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ABSTRACT
Collaborative manipulation is inherently multimodal, with haptic
communication playing a central role. When performed by humans,
it involves back-and-forth force exchanges between the participants
through which they resolve possible conflicts and determine their
roles. Much of the existing work on collaborative human-robot
manipulation assumes that the robot follows the human. But for
a robot to match the performance of a human partner it needs to
be able to take initiative and lead when appropriate. To achieve
such human-like performance, the robot needs to have the ability
to (1) determine the intent of the human, (2) clearly express its own
intent, and (3) choose its actions so that the dyad reaches consensus.
This work proposes a framework for recognizing human intent in
collaborative manipulation tasks using force exchanges. Grounded
in a dataset collected during a human study, we introduce a set
of features that can be computed from the measured signals and
report the results of a classifier trained on our collected human-
human interaction data. Two metrics are used to evaluate the intent
recognizer: overall accuracy and the ability to correctly identify
transitions. The proposed recognizer shows robustness against the
variations in the partner’s actions and the confounding effects due
to the variability in grasp forces and dynamic effects of walking.
The results demonstrate that the proposed recognizer is well-suited
for implementation in a physical interaction control scheme.

KEYWORDS
Physical Human-Robot Interaction, Physical Human-Human Inter-
action, Collaborative Manipulation, Action Identification, Temporal
Data Classification

ACM Reference Format:
Zhanibek Rysbek, Ki Hwan Oh, and Miloš Žefran. 2023. Recognizing In-
tent in Collaborative Manipulation. In INTERNATIONAL CONFERENCE ON
MULTIMODAL INTERACTION (ICMI ’23), October 9–13, 2023, Paris, France.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3577190.3614174

1 INTRODUCTION
In daily life, humans communicate across many modalities simulta-
neously. In order to use robots actively in daily life, it is important to
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build an ability for the robot to engage in multi-modal interaction.
In collaborative manipulation, humans employ speech and body
pose as needed, but the haptic channel is active throughout the
interaction. This work focuses on an underexplored area of haptic
communication centered around a co-manipulation task.

Recent work in physical Human-Robot Interaction (pHRI) uses
the interaction between humans to inform the design of collabo-
rative robots. Much of the existing work on collaborative human-
robot manipulation assumes that the robot follows the human. But
for a robot to match the performance of a human partner it needs
to be able to take initiative and lead when appropriate. In particular,
the robot must have the ability to (1) understand human intent,
(2) express its own intent and (3) choose an action policy to reach
an agreement. Towards that goal, this work proposes a framework
for recognizing human intent in collaborative manipulation tasks
using force exchanges.

Due to the difficulty of obtaining data where human intent can
be clearly identified, no direct study addresses individual human
action identification over a haptic medium in real-time. In the ab-
sence of direct supervision, authors in [1] suggested a collaborative
object manipulation system with implicit communication based
on the participant’s signals. However, studies exist that predict
human-human interaction patterns which are caused by individual
dyad actions. For example, authors in [17] suggested a taxonomy of
interaction patterns, and trained a classifier to predict them. Build-
ing on that work, [2] proposed a pHRI system, which switches
to active collaboration mode when harmonious interaction is de-
tected. Dynamic role allocation during natural human interaction
has been studied in [5, 19, 20, 24], where dyads often switch to take
the lead when required during the task. A body of research work is
focused on studying human behaviors in haptic-related tasks. For
example, [18] conducted a study of how humans infer the direc-
tional intent of the partner with visual feedback. The conclusion
was that humans adapt to partner behavior, and the accuracy of
inference increases significantly after a short practice. In [14], au-
thors trained Multi-layer Perceptron (MLP) to map force signals to
velocity commands in overground guiding tasks. In follow-up work,
they observed that humans learn impedance modulation strategies
that increased the efficiency of haptic communication [25]. The
decision-making behavior of humans was studied in [16], where
researchers observed that humans spent a considerable amount of
time gathering signal evidence from their partner’s actions in a
competing game experiment.

When it comes to methodology in mining time series data for
intent recognition, a common approach is to employ the sliding
window technique [30] with clearly labeled regions. In the absence
of supervision, authors in [29] suggested a technique to separate
window samples by discriminating out-of-neighborhood samples,
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Figure 1: Training pipeline. Force-kinematics data is generated from co-manipulation experiments. Then, action phases are
identified based on the power features. Then training data is generated by neighborhood sampling.

given that the dataset regions can be coarsely separated by simple
statistical methods.

In this work, we propose a framework for recognizing intent
about the movement direction in collaborative manipulation. The
main challenge of this approach is the difficulty of obtaining nat-
ural human action data that can be labeled for intent. To tackle
this, we conducted a human study described in our previous work
[26, 27]. In the experiment, participants individually received the
intended goal configuration as well as the importance of reaching
that configuration. In order to study actions that humans use to
communicate their intent we implemented an action phase recogni-
tion algorithm described in Section 2.2. By random sampling from
the neighborhoods within the action phase, we generated a dataset
that was subsequently used to train a classifier that can be used for
intent recognition. We report the results of SVM, AdaBoost, and
Fully connected Neural Networks classifiers. Along with the overall
accuracy of these models, we report their transition accuracy after
a voting filter is employed. We also provide a detailed discussion of
the robustness of the classifier.

2 HUMAN ACTION TYPES
2.1 Definition
In collaborative manipulation, dyads negotiate implicit and explicit
task parameters through force exchanges [10]. Implicit parameters
include grasping force, height of the movement plane, and speed
of movement. They are typically determined through low-level
coordination. The most important parameter that is determined
through explicit negotiation is the direction of movement. Conflict
is common in this process and a difference in the intended direction
of movement results in elevated values of the interaction force [26].
Several studies explicitly design the system to avoid such conflicts
[2, 12]. For example, Participant 1 may wish to go towards a goal
𝑔𝑖 while Participant 2 tries to go to a different goal 𝑔 𝑗 . As a result,
the manipulated object gets stretched (or compressed) and the

magnitude of the stretch (compression) force (differences of the
force signals) sharply increases.

When two humans collaborate in an environment, there are
typically a finite number of locations that may be of interest during
a particular activity. We will therefore assume that there are 𝑁

discrete goals 𝑔𝑖 , 𝑖 ∈ {1, . . . , 𝑁 } in an environment and define a
human action to be the intent of the participant to go to one of
these predefined goal locations. We further consider the period
before anymovement takes place as an additional idle action. Hence,
a total number of classes is 𝑁 + 1, with the action set equal to
𝐴 = {𝑖𝑑𝑙𝑒, 𝑔1, 𝑔2, ..., 𝑔𝑁 }.

2.2 Action Phase detection
In physical interaction, humans exchange push-pull actions to ex-
press their intent and probe the reaction of their partner. Such
exchanges are critical in reaching an agreement on the final goal
direction. Usually, their duration is brief compared to the duration
of the entire task that contains lifting, negotiation, navigation, and
release of the object. In order to study human-human interaction at
the individual level, it is important to accurately detect the period
when force exchanges actively convey intent as they shape the
evolution of the interaction. We call this period the action phase.

Several studies [2, 17, 20, 23, 26, 27] observed that when push-
pull actions are applied by human dyads in conflicting directions,
force signals exhibit a distinctive hump-like pattern. Although these
patterns consistently appear, relying solely on force signals does
not sufficiently convey the cause of the conflict and the intention
of each participant. Furthermore, when intent expression occurs
without conflict, the characteristic hump-like patterns are absent,
making the detection of the action phase and determination of the
correct interaction state more intricate. To tackle this issue, we
introduce power indices and put forth an algorithm for identifying
the action phase, both outlined in the following sections.

2.2.1 Power Indices. Several studies use interaction power to dis-
tinguish different patterns of interaction [17, 27], often calculating
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Figure 2: An example of the output of the Action Phase De-
tection Algorithm on Power signals.

averages over a period of time. In this study, we employ instanta-
neous interaction power, as introduced in [27]:

𝑃𝑘 (𝑡) = 𝐹𝑘 (𝑡) · 𝑣𝑘 (𝑡) = ∥𝐹𝑘 (𝑡)∥∥𝑣𝑘 (𝑡)∥ cos (∠ (𝐹𝑘 (𝑡), 𝑣𝑘 (𝑡))) (1)

where, 𝑘 ∈ {1, 2} is the participant number, and 𝐹𝑘 and 𝑣𝑘 are force
and velocity sensed at the grasp point, respectively. This metric
provides insights into the overall direction of interaction. In the
presence of 𝑁 goals, interaction power can be projected to the line
that connects the current grasp point and goal:

𝑃𝑖
𝑘
= 𝐹 𝑖

𝑘
· 𝑣𝑖

𝑘

= ∥𝐹𝑘 ∥∥𝑣𝑘 ∥ cos(∠(𝐹𝑘 , 𝑔𝑖 )) cos(∠(𝑣𝑘 , 𝑔𝑖 ))
(2)

where 𝐹 𝑖
𝑘
and 𝑣𝑖

𝑘
are projections of the force and velocity to a goal

direction 𝑔𝑖 . In contrast to general power in Equation 1, projected
power is the amount of total power dedicated to a specific direction
that provides orientational information of the push-pull action.

In a noise-free environment, such signals alone are sufficient to
detect the accurate intent of the participant by finding themaximum
𝑃𝑖
𝑘
over possible goals 𝑖 . Yet, due to the confounding components

of the human force such as the grasp force, and force artifacts
due to the dynamics of walking and maneuvering, the maximum
power signal does not necessarily coincide with the direction truly
intended by the participant. Therefore, we employ a supervised ma-
chine learning method that "learns" to eliminate these confounding
factors, rendering it apt for real-time intent recognition.

2.2.2 Algorithm. In this section, we provide the details of how the
action phase could be detected based on the power indices described
above. The architecture of this algorithm is based on the qualitative
understanding of human interaction data. The idea is to focus on
the rising edges of the "hump" patterns which correspond to the
initial intent expression phase. The peak location indicates the
consensus attainment during the conflict. Furthermore, we noticed
asynchronous actions among agents, implying different time frames
for action phases detected in each participant. Our data collection
involved the use of a beep signal to initiate participants’ movement,
ensuring that actions started only after the beep signal.

Figure 2 depicts an example of interaction observation with 4
power signals, where raw peaks are first detected for each signal
and then filtered by removing small outliers. We impose that pos-
sibility of changing an intent within the fastest observed human

reaction time [21] is zero. Thus, adjacent peaks are combined with
a reaction time of 𝛿𝑇 = 0.25s. The rising moments of detected
peaks are found by intersecting a horizontal line equal to a fraction
(𝜏 = 0.1) of the detected peak. The period for each signal is then
determined to be the period from the rising moment to the peak lo-
cation. Next, each period from all power signals is aggregated using
a logical OR operator, with a "true" value corresponding within the
period time frame, and "false" for outside of the period. The action
phase is obtained by finding the corresponding time instance of the
first boolean island. Where a boolean island is defined as a consec-
utive sequence of "true" values in a logical array. The algorithm is
described in more detail in Algorithm 1.

Using multiple signals to determine the action phase improves
robustness compared to relying on a single signal. Moreover, relying
only on raw power (Equation 1) is not reliable as the dot product
might return zero when the force-velocity angle is 90◦, even though
a participant might exert significant force to move the object.

It is worth noting that this algorithm is designed for offline data
analysis, but it has critical implications for restricting regions of
interest into compact time frames with a high likelihood of subjects
acting on the same assigned goal. Ultimately, the action recognition
problem is converted to supervised learning.

Please note that this version of the algorithm is designed to
detect only the first round of actions. From our human studies, we
observed that most negotiations are resolved after the first exchange
of actions. However, in some cases, dyads may require more than
one round of force exchange to resolve a conflict. For instance,
in daily life situations, dyads may attempt to move in opposite
directions by stretching a table, which results in a conflict that stops
the interaction. In the next attempt, both dyads may change their
goal and try to move in the reverse direction, leading to another
compressive conflict. Only then, dyads may resort to language
or assume a follower role to correctly determine the direction of
the motion. Modifying the algorithm to detect subsequent force
exchanges is part of our future work.

3 METHODOLOGY
3.1 Data Preparation
3.1.1 Experiment. A human study was designed to investigate the
negotiation process in collaborative manipulation tasks within a
challenging environment. A wooden tray (2.1𝑘𝑔) was used as a
manipulated object. The experimental setup included three goals
located 2.4m away from starting location, with a narrow angu-
lar separation of 40◦. This angular configuration was selected to
present a more complex scenario for the intent recognition task,
as larger separation angles would simplify the task considerably.
Prior to each trial, participants were provided with a goal configu-
ration privately that specifies the location and the importance of
the goal. The importance of the goal was parameterized through
the addition of soft and hard goals. Soft goals required participants
to attempt to move toward their assigned direction, but they were
allowed to concede and follow their partner’s direction. On the
other hand, hard goals mandated that participants move towards
their assigned direction and convince their partner if necessary.
Additionally, some participants were assigned follower role, with
no specific goal except to follow their partner’s direction. During
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Algorithm 1: Action Phase Detection
Given 𝜏 < 1, 𝛿𝑇 ;
Given negotiation time frame 𝑡 ∈ [𝑡𝑛𝑒𝑔, 𝑡𝑑𝑒𝑐 ],
Given power signals 𝑃 (𝑡) = [|𝑃𝑘 |, 𝑃1𝑘 , ..., 𝑃

𝑁
𝑘
], 𝑘 ∈ {1, 2};

forall 𝑝 in P do
𝑝𝑒𝑎𝑘𝑠 = Find All Peaks in 𝑝;
Combine 𝑝𝑒𝑎𝑘𝑠 that are within 𝛿𝑇 ;
Remove outliers in 𝑝𝑒𝑎𝑘𝑠 with small magnitude;
𝑝𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 is the first peak’s magnitude;
𝑡𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 is corresponding location in time;
if 𝑝𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 is 𝑁𝑈𝐿𝐿 then

Continue;
find 𝑡𝑠𝑡𝑎𝑟𝑡 < 𝑡𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 when 𝑝 (𝑡𝑠𝑡𝑎𝑟𝑡 ) = 𝜏𝑝𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 ;
store [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 ] in 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 ;

𝑡𝑏𝑜𝑜𝑙 =
⋃
𝑝𝑒𝑟𝑖𝑜𝑑𝑠 in boolean vector form;

[𝑡0, 𝑡𝑓 ] = First boolean island in 𝑡𝑏𝑜𝑜𝑙 ;
Return Action Phase [𝑡0, 𝑡𝑓 ];

the trials, participants were restricted to communicating through
haptic channels, with verbal and other non-verbal communication
prohibited. Participants were free to choose their preferred strategy
to reach a consensus when a conflict arose. A detailed explanation
of the experiment can be found in [27].

Freedom in the choice of strategy by the dyads resulted in a
considerable variety of behaviors in the interaction data. Broadly,
participant actions (intent expression) fall into two categories: de-
cisive and indecisive. Indecisive actions correspond to a subject
trying to perceive the partner’s intent, or probing actions that in-
volve tentative movement towards a goal with the idea of giving
up if the intent of the other participant is decisive. This is typical
behavior for follower and soft goals. In contrast, decisive actions
are unequivocally perceived by the other participant. When both
participants choose a decisive action (with different goals) the re-
sult is typically a perceivable conflict where the stretching force
magnitude exceeds 5N. In such interactions, the non-dominant part-
ner exhibits opposing behavior, characterized by negative applied
power (𝑃𝑘 < 0), which means the subject is not contributing to
the motion, but being dragged away by the partner. Such interac-
tions can result from both hard and soft goal configurations. We
removed such opposing behavior and the participant actions that
were unclear in intention due to weak signals when training the
classifiers. However, we tested the classifiers on these actions and
report the results in this work.

3.1.2 Annotation. The collected human interaction data is pro-
cessed with the action phase detection algorithm described in sec-
tion 2.2.2. The output of the algorithm is the action phase and
associated power strength (𝑚𝑎𝑥 (𝑃𝑘 (𝑡)) for 𝑡 ∈ [𝑡0, 𝑡𝑓 ]) as depicted
in Figure 1. The period that precedes to action phase is considered
an idle phase that starts at the beep signal generated during the ex-
periment. By the design of the experiment, during the action phase
subject attempts to go to the assigned goal direction. Therefore, data
sampled from that action phase is the representation of the intent
of the subject that was privately assigned to them. To account for

Metric dim Feature Set
1 2 3

Handle Velocity 𝑣𝑘 2 ✓ - -
Applied Force 𝐹𝑘 2 ✓ - -
Sum of the Forces 𝐹𝑠𝑢𝑚 2 ✓ - -
Stretch Force 𝐹𝑠𝑡𝑟 2 ✓ - -
Raw Power 𝑃𝑘 1 ✓ - ✓
Projected Velocity 𝑣𝑖

𝑘
N ✓ ✓ ✓

Projected Force 𝐹 𝑖
𝑘

N ✓ ✓ ✓

Projected Sum of the Forces 𝐹 𝑖𝑠𝑢𝑚 N ✓ ✓ -
Projected Stretch Force 𝐹 𝑖𝑠𝑡𝑟 N ✓ ✓ -
Projected Power 𝑃𝑖

𝑘
N ✓ ✓ ✓

Number of unique signals 24 15 10
Number of features with derivatives 48 30 20
Number of features with statistics 192 120 80

Table 1: Principal signal content of each feature set. Dimen-
sions are counted for 𝑁 = 3.

the freedom of the strategy, particularly in soft goal configuration
where participants deviated from their assigned goal, the dataset is
semi-automatically re-annotated to determine the accurate intent
of the participant. Semi-automation is implemented according to
interaction power and stretching force (𝐹𝑠𝑡𝑟𝑒𝑡𝑐ℎ = 𝐹1 − 𝐹2) cues.
Annotators relied on the human body movements from the video
when the behavior was ambiguous from the signals.

3.1.3 Features. In the context of practical pHRI, it is crucial to uti-
lize features that are readily available to the robot during runtime.
In this study, we leverage force data at the grasp point, object posi-
tion and velocity, linear acceleration, and angular velocity to infer
the human partner’s intent. It is unrealistic to assume that objects
will be equipped with force-torque sensors in daily life. However,
from the robot’s force sensor, the applied force by the partner can
be computed, given the inertia and acceleration of the object. In
this work, we focus on inferring the participant’s intent from its
own applied force and velocities. A more realistic scenario would
be to infer the collaborator’s intent from the participant’s own
signals and actions. Although the signals of the collaborator can
be computed from the participant’s own data so the two problems
are conceptually equivalent. Evaluating how this would work in
practice is the subject of future research.

To test how well the system adapts to different sets of avail-
able signals we evaluated it using three distinct feature sets, each
designed to cater to a specific scenario. These feature sets are sum-
marized in Table 1. Feature Set 1 incorporates the participant’s
own applied force and a combination of the partner’s force, as well
as force and velocity measured in the spatial frame. Feature Set
2 comprises only scalar features, which are projections of force,
velocity, and power. Feature Set 3 is the most conservative which
includes only the participant’s own scalar signals and disregards
signals from the partner’s side. An advantage of employing feature
sets 2 and 3 is that they are independent of the spatial coordinates
and contain only relative measurements with respect to the goal
locations. This allows the model to generalize across different envi-
ronments and coordinate systems, which is particularly relevant
for pHRI applications where the robot interacts with objects in
various contexts. Moreover, using only participant signals in set
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3 eliminates the need for sensing the partner’s input, which can
simplify the hardware requirements and reduce the computational
burden. We present a comprehensive discussion of the model’s
performance on each set in Section 4.

3.1.4 Neighborhood Sampling. Weadopted a slidingwindow-based
approach that is commonly used for time series data [29, 30]. To
achieve real-time intent recognition, we extract simple features
from a time window of fixed length for signals provided in the
feature set. The training data was generated by randomly sampling
windows within the action phases identified using Algorithm 1. The
minimum, maximum, mean, and standard deviations are extracted
from each window. Each signal was acquired at 200Hz.

Our neighborhood sampling is performed in two stages, which
include uniform sampling across the action phase [𝑡0, 𝑡𝑓 ] and half-
normal distribution skewed to transition moments. The first stage
helps to learn the general patterns of intent during the action phase
while the second stage improved the accuracy in the transition
periods. For idle cases, the half-normal distribution is right-skewed,
while for actions, it is left-skewed. Using this approach, we observed
a reduction in the transition delay of the real-time classifier by more
than 0.1 seconds compared to uniform sampling only.

3.2 Classifier Design
3.2.1 Support Vector Machine with ECOC. Support Vector Machine
(SVM) [6] is a linear predictor that can train and classify nonlinear
data points by first mapping the data set to a high-dimensional
space using kernels. SVM then searches for a hyperplane that can
separate the mapped training set with the largest possible margin
into two binary classes. To extend SVMs for multiclass classifica-
tion, we can use Error-Correcting Output Codes (ECOC) [7], which
involves training multiple SVM learners based on coding and de-
coding designs. We chose the one-vs-all coding where each learner
assigns one of the classes as a positive class (+1 code) while the
remaining classes are treated as negative classes (−1 code). After
training, when a sample is fed into the model, it generates a vector
of scores with a length equal to the number of learners. The binary
loss from each learner is calculated using this vector and the code
matrix, and the one with the minimum aggregation of losses is
selected as the predicted class. Based on [17], we determined that
multiclass SVMs with Gaussian kernels [13], were well-suited for
our data. Using this approach, we trained four SVM learners where
each corresponds to one of the four classes in our dataset.

3.2.2 Ensemble Learning with Decision Trees. Inspired by [2], we
chose random forests [3] as one of our classifiers. The random forest
algorithm generates a bootstrap sample from the entire training set
and uses it to train a classification and regression tree (CART) [4]
based on the values in an independent and identically distributed
random vector. During testing, the output is determined by selecting
the class with the highest number of votes from the predictions of
the trees for the given input.

Additionally, we explored another popular ensemble method
known as Adaptive Boosting (AdaBoost) for multiclass classifica-
tion [9]. AdaBoost first distributes equal weights to all training
samples and then trains a decision stump (decision trees with one
split). The weights of misclassified observations increase while the

weights of correctly classified ones decrease. It repeats the process
for certain iterations and a more complicated error metric known as
pseudo-loss [9] is used. The prediction method is similar to random
forests except that the votes are weighted for each learner based
on the pseudo-loss.

3.2.3 Fully connected Neural Network. Feedforward neural net-
works (FNNs), also known as multilayer perceptrons (MLPs), are
a classic method for classifying nonlinear data [11]. In this study,
we trained a neural network with a specific structure, consisting
of an input layer (𝑛0) sized according to the number of features,
followed by two fully connected layers (𝑛1, 𝑛2) where the number
of neurons in each layer is proportional to the previous layer’s size
(𝑛1 = 𝛼1𝑛0, 𝑛2 = 𝛼2𝑛1, 2/3 ≤ 𝛼1, 𝛼2 ≤ 2). Specific values of the
𝛼1 and 𝛼2 were determined with Bayesian hyper-parameter opti-
mization method [28]. The motivation for choosing this specific
layer structure was to balance the data-to-model size ratio. With
the above conservative structure of the network, the total number
of training weights grows quadratically as a function of the number
of input neurons:

𝑁 = 𝑛20 (𝛼1 + 𝛼21𝛼2) + 𝛼1𝛼2𝑛0𝑛𝑓 (3)

For example, with a maximum of 192 input features, adequate
neural network training would require a training set of at least
37,000 sampled windows, which is not feasible with our current
dataset. For comparison, our dataset size is ≈ 13, 000. The final layer
(𝑛𝑓 ) has 𝑁 + 1 outputs that correspond to the number of classes.
We used the rectified linear unit (ReLU) as the activation function
for the first two layers and the Softmax function for the final layer.
To minimize the cross-entropy loss, the limited-memory Broyden-
Fletcher-Goldfarb-Shanno quasi-Newton algorithm (LBFGS) was
employed [22].

3.3 Evaluation
A total number of interactions (619) are divided into testing and
training sets each consisting of 15% and 85% respectively. Then,
each dyad’s actions in the training set were sampled with the neigh-
borhood sampling strategy described in Section 3.1.4. To avoid over-
fitting, 5-fold cross-validation was used by each classifier. Models
were tested on the similarly sampled data from test set interac-
tions. As an overall accuracy metric, we report a confusion matrix,
as well as precision, recall, and F1 scores, as they are suitable for
imbalanced class distribution. For compact accuracy, the metric
macro-averaged F1 score is used throughout this study.

Another way to assess the model performance is through transi-
tion accuracy at the signal level. When used in pHRI applications,
the classifier’s output is often post-processed using a majority-
voting technique [30]. While this introduces fixed time delays de-
pending on voting buffer size, it enhances the accuracy and reduces
short-term false transitions. The most objective evaluation method,
in this case, is comparing true instantaneous human action with
classifier predictions. However, only high-level participant goal
configurations that are static during the action phase are available
in this study. Comparing with assigned goals is unsuitable since
agents often express intents in multiple directions within a single
action phase. To accommodate this, we evaluate the model based
on two additional metrics, Successful Transition Rate and Negotiated
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Models Feature Set
1 2 3

SVM 0.7552 0.7292 0.6583
AdaBoost 0.7660 0.7482 0.7279
NN 0.7591 0.7331 0.7038

Table 2: Macro-average F1 score of the goal classes from each
model with different feature sets. Window size is fixed at 60.

Models Evaluation metrics Class
Idle Goal 1 Goal 2 Goal 3

SVM
Precision 0.9892 0.8502 0.6046 0.8227
Recall 0.9828 0.7517 0.7008 0.8146
F1 score 0.9860 0.7979 0.6491 0.8186

AdaBoost
Precision 0.9663 0.8489 0.6516 0.8134
Recall 0.9850 0.7815 0.7083 0.7976
F1 score 0.9756 0.8138 0.6788 0.8054

NN
Precision 0.9807 0.8363 0.6122 0.8377
Recall 0.9828 0.7782 0.7235 0.7805
F1 score 0.9818 0.8062 0.6632 0.8081

Table 3: Precision, Recall, and F1 scores of each model mea-
sured on the test set. The inference is performedwith Feature
Set 1 and the window size of 60.

Goal Prediction. Successful Transition Rate is defined as a classifier
predicting an assigned goal during the action phase. Negotiated
Goal Prediction is defined as predicting the final goal of the dyads.
It is evaluated only for instances where a participant opposed to
one direction and then changed the intent. Finally, we note that
signal level accuracy was performed on opposing instances that
were not part of the training set. This provides evidence for the
generalization of the intent recognition model.

4 RESULTS AND DISCUSSION
We used two common dimensionality reduction techniques prior to
classifier training: Principal Component Analysis (PCA) and Linear
Discriminant Analysis (LDA). PCA is an unsupervised technique
that linearly transforms the data into a new coordinate system
that maximizes the variance of the data by preserving the maxi-
mum information [15]. LDA, on the other hand, is a supervised
technique that transforms the data into a coordinate system that
maximizes the separation of classes by taking into account class
information [8]. As shown in Figure 3, both PCA and LDA improved
model performance compared to no reduction. LDA consistently
outperformed PCA and required a smaller number of features to
achieve optimal performance, reaching its peak faster than PCA.
Although AdaBoost had slightly better accuracy results for 84 top
principal components, SVM and FNN required only 4 principal com-
ponents to achieve optimal performance. Additionally, a smaller
number of features reduced the complexity of the FNN architecture
and improved the training time performance for both SVM and
FNN. In the rest of the discussions, LDA dimensionality reduction
is used for all models.

Understanding the trade-off between model accuracy and avail-
able signals is crucial in practical applications. Moreover, training
a classifier with force and velocity measured in a specific spatial
frame may lead to overfitting and require re-training for a new
environment. To address this issue, we evaluated the model with
three different feature sets. The macro-averaged F1 score of goals

Models Window Size
20 40 60 80

SVM 0.6985 0.7383 0.7552 0.7525
AdaBoost 0.7054 0.7380 0.7660 0.7796
NN 0.6959 0.7343 0.7591 0.7504
Delay(AdaBoost) 0.231s 0.246s 0.265s 0.350s

Table 4: Macro-average F1 score of the goal classes from each
model with different window sizes. The inference is per-
formed with Feature Set 1.

Metrics SVM AdaBoost NN
Average Precision of goal classes 0.7591 0.7713 0.7621
Successful Transition Rate 0.9361 0.9361 0.9535
Negotiated Goal Prediction 0.9630 0.9630 1.0000

Table 5: Signal Level Accuracy

for each model is summarized in Table 2. Results indicate that the
model’s performance decreases as the number of available signals
reduces. However, Feature Set 2 and 3 perform competitively com-
pared to Feature Set 1. Interestingly, Feature Set 3 had a significant
impact on the performance of SVM, resulting in a drop of around
0.1. This analysis confirms that coordinate-invariant conservative
features can be used with reasonably good performance, by trading
a small drop in F1 score (≈ 2%).

Overall model performance is presented in the confusion matrix
in Figure 4. Idle class is well-separated compared to the other classes.
This is expected because during this phase no participant exerts
force and the object stays still which is easy to distinguish. However,
𝑔2 is the most ambiguous to classify compared to 𝑔1 and 𝑔3 for the
following reasons. First, goal 2 is geometrically close to both 1 and
3. Second, participants are oriented towards 𝑔2 at the beginning of
the interaction. Hence, the initial phase of actions inevitably points
towards 𝑔2 and the misclassification rate increases even though the
model correctly predicts it. Third, the proportion of delay and the
total action phase is relatively high, although the transition delay is
short (≈ 0.25𝑠). Hence, it results in a lower accuracy rate of goal 2
predictions. As each delay period is counted as a misclassification,
it comprises a significant portion of the negotiation phase, which
might be the reason for the F1 scores for goal 𝑔2 being bounded at
∼ 80%. Finally, 𝑔1 and 𝑔3 had a high angular separation of 80◦, thus
model confusion for these cases is relatively low. Precision, recall,
and F1 scores are presented in Table 3.

Choosing an appropriate window size is crucial in intent recog-
nition, as it affects both the delay and accuracy of the model. A
smaller window size reduces the delay but sacrifices accuracy, while
a larger one enhances accuracy at the expense of delay. Additionally,
the window size must be limited by the reaction time of the average
human, so that the data used for prediction corresponds to a single
action. In this study, the optimal window size was found to be 60
data points, corresponding to a duration of 0.3 seconds. AdaBoost
performed slightly better than the other models for this window
size. Furthermore, models trained on Feature Set 2 showed similar
results to those trained on Feature Set 1 for different window sizes.
Details of this analysis are shown in Table 4.

Finally, post-voting model performance was evaluated based on
the successful transition rate. As can be seen from Table 5, all three
models show similarly high accuracy ( 94%). However, when further
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Figure 3: Results of Dimensionality Reduction applied on
each model using Feature Set 1.
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Figure 4: Total normalized confusion matrix for each model
performed with Feature Set 1 and Window Size 60 (blank
represents 0%).

analyzed for the incorrect cases, out of 11 misclassified cases 8 were
due to mislabelling, 2 were because of force angle distortion due
to strong conflict (in such cases, dyads cannot identify opposer’s
intended direction, but perceives opposition only). The only failed

instance was due to the expression of weak intent, where none of
the classifiers were sensitive enough. While the NN had no failed
instances, AdaBoost was chosen due to its slightly superior overall
performance.

The accuracy of the negotiated goal prediction was evaluated
on opposing instances. In all 33 actions, the models achieved a high
classification rate, with the NN having zero errors. This suggests
that the classifier is capable of accurately predicting the final ne-
gotiated goal even in scenarios where participants change their
initial intentions. The example given in Figure 5(b) shows how
the AdaBoost classifier recognizes both participants’ initial intent
towards 𝑔3 and 𝑔1, respectively, which caused the conflict. After
that, participant 2 gives up their own goal and agrees to go to 𝑔3,
and the model correctly transitioned to the final negotiated goal
3. This highlights the importance of using an objective evaluation
method for intent recognition, as relying solely on assigned goal
configuration may not provide an accurate representation of the
participants’ intentions.

5 CONCLUSION
This paper introduces a real-time capable human intent recognizer
designed for collaborative manipulation tasks. The recognizer pre-
dicts the partner’s action using force and velocity signals experi-
enced by the participant. Moreover, our study delves into force
signal communication, an underexplored modality in pHRI.

An important contribution of our work is a procedure for gener-
ating a training dataset given that the real human intent in highly
dynamic tasks such as collaborative manipulation is next to im-
possible to establish. Central to the dataset is a carefully designed
human-human collaborative manipulation study where each par-
ticipant is assigned private goals. Once a training dataset has been
established, novel features such as power projected to a particular
goal direction were used to train several classifiers for predicting
the intent. An extensive analysis of different classifiers has been
performed, using various metrics that reflect both naive classifier
performance as well as performance in the realistic pHRI applica-
tion. The best-performing classifier showed excellent generalization
performance, with excellent results on interactions that were not
part of the training set.

However, the current classifier has some limitations. It lacks the
ability to evaluate the strength of intent, which is an important fac-
tor in determining whether the robot should lead or follow, and thus
how it should act. Though we provide theoretical arguments that
frame invariant features can generalize to different environments,
this has to be tested to different goal numbers and locations. More-
over, the current training set was based on only the first round of
force exchanges after the idle state, while in reality, multiple rounds
of actions occur in an ad-hoc manner after the first interaction.

To address these limitations, we aim to devise a universal model
that can generalize to arbitrary numbers and locations of goals, as
well as multiple rounds of force exchanges. Achieving this elimi-
nates the need for training and facilitates the practical use of such
robots in daily life, where the destination of co-manipulation tasks
constantly change depending on the object type and task require-
ments. Another extension of this work is using this intent recog-
nizer for real-time feedback control of pHRI.
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(c) An example where both dyads were indecisive. Dyads negotiated to 𝑔3.

Figure 5: Model performance on different scenarios of interaction. In each subplot, the first row shows real-time classifier
prediction for participants 1 (left column) and 2 (right column) in a dyad. In the second row, the power metrics for each
participant are drawn. Yellow shaded area corresponds to the idle and blue area for the action phase. The goals of the participants
are indicated in the subfigure titles. In this context, H and S stand for hard and soft, respectively, while the numbers correspond
to the goal locations. The signals are tested with AdaBoost, trained under Feature Set 1, Window Size 60. A voting Buffer of 25
was applied in all of the examples.
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