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ABSTRACT 
Existing research has shown the potential of classifying 
Alzheimer’s Disease (AD) from eye-tracking (ET) data with 
classifiers that rely on task-specific engineered features. In this 
paper, we investigate whether we can improve on existing 
results by using a Deep Learning classifier trained end-to-end on 
raw ET data. This classifier (VTNet) uses a GRU and a CNN in 
parallel to leverage both visual (V) and temporal (T) 
representations of ET  data and was previously used to detect 
user confusion while processing visual displays. A main 
challenge in applying VTNet to our target AD classification task 
is that the available ET data sequences are much longer than 
those used in the previous confusion detection task, pushing the 
limits of what is manageable by LSTM-based models. We discuss 
how we address this challenge and show that VTNet 
outperforms the state-of-the-art approaches in AD classification, 
providing encouraging evidence on the generality of this model 
to make predictions from ET data. 

1 Introduction 
    In recent years, eye-tracking has been extensively investigated 
as a source of information for AI agents to determine relevant 
properties of their users. This research has already generated 
very encouraging results, showing that eye-tracking (ET) data 
can be used to train classifiers for predicting user short-term 
states such as confusion, affect, and mind wandering [26,4,25], as 
well as long-term properties such as cognitive abilities, 
personality traits, and health conditions [20,22,41]. Most of these 
results have been achieved by using traditional Machine 
Learning (ML) classifiers rather than Deep Learning (DL) 
methods. This is in part because existing ET datasets are usually 
relatively small, as acquiring accurate ET data currently requires 
specialized equipment and collection in a lab setting.  
    However, there have been some initial attempts to use DL 
methods to make predictions on user properties from ET data. 
Most of this existing work converts the ET data into a visual 
representation (i.e., scanpath or heatmap) that is then analyzed 
by a CNN-based classifier for prediction [5,10,30]. In contrast, 
Pusiol et al. [36] trained an RNN model on sequences of ET 
fixations (namely clusters of raw ET samples associated with 

unique points of attention) to distinguish between two 
developmental disorders.  
    A DL architecture that leverages both the visual (V) and 
temporal (T) aspects of ET data, called VTNet, was proposed by 
Sims and Conati [39]. VTNet includes a GRU and a CNN that 
operate in parallel, with the GRU taking as direct input raw 
sequential ET samples, while the CNN processes the 
corresponding scanpath image, namely a representation of the 
samples’ X and Y coordinates and the transitions between them. 
This approach was successfully used for classifying user 
confusion while processing visualizations [26]. The approach 
also outperformed its GRU and CNN components when they 
were trained, respectively, on the temporal and visual 
representation of the ET sequences, showing the value of 
combining the two representations. 
    In this paper, we investigate if the VTNet architecture can also 
improve on the state-of-the-art results in a very different 
context: leveraging ET data to classify Alzheimer’s Disease (AD). 
There has been increasing interest in devising lightweight 
classifiers of AD as an initial screening for this condition 
[15,17,32] because existing assessments tend either to be 
resource-intensive and time-consuming (e.g., specialized 
neuroimaging and detailed cognitive assessments), or they are 
lightweight cognitive screening tools [7] that are not sensitive 
enough to detect AD or other mild cognitive impairments that 
can develop into AD. There is existing research that shows the 
potential of classifying AD from ET data alone or together with 
language data generated during simple screening tasks [3,20,35]. 
Most of these works use non-DL classifiers, and they all rely on 
features engineered based on knowledge of the task at hand. 
    In this paper, we investigate if VTNet can improve these 
results when trained end-to-end from raw ET data.  In particular, 
we focus on the previous work that currently has the most 
reliable results [20] obtained from one of the largest ET datasets 
for AD screening in the literature (AD dataset from now on), 
which was collected from participants engaging in three 
different tasks: a pupil calibration task, a picture description 
task, and a textual paragraph reading task. The challenge in 
working with this dataset is that the ET data sequences are much 
longer than those leveraged in the previous work that used 
VTNet for classifying confusion. Sequence length is known to be 
a potentially limiting factor in the effectiveness of LSTM-based 
models if the length is beyond 1,000 timesteps [27], and the AD 
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dataset involves sequences that have an average length of over 
8,000 timesteps, with a maximum of over 26,000 timesteps. We 
address this issue by first exploring ways to reduce the sequence 
lengths, and next by augmenting the VTNet architecture with an 
attention layer, given that attention has been successfully used 
in Natural Language Processing (NLP) and Computer Vision to 
allow a model to focus on the most important parts of an input 
sequence.  
    Our results show that combining targeted length reduction 
with the addition of the attention layer allows VTNet to 
outperform state-of-the-art AD classifiers. These results entail 
two contributions. The first contribution is a step forward in the 
quest for accurate lightweight classifiers for AD. The second 
contribution is that we show the value of the VTNet architecture 
in a very different classification task, thus providing initial 
evidence on the generality of this approach for improving the 
ability of AI agents to leverage ET data to make classifications 
on relevant properties of their users.  
    The rest of this paper is organized as follows: Section 2 
reviews related work. Sections 3 and 4 describe the AD dataset 
and the data preprocessing steps. Section 5 summarizes the 
VTNet model architecture. Section 6 evaluates VTNet with ET 
sequences of different lengths, while Section 7 evaluates VTNet 
with attention. Finally, Section 8 concludes the paper and 
discusses avenues for future work. 

2 Related Work 
    Leveraging ET data for AD classification. Research on  ET 
data as a source of information for AD detection has been 
inspired by evidence that AD affects the functioning of the eye, 
causing abnormalities in fixations, saccades, and pupillary 
responses [15,31,32]. All existing works trained classifiers on ET 
data features based on knowledge of what was important during 
the visual tasks designed to test functionalities known to be 
degraded by AD. For instance, Pavisic et al. [35] trained their 
classifiers on features relevant to assess one’s performance 
during tasks that tested fixation stability, focus on appearing 
stimuli and tracking a moving target. Biondi et al. [3] leveraged 
ET features relevant to reading tasks (e.g. number of repeated 
fixations on a word). Jang et al. [20] leveraged ET data from 
tasks such as pupil calibration, picture description, and reading, 
and trained their classifiers on features defined by looking at 
specific regions of interest (ROIs) in their tasks (e.g., parts of the 
picture and paragraph).  
    All these works reported accuracies above 80%, however, the 
datasets used in [35] and [3] were rather small in size (57 and 69 
datapoints respectively), and these works only reported 
classification accuracy as their performance metric. On the other 
hand, Jang et al. [20] leveraged a larger dataset (126 datapoints) 
and provided an extensive analysis based on several performance 
metrics.  Therefore, we use the data and classifiers in Jang et al. 
[20] to test and compare the performance of our proposed VTNet 
approach, which, in contrast to previous approaches, is trained 
directly on the raw ET samples, hence removing the need to 
create task-specific engineered features. 

    DL classifiers leveraging ET data. Recently, several studies 
have employed DL techniques to make predictions about users 
from their ET data [1,5,10,30,36,43]. Most of these studies 
convert the ET data into a visual representation, namely a 
scanpath or a heatmap (a format that uses color to show the 
degree of attention to a visual display), which is then used by a 
CNN-based classifier for prediction. For instance, CNN models 
have used scanpaths to predict the strategies of participants 
playing games (e.g., chess [30] and different types of economic 
games [5]). CNN models trained on heatmaps have been used to 
classify the ages of toddlers viewing images [10] and the 
attentional states of participants performing tasks in Augmented 
Reality [43]. In all these works, the CNN classifiers outperformed 
a non-DL baseline. Because these approaches do not process the 
sequences of ET data, they do not face the problem of excessive 
sequence length. 
    In contrast to approaches that rely on the visual 
representation of ET data, Pusiol et al. [36] trained their 
classifiers on the ET sequences themselves. The data was 
collected from participants with two different developmental 
disorders, and this work proposed an RNN-based classifier to 
distinguish between the two disorders. The training data 
consisted of ET sequences indicating if a patient was looking at 
certain face regions (nose, jaw, etc.) of a practitioner who was 
conducting a diagnostic interview with them, where the 
sequences were obtained by overlaying the participant's fixation 
points on the video of the interviewer’s face. The resulting 
sequences were 3,000 timesteps in length. The authors 
experimented with three window lengths (15, 50, and 250 
timesteps), to determine how much sequential information is 
required for classification and found the RNN trained on the 250 
timesteps sequences to be the winning classifier. 
    Finally, Asish et al. [1] leveraged sequences of raw ET data to 
classify the distraction level of students in a Virtual Reality 
classroom. The sequences in the dataset were between 12,000 
and 33,000 timesteps long. The authors compared a CNN, an 
LSTM, and a sequential combination of the two, trained on the 
data end-to-end, against a Random Forest (RF) classifier trained 
on summary statistics of the data, with the RF classifier being the 
winning model. 
    Leveraging attention to focus on important parts of long 
sequences. In Natural Language Processing (NLP), several 
works have used attention to extract important parts from 
sentences, paragraphs, and utterances for tasks such as speech 
recognition [6], dialogue act detection and key term extraction 
[38], and relation extraction [48]. The average length of 
sequences in these datasets ranges from 36 words per sentence 
[48] to 120 words per article [38]. Later work in NLP relies on 
transformer-based architectures to deal with longer sequences 
(e.g., [9]), but transformers are unsuitable for our work because 
they are complex models that require large datasets for training. 
    Attention has also been used in Computer Vision to extract 
important parts from videos for tasks such as video 
summarization [21,37], skill level assessment [13], and video 
question answering [45]. The datasets used in these works 
originally range from 15,000 timesteps [21] to 540,000 timesteps 



 

[37]. To deal with such high sequence lengths, all these 
approaches reduce the length by decreasing the video sampling 
frequency [13,21,37,45]. In addition, in [37], the authors use 
knowledge-based approaches to extract interesting video 
segments [37], whereas in [13] they uniformly split each video 
into multiple segments [13]. 
    Combining RNNs and CNNs. There are several works that 
(like our own) combine the strengths of RNNs and CNNs. Most 
of these works relate to processing videos [12,18,40,49] and 
audio [19] using Recurrent Convolutional Networks (RCNs). 
RCNs typically operate on an input of image sequences (i.e., the 
frames of a video or spectrograms from audio recordings) where, 
at each timestep, a CNN extracts visual features from the image 
and feeds them to the RNN, which models the temporal 
dynamics of the sequence. RCNs have also been used to predict 
user states such as emotional valence and intentions from multi-
channel EEG signals  [28,47,50], where the input to the CNN 
encodes the spatial relationship among the EEG sensors placed 
on the user's head, along with their values. RCNs combine CNN 
and RNN at every timestep and therefore do not decouple the 
temporal from the spatial aspects of the data completely as done 
in VTNet. By providing a single scanpath to the CNN, VTNet 
processes the high-level spatial representation of the 
participant’s overall activity related to a task, which 
complements more local temporal information about potential 
indicators of AD generated by the GRU from raw sequences. 
    An alternative way to combine a CNN and an LSTM is to use 
them in sequence instead of in parallel as VTNet does. Pascanu 
et al. [34] showed that LSTMs can learn better from high-level 
features of text embeddings extracted by CNNs, than from the 
raw embeddings themselves. This approach has been used 
mainly in NLP for sentiment analysis [2,11,29,44,46], and it does 
not seem to be useful for our goal of screening participants with 
AD because our ET data does not have such high dimensionality 
as word embeddings (each datapoint is a 6-dimensional vector), 
and reducing the dimensionality may result in a loss of possible 
patterns for the screening task. 

3 Dataset 
    This paper relies on a dataset originally collected by Jang et al. 
[20] to build multimodal lightweight screening tools for AD. The 
data was collected from patients of a specialized memory clinic 
(either diagnosed with AD or showing early signs of mild 
cognitive impairments potentially leading to AD) and from 
control participants from the community (matched with the 
patient group based on sex and age).  
    During the study, participants were seated at a testing 
platform that had a Tobii-Pro X3-120 eye tracker (120 Hz 
sampling frequency) installed at the bottom of the screen to 
track gaze coordinates, head distance, and pupil data. The 
participants were given four tasks to complete: a pupil 
calibration task, a picture description task, a paragraph reading 
task, and a memory recall task that did not involve any visual 
elements. The study's full details are available in [20]. This paper 
utilizes ET data collected during the first three tasks: 

    • Pupil Calibration: Participants were asked to stare at a still 
target for 10-15 seconds (Figure 1A) to capture any square-wave 
jerks that are a hallmark of AD [33]. 
    • Picture Description: Participants were asked to verbally 
describe the Cookie Theft picture (Figure 1B) from the Boston 
Diagnostic Aphasia Examination [16], a task that has been used 
extensively for assessing spontaneous speech in a variety of 
clinical settings [8], including AD [14,23,24].  
     • Reading: Participants were asked to read aloud a 
standardized paragraph (Figure 1C) from the International 
Reading Speed Texts (IReST), which is a collection of texts 
designed to assess reading impairments [42]. The 155-word 
paragraph described how plants and animals in hot and dry 
areas adapt to their environment in 9 sentences. The objective of 
this task was to capture common reading-task deficits associated 
with AD, such as reduced reading speed and increased word 
fixations or re-fixations.  
    Completing these three tasks took an average of 7 minutes. 
The final ET dataset used in this paper contains 75 control 
participants (avg. age = 62, std. dev. = 15) and 69 patients (avg. 
age = 72, std. dev. = 9). The sequence of raw ET samples for each 
user is represented by a 2D array (see Figure 2A), where the 
rows are the individual samples collected at 120Hz. Each sample 
is a 6-dimensional vector consisting of the gaze coordinates (Gx, 
Gy), the distance (HD) of the left and right eyes from the screen 
(used to estimate the head’s distance from the screen), and the 
sizes of the left and right pupils (P). Table 1 shows the statistics 
for the dataset, including the number of datapoints for each task 

Figure 1: Tasks used for collecting the AD dataset – (A) 
Pupil Calibration, (B) Picture Description, and (C) Reading. 



 

 

and condition (patients and controls), as well as statistics on the 
length of the sequences1. 

4 Data preprocessing 
    The average sequence lengths for the three tasks are 1,403 for 
Pupil Calibration (std. dev.=249), 7,948 for Picture Description 
(std. dev.=4626), and 7,080 for Reading (std. dev.=2719), thus they 
are well above the length of 1,000 timesteps that is known to be 
suitable for LSTM-based models [27]. To address this issue, we 
adopted two data preprocessing steps. First, we cyclically split 
the ET sequences, as was done in [39]. The cyclical splitting 
process creates four separate datapoints from each original 
datapoint by assigning samples that are four steps apart to the 
same new datapoint in a cyclical manner (see Figure 2B). This 
process preserves the temporal structure of the ET data because 
there is little change between contiguous samples due to the 

 
1 These are obtained after removing outliers that are 3 std. dev. away from the 
mean from each task (7 for Pupil Calibration, 4 for Picture Description, and 4 for 
Reading).  

high sampling rate while reducing the sequence length by a 
factor of 4. Additionally, the number of datapoints is increased 
by the same factor, as a form of data augmentation. 
    After cyclical splitting, the length of the sequences in the 
Pupil Calibration task is well below 1,000 (see the “Max” column 
for Pupil Calibration in Table 1, where the value should be 
divided by 4). However, this is not the case for the other two 
tasks. Hence, we experimented with applying a length cutoff to 
the sequences obtained from cyclical splitting to restrict their 
maximum length. We chose two cutoff values: the first cutoff 
value is 1,000, as it ensures that the maximum length of 
sequences never exceeds the threshold that is typically 
considered challenging for LSTM models [27]. The second cutoff 
value is 2000, to examine the effects of a less severe reduction in 
sequence length by including almost complete information from 
sequences with mean lengths. Figure 3 shows the distribution of 
sequence lengths after applying the 2,000-cutoff, which leads to 
51 patients and 58 controls for the Picture Description task, and  
57 patients and 70 controls for the Reading task having 
sequences above 1,000 timesteps. 

Table 1:  Summary statistics of sequence lengths in the AD dataset  

Task Group N Mean 
(Std. dev.) 

Median Min Max 

Pupil Calibration Patient 66 1461 (244) 1405 1151 2317 
Control 71 1369 (253) 1362 106 2049 
Total 137 1403 (249) 1377 106 2317 

Picture Description Patient 67 7906 (4609) 6488 1879 21861 
Control 73 7974 (4659) 7149 950 26103 
Total 140 7948 (4626) 6857 950 26103 

Reading Patient 67 8070 (3650) 7265 375 20712 
Control 73 6459 (1661) 6476 1216 12066 
Total 140 7080 (2719) 6623 375 20712 

Figure 2: (A) An example of a datapoint, which is a 
sequence  of ET samples (rows) from a given user. (B) The 
four distinct datapoints obtained from the datapoint in (A) 
through cyclical splitting. 

Figure 3: Distribution (Y axis) of sequence lengths (X axis) 
after applying  the 2000 cutoff, for the Picture Description 
(top) and Reading task (bottom). 



 

    The application of the cutoff resulted in two variations of the 
Picture Description and Reading tasks’ datasets, with each 
having a maximum sequence length of, respectively, 1,000 and 
2,000 timesteps. We will use these two variations, as well as the 
dataset with no cutoff applied (all with cyclical splitting) to 
evaluate the performance of VTNet in distinguishing between 
patients and controls, as described in the next section. 

5 VTNet architecture 
    The VTNet model architecture was first introduced in [39] and 
is presented in Figure 4. The model consists of a single-layer 
GRU sub-model and a two-layer CNN sub-model. The GRU and 
CNN sub-models operate independently. The  GRU processes the 
sequences of raw ET samples, the CNN processes the 
corresponding spatial representation, namely the scanpath, that 
shows where fixations happened and the transitions between 
them  (see as an example the input image to the CNN in Figure 
4). The output of the GRU's 256-unit hidden state is concatenated 
with the 50-element vector output of the CNN to produce a 
single 306-sized vector. This vector is then passed to a simple 
neural network with one hidden layer and a SoftMax layer, 
which generates two outputs that indicate the model’s 
confidence in classifying the input as either AD or control.  
    The VTNet hyperparameters used for this work are the same 
as in the original work [39], which discusses how this 
architecture was designed to be as simple as possible to deal with 
the limited size typical of ET datasets. The model is trained end-
to-end as a single entity.  

6 Evaluation of VTNet 

6.1 Experimental Setup 
    Our evaluation aims to ascertain how VTNet compares to the 
best-performing non-DL classifiers from [20] in distinguishing 

between patients and controls. Therefore, following [20], we 
evaluate VTNet separately on each of the three tasks (Pupil 
Calibration, Picture Description, and Reading). For Pupil 
Calibration, VTNet is evaluated only on the full sequences since 
the length of the sequences here is less than 1,000 timesteps, as 
explained in Section 4. For the other two tasks, VTNet is 
evaluated on the full sequences, as well as on the sequences 
obtained by applying the length cutoffs of 1,000 and 2,000 
timesteps. Hence, we label these three different VTNet models as 
VTNet_full, VTNet_1000, and VTNet_2000 respectively. 
    For each task, the performance of the various VTNet models is 
compared against the best performing model among the non-DL 
classifiers tested in [20] (called baseline models from now on). It 
should be noted that the current AD dataset (described in Section 
3) is larger than the version used [20] because participant 
recruitment is ongoing. Thus, we re-trained the non-DL models 
tested in [20] (Gaussian Naïve Bayes, Random Forest, Logistic 
Regression) on the current dataset, and selected the best 
performing model in each task (reported in Table 2) as a baseline 
for comparison with the VTNet models. All models are evaluated 
using 10 runs of 10-fold cross-validation (CV), and the results 
reported in the next section are the average of the 10 runs of 10-
fold CV. Cross-validation is done across users, ensuring that no 
user contributes data points to both the training and test sets of a 
given fold. Cross-validation is also stratified so that the 
distribution of data points in each fold is kept similar to that of 
the dataset. For the non-DL models, we use the same 
hyperparameters as in [20] and we report the same performance 
metrics, which include: 
    1. AUC (Area Under Curve), which measures the accuracy of 
the classifier in distinguishing between patients and controls. 
    2. Sensitivity (or true positive rate), indicating the model's 
ability to detect patients. 
    3. Specificity (or true negative rate), indicating the model's 
ability to detect controls. 
    While AUC provides an overall performance measure, 
sensitivity and specificity are important in medical applications 
to estimate the likelihood of false negatives and false positives.  
    We formally compare model performances in each task by 
running a  one-way MANOVA test with classifier type as the 
factor and the three performance metrics as dependent variables. 
Post-hoc comparisons are done with Tukey’s HSD tests and 
statistical significance is reported for p < 0.05. 

6.2 Results 
    Table 2 summarizes the performance of all tested models in 
each task. In Table 2, bold indicates the model with the highest 
numerical performance, whereas an asterisk indicates whether a 
specific VTNet model is statistically significantly better than the 
baseline (best performing) non-DL model. Table 3 summarizes 
the post-hoc comparisons where the differences for models with 
different underlines are statistically significant (e.g., Sensitivity 
of Baseline vs VTNet_full in the Pupil Calibration task), whereas 
differences for models with the same underline are not (e.g., 
AUC of Baseline vs VTNet_full in the Pupil Calibration task). 

Figure 4: The VTNet architecture. 



 

 

 
    For the Pupil Calibration task, the MANOVA shows a 
significant effect of the classifier on both sensitivity and 
specificity (for sensitivity: F1,18=136.774, p<.001, partial η2=.884; 
for specificity: F1,18=192.823, p<.001, partial η2=.915). Post-hoc 
comparisons (Table 3A) confirm that the baseline has higher 
sensitivity than VTNet, whereas VTNet has a higher specificity, 
with no difference in AUC scores.  
    For the Picture Description task, the MANOVA shows a 
significant effect of the classifier on all three performance 
metrics (for AUC: F3,36=676.844, p<0.001, partial η2=.983; for 
sensitivity: F3,36=58.983, p<.001, partial η2=.831; for specificity: 

F3,36=25.096, p<.001, partial η2=.677). Post-hoc comparisons 
(Table 3B) show that the baseline beats all VTNet models in 
terms of AUC and specificity. For sensitivity, the baseline and 
VTNet_1000 have equivalent performance and they outperform 
the other two VTNet models. 
    For the Reading task, the MANOVA shows a significant effect 
of the classifier on all three performance metrics (AUC: 
F3,36=125.352, p<0.001, partial η2=.913; sensitivity: F3,36=51.244, 
p<.001, partial η2=.810; specificity: F3,36=91.483, p<.001, partial 
η2=.884). The post-hoc comparisons (Table 3C) show that all 
three VTNet models outperform the baseline in terms of 
sensitivity, with VTNet_full being the winning model.    
VTNet_full and the baseline are equivalent in specificity, and 
they outperform the other two VTNet models. For AUC, 
VTNet_full, VTNet_2000, and the baseline have equivalent 
performance and they outperform VTNet_1000. 

6.3 Discussion 
    Based on overall performance (AUC) scores, no VTNet model 
outperforms the baseline models in any task. We hypothesized 
as a reason for this result that, despite the undertaken 
preprocessing steps, the sequences were still too long for the 
GRU sub-model to process. It is, however, interesting to observe 
the different trends between the Picture Description and the 
Reading tasks in terms of VTNet performance with different 
sequence lengths.  
    For the Picture Description task, the shorter the sequences the 
better, with VTNet_1000 outperforming VTNet_2000, which in 
turns outperforms VTNet_full, in both AUC and sensitivity. We 
observe the opposite trend in the Reading task. In terms of AUC, 
there is a non-significant trend of VTNet_full being better than 
VTNet_2000, which in turn is significantly better than 
VTNet_1000.  There are similar but stronger trajectories for 
specificity and sensitivity, where the differences are statistically 
significant. These opposite trends suggest that in the Reading 
task, behaviors happen toward the end of the task that help 
distinguish between patients and control. For instance, it might 
be the case that as patients progress further in the paragraph, 
their reading impairments become increasingly evident, 
resulting in more discriminative ET behaviors that are captured 

Table 2:  Performance of VTNet models trained on ET sequences with different maximum lengths and the 
corresponding best performing non-DL models, for each task. 

Task Classifier Type AUC 
Mean (std. dev.) 

Sensitivity 
Mean (std. dev.) 

Specificity 
Mean (std. dev.) 

Pupil Calibration  Gaussian Naïve Bayes 0.71 (0.02) 0.72 (0.02) 0.57 (0.04) 
VTNet_full 0.70 (0.01) 0.64 (0.01) 0.74 (0.02) * 

Picture Description Random Forest 0.75 (0.01)  0.65 (0.03) 0.72 (0.03) 
VTNet_1000 0.67 (0.01) 0.65 (0.02) 0.66 (0.01) 
VTNet_2000 0.63 (0.01) 0.62 (0.02) 0.63 (0.02) 
VTNet_full 0.58 (0.01) 0.54 (0.02) 0.66 (0.02) 

Reading  Logistic Regression 0.74 (0.03) 0.59 (0.03) 0.77 (0.01) 
VTNet_1000 0.62 (0.01) 0.63 (0.02) * 0.63 (0.04) 
VTNet_2000 0.73 (0.01) 0.66 (0.01) * 0.74 (0.01) 
VTNet_full 0.75 (0.01) 0.68 (0.01) * 0.78 (0.01) 

Table 3:  Statistical comparisons of models’ performances 
with Tukey’s HSD. Differences for models with the same 
underlines are not statistically significant, whereas 
differences for models with different underlines are. 

A) Pupil Calibration  
AUC Baseline > VTNet_full 

Sensitivity Baseline > VTNet_full 

Specificity VTNet_full > Baseline 

B) Picture Description  
AUC Baseline > VTNet_1000 > VTNet_2000 > 

VTNet_full 

Sensitivity  Baseline > VTNet_1000 > VTNet_2000 > 
VTNet_full 

Specificity  Baseline > VTNet_1000 > VTNet_full > 
VTNet_2000 

C) Reading  
AUC VTNet_full > Baseline > VTNet_2000 > 

VTNet_1000 

Sensitivity  VTNet_full > VTNet_2000 > VTNet_1000 > 
Baseline 

Specificity VTNet_full > Baseline > VTNet_2000 > 
VTNet_1000 



 

partly with VTNet_2000 and fully with VTNet_full. In contrast, 
somehow the differences in how patients and controls visually 
process the Cookie Theft picture may get diluted as the task 
progresses, thus diminishing the ability of VTNet to discriminate 
between the two groups when looking at longer sequences.  
Further clarity on this point could be achieved by doing an 
offline analysis of gaze patterns at the end of sequences for both 
tasks. Given that none of our VTNet models outperform the 
baseline for AUC, we investigate if we can improve their 
performance by adding an attention layer, as discussed in the 
next section. 

7 Adding an attention layer to VTNet 
    An attention layer computes the dot products of input 
sequences and learned weight vectors, producing attention 
scores that are normalized and used to weight the input 
sequences. As discussed in Section 2, there is evidence from both 
NLP and Computer Vision research that adding an attention 
layer to an LSTM-based model enables the model to focus on the 
most relevant parts of an input sequence, thus allowing it to 
capture long-term dependencies more effectively. Hence, in this 
section, we explore adding a self-attention layer before the GRU 
sub-model in VTNet. To implement this self-attention layer, we 
utilized PyTorch's (v1.13.0+cu117) default multi-head attention 
layer implementation. The dimension of this layer was set to 6 to 
match the dimensionality of our gaze data (see Figure 2A). The 
number of parallel attention heads was set to 1. This is because 
increasing the number of parallel attention heads increases the 
number of trainable parameters, which can result in overfitting 
when the dataset is small, as is the case in our work. Moreover, a 
smaller number of attention heads can also reduce the 
computational complexity of the model, resulting in more 
efficient training and evaluation. 

7.1 Experimental Setup 
    To ascertain the effectiveness of augmenting the VTNet 
architecture with attention, we compare the augmented VTNet 
models against the original VTNet models and the non-DL 
baselines from [20]. As we did in Section 6, we perform this 

comparison for each of the three experimental tasks. For each 
task, we select the VTNet model that performed the best in the 
evaluation in Section 6, namely, VTNet_full for Pupil Calibration 
and Reading, and VTNet_1000 for Picture Description. These 
models augmented with attention are denoted with the suffix 
“_att” in the following sections. For example, VTNet_2000_att 
refers to the VTNet model with attention trained on the dataset 
with a maximum sequence length of 2,000 timesteps. The 
evaluation process is similar to that described in Section 6.1, 
where we utilize a one-way MANOVA test with classifier type as 
the factor and the three performance metrics as dependent 
variables to compare the relevant models. Similarly, post-hoc 
comparisons are performed using Tukey’s HSD tests and 
statistical significance is reported for p < 0.05. 

7.2 Results 
    Table 4 summarizes the results of this analysis. For the Pupil 
Calibration task, the MANOVA shows a significant effect on all 
three performance metrics (AUC: F2,27=137.134, p<0.001, partial 
η2=.910; sensitivity: F2,27=49.424, p<.001, partial η2=.785; 
specificity: F2,27=184.747, p<.001, partial η2=.932). Post-hoc 
comparisons (Table 5A),  show a substantial improvement in 
performance with VTNet_full_att. This model now beats the 
baseline with an AUC of 0.78,  which is a 9.8% increase  (whereas 
VTNet_full is equivalent to the baseline), For sensitivity, 
VTNet_full_att is equivalent to the baseline (whereas VTNet_full 
is worse). For specificity, VTNet_full_att matches the 
performance of VTNet_full, which already beats the baseline. 
Furthermore, VTNet_full_att is a very balanced classifier, with 
0.71 sensitivity, and 0.75 specificity (whereas VTNet_full has 
much better specificity than sensitivity with a difference of 10%). 
    For the Picture Description task, the MANOVA shows a 
significant effect on all three performance metrics (AUC: 
F2,27=192.702, p<0.001, partial η2=.935; sensitivity: F2,27=27.557, 
p<.001, partial η2=.671; specificity: F2,27=27.276, p<.001, partial 
η2=.669). Post-hoc comparisons (Table 5B) show that 
VTNet_1000_att outperforms the baseline for both AUC and 
sensitivity (while VTNet_1000 is either worse or equivalent), 
with sensitivity being especially impacted by reaching 0.7, which 
is a 7.7% increase from the baseline. For specificity,   

Table 4:  Performance of the most promising VTNet model, its corresponding attention variant, and the baseline 
non-DL model, for each task. 

Task Classifier Type AUC 
Mean (std. dev.) 

Sensitivity 
Mean (std. dev.) 

Specificity 
Mean (std. dev.) 

Pupil Calibration Gaussian Naïve Bayes 0.71 (0.02) 0.72 (0.02) 0.57 (0.04) 
VTNet_full 0.70 (0.01) 0.64 (0.01) 0.74 (0.02) * 

 VTNet_full_att 0.78 (0.01) * 0.71 (0.02) 0.75 (0.01) * 
Picture Description Random Forest 0.75 (0.01) 0.65 (0.03) 0.72 (0.03) 

VTNet_1000 0.67 (0.01) 0.65 (0.02) 0.66 (0.01) 
VTNet_1000_att 0.76 (0.01) * 0.70 (0.02) * 0.73 (0.02) 

Reading Logistic Regression 0.74 (0.03) 0.59 (0.03) 0.77 (0.01) 
VTNet_full 0.75 (0.01) 0.68 (0.01) * 0.78 (0.01) 

VTNet_full_att 0.78 (0.01) * 0.70 (0.01) * 0.80 (0.02) * 



 

 

VTNet_1000_att is equivalent to the baseline where VTNet_1000 
is worse. As was the case for the Pupil Calibration task,  
VTNet_1000_att is also balanced with 0.70 sensitivity and 0.73 
specificity. In this task, VTNet_1000 is also balanced but with 
limited accuracies for both measures (0.65 and 0.66). 
    For the Reading task, the MANOVA shows a significant effect 
on all three performance metrics (AUC: F2,27=10.484, p<0.001, 
partial η2=.437; sensitivity: F2,27=113.574, p<.001, partial η2=.894; 
specificity: F2,27=22.288, p<.001, partial η2=.623). The post-hoc 
comparisons  (Table 5C) show that VTNet_full_att beats the 
baseline for all measures, and it is either better than (AUC and 
specificity) or equivalent (sensitivity) to VTNet_full. 
Interestingly, with 0.70 sensitivity and 0.80 specificity, this 
VTNet_full_att classifier is not as balanced as its counterparts in 
the Pupil Calibration and Picture Description tasks. This 
imbalance is due to a much higher specificity (0.80 compared to 
0.75 in Pupil Calibration and 0.73 in Picture Description), 
whereas sensitivity is around 0.70-0.71 for all three models, 
showing that the attention layer mostly improves the model’s 
ability to correctly classify control participants. 

7.3 Discussion 
    Our results show that the addition of the attention layer 
enables the VTNet architecture to outperform the baseline 
models in all metrics for all tasks, except for sensitivity in the 
Pupil Calibration task where there is no statistical difference. 
These results indicate that the attention mechanism enables the 
GRU sub-model to better focus on critical parts of the ET 
sequences, despite their length.  
    One interesting question is whether adding the self-attention 
layer enhances VTNet’s performance regardless of sequence 
length. To answer this question, we experimented with using 
VTNet augmented with attention on the confusion dataset from 
[39], where the ET sequences have a maximum length of 150 
timesteps. We found that, with this confusion ET dataset, the 
VTNet models with and without attention had statistically 

equivalent performances on all metrics, suggesting that the 
addition of the attention layer to this architecture is not 
advantageous when the ET sequences are of manageable length. 
This is different than what is observed in NLP tasks, where 
attention helps even with sequences no longer than 120 tokens 
[6,38,48]. This difference could be due to a variety of reasons, 
including the nature of the classification task, type of data, and 
amount of information captured at any time step (e.g., a word 
arguably has higher information content than an individual raw 
gaze sample at a particular timestep), calling for further 
investigation on the relationship between all these factors, 
sequence lengths, and attention effectiveness. 

8 Conclusions and Future Work 
    In this paper, we investigated whether VTNet, a model 
originally developed to classify user confusion from their eye-
tracking (ET) data by processing in parallel a visual and temporal 
representation of the data, can also improve on the state-of-the-
art results in classifying Alzheimer’s Disease (AD). We addressed 
the challenge of long ET sequences by combining targeted length 
reduction with the addition of an attention layer to VTNet and 
showed that the results outperform the state-of-the-art for AD 
classification with ET data.  
    Our work has two contributions: first, the development of 
more accurate and lightweight classifiers for AD, and second, 
initial evidence of the generalizability of VTNet for leveraging 
ET data in different classification tasks. 
    Moving forward, we plan to experiment with building 
ensemble classifiers that combine VTNet for ET data and 
classifiers leveraging language data available in the AD dataset, 
as was done in Jang et al. [20] with non-DL models. We are 
especially interested in ascertaining if VTNet can be used to 
classify AD  from speech data in the AD dataset by processing, 
in parallel, raw speech signals and their corresponding 
spectrograms, as is done for ET data. Additionally, we plan on 
testing VTNet on other ET datasets that have been used to 
predict user states such as learning [22] and affective valence 
[25].  
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