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ABSTRACT

Often pieces of information are received sequentially over time.

When did one collect enough such pieces to classify? Trading wait

time for decision certainty leads to early classification problems

that have recently gained attention as a means of adapting clas-

sification to more dynamic environments. However, so far results

have been limited to unimodal sequences. In this pilot study, we

expand into early classifying multimodal sequences by combining

existing methods. We show our new method yields experimental

AUC advantages of up to 8.7%.
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1 INTRODUCTION

Early classifying multimodal sequences is ubiquitous in our lives.

Scanning through movies on any streaming platform, the trailer

begins to play. Based on seconds of video and audio, we make a

quick decision of whether or not to watch it. A more serious exam-

ple is a physician diagnosing a patient. From imaging, lab tests, and

other results arriving at different times, the doctor is attempting to

diagnose as accurately as possible (to start the correct treatment)

as quickly as possible (to begin that treatment sooner). With such

applications, it is important to adapt early classification methods

to multimodal sequences as they exhibit their own challenges.

Specifically, early classification manifests in the following prob-

lem setup: At each time step we receive new information in a se-

quence. From here, we must decide if we have enough informa-

tion to stop and predict the class with sufficient accuracy, or if we

should continue waiting for additional information in later time

steps to improve prediction accuracy. Balancing this dual objec-

tive of classifying as soon as possible, as accurately as possible is

the core problem.

To solve this, we combine an OmniNet-like [14] transformer

neural network with Classifier-Induced Stopping (CIS) [3]. Trans-

formers [19] represent the state-of-the-art neural network for sequence-

based tasks and OmniNet further advances them by explicitly mod-

eling spatial-temporal interaction, making its architecturewell-suited

for our early classification of multimodal sequences. The recent

CIS provides an efficient method to learn both a policy for deciding

between stopping and waiting and a classifier. It works by finding

the optimal stopping time based from its own classifications each

time step.

Our contributions are two-fold. First, this is a pilot study in early

classification of multimodal sequences. To our knowledge, this is

first time early classifiers have been applied to sequences com-

posed of different modalities such as images, text, and structured

categorical data. Second, we demonstrate that spatial-temporal trans-

formers in combination with CIS is a potent model for early classi-

fying multimodal sequences. Experiments show our method holis-

tically outperforms a similar benchmark early classifier with the

same neural network body.

This paper is structured as follows. In §2, we review related

work in multimodal neural networks and early classifiers. In ad-

dition, we introduce relevant notation and detail the benchmark

method. In §3 and §4, we thoroughly lay out OmniNet’s spatial-

temporal transformer and CIS, respectively. All experimental de-

tails and results are explained in §5. Finally, we conclude in §6.

2 RELATED WORK

2.1 Neural Networks for Multimodal Sequences

There is a large body of work adapting LSTMs [9] to digest mul-

timodal sequences. These methods can be distinguished by the

stage of fusing of the different modalities. [17] concatenates fea-

tures from different modalities and feeds this larger input into an

LSTM. [1, 6] reserve separate LSTMs for each modality and then

fuse the outputs. Finally, as a means of fusing modalities within

a LSTM, [12, 15] have separate LSTMs for each modality but they

share commonweights. They argue this allows themodel to jointly

learn correlations across modalities.

More recently, however, transformers have been the answer to

multimodal sequence-based tasks [23]. [24] captions images with

a transformer composed of an image encoder to self-attend visual

features and a caption decoder to generate the captions from those

visual features. [18] introduces cross-modal transformers, which

learn the attention between each pair of modalities. The downside

being that as the number of modalities increases, the number of

cross-modal transformers and model size necessarily increases too.

OmniNet circumvents this issue by arranging elements of a multi-

modal sequence into a temporal and spatial cache and then feeds

both into a spatial-temporal transformer. This mechanism allows

temporal features to attend over the spatial features and implic-

itly learn a shared representation across multiple modalities. We

present the full details of this spatial-temporal transformer in §3.

2.2 Early Classification

Initial works in early classification formulate the problem in terms

of standard reinforcement learning. Specifically, [7, 11] use RE-

INFORCE [22], a standard exploration-exploitation policy gradi-

ent method to learn their early classifiers. [3] uses PPO [16], an-

other policy gradient method, to the same effect. These methods

rely on trial and error and lack the ability to ‘look forward’ to see

that waiting longer for more elements would have been beneficial.

In fact, [3] experimentally demonstrates that PPO performs con-

siderably worse than such forward-looking methods like Length

http://arxiv.org/abs/2305.01151v1
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Adaptive Recurrent Model (LARM) [10] and CIS. Accordingly, we

only benchmark CIS against LARM. Again, all previous work men-

tioned here is with unimodal sequences. Before summarizing LARM,

in the next subsection we mathematically formulate early classifi-

cation and establish notation.

2.3 Problem Setup Notation

The set of training data X comprises samples G (8) and one-hot en-

coded labels ~ (8) ∈ {0, 1}� , where � > 1 is the number of classes

and

G (8) =
((
G
(8)
1 ,<

(8)
1

)
,
(
G
(8)
2 ,<

(8)
2

)
, ...,

(
G
(8)
)end

,<
(8)
)end

))

are sequences of elements G
(8)
C of modality<

(8)
C . For a sample 8 at

time C , its state is given by

B
(8)
C =

((
G
(8)
1 ,<

(8)
1

)
,
(
G
(8)
2 ,<

(8)
2

)
, ...,

(
G
(8)
C ,<

(8)
C

) )
.

Classifier neural network 5 parameterized by U takes BC as input
1

and outputs predicted class distribution vector ~̂U (·|BC ). Policy neu-

ral network 6 parameterized by V takes BC as input and outputs pol-

icy distribution vector cV (·|BC ) over two actions (‘wait’ and ‘stop

and classify now’).

~̂U (·|BC ) = 5U (BC )

cV (·|BC ) = 6V (BC )

At each time step C , we take an action0C according to policycV (·|BC ).

This action can be selected stochastically via sampling or determin-

istically by choosing the argmax action. We keep waiting another

time step and receiving new elements (GC+1,<C+1) until we decide

to stop. Once we decide to stop and classify, we make a classifica-

tion according to ~̂U (·|BC ).

To learn classifying as accurately as possible, as quickly as pos-

sible, we implement the following reward function

'UC (BC , 0C ) =

{
−` if 0C = ‘wait’

−` − CE (~, ~̂U (·|BC )) if 0C = ‘stop’ or C = )end

where ` is a time penalty parameter and CE is cross-entropy. Each

time step incurs a constant time penalty of −`. We denote the time

the model stops and classifies as time ) ≤ )end. Early classifying

can then be formulated in terms of the following optimization prob-

lem

max
U,V
EX

∑

C

'UC (BC , 0C (V)) . (1)

Maximizing this cumulative rewardmeans classifying as accurately

as possible (so that cross entropy is low), as quickly as possible (so

that the sum of time penalties is low). The time penalty parameter

` captures how much waiting another time step is penalized. As `

grows, we may sacrifice more accuracy for earlier classifications,

and vice-versa.

1We only explicitly write superscript samples G (8) , B (8) when needed to distinguish.

2.4 LARM

LARM [10] learns to early classify in a probabilisticmanner. If�) is

the decision sequence where the policy decided to stop and classify

at time ) , then this decision sequence is uniquely defined by the

sequence of actions

�) = (01 = ‘wait’, ..., 0)−1 = ‘wait’, 0) = ‘stop and classify’) .

Wecan also explicitly calculate the probability of decision sequence

�) from policies cV (·|BC ) as

P (�) |B) ) =

)∏

C=1

cV (0C |BC ) .

With these stopping time probabilities, LARM seeks to maximize

an expected cumulative reward based on (1) to learn its early clas-

sifier.

min
U,V
EX

[
CE

(
~,

)end∑

)=1

~̂U (·|B) ) P (�) |B) )

)
+ `

)end∑

)=1

) · P (�) |B) )

]

The first term in this loss is a micro-averaged cross-entropy and

the second term is the expected stopping time penalty. Again, for

both terms the expectation is taken with respect to the stopping

time ) probability.

We see that if cV (0C = ‘wait’|BC ) are small then P (�) |B) ) may

decrease to 0 rapidly. This is tantamount to not ‘waiting’ far enough

into the sequence to gain valuable information. To prevent this,

LARM sets the factors cV (0C = ‘wait’|BC ) to 1 with probability d

during training. This ensures the model will wait for more ele-

ments in the sequence initially. Again, we emphasize LARM is a

capable of looking forward and learning when waiting will be ben-

eficial. During inference, LARM follows a stochastic policy rollout

(samples action 0C ∼ cV (·|BC )) but deterministically classifies.

3 SPATIAL-TEMPORAL TRANSFORMER

We follow OmniNet’s [14] structure of first funneling elements of

the multimodal sequence through their respective peripherals and

then inserting those outputs in the temporal and spatial caches of

the transformer segment. This section outlines this process, termi-

nating with the policy and classifier decisions.

3.1 Peripherals

Before the state BC reaches the transformer block of the neural net-

work model, modality-specific peripheral functions are applied to

each element in the sequence. For instance, an image peripheral is

applied to image elements and a text peripheral is applied to text el-

ements. If there are multiple sources of text elements, we can have

a separate peripheral for each. The purpose of each modality (or

source’s) peripheral is two-fold: First, peripherals extract relevant

features. Second, peripherals project each element to a common di-

mension size3model, a necessity for a unified transformer. Consider

an image of shape (ℎF, 3) where ℎ,F are the height and width of

the image in pixels and 3 refers to the RGB channels. The image pe-

ripheral will project this image to dimension (ℎ′F ′, 3model) where

ℎ′,F ′ > 1 are reduced, downsampled height and width subpixels.

For text, there is no spatial dimension so we write their shape as

(1, =) where = is the number of words or tokens. Similarly, the text

peripheral will project this text to dimension (1, 3model).
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Figure 1 depicts the overall structure of our neural network ar-

chitecture with a didactic peripheral flow example. Say the first el-

ement G1 of state BC has modality<1 = image. Note, images are the

only spatial modality in our case. The image peripheral is applied

and the resulting output is appended to the spatial cache. In addi-

tion, the spatial average is appended to the temporal cache. The

second element G2 has modality<2 = text, which has no spatial

dimension. We apply the text peripheral to G2 and that output is

sequentially appended to the temporal cache only. This goes on for

all of the element in state BC with only spatial modalities (images)

being appended to the spatial cache. Spatially averaged peripheral

outputs of all modalities are stored in the temporal cache. Algo-

rithm 1 rigorously enumerates each step of this procedure.

(x1, m1)

(x2, m2)

(xt, mt)

..
. ..

.

Image

peripheral

Text

peripheral

Temporal cache

Transformer

Spatial cache {

Figure 1: Diagram of our neural network architecture show-

ingmultimodal sequence elements passing through their re-

spective peripherals, then being sequentially stored in the

the temporal and spatial caches of the transformer.

Algorithm 1: Storing peripheral outputs in spatial and

temporal caches

Temporal cache = [ ], Spatial cache = [ ]

3B = spatial dimensions

for C ′ = 1, 2, ..., C do

G̃C′ ←<C′ peripheral (GC′) ∈ R
3B×3model

if 3B > 1 do

Spatial cache← [Spatial cache, G̃C′ ]

end if

Temporal cache←
[
Temporal cache, 1

3B

∑3B
8=1 G̃C′ [8, :]

]

end for

3.2 Transformer

The temporal and spatial caches form the inputs into the trans-

former portion of the neural network. Figure 2 shows a schematic

of OmniNet-based spatial-temporal transformer body with classi-

fier and policy heads. First, the standard positional encoding [19] is

added to the temporal cache before it enters the first multi-head at-

tention block (with residual addition and layer normalization [2]).

This first attention block’s output form the ‘queries’, and along

with the ‘keys’ and ‘values’ from the spatial cache, make up the

inputs to the gated multi-head attention block [14]. In this way,

temporal features can attend to spatial features and learn com-

plementary cross-modality information. Furthermore, with gated

multi-head attention, temporal attention scores respectively scale

the corresponding attention scores of spatial cache elements. For

instance, if an image receives high attention in the first, tempo-

ral attention block, its corresponding subpixels will receive higher

attention in this gated, spatial attention block. This is a mecha-

nism to ensure high temporal attention translates to high spatial

attention. We refer the reader to [14] for further details and dis-

cussion of gated multi-head attention blocks. Finally, the output of

this gated, multi-head attention block (after another residual ad-

dition and layer normalization) form the inputs for two separate,

feed forward heads: one for the policy and one for the classifier.

Temporal cache

Spatial cache
Temporal

attentions

scores

Add & norm

Add & norm

Feed forward

Classifier Policy

Feed forward

+

Multi-head

attention

Gated

multi-head

attention

Figure 2: Diagram of spatial-temporal transformer body

with classifier and policy heads.

4 CIS

Learning early classification is equivalent to maximizing the cu-

mulative reward in (1). This cumulative reward can be reformu-

lated as a function A depending on label ~, classification prediction

~̂U (·|B) ), and classification time) given by A (~, ~̂,) ) = −CE (~, ~̂)−

`) . An important observation is that for a fixed ~̂ and ~ this be-

comes a simple univariate function of time) . Utilizing this, CIS is

able to learn (i) when to stop and classify and (ii) what classifica-

tion to make in a more direct, supervised manner. First, CIS seeks

to make the most accurate classification prediction at every time

step. Second and concurrently, CIS learns the corresponding policy

which yields the resulting optimized classification time. From this

duality, CIS learns the ideal policy based off of its own classifica-

tions.
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The loss function is given by LCIS = EX

[
L~̂ + _ · Lc

]
where

L~̂ =

1

)end

)end∑

C=1

CE (~, ~̂U (·|BC ))

Lc =

1

)end

)end∑

C=1

CE
(
c̃U (·|G, C) , cV (·|BC )

)

c̃U (·|G, C) =

{
(1, 0) if C < )̃U (G,~)

(0, 1) if C ≥ )̃U (G,~)

)̃U (G,~) = argmax
C

A (~, ~̂U (·|BC ) , C) .

Vector (1, 0) means ‘wait’ with probability 1 and (0, 1) is ‘stop and

classify’ with probability 1. Scaling constant _ is a hyperparameter.

Unlike LARM, CIS does not rely on any help waiting for enough

information; it is able to directly learn the optimal classification

time in a supervised manner. During training c̃U (·|G, C) and )̃U are

calculated and treated as fixed labels per minibatch update. In in-

ference, CIS simply takes the argmax action.

5 EXPERIMENTAL RESULTS

5.1 Datasets and Pareto Metric

Our first experiment is with the N24News Multimodal News Clas-

sification dataset [21]. It consists of New York Times news articles

from different categories. Each article comprises five elements. In

order of appearance, they are (i) headline, (ii) abstract, (iii) image,

(iv) image caption, and (v) article body. We do not need to ingest

all of the elements in an article to classify its category (economy,

technology, etc.). Instead, we ingest element by element and clas-

sify the article after ingesting a minimal number of elements. We

ingest the elements in the order they naturally appear in articles.

To make the article body consistent in size with the other elements,

however, we pad up or truncate down to 2,000 BERT [5] tokens and

further divide it into 40 elements of 50 tokens. So each article’s se-

quence follows (headline, abstract, image, image caption, body 1,

..., body 40). The dataset contains 61,218 news articles in 24 well-

balanced categories. We reserve a random 10% of articles to be the

hold-out validation set, separate from the training set.

The second experiment is derived from the ESP Game dataset

[20]. This dataset contains annotated, everyday images; each im-

age is paired with a list of unique words describing that image. We

can swap some pairings, so those images are no longer paired with

their original list of words, and create the following task: Suppose

you saw an image and then read the paired words one at a time.

How quickly could you determine if the image and words were

correctly or incorrectly paired (binary classification)? With many

of the words being generic adjectives and nouns, like ‘blue’ or ‘per-

son,’ the task is not trivial. We pad each word list up to 42 words,

which is the largest such list, and order the words within each list

by increasing uniqueness. This is done to match the design of the

original ESP Game and trend of waiting longer for increasing in-

formation. The dataset contains 100,000 samples with correct and

incorrect pairings evenly split. A random 10% of samples are re-

served for the hold-out validation set. Here, cross-modality learn-

ing is explicit and necessary.

Our third and final experiment makes use of industry data and

application. In this real use case, we have multimodal sequences

composed of four elements: (i) structured categorical data, (ii) text,

(iii) a bag of images, and (iv) another bag of images. For a given

sample, each element arrives sequentially but in variable order. As-

sociated with each sample is a binary label which we attempt to

predict as accurately as possible, with as few elements received.

In reality, the features of the structured categorical data also ar-

rive sequentially and with variable order. While we do not have

access to these finer grained arrival time stamps, in consultation

with subject matter experts, we mimic this process with the fol-

lowing procedure: We first train an XGBoost model [4] to classify

samples’ structured data only. We can then identify no-importance

features (feature importance scores of 0), low importance features

(scores between 0 and 0.01), and high importance features (scores

greater than 0.01). The structured data is artificially made to ar-

rive three times. For the first arrival, we set the value of each fea-

ture to ‘missing’ with a probability according its importance. No-

importance features are made ‘missing’ with 90% probability, low

importance features with 95% probability, and high importance fea-

tures at 99% probability. We encode ‘missing’ by adding a dimen-

sion to the one-hot encoding of categorical features. For the second

arrival, we take the first arrival and replace ‘missing’ values with

the true value with 20% probability. Similarly for the third arrival,

we do the same on the second arrival. The first arrival replaces

the original structured element’s sequence position. The second

arrival is inserted two positions afterwards if possible, otherwise

it immediately follows the first arrival. We do the same for insert-

ing the third arrival after the second. For example, the most com-

mon sequence is (structured 1, text, structured 2, bag of images 1,

structured 3, bag of images 2). In total, this dataset contains 63,030

samples with evenly split positive and negative labels. Again, we

reserve a random 10% of samples to be the validation set.

To holistically compare LARM and CIS early classifiers, we con-

struct their Pareto frontiers. In this way we can study the com-

plete spectrumof each method’s accuracy-timeliness tradeoffs. For

a specific `, we evaluate the early classifier over the validation

set and compute the mean classification time and accuracy after

each training epoch. Sweeping over a range of ` values yields a set

of accuracy-timeliness tradeoff points. Finally, the Pareto frontier

emerges after removing all dominated points. Furthermore, we run

three independent trials of this procedure to create three Pareto

frontiers per method. The mean AUC of the Pareto frontiers is a

holistic measure of the early classifier’s accuracy-timeliness trade-

off capacity.

5.2 Implementation

For all three experiments, we sweep ` ∈
{
10−5, 10−4, 10−3, 10−2,

10−1
}
. For CIS, we set the scaling constant _ = 1. The training set

is optimized by using Adam with batch size 128 until validation

accuracies and mean classification times plateau. All images are

resized to 224 × 224. If we pretrain a peripheral on the sequence

labels, wewrite the accuracy in parentheses. For all peripherals, we

explain the feature extractor and implement a single feed-forward

layer of dimension 3model for the projector (explained in §3.1). For

the spatial-temporal transformer, each multi-head attention block
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has eight heads with queries, keys, and values of dimension 64.

The classifier and policy heads’ feed-forward networks have one

hidden layer of dimension 100 with ReLU activation.

For the N24News experiment, four separate BERT models are

pretrained for each text source: Headline (73.6% acc.), abstract (78.8%

acc.), caption (71.0% acc.), and body portions (69.1% acc.). We take

the final hidden state of dimension 768 as the feature extraction. A

ResNet-18 [8] model is pretrained on the images (48.6% acc.). The

7 × 7 × 512 spatial layer before average spatial pooling is used as

the feature extraction. Peripheral accuracies are in line with [21].

For the transformer network, 3model = 500 and the learning rate is

10−5 for CIS and 10−6 for LARM. Following [10], we keep LARM’s

waiting parameter d = 0.9.

For the ESP Game image-words experiment, we cannot pretrain

an image or words peripheral since both modalities are necessary

to make an accurate classification. Accordingly, we simply utilize

a ImageNet-pretrained ResNet-18 as the image peripheral where,

again, the 7 × 7 × 512 spatial layer before average spatial pool-

ing is used as the feature extraction. For the words peripheral we

use GloVe word embeddings [13] of dimension 300. For the trans-

former, 3model = 300 and the learning rate is 10−5 for CIS and 10−6

for LARM. LARM’s waiting parameter d = 0.9 again.

Finally, for our industry experiment, we do not apply a periph-

eral to the three structured data arrivals, just insert the projector

introduced above. For reference though, a simple 500-dimensional

single hidden-layer, feed-forward classifier yields a 64.8% accuracy

for the first arrival, 78.1% accuracy for the second, and 80.1% for

the third. We pretrain a BERT model on the last 512 tokens of the

text data (67.1% acc.) and again take the final hidden state of di-

mension 768 as the feature extraction. For both bags of images,

we pretrain separate ResNet-18 models where the average spatial

pooling layer is also across images in a bag (53.6% and 53.0% accs.).

Again, the 7× 7× 512 spatial layers for each image before average

spatial pooling is used as the feature extractions. For this trans-

former, 3model = 500 and the learning rate is 10−5 for both CIS and

LARM. LARM waiting parameter d = 0.9 lead to poor results and

lowering it to 0.5 yields the best performance.2

5.3 N24News Experiment

Figure 3 displays the Pareto frontiers for the N24News experiment.

CIS’s mean AUC is 1.6% greater than LARM’s mean AUC. CIS

slightly outperforms LARM, and we stress this is due to the su-

pervised nature of the algorithm.Wewill see this performance gap

grow as the data becomesmore complex and the interplay between

modalities more important in the following experiments.

5.4 ESP Game Image-Words Experiment

Figure 4 (top) displays the Pareto frontiers for the ESP Game image-

words experiment. CIS holistically outperforms LARM. CIS’s mean

AUC is 5.2% greater than LARM’s mean AUC. Reflected in this

larger AUC margin, CIS is able to better capture the multimodal

dependency.

To showcase CIS’s discerning patience, we investigate the dis-

tribution of stopping times compared to LARM. Figure 4 (bottom)

shows just this using CIS and LARMwith mean classification time

2We pledge to publish our code and add a link here upon acceptance of this paper.

Figure 3: Pareto frontiers for the N24News experiment.

of 1.5 words (red circles in Figure 4 (top)). We can see that CIS (i)

waits until at least the first word as that’s the minimum informa-

tion needed to predict accurately and (ii) does not wait for as many

words as LARM on the tail end. In other words, the distribution has

lower spread.

5.5 Industry Experiment

Figure 5 (top) displays the Pareto frontiers for the industry experi-

ment. Again, CIS holistically outperforms LARM. CIS’s mean AUC

is 8.7% greater than LARM’s mean AUC.

We wish to study the stopping times for the variable modality

arrivals. In Figure 5 (bottom), we show a Sankey plot of sequences

and their respective stopping times for a specific CIS Pareto point

(circled in red in Figure 5 (top)). The first observation is that CIS

most often stops after receiving the second structured data (seen

from ‘A’ markers). This of course makes sense since we are in the

lower time penalty region and structured data is the most infor-

mative (highest accuracy peripheral). A second, more interesting

observation is that CIS also frequently stops and classifies after

receiving both the first structured data and text modality in that

order (seen from ‘B’ markers). This suggests these two modalities

have complementary information. As we can see, there is rich op-

portunity for studying early classification models.

6 CONCLUSION

Early classification has recently gained attention as an important

adaptation of classification to dynamic environments. Methods like

LARMand CIS represent the state-of-the-art. However, thesemeth-

ods have solely focused on unimodal sequences. To our knowledge,

this paper is the first study of early classification of multimodal se-

quences. Not only do we stress the ubiquity of such problems in

the real world but also demonstrate that an OmniNet-like spatial-

temporal transformer combined with CIS is an effective approach.



Alexander Cao, Jean Utke, and Diego Klabjan

Image Word 1 Word 2 Word 3 Word 4 Word 5
T

0%

10%

20%

30%

40%

50%

Pr
op

or
tio

n 
of

 sa
m

pl
es

CIS
LARM

Figure 4: (Top) Pareto frontiers for the ESP Game image-

words experiment. (Bottom) Histograms showing distribu-

tion of CIS and LARM classification times) .

For sure, multimodal sequences are an important extension of uni-

modal early classification.
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