑜 and 𝑇𝑎𝑢𝑑𝑖𝑜 )
derive from the method proposed in [26], which requires a 32 video
frame sequence for output. Adapting to a 1s 𝑇𝑣𝑖𝑑𝑒𝑜 for cameras at
30 or 24 fps, we’ve modified the overlapping stride of FLAME and
MFCC features in the behavior predictor. When the camera fps devi-
ates from the trained 32-frame video sequence and 4× 32 for MFCC
as per [26], we incorporate features from preceding batches for the
L2L prediction, ensuring modality compatibility. This adaptability
lets our system handle varying fps while delivering uninterrupted
output.

6.2 Applications
The proposed real-time framework offers a versatile solution for
applications demanding interactive and immersive experiences.
Potential use cases include virtual assistants, teleconferencing, ed-
ucational and training platforms, and healthcare settings such as
telemedicine, and virtual consultations. The framework’s capac-
ity to capture and represent users’ facial expressions and speech
enable the development of engaging, realistic interactive agents,
fostering enhanced user experiences and facilitating more effective
human-computer interactions across various domains. While our
framework is agnostic to the concrete application scenario, we pro-
vide pre-trained models that can be valuable to users. We include
a model trained on psychotherapy interactions as these interac-
tions are (1) rich in social cues and interpersonal synchronization,
and (2) difficult to obtain by most researchers due to data privacy
considerations. We opted to train a model for a single specific ther-
apist to represent nuanced individual behavior instead of a model
interpolating between different persons. This is in line with the
Learning to Listen approach presented by Ng and colleagues [26],
who trained individual models for TV presenters. ReNeLiB is de-
signed for modularity, adaptability, and universality, catering to
diverse virtual agents and platforms.While our behavior generation
module utilizes the approach from [26], its modular design ensures
compatibility with alternative behavioral prediction techniques,
such as [18].

6.3 Limitations and Future Work
The current framework exhibits certain limitations, such as the Vup-
petMaster character animation, which is managed by iteratively
setting expression key values and head rotation values through
web-based JavaScript. For more fluid movements, it would be ad-
vantageous to transmit a sequence of animations directly to the
VuppetMaster engine, necessitating collaboration with the devel-
opers of VuppetMaster. Moreover, the system generates 32 frames
of animation sequences per second in an autoregressive manner;
however, it does not interpolate between predicted animation se-
quences to achieve smoother behavior, presenting an opportunity
for enhancement. In future work, the framework will undergo eval-
uation and user studies to assess the contextual appropriateness
of generated behavior and to develop a standardized platform for
evaluating listener behavior in interactive agents. These efforts will
not only validate the framework’s effectiveness but also contribute
to its enhancement, allowing it to better accommodate a diverse
array of intelligent IVA.
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A DETAILS OF REAL-LIFE THERAPY DATASET
This section provides a comprehensive description of the dataset
utilized in this study, which was derived from an extended video
corpus collected by Peham et al. [28], Schauenburg and Grande [35].
The original research [35] contains data from 80 women, including
16 healthy controls. In our extended version, a total of 139 video
sessions were obtained, from which 134 were chosen for audio and
video feature extraction. The remaining five sessions were excluded
due to poor recording quality (audio or video). The selected sessions
encompass 23 male patients and 113 female patients.

Table 2 presents a detailed breakdown of the dataset, compar-
ing the four therapists who conducted the sessions in terms of
the number of sessions, total duration, patient speaking duration,
and therapist speaking duration. The segments where patients are
actively speaking are defined as the region of interest (ROI) and
represent the period during which the therapist is actively listening.
By focusing on these ROIs, our study aims to analyze and model
the active listening behavior exhibited by therapists during their
interactions with patients.

B DATA SEGMENTATION AND DEFINITION
OF ROI

To accurately dissect therapist-patient interactions, it was imper-
ative to differentiate between speech and non-speech segments,
while optimally segmenting the sessions.

We utilized the speaker diarization tool, pyannote-audio 7, to
segregate speakers, clustering speech segments by their duration
into distinct intervals: 𝑆no-speech, 𝑆backchanneling, 𝑆short-speech, and
𝑆long-speech. The distinguished speech intervals were:
7https://github.com/pyannote/pyannote-audio
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Table 2: Total number of video hours per therapist sessions. M indicates male and F denotes female.

Therapist ID No. Sessions Ttl Duration(h) Ttl Speech(h) Patient(h) Therapist(h)
𝑇ℎ𝑒𝑟𝑎𝑝𝑖𝑠𝑡𝐴 (M) 49 (42F, 7M) 75 54 36 18
𝑇ℎ𝑒𝑟𝑎𝑝𝑖𝑠𝑡𝐵 (F) 51 (42F, 7M) 70 53 43 10
𝑇ℎ𝑒𝑟𝑎𝑝𝑖𝑠𝑡𝐶 (F) 22 (21F, 1M) 22 17 14 3
𝑇ℎ𝑒𝑟𝑎𝑝𝑖𝑠𝑡𝐷 (M) 12 (12F, 4M) 14 12 10 2

𝑆backchanneling : [0.5 − 2]s
𝑆short-speech : [2 − 3]s
𝑆long-speech :> 3s

To extract facial gestures, we employed the EMOCA method [7],
which builds upon the FLAME 3DMM model [19]. This method
estimates parameters like head-pose, expression, and head-shape.
Integrating with mediapipe [15] enabled real-time face detection
during inference, with identity-agnostic outputs achieved by omit-
ting shape coefficients.
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