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ABSTRACT
This paper introduces a large scale multimodal corpus collected
for the purpose of analysing and predicting player engagement
in commercial-standard games. The corpus is solicited from 25
players of the action role-playing game Tom Clancy’s The Division 2,
who annotated their level of engagement using a time-continuous
annotation tool. The cleaned and processed corpus presented in
this paper consists of nearly 20 hours of annotated gameplay videos
accompanied by logged gamepad actions. We report preliminary
results on predicting long-term player engagement based on in-
game footage and game controller actions using Convolutional
Neural Network architectures. Results obtained suggest we can
predict the player engagement with up to 72% accuracy on average
(88% at best) when we fuse information from the game footage and
the player’s controller input. Our findings validate the hypothesis
that long-term (i.e. 1 hour of play) engagement can be predicted
efficiently solely from pixels and gamepad actions.

CCS CONCEPTS
• Human-centered computing → Empirical studies in HCI; •
Applied computing→Computer games; •Computingmethod-
ologies →Machine learning algorithms; Computer vision.
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1 INTRODUCTION
A largely unresolved challenge in the field of Affective Computing
(AC) is the task of modelling affect over long periods of time. To
examine the degree to which reliable long-term computational
models of affect can be constructed, it is imperative to have access to
corpora containing affect responses and annotations over extended
time periods. The most widely used affect datasets [19, 21, 35, 44],
however, contain sessions that last up to a few minutes, at most.

Motivated by the lack of multimodal corpora for the study of
long-term affect modelling, this paper introduces a game affect
corpus consisting of 1-hour long interactive gameplay sessions.
The introduced dataset contains data from 20 participants who
played one hour of Tom Clancy’s The Division 2 (Ubisoft, 2019)—The
Division 2 for short—and annotated their own gameplay videos
in terms of engagement using the PAGAN annotation tool [34].
Apart from the in-game footage modality, the presented version
of The Division 2 dataset also features the player’s inputs on the
game controller (gamepad). The long-term interactive nature of The
Division 2 as an elicitor offers a unique contextual environment for
modelling affect over extended periods of time, thereby broadening
the research horizons of AC per se. The features of The Division 2
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also capture the multimodal interaction capacities on popular and
commercial-standard applications such as games.

To validate our hypothesis that in-game footage and gamepad
actions can reliably predict player affect for extended periods of
time, we train a number of Convolutional Neural Network (CNN)
architectures on nearly 20 hours of frame and player input data of
The Division 2 corpus. Inspired by [26, 27], we assume that rich and
sufficient affect information is existent (and interwoven) within the
pixels and the actions of the gameplay, and thus that a predictive
model will be able to capture it effectively. This initial study tests
the efficiency of deep learning models (relying on these two modal-
ities) on predicting long-term player engagement represented as
a binary classification task (i.e. high vs. low engagement). Impor-
tantly for the nature of this study we also investigate the impact
of time conditioning on the predictive capacity of long-term affect
models. Our key results indicate that we can predict high and low
engagement states from long-term affect stimuli with high accuracy,
particularly when the fusion of the two modalities (game footage
and gamepad actions) is time-conditioned.

This paper is novel in several ways. First, to the best of our knowl-
edge, this is the first time a commercial-standard game such as The
Division 2 is used for the study of long-term player experience and
affect manifestations at large. Second, the paper presents a generic
methodology for modelling affect by fusing pixel information with
gamepad actions in this corpus. Third, we introduce the concept of
time conditioning for the purpose of modelling long-term engage-
ment in games and beyond. Finally, the initial results presented in
this paper serve as the baseline for this new multimodal corpus.

2 BACKGROUND
This section reviews related work on affect and engagement mod-
elling from pixels and other modalities (Sections 2.1- 2.2) and moves
on to survey literature on affect corpora (Section 2.3).

2.1 Affect Modelling
Affective computing is a multidisciplinary field that studies the
expression of emotions and aims to develop models that can com-
putationally capture suchmanifestations [41]. As videos and images
can elicit emotion, it comes as no surprise that affect modelling
from visual cues is gaining ground. Before the advent of deep learn-
ing, the dominant approach involved the use of domain knowledge
and high-level hand-crafted visual features [8, 60]. Although such
approaches are memory efficient and allow for real-time emotion
recognition, the development of large-scale affect datasets [20, 44]
and the gradual advancement of deep learning led to significant
breakthroughs in affect modelling [30] and multimodal deep fusion
[31]. Indicatively, Breuer and Kimmer [6] employed CNNs for vari-
ous facial expression recognition tasks whereas Ng et al. [38] used
CNNs pretrained on ImageNet [45] to perform emotion recognition
on small datasets. Assuming that games can be effective elicitors
of affect, Makantasis et al. [26] trained CNNs to map gameplay
footage to arousal while Pinitas et al. [42] evolved parameters of a
preference learner to predict arousal in gameplay videos.

Other modalities such as physiology and speech (audio) have
also been extensively used for modeling affect, either individually
or in a multimodal setting [1, 2, 24, 47]. Notably, Martinez et al. [30]

were the first to apply CNNs for detecting affect via physiological
signals. Makantasis et al. [27] employed CNNs andmodelled arousal
from raw gameplay footage and sound. Zhang et al. [59] used a
Convolutional LSTM and a 1D-CNN to extract spatio-temporal
facial and bio-sensing features, respectively. Recently, Pinitas et al.
[43] employed Supervised Contrastive Learning on audiovisual and
physiological data to model arousal. Unlike the aforementioned
studies, this paper presents preliminary findings regarding long-
term player engagement prediction from in-game footage and game
controller input using CNNs.

2.2 Engagement Modelling
It can be argued that engagement plays an important role in human-
computer interaction (HCI) as a multifaceted construct that en-
compasses cognitive, affective, and behaviourally characteristics
of the user [3, 5]. Given its pivotal role in HCI research, several
studies have focused on modelling different aspects of user engage-
ment. Dermouche and Pelachaud [10] developed an LSTM-based
model to predict user engagement in real time dyadic interactions
based on facial expressions, head movements and gaze. Ting et al.
[50] employed Bayesian Networks to model variables of student
engagement in virtual learning environments, while Fan et al. [13]
presented a robotic coach system based on multi-user engagement.

Engagement modelling has been central to AC research because
it facilitates the computational modelling of more complex emo-
tional responses: different levels of engagement correspond to dif-
ferent arousal-valence points on the affective circumplexmodel [46]
Indicatively, Vries et al. [9] propose a methodology for reverse engi-
neering a consumer behaviour model for online customer engage-
ment based on a computational and data-driven perspective. Games
have also proven to be an engaging entertainment medium; conse-
quently, it is unsurprising that there is a growing body of research
in the field of player engagement modelling. Specifically, Melhart
et al. [33] used viewers’ chat logs as a proxy for engagement and
employed a small neural network to predict moment-to-moment
gameplay engagement based solely on game telemetry. Xue et al.
[53] proposed a Dynamic Difficulty Adjustment framework to max-
imise a player’s engagement (as stay time). Finally, Huang et al.
[16] introduced a two-stage player engagement modeling approach
using Hidden Markov Models. In this paper we view engagement
via the lens of affect (see Section 3.2.2), and fuse captured gameplay
footage and player actions to predict high or low engagement in
different time segments of a long gameplay session.

2.3 Affect Corpora
Over the years, affect modelling has relied increasingly on large-
scale and data-hungry computational models, which in turn require
extensive affect corpora that encompass quantifiable expressions
of emotions elicited via appropriate stimuli. A commonly held
view is that acquiring annotated data that contain reliable affect
information is a fundamental aspect of this endeavour. As this study
introduces and builds upon data from a large-scale affect corpus,
this section provides an overview of the most commonly employed
affect corpora and their characteristics.

A key distinguishing factor among affect datasets is the anno-
tation protocol used. The first-person annotation protocol involves
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participants performing a task and then annotating their own affect.
For instance, MAHNOB-HCI [48] and DEAP [19] databases consist
of multiple modalities, such as electroencephalogram, electroder-
mal activity, facial video, and others, recorded from a first-person
perspective and annotated with affect labels via a first-person anno-
tation protocol. However, growing body of work employs a third-
person annotation protocol, where participants perform a task while
a team of annotators (usually experts) annotate the participant’s
emotions. Indicatively, the RECOLA database [44] includes record-
ings of online dyadic interactions between participants solving a
task in collaboration; a group of six experts provided the socio-
affective data annotations at a later stage. A similar annotation
protocol has been used in the SEWA database [21], which consists
of audio-visual recordings of participants discussing in pairs. While
affect corpora in games are often based on first-person annotation
of a recent playthrough [35], Mavromoustakos et al. [32] tasked
two external experts to annotate tension on a large corpus (over 26
hours of videos) of competitive Hearthstone matches.

Affect corpora tend to rely on audiovisual media such as music
videos and movies [20, 37, 58]. It is thus unsurprising that there
is growing research attention on both board and video games
[11, 32, 56] due to the fact that they are interactive elicitors of-
fering rich affect information. One of the first video game-based
affect corpora is the platformer experience dataset [17], a collection
of videos of Super Mario Bros (Nintendo, 1985) players, facial cues,
and gameplay features. The recent AGAIN dataset [35] offers game
footage and event logs annotated for arousal in a continuous first-
person fashion. The FUNii dataset [4] features multiple recordings
of electrocardiogram activity, electrodermal activity, controller in-
put, gaze, and head position, and provides first-person annotations
for fun, difficulty, workload, immersion, and user experience.

Unlike earlier multimodal affect corpora, this work analyses
affect from a large-scale dataset of 20 gameplay sessions (nearly
1 hour each) annotated for engagement in a first-person manner.
Moreover, we employ deep learning algorithms to model long-
term engagement relying on users’ multimodal signal streams. The
dataset covered here contains only gamepad input and captured
gameplay footage; however, the extended version of the dataset also
features more participants and input modalities including electro-
dermal activity, photoplethysmography, and eye-tracking signals.

3 TOM CLANCY’S THE DIVISION 2 CORPUS
This section presents the large-scale multimodal corpus of an-
notated gameplay videos for the action-role playing game Tom
Clancy’s The Division 2. Section 3.1 describes the game, Section 3.2
provides an overview of the data collection protocol and Section
3.3 covers our method for pre-processing the collected data.

3.1 The Game
Tom Clancy’s the Division 2 (Ubisoft, 2019) is an online action role-
playing third-person shooter developed by Massive Entertainment
and published by Ubisoft in 2019 (see Fig. 1). The game, which has
sold over 20 million copies worldwide, features both single-player
and multi-player gameplay. Players can customise their characters
and must scavenge for resources to survive in a challenging setting.
The game contains over 30 missions where players must work their

Figure 1: In-game image of a player engaged in combat in
The Division 2.

way through scripted content alone or in a group with other players.
In this corpus, participants played the first mission of the game
(Dawn’s Early Light), which offers a good balance between in-game
exploration and combat. In this mission the player’s goal is to stop
the siege on the White House while securing the area.

The Division 2 is a commercial-standard game environment
which is ideal for eliciting rich affective responses. Besides high-
quality graphics, The Division 2 has a complex input system and
intense action set. Collectively, the properties of this game allow for
a meaningful realisation of the affective loop [57]. The rich forms
of HCI within the meticulously designed simulated world facilitate
user immersion, which is essential for modelling the affective aspect
of engagement. In the selected mission, stimuli are varied during
a long gameplay session (approximately one hour). The balance
between combat and exploration in this mission leads to intense
user actions followed by periods of less intense activities.

3.2 The Corpus
Data collection was carried out in two phases. First, 25 participants
were asked to play roughly one hour of gameplay of The Division 2
using an XBOX controller (gamepad). All players played the same
mission, Dawn’s Early Light (see Section 3.1) alone (in single-player
mode) until they completed the mission. Following the protocol in-
troduced in [35], participants were then asked to watch the recorded
video of their own gameplay and annotate their engagement in a
continuous manner using the RankTrace [25] annotation tool of
the PAGAN platform [34] (see Fig. 2). At the beginning of the ex-
periment, participants filled in a demographic survey. Building on
ethical principles of AI and games research [36], care was taken to
ensure data was collected and analysed respecting GDPR principles.

3.2.1 Modalities of User Input. During the gameplay phase of The
Division 2, several modalities were collected (see Fig. 2). In this
paper, we only process two types of information about the game
context and the player behaviour. The frame modality consists
of a series of high-resolution frames of in-game footage (usually
1280×720 pixels). The gamepad modality contains detailed player
actions with the game controller. The possible gamepad actions
captured in the dataset are 25, and include buttons pressed (e.g. “A
button pressed”) or other controller interactions (e.g. “left stick up”)
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Figure 2: Data collection snapshot for The Division 2. Anno-
tated videos contain timestamps for data synchronisation,
statistics about compute resources, the ID of the worksta-
tion, the face of the participant (blurred out in this paper),
eye-tracking data, and the live input on their gamepad. The
bottom of the layout visualises the participant’s engagement
annotation trace using the PAGAN annotation tool.

but do not capture in-game events resulting from these inputs (e.g.
“player fires weapon”). These actions are stored in string format,
and include co-occurring actions (combos). Frames and gamepad
actions are stored and processed for our analysis (see Section 3.3).

3.2.2 Annotation. After completing their gameplay sessions, par-
ticipants were asked to annotate their experience in a first-person
manner using the RankTrace [25] annotation tool of the PAGAN
platform [34] (see Fig. 2). PAGAN allows users to annotate a singu-
lar dimension in a time-continuous fashion while watching a video
(in this case, the recorded gameplay data and other modalities as
shown in Fig. 2). PAGAN traces are synchronised to the video, and
the annotators uses the mouse scroll wheel to increase or decrease
the intensity of the perceived affect dimension. Resulting traces are
unbounded, and thus annotators can keep increasing or decreasing
this value as new stimuli are shown. The web interface of PAGAN
shows the entirety of the trace so far, scaling the 𝑥-axis of the shown
trace (Fig. 2) as the video progresses.

Unlike themajority of continuously annotated affect corpora (see
Section 2.3), this corpus tasked participants to annotate player ex-
perience with engagement traces, instead of e.g. arousal or valence
[46]. Participants were given the following definition of engage-
ment prior to their annotation task: “Engagement refers to the level
of attention; a high level of engagement is associated with a feeling
of tension, excitement, and readiness while a low level of engagement
is associated with boredom, low interest, and disassociation with the
game.” Although this definition of engagement closely resembles
the definition of arousal, the latter refers to physiological activa-
tion and, consequently, it can not fully capture the complex and
multifaceted nature of the gaming experience [23, 41]. Additionally,
engagement also captures aspects of valence since it can be a result

Table 1: The Division 2 Corpus Properties

Property Raw Clean
Number of Participants 25 20
Number of Gameplay Videos 25 20
Number of Gamepad logs 25 20
Number of Annotated Video logs 24 20
Video database size 24 hours 18.8 hours
Number of Elicitors 1 game
Gameplay video duration 53 to 65 minutes
Annotation Perspective First-person
Annotation Type Continuous unbounded
Affect Labels Engagement

of both positive and negative emotions such as happiness, terror,
and anger [22]. Based on the circumplex model of affect, we can
argue that high engagement maps to high valence and high arousal
while low engagement represents emotional states that are closer
to the low arousal low valence quadrant of affect [5]. Ultimately, we
selected the annotation label of engagement as it is highly represen-
tative of the gameplay context provided to our annotators whilst
being related to the core affect dimensions of arousal and valence.

To maximize the reliability and consistency of engagement an-
notations, participants were required to watch their gameplay at
double speed (i.e. videos of 30 minutes) to minimize any effects
caused by long-term annotation fatigue. The annotation trace is
rescaled to the video duration before processing (see Section 3.3).

3.2.3 Dataset and Participants. The raw dataset consists of 24
hours of gameplay (57.65 minutes per participant). However, only
data from 20 participants are included in the clean dataset used
here, due to inconsistencies on the annotation timestamps and miss-
ing data. This first iteration of The Division 2 engagement corpus
includes the participants’ controller inputs and gameplay frames
(see Section 3.2.1). Following [35], we summarise the properties of
The Division 2 corpus on Table 1.

Participants’ ages ranged between 18 and 35, forming a diverse
mix of individuals within the young adult category. Geographi-
cally, all participants are residents of Malmö, providing a localized
perspective on the data. To collect precise data from electroder-
mal activity and eye-tracking, participants must not suffer from
any skin condition or astigmatism. In terms of gaming experience,
we aimed for participants that have not played the game before
to ensure that they approached the study with a fresh perspec-
tive. However, a certain level of familiarity with the primary input
method (XBOX controller) and other shooter games was required
to acquire gameplay data of high and comparable quality.

3.3 Data Pre-Processing
As this study aims to model long-term engagement via players’
multimodal signals, we consider the following data pre-processing
method. We split each participant’s session (video) into overlapping
time windows [29, 43] using a sliding step of 1.5 seconds and a
window length of 10 seconds, corresponding to 22, 541 samples in
the entire clean dataset. The sliding step and window length are
essential hyperparameters since they influence, respectively, the



Predicting Player Engagement in Tom Clancy’s The Division 2 ICMI ’23, October 9–13, 2023, Paris, France

size of the dataset and the information contained in each window.
The stimuli-based time windows (frames or gamepad modalities)
are shifted by 1 sec to the annotation time window, accounting for
the reaction time between stimulus and emotional response and
the speed difference between gameplay and annotation [42].

After splitting each session into timewindows, each window con-
sists of a sequence of frames and logged gamepad actions. For the
frame modality, we keep only 3 frames per second to reduce compu-
tational load. The 10 second time window used in this paper there-
fore consists of 30 RGB images of dimensions 224×224×3 (scaled
down from the original high-resolution video). For the gamepad
modality, we calculate the number of times the player pressed a
specific key on the game controller during this time window, and
also include a “no key” input as the number of times no key was
pressed. Moreover, we calculate the number of 𝑛-button combos
with 𝑛 ranging between 2 and 6. We convert these to input fre-
quencies by dividing by the time window length. We thus collect
31 real-valued features from the gamepad modality (25 keypress
frequencies, one “no key” frequency, and 5 combo frequencies),
which are used as input to the model (see Section 4.2).

When it comes to the engagement traces, we perform a min-max
normalization, transforming the unbounded engagement values to
a value range of [0, 1] on a per-trace basis (see Fig. 3). Similarly to
the frames, we process the affect traces into time windows of 10
seconds. Finally, the average value of each time window provides a
single engagement value per time window (see Section 4.1).

4 MODELLING ENGAGEMENT
We present our methodology for modelling engagement below. Sec-
tion 4.1 outlines the learning paradigm used to model engagement
in The Division 2, Section 4.2 outlines the CNN architectures used
for the unimodal (frames and gamepad actions) and multimodal
network, while Section 4.3 presents different time-conditioning
strategies explored.

4.1 Learning Paradigms
Arguably one of the most crucial steps in affect modelling is the
choice of the supervised learning paradigm under which the map-
ping between multimodal user signals and affect labels will be
inferred. When analysing an entirely new affect corpus such as
The Division 2, it is useful for all possible learning paradigms to
be explored—including regression, classification and ordinal learn-
ing [55]. In this initial study of The Division 2, we focus on affect
classification since it is one of the most commonly used learning
paradigms in player and affect modelling [26–29, 43].

In this first experiment, we follow the paradigm used in short-
term time-continuous affect annotation traces [26, 27] and classify
time windows based on the average trends of the entire 1-hour
normalised trace (see Fig. 3). Specifically, we select classes based on
the average affect value of the entire trace (𝜇𝑖 ) of each participant
(𝑖) which acts as the class splitting criterion. For participant 𝑖 , a time
window 𝑡 is labelled as high engagement when 𝑒𝑖,𝑡 > 𝜇𝑖 + 𝜖 and as
low engagement when 𝑒𝑖,𝑡 < 𝜇𝑖 − 𝜖; 𝑒𝑖,𝑡 is the average normalised
engagement value within the time window 𝑡 of participant 𝑖 (sam-
pled at 30 Hz). It should be noted that the threshold 𝜖 is used to
eliminate windows with ambiguous affect annotation values close

Figure 3: The normalised engagement trace (blue) of par-
ticipant 𝑖. The green line represents the mean value (𝜇𝑖 ) of
the trace and shaded area represents the ambiguity area
[𝜇𝑖 − 𝜖, 𝜇𝑖 + 𝜖]. Time windows with mean values above this
shaded area correspond to high engagement; time windows
below this shaded area correspond to low engagement.

to 𝜇𝑖 , which may deteriorate the stability of the models. Following
best practices from [26, 27] and preliminary tests with this corpus,
we set 𝜖 = 0.05 for all experiments.

4.2 Model Architecture
As mentioned in Section 3, this paper considers two gameplay
modalities of The Division 2: (a) the player’s controller input (i.e.
gamepad modality) and (b) the in-game footage (i.e. framemodality).
Since we treat the long-term engagement traces as a classification
task (see Section 4.1), all architectures end with a 2-neuron softmax-
activated layer that predicts low or high engagement.

The architecture used for the gamepad modality is visualised
in Figure 4a. A network takes the 31 inputs from gamepad actions
(see Section 3.3) and processes them via a Gelu-activated [39] fully
connected layer of 30 neurons, followed by a 2-neuron softmax-
activated layer.

The architecture used to predict engagement from the frame
modality is visualised in Figure 4b. This network accepts 30 scaled-
down RGB images as input (i.e. a tensor of 224× 224× 3× 30 based
on Section 3.3) and processes them via a ResNet18 architecture
that outputs 512 feature maps of dimensions 7×7 per input frame,
corresponding to a 30 × 512 × 7 × 7 feature tensor. This ResNet18
architecture is pre-trained on ImageNet [45], similar to an abun-
dance of previous work [38], and its weights are frozen during this
training process. The ResNet18 output passes through a spatial
max pooling layer, reducing the dimensionality to 30 × 512, and
a temporal average pooling returning a 1D vector of 512 features.
The last vector is then fed into two consecutive Gelu-activated fully
connected layers of 128 and 30 neurons respectively, each followed
by a 0.1 dropout layer. Similar to the gamepad architecture, the last
layer is a 2-neuron softmax-activated layer.

The fusion architecture considers both modalities (frames and
gamepad actions) and is illustrated in Fig. 4c. Following a late fusion
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(a) Gamepad model

(b) Frames model

(c) Fusion model

Figure 4: The three model architectures employed for binary classification between high engagement and low engagement,
using pixel information, gamepad actions, or both modalities through late fusion.

approach [27], the above unimodal architectures are combined by
concatenating their latent representations to form a 1D vector of
60 features which is then fed into a Gelu-activated fully connected
layer of 32 neurons followed by a 2-neuron softmax-activated layer.

4.3 Conditioning on Time
Time conditioning refers to the practice of incorporating temporal
information into machine learning models to improve their per-
formance. When it comes to affect modelling, time conditioning
can be of great value as the relationship between input variables
(i.e. affect stimuli) and output variables (i.e. affect labels) changes
over time—a phenomenon also known as concept drift [14]. In order
to validate our hypothesis that incorporating time features into
an affect model can result in algorithms capable of capturing the
dynamics of emotion over time, we explore three time-conditioning
strategies that are detailed in the remainder of this section.

The first step of time conditioning involves transforming the
scalar timestep value into a 𝐷-dimensional vector 𝑒 (𝑡), which was
first introduced by Transformers [51]. This vector offers a unique,
deterministic and bounded encoding for each timestep while en-
suring that the distance between any two timesteps is consistent

across samples. The 𝑒 (𝑡) vector is fed into a learnable linear down-
projection layer that facilitates the injection of time in the models
regardless of the size of the input modalities. Following prelim-
inary tests, in this paper we use a vector of 512 features for all
conditioning strategies, and treat the timestep at high granularity
(increments of 20 minutes). The timestep 𝑡𝐿 can take three possible
values depending on the time window’s start time 𝑡𝑤 , i.e. 𝑡𝐿 = 1
for 𝑡𝑤 ∈ [0, 20) minutes, 𝑡𝐿 = 2 for 𝑡𝑤 ∈ [20, 40) mins, and 𝑡𝐿 = 3
for 𝑡𝑤 ∈ [40,∞) mins. The implementation of the 512-dimensional
encoding is provided by the FAIRSEQ library [40] via Eq. (1):

𝑒 (𝑡) =
[
. . . , cos

(
𝑡𝐿 ·𝑐−

2𝑑
𝐷
)
, sin

(
𝑡𝐿 ·𝑐−

2𝑑
𝐷
)
, . . .

]𝑇
(1)

where 𝑑 = 1. . .𝐷/2 (𝐷 = 512 in this paper), 𝑐 = 10000, and 𝑡𝐿 takes
the values of 1, 2, or 3 depending on which 20-minute increment
the time window belongs to.

4.3.1 Shift Last Hidden Layer (𝑀𝑆𝐿𝐿). In this case, we follow the
conditioning process employed in Decision Transformers [7]. The
sinusoidal embedding is constructed via Eq. (1) and is then down-
projected linearly in order to match the dimensionality of the input
of the model’s last hidden layer. For the frames model (Fig. 4b), the
last hidden layer is 30 features and 𝑒 (𝑡) is down-projected to the
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previous layer (128 neurons). For a network with 𝐻 hidden layers
the conditioned output is constructed as follows:

𝑂𝑐,𝐻−1 = 𝑂𝐻−1 + 𝑠𝐻−1 (2)

where𝐻 is the last hidden (non-output) layer of the network,𝑂𝐻−1
and𝑂𝑐,𝐻−1 is the output of the previous hidden layer (𝐻 −1), before
and after conditioning, respectively; 𝑠𝐻−1 is the linear projection
of the sinusoidal time embedding of the previous hidden layer.

4.3.2 Scale and Shift Last Hidden Layer (𝑀𝑆𝑆𝐿𝐿). This method uses
the same steps as in Section 4.3.1, but instead of learning a linear
down-projection of size 𝑛 matching the dimensions of the penulti-
mate hidden layer (e.g. 𝑛 = 128 in the frames model), we employ a
linear projection of 2𝑛 neurons such that:

𝑂𝑐,𝐻−1 = (𝑙𝐻−1 + 1)·𝑂𝐻−1 + 𝑠𝐻−1 (3)

where 𝑙𝐻−1 and 𝑠𝐻−1 are, respectively, the first and last 𝑛 elements
of the linear time embedding projection of the penultimate hidden
layer (𝐻 − 1); remaining notations are the same as in Eq. (2).

4.3.3 Scale and Shift All Layers (𝑀𝑆𝑆𝐴𝐿). Following [52], we ex-
plore the case of time-conditioning each layer as long as it is one-
dimensional: e.g. in the frame model (Fig. 4b) the layers with 512,
126, 30, and 2 neurons are scaled and shifted. For each layer 𝑖 of 𝑛
neurons, we learn a linear projection of 2𝑛 neurons such that:

𝑂𝑐,𝑖−1 = (𝑙𝑖 + 1)·𝑂𝑖−1 + 𝑠𝑖 (4)

where 𝑙𝑖 and 𝑠𝑖 are, respectively, the first and last 𝑛 elements of the
linear time embedding projection for layer 𝑖; 𝑂𝑖−1 and 𝑂𝑐,𝑖−1 are
the outputs of the (previous) 𝑖 − 1 layer, respectively, before and
after conditioning.

5 RESULTS
This section first outlines the experimental protocol we use to
evaluate the algorithms and then presents the key results of the
initial round of experiments performed with The Division 2 corpus.

5.1 Experimental Protocol
We test the capacity of the proposed modelling approaches to pre-
dict engagement in The Division 2. The model is trained to classify
frames and/or gamepad inputs within a time window as low or
high engagement. Models in this paper are trained via the Adam
optimiser with learning rate of 0.005 and batch size of 256. More-
over, we ensure that the same training, validation and test data are
used for all models, promoting a fair comparison.

To evaluate model performance, we use a leave-2-participants-
out cross-validation method. This method is a variant of the popular
leave-one-participant-out cross-validation method [18], where two
participants are used for the test set and another two participants
are used for the validation set (for the purposes of early stopping).
Data for training originates from 16 players, ensuring that data in
each set belong to different participants and thus resulting in non-
overlapping datasets. The models are trained for 50 epochs, but stop
training after 5 epochs without a validation metric improvement; in
all experiments in this paper, the maximum number of epochs was
never reached. We split the dataset of 20 participants into 10 sets
(with all participants becoming part of the 2-participants test fold)
and calculate classification metrics on the test set averaged from

Figure 5: Engagement classification in The Division 2. The
graph shows average (leave-2-participant-out) test accuracy
values and corresponding 95% confidence intervals. The test
accuracy of the naive baseline is shown as a dotted line.

10 training runs, one per set. We randomise participant order and
initial network weights 4 times, thus ensuring different participant
pairings in the test set each time, and report results averaged across
these train/test setups (i.e. 40 folds).

We benchmark our models based on the traditional accuracy
score, as the selected thresholding criterion (𝜖 = 0.05) ensures that
the dataset is somewhat balanced. A naive baseline uses themajority
class in the training set and predicts the same class in the test set
with an average test accuracy of 51% across all folds (with a 95%
confidence interval of 0.28% and a best-fold accuracy of 51.9%).
Statistical significance, when reported, refers to two-tailed paired
Wilcoxon Signed-Rank Test with 𝑝 < 0.05, where data is matched
on the same 2-participants’ test folds. When multiple comparisons
are performed, the Bonferroni correction is applied [12].

5.2 Engagement Models without Time Context
We report the average test accuracies from 10 cross-validation tests
(via leave-2-participants-out) repeated 4 times in Figure 5 under𝑀𝑈 .
It is obvious that models trained on the gamepad modality alone
perform poorly, with an average test accuracy of 52% (best-fold
accuracy of 68%) which is very close to the baseline (no significant
differences). Models trained on frames alone perform significantly
better than the baseline and the gamepad models, with an average
accuracy of 59.4% (best-fold accuracy of 80%). While gamepad data
seems insufficient on their own, when fused with pixel informa-
tion the trained models improve: the fusion model has an average
accuracy of 64.5% (best-fold accuracy of 82.4%) which is signifi-
cantly higher than all other models. As expected, late fusion of
multiple modalities seems beneficial when it comes to engagement
modelling, although accuracies remain low overall. This has been
validated in previous work when fusing pixel and sound data in
games [27], but not for controller input.

5.3 Influence of Time Context
The test accuracies of all three conditioning strategies described
in Section 4.3 are shown in Fig. 5, with unconditioned versions
denoted as 𝑀𝑈 . Surprisingly, the best accuracy for the gamepad
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modality is achieved with𝑀𝑆𝐿𝐿 (average accuracy of 72%). For the
same conditioning strategy frames and fusion models perform sig-
nificantly worse. A possible reason for this behaviour is the simpler
architecture of the gamepad model (with only one hidden layer of
30 neurons), as conditioning applied only on the last hidden layer
seems very effective. In comparison, scaling and shifting all hidden
layers (𝑀𝑆𝑆𝐴𝐿) works better for the larger architectures, especially
the fusion model which reaches accuracies of 72% on average (best-
fold accuracy of 87.7%) and significantly outperforms the frames
model on the same conditioning. Evidently, time conditioning is
beneficial regardless of strategy applied: all conditioned models of
gamepad or frames modalities perform significantly better than the
unconditioned version for their respective modality.

6 DISCUSSION
This paper introduced a novel and long-term player engagement
multimodal corpus. The context of the multimodal interaction is
the popular game Tom Clancy’s The Division 2. Findings of an ini-
tial engagement modelling experiment on this new dataset reveal
that pixel information from the game footage can form efficient
predictors of long-term player engagement. Without time embed-
dings, pixel information can be a strong predictor that is enhanced
through fusion with gamepad actions to produce the best models,
yet gamepad actions alone do not seem to be good predictors. One
reason for poor gamepad models’ performance could be the limited
input size. Moreover, gamepad action logs lack the in-game context
of the keypresses’ effect on the game: for example, while gamepad
inputs measure how often the player pressed the A button, the
in-game effect of such an action may be very different depending
on e.g. the avatar’s currently held weapon. However, collecting
in-game events in commercial games requires access to the game
engine which may be unavailable due to intellectual property con-
cerns. Therefore, the current experiment serves another purpose: to
gauge to which degree data from player actions that respect current
industry practices can be useful for affect modelling tasks.

The classification approaches presented in this initial study re-
veal that time embeddings are particularly efficient at capturing
the long-term effects of player engagement with an average classi-
fication accuracy of 72%. We see three promising future research
directions here. First, we plan to study and compare alternative
learning paradigms such as preference learning which may capture
informative local patterns—or changes [54, 55]—of engagement
given the user modalities considered. Second, future studies will
focus on different direct or indirect methods for integrating time
within our multimodal models, including variants of LSTMs [15]
and autoregressivemodels found in decision transformers [7]. Third,
exploring other time embeddings with more granular time parti-
tions (compared to the current 20-minute increments) may lead to
breakthroughs in time conditioning for long-term affect prediction.

A core limitation of our first engagement modelling experiments
is the baseline method we employ to derive the ground truth labels
for the time windows of gameplay. Following current approaches
in processing shorter gameplay sessions [26, 27], we use the mean
annotation value of a 1-hour trace to split windows into low or
high engagement and leave ambiguous ones too close to the mean
out of the train/test data. This approach is beneficial as it produces

an almost equal split between class labels. However, summarising
an entire 1-hour annotation session into one mean value overlooks
possible habituation effects and the inherent subjectivity biases of
human annotators [55], among many other factors. Furthermore,
annotating lengthy audiovisual content can cause cognitive fatigue
due to the mental exhaustion of the annotators [49], which in
turn can affect the quality of the resulting trace. In future work,
more nuanced ways of deriving classes should be explored, e.g., via
a dynamically adjusted mean value derived from a moving time
window of the trace. Initial experiments with a dynamic splitting
criterion resulted in unbalanced datasets which in turn caused
predictive models to underperform. Future work should explore
signal processing approaches for deriving a more nuanced ground
truth as well as improving algorithmic processes for modelling it.
Another direction for future work that would address this issue
is eschewing engagement classification altogether and treating
consequent time windows in an ordinal fashion [54, 55]. In such a
treatment, the goal is to predict only whether the mean engagement
between consequent time windows is (sufficiently) different, i.e.
escalating or deescalating, which would discount for any long-
term habituation or anchoring effects. We foresee several future
directions for improving input data or engagement trace processing.

While the full extent of The Division 2 corpus offers access to
more modalities (including physiological signals and eye track-
ing), this initial study only focused on frame and gamepad action
modalities. Inspired by earlier work [26, 27] we assume that in-
game footage pixels combined with in-game actions would provide
sufficient information for a model to predict player engagement ac-
curately. While findings do corroborate our assumptions, including
more modalities will likely improve the models’ predictive power.

While The Division 2 dataset is not currently accessible, our
short-term plan is to release the dataset and therefore encourage
more research on the study of player engagement modelling via
multimodal signals in a commercial-standard game environment.

7 CONCLUSIONS
The purpose of this paper is two-fold: (a) to introduce a novel
dataset of long-term gameplay affect annotation traces that con-
tains multiple modalities, and (b) to offer some initial suggestions
and experiments on how such long-term affect traces can be pro-
cessed and modelled. The extensive dataset analysed in this paper
leverages two modalities—gameplay image frames and players’
interaction data—but future work can explore more modalities al-
ready available in The Division 2 corpus. Experiments used a simple
splitting criterion from the literature [35] to turn time-continuous
annotations into binary classes, and demonstrated that gameplay
frames can be good affect predictors as indicated in earlier studies
[26, 27]. Our core findings suggest that long-term affect prediction
is possible with high degrees of accuracy when time embeddings are
injected to the model. The methods introduced here are generic and
applicable to any study investigating long-term affect modelling.
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