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ABSTRACT 
This paper reports on the GENEA Challenge 2023, in which par-
ticipating teams built speech-driven gesture-generation systems 
using the same speech and motion dataset, followed by a joint 
evaluation. This year’s challenge provided data on both sides of a 
dyadic interaction, allowing teams to generate full-body motion 
for an agent given its speech (text and audio) and the speech and 
motion of the interlocutor. We evaluated 12 submissions and 2 
baselines together with held-out motion-capture data in several 
large-scale user studies. The studies focused on three aspects: 1) 
the human-likeness of the motion, 2) the appropriateness of the 
motion for the agent’s own speech whilst controlling for the human-
likeness of the motion, and 3) the appropriateness of the motion 
for the behaviour of the interlocutor in the interaction, using a 
setup that controls for both the human-likeness of the motion and 
the agent’s own speech. We found a large span in human-likeness 
between challenge submissions, with a few systems rated close 
to human mocap. Appropriateness seems far from being solved, 
with most submissions performing in a narrow range slightly above 
chance, far behind natural motion. The efect of the interlocutor 
is even more subtle, with submitted systems at best performing 
barely above chance. Interestingly, a dyadic system being highly 
appropriate for agent speech does not necessarily imply high appro-
priateness for the interlocutor. Additional material is available via 
the project website at svito-zar.github.io/GENEAchallenge2023/. 
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1 INTRODUCTION 
Verbal communication is not the only way to convey messages; 
non-verbal behaviour is also a signifcant factor in human com-
munication [32]. Much of non-verbal behaviour consists of hand 
gestures and body gestures, which closely relate to speech content 
and have been shown to improve speech understanding [16]. 

Automatic gesture generation for embodied conversational agents 
(ECAs) has been studied for more than two decades. Synthetic ges-
tures were initially created using rule-based systems, e.g., [7, 37], 
but data-driven approaches that learn from human motion data 
have recently emerged [2, 5, 10, 25, 30, 47, 48]. For more in-depth 
reviews of speech gesture generation, refer to Nyatsanga et al. [34]. 

The present study focuses on a fair, systematic comparison of 
systems that automatically generate non-verbal behaviour. By com-
paring diferent methods and evaluating their efectiveness, it is 
possible to accurately assess and improve the current state of the art. 
Additionally, this comparison helps to identify important aspects of 
gesture generation and where the main issues lie. We accomplished 
this by running an open challenge, the GENEA1 Challenge 2023. 

1GENEA stands for “Generation and Evaluation of Non-verbal Behaviour for Embodied 
Agents”. 
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In this paper, we report on the challenge, in which we provided 
the same dataset, evaluation criteria, and visualisation process to 
ensure that all major sources of variation are accounted for, except 
for a gesture-generation system itself. The GENEA Challenge 2023 
builds on previous GENEA Challenges [26, 50], especially the 2022 
challenge described in Yoon et al. [50] and Kucherenko et al. [28]. 
In addition to being an exercise in benchmarking both new and 
previously-published gesture-generation methods, the results of 
the two previous challenges have since helped improve gesture-
generation benchmarking in other ways as well. Researchers have, 
for example, used the data splits [3, 22], the visualisation [40], and 
the objective [6] and subjective [43, 44, 49] evaluation methodo-
logies, as a basis for future research. The data has also been used 
to benchmark subsequent gesture-generation models [12, 46], and 
even for automatic quality assessment [15]. The main diference 
from previous GENEA Challenges is that we considered gesture 
generation for dyadic scenarios (meaning considering both conver-
sation partners) and evaluated the interlocutor appropriateness of 
submitted systems. 

Our contributions include: 1) providing common elements of 
dataset, visualisation, and evaluation setup for a fair comparison 
between gesture generation systems; 2) organising an open chal-
lenge to promote the development of the feld and encourage re-
searchers to share their ideas; and 3) three large-scale user studies 
for human-likeness of motion, speech appropriateness, and inter-
locutor appropriateness that evaluate 14 gesture-generation sys-
tems (including two baselines). 

2 EVALUATION SETUP 
The focus of the GENEA Challenge is on large-scale, crowdsourced 
subjective evaluation of the generated gestures through multiple 
user studies. This year, we evaluated three aspects of the generated 
gestures: 
Human-likeness: Whether the motion of the virtual character 

looks like the motion of a real human, without explicitly 
considering the speech or any interlocutor behaviour. 

Appropriateness for agent speech: Whether the motion of the 
virtual character is appropriate for the given speech, con-
trolling for the overall human-likeness of the motion. 

Appropriateness for interlocutor behaviour: Whether the mo-
tion of the virtual character is appropriate for the given in-
terlocutor behaviour (both speech and motion), controlling 
for the overall human-likeness of the motion and (as far as 
possible) for the efect of the agent’s own speech. 

We sometimes call the frst two studies “monadic” and the third 
“dyadic”. Note that the models always had the interlocutor informa-
tion as input, even in monadic evaluations. All evaluations are built 
on the same avatar and visualisation software as used in last year’s 
challenge (see [27]). More details about the three evaluations are 
given in Secs. 3 to 5, respectively. 

2.1 Data 
In order to evaluate gesture generation in a dyadic context, we sup-
plement the recordings in last year’s dataset [50] with information 
from the conversation partner in the original Talking With Hands 
(TWH) data [29]. Specifcally, we provide speech (audio and tran-
scription), speaker ID, and motion for two parties; the main agent 

(for which the task is to generate motion) and the interlocutor (which 
is the other party in the conversation). As a minor improvement 
to last year’s data, we set the height of the hips to the same for all 
speakers, since they all use the same skeleton. This makes the char-
acter’s feet touch the ground in a consistent manner for all speakers. 
The dataset is publicly available at doi.org/10.5281/zenodo.8199132. 

We provided three splits to the challenge participants: 1) a train-
ing split, composed of last year’s training and validation data [50], 
2) a validation split, equivalent to last year’s test data, and 3) a test 
split, containing data that was completely left out from the 2022 
challenge but with main-agent motion omitted. We augmented the 
training data by making each recorded conversation appear twice, 
with the conversational roles fipped. There was also an option for 
participating teams to leverage a version of the BEAT dataset [31], 
retargeted and adapted to the challenge skeleton, but none of the 
submitting teams used it. 

We created a core test set consisting of 41 chunks of approxim-
ately one minute each, restricted to recordings with fnger motion 
tracking for the speaker chosen to be the main agent. We further ex-
tended the test set with 29 additional chunks in which the two sides 
of the conversation were mismatched, for use in the interlocutor 
awareness study (see Sec. 5.1 for details). Hence, the extended test 
set (core and additional test sets) consists of 70 chunks in total. 

2.2 Conditions evaluated 
In total, 12 teams participated in the GENEA Challenge 2023 eval-
uation. The evaluation also included two baseline systems and 
natural motion taken from the motion-capture recordings from the 
speakers in the database. 

We call each source of motion a condition rather than a “sys-
tem” or “model”, since the evaluation also includes avatar motion 
based on human mocap. This natural motion was labelled NA (for 
“natural”) in all evaluations. We prefer not to use the term “ground 
truth”, since there is no single, true way to move to a given speech 
and interlocutor. The NA condition is intended as a top line, but in 
practice there can be some mocap artefacts and the motion is thus 
not always completely human-like, as seen from the stimuli and 
results of the 2022 challenge [50]. 

Sources of artifcial, generated motion may be referred to as 
systems or models. The 12 systems entered into the challenge by 
participating teams [9, 11, 14, 21, 23, 24, 38, 39, 41, 45, 51, 52] are 
often called entries or submissions. 

In addition to natural mocap and the diferent entries, the eval-
uations also included two baseline systems for automatic gesture-
generation, both based on an entry from the GENEA Challenge 
2022, specifcally Chang et al. [8], which won the reproducibility 
award. This means that a total of 15 conditions were included in the 
evaluation. The two baselines were included with the intention to 
provide continuity and easier comparison between diferent years 
of the challenge, and also to track the progress of the feld with 
respect to a fxed baseline. (Note that none of the systems used as 
baselines in the 2020 evaluation were included this year, since those 
systems now are too far behind the state of the art to constitute reas-
onable points of comparison.) The two baseline conditions were: 
1) Monadic baseline (BM): The 2022 challenge entry from Chang 
et al. [8] with slightly adjusted hyper-parameters, since the dataset 
is not the exact same. 2) Dyadic baseline (BD): An adaptation of 
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Figure 1: Screenshots of the response interfaces from the ap-
propriateness for the interlocutor evaluation, showing ques-
tions, response options, and snapshots of stimulus videos. 

BM that also takes information from the interlocutor into account 
as an extra input to the model. 

In the results, each condition was given a two-character label, 
a.k.a. condition ID. The frst character identifes the condition type, 
with ‘N’ for motion-capture of natural human motion, ‘B’ for a 
baseline, and ‘S’ for a submission from a participating team. The 
second character distinguishes between conditions within the same 
tier and type. In particular, the challenge entries were labelled SA– 
SL. These labels are anonymous and have no relationship to the 
team names or identities. 

2.3 Setup of the user studies 
Study participants (a.k.a. test takers) were recruited through the 
crowdsourcing platform Prolifc. Participants were required to 
reside in a set of six English-speaking countries, specifcally UK, IE, 
USA, CAN, AUS, and NZ. A Prolifc user could take any number of 
our studies, but could only participate in each study at most once. 

While the specifcs of the three user studies difered (see Secs. 3 
to 5 for details), they also shared some common elements. In par-
ticular, we applied the same counterbalancing approach as in last 
year’s challenge [50]. Studies began with a screen of instructions, 
followed by a designated training page showing a fxed set of videos 
with diferent motions, to familiarise participants with the task. Fur-
thermore, after completing the study, participants flled in a short 
questionnaire to gather broad, anonymous demographic informa-
tion. We set the payment to 6 GBP for each study. 

The studies also incorporated four attention checks per test taker 
similar to last year [50], to make sure that participants were paying 
attention to the task and to remove insincere test-takers. Each 
attention check was a modifed stimulus that (partway through the 
stimulus) instructed the participant, using either a text overlay or a 
synthesised voice (only in studies where the audio was not muted), 
to select a specifc response option. Test takers who failed two or 
more attention checks were removed from the study without pay. 
You can fnd statistics about the test takers in Table 1. 

2.4 Visualisation 
Like in previous years, we developed and maintained a standardised 
visualisation pipeline to which challenge participants had access. 
This allowed participants to preview their generated motions and to 
roughly assess how the fnal stimuli videos during evaluation would 

look like. We used the same virtual avatar (Figure 1) in all rendered 
videos during the challenge and the evaluation. The avatar was 
the same as last year [50]. The visualiser is capable of visualising 
both monadic and dyadic interactions; either one character or two 
characters are visible at a time. All teams had access to the ofcial 
visualisation and rendering pipeline, in the form of code intended 
for local use with Blender. The code is open source and is available at 
github.com/TeoNikolov/genea_visualizer/ and the rendered stimuli 
videos at doi.org/10.5281/zenodo.8211448. 

3 HUMAN-LIKENESS EVALUATION 
The human-likeness evaluation for the GENEA Challenge 2023 
used the HEMVIP methodology [20], same as in 2022, with some 
minor changes to GUI design, question formulation and response 
interface, and the statistical analysis. 

3.1 Data selection for stimuli 
From the 41 chunks of core test set data, we selected 41 short 
segments of test speech and corresponding test motion to be used 
in the two agent-focussed subjective evaluations. Our rules for 
selecting these segments were as follows: (i) Segments should be 
around 8 to 10 seconds long. (ii) Segments should only be taken 
from parts of the interaction where the person chosen as the main 
agent is the active speaker (so no turn-taking within a segment, but 
backchannels from the interlocutor were OK). (iii) Segments should 
not contain any parts where Lee et al. [29] had replaced the speech 
with silence for anonymisation. (iv) Segments should be more or 
less complete phrases, starting at the start of a word and ending at 
the end of a word. (v) The recorded motion capture in the segments 
(i.e., the NA motion) should not contain any signifcant artefacts 
such as whole-body vibration. 

The 41 segments selected in this way were between 7 and 13 
seconds in duration, with the average duration being 9 seconds. 

3.2 Evaluation procedure 
On each page (a.k.a. screen) in the HEMVIP evaluation, eight dif-
ferent motion examples were presented in parallel [20], all corres-
ponding to the same speech segment, but diferent conditions. 

Each page asked participants “Please indicate on a sliding scale 
how human-like the gesture motion appears”. Study participants 
gave their ratings in response to this question on a scale from 
0 (worst) to 100 (best) by adjusting an individual GUI slider for 
each video. In contrast to previous years, however, the numbers 
corresponding to the exact rating were not shown, and test takers 
were not explicitly told, e.g., that the sliders had 101 steps. By using 
sliders without numerical labels, it is more clear to test takers that 
the scale is intended to be ordinal. 

Like in Jonell et al. [20], Kucherenko et al. [26], the rating scale 
was anchored by partitioning the sliders into fve equal-length 
intervals labelled (from best to worst) “Excellent”, “Good”, “Fair”, 
“Poor”, and “Bad”. These labels were based on those associated 
with the 5-point scale used in the Mean Opinion Score (MOS) [18] 
standard for audio quality evaluation. An example of the evaluation 
interface can be seen in the supplement. 

Since it has been found that speech content can infuence gesture 
perception and confound motion evaluations [19], the videos seen 
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Table 1: Statistics on test takers and user-study responses. 

No. Videos per No. responses Median 
test page test per condition time 

Study takers taker min max taken 

Human-likeness 200 8 80 938 2000 25.3 min 
Speech approp. 600 2 80 1766 1815 23.8 min 
Interloc. approp. 423 2 80 993 1019 30.3 min 
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Figure 2: Box plot visualising the rating distribution in the 
human-likeness study. Red bars are the median ratings (each 
with a 0.05 confdence interval); yellow diamonds are mean 
ratings (also with a 0.05 confdence interval). Box edges are at 
25 and 75 percentiles, whilst whiskers cover 95% of all ratings 
for each condition. Conditions are ordered by descending 
sample median rating. 

by participants in these human-likeness evaluations (although they 
all corresponded to the same speech input and had the same length) 
were completely silent and did not include any audio. This way, 
ratings can only depend on the motion seen in the videos. 

Each participant completed 10 pages of ratings for the evaluation. 
The evaluation design was balanced in the same way as last year 
[50] such that each segment appeared on pages 1 through 10 with 
approximately equal frequency across all participants (segment 
order). 

3.3 Response data 
Confdence intervals for the median were computed using order 
statistics, leveraging the binomial distribution cumulative distribu-
tion function, cf. [13], while those for the mean used a Gaussian 
assumption (i.e., using Student’s �-distribution cdf, rounded out-
ward to ensure sufcient coverage). 

The rating distribution in the study is further visualised through 
the box plot in Figure 2. The rating distributions in the fgure are 
seen to be quite broad. This is common in evaluations like HEM-
VIP, since the range of the responses not only refects diferences 
between conditions, but also extraneous variation, e.g., between 
stimuli, in individual preferences, and in how critical diferent raters 
are in their judgements. In contrast, the plotted confdence inter-
vals are seen to be quite narrow, due to the large number of ratings 
collected for each condition. 

3.4 Signifcant diferences 
To analyse the signifcance of diferences in median rating between 
diferent conditions, we applied two-sided Mann-Whitney � tests 
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...over condition x, in terms of human-likeness
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Figure 3: Signifcance of pairwise diferences between con-
ditions in human-likeness. White means that the condition 
listed on the �-axis rated signifcantly above the condition 
on the �-axis, black means the opposite, and grey means no 
statistically signifcant diference at the level � = 0.05 after 
Holm-Bonferroni correction. Conditions are listed in the 
same order as in Figure 2. 

to all unordered pairs of distinct conditions in each study. This is 
an unpaired nonparametric test, which difers from the pairwise 
Wilcoxon signed-rank tests used in previous GENEA Challenges. 
The reason for this change is that, whilst pairwise tests can more 
easily control for variation between segments and raters, such tests 
only can be used for data from screens where both conditions under 
comparisons were shown to participants. Since this year’s challenge 
is comparing more conditions than before but still uses the same 
number of sliders (8 in parallel), such pairings are relatively rare. An 
unpaired test can use all the available ratings of any given condition, 
making it more powerful in this instance. 

Unlike Student’s �-test, which assumes that the test statistic 
follows a Gaussian distribution, this analysis is valid also for ordinal 
response scales, like those we have here. For each condition pair, 
only pages for which both conditions were assigned valid ratings 
were included in the analysis of signifcant diferences. 

The �-values computed in the signifcance tests were adjusted 
for multiple comparisons using the Holm-Bonferroni method [17], 
which is uniformly more powerful than conventional Bonferroni 
correction, to keep the family-wise error rate (FWER) at or below 
� = 0.05. After FWER correction, our statistical analysis found all 
but 12 out of 105 condition pairs to be signifcantly diferent at 
the level � = 0.05. Which conditions that were found to be rated 
signifcantly above or below which other conditions in the study is 
shown in Figure 3. 

3.5 Discussion 
Looking at the results, we see that the challenge submissions span 
a wide range of diferent human-likeness scores, with a greater 
concentration near the middle. Unlike the GENEA Challenge 2022 
[50], no submission achieved median human-likeness ratings that 
exceeded those of the human motion capture, although two sub-
missions were not far behind. This helps establish the trend that, 
whilst human-like gesture motion is not altogether a solved prob-
lem, strong performance in that regard is possible (but not neces-
sarily easy) with current data-driven methods. The baselines BD 
and BM performed similarly to each other and achieved ratings 
near the middle of the pack. This resembles the performance of 
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the underlying system last year [8, 28], when it was a challenge 
submission. 

Similar to past years’ challenges, natural mocap (NA) is rated sig-
nifcantly lower than perfect human-likeness. Among other things, 
this may be attributed to shortcomings with the mocap, the 3D 
model used (which deliberately appears neutral and lacks mouth 
and gaze), and human biases against assigning high scores. 

One other noteworthy observation to keep in mind for later is the 
fact that ordering conditions by their median human-likeness (as in 
Figure 2) produces a quite diferent ordering compared to ordering 
systems by appropriateness in Secs. 4 and 5. This indicates that we 
managed to disentangle human-likeness and appropriateness in 
our evaluation. 

4 APPROPRIATENESS FOR AGENT SPEECH 
Similar to the GENEA Challenge 2022 [50], we also evaluated the ap-
propriateness of the generated motion for the main agent’s speech, 
using a similar but improved methodology compared to 2022. 

The GENEA Challenge 2022 adapted a new mismatching meth-
odology [19, 36] with the design goal to evaluate motion appropri-
ateness whilst controlling for the human-likeness of the motion in 
an efective way. Test takers were presented with a pair of videos, 
each video showing motion corresponding to a diferent speech 
recording. We replaced the audio track of one of the videos with 
the speech audio of the other clip, resulting in one video where 
the motion matched the audio, and another video where audio and 
motion were from unrelated sources. Participants were then asked 
to pick one video from the pair where motion, according to them, 
best matched the speech. Their responses reveal how specifc the 
gesture motion is to the given speech. 

Since last year’s appropriateness evaluation, with only three 
possible response options, had quite wide confdence intervals, we 
asked test takers to indicate their degree of preference this year, so 
as to get information value out of each response. This change was 
based on a suggestion for future evaluations in Kucherenko et al. 
[28] and piloted in Mehta et al. [33]. More specifcally, test takers 
were asked “Which character’s motion matches the speech better, 
both in terms of rhythm and intonation and in terms of meaning?” 
The fve response options were adapted from [33], merely changing 
“much” to “clearly”. Which of the two videos (left or right) was the 
matched one was random. A screenshot of the evaluation interface 
used for the appropriateness studies is presented in the supplement. 

In this type of evaluation, a system whose output does not depend 
on the input will perform at chance rate. This avoids the issues 
seen in the appropriateness evaluation of the GENEA Challenge 
2020 [26], and we no longer recommend that earlier methodology. 

4.1 Stimuli 
Table 2 provides an overview of the diferent stimuli used in the 
diferent user studies. The speech appropriateness evaluation lever-
aged the same evaluation segments chosen for the human-likeness 
evaluation in Sec. 3.1. Concretely, we created the mismatched stim-
uli by taking the speech and motion for the 41 segments selected 
there, and then permuting the motion in between them such that 
no motion segment ever remained in its original place. Since the 
diferent segments generally do not have the same length, some-
times a longer or shorter segment of motion had to be excerpted 
from the test-set chunks (original or generated), so as to match the 

new speech duration, but the starting point of the motion video 
was always the same as in the respective matched stimulus video 
(i.e., corresponding to the start of a phrase). In the terminology of 
Table 2, the mismatched motion segments were excerpted using 
the start time of segment 2 but the duration of segment 1. This is 
exactly the same as was done in 2022. 

4.2 Evaluation interface and question asked 
Because we are deliberately avoiding comparisons across conditions 
(as diferent conditions may have diferent motion qualities), test 
takers were only asked to view and compare a single pair of videos at 
a time. For pairwise comparisons like these, asking for a preference 
between two items can be more efcient than asking participants to 
rate each video [42]. We therefore asked for preference rather than 
absolute ratings in these studies. The question asked was "Which 
character’s motion matches the speech better, both in terms of 
rhythm and intonation and in terms of meaning?". 

4.3 Response data 
For analysis, the fve possible responses were converted to integer 
values {−2, −1, 0, 1, 2} in order, with −2 meaning the mismatched 
stimulus was rated as clearly better and 2 meaning the matched 
stimulus was rated as clearly better. Raw response statistics for all 
conditions in each of the two studies are available in the appendix. 

The table also includes 95% confdence intervals for the average 
numerical value of the per-condition user responses, computed 
using a Student’s �-distribution. We refer to this average, used for 
our appropriateness statistical analyses, as mean appropriateness 
score (or MAS). 

The response distributions in the study are further visualised 
through the bar plot in Figure 4a. The bar plot also visualises the 
confdence interval for the mean appropriateness score, but scaled 
linearly from the interval [−2, 2] to [0%, 100%] in order to make 
the intervals comparable with the rest of the plot. 

4.4 Statistical analysis 
Two diferent statistical analyses were applied to the results, testing: 

(1) Whether the mean appropriateness score of a given condition 
is statistically diferent from chance performance (without 
correcting for multiple comparisons). 

(2) Whether the mean appropriateness score of any given con-
dition was statistically diferent from the mean appropriate-
ness score (correcting for multiple comparisons). 

All statistical tests were carried out at the � = 0.05 level. 
Remember that in our evaluation, a system whose output does 

not depend on the input will theoretically perform at a chance rate. 

4.4.1 MAS diferences from chance performance. The dotted line at 
50% (equal to an MAS of zero) in Figure 4a marks chance perform-
ance. Any condition whose 95% MAS confdence interval does not 
overlap with zero demonstrates performance that is statistically 
diferent from chance (without any correction for multiple com-
parisons). On this measure, all conditions except SL and SC were 
statistically better than chance in terms of MAS. 

4.4.2 MAS diferences between conditions. To assess whether any 
two conditions were statistically diferent from one another, we 
used Welch’s �-test. This is an unpaired statistical test; the study 
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Table 2: Overview of the stimuli used in the diferent studies. Numbers 1 and 2 indicate which of two test-set segments 
– the matched or the mismatched – that data was sourced from. Each matched segment was paired with a corresponding 
mismatched segment elsewhere in the test data. Abbreviations: “Hum.-like.” stands for “Human-likeness”, “approp.” stands for 
“appropriateness”, “segs.” stands for “segments”, “ID” stands for “Speaker ID”, and “Interloc.” for “Interlocutor”. The motion for 
condition NA was taken from segment 1 in matched stimuli and 2 in mismatched. All other conditions used motion synthesised 
from the inputs listed under “Source of test-time system inputs”. 

Studies featured Active Source of test-time system inputs Source of what is presented in stimuli 
Hum.- Speech Dyadic speaker Main agent Interlocutor Main agent Interlocutor 

Stimulus type like. approp. approp. in segs. Speech ID Speech Motion ID speech Speech Motion 

Matched (speaking) ✓ ✓ Agent 1 1 1 1 1 1 N/A (monadic) 
Mismatched (speaking) ✓ Agent 2 2 2 2 2 1 N/A (monadic) 

Matched (listening) ✓ Interloc. 1 1 1 1 1 1 1 1 
Mismatched (listening) ✓ Interloc. 1 1 2 2 2 1 1 1 
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(a) Appropriateness for agent speech (b) Appropriateness for the interlocutor 
Figure 4: Bar plots visualising the response distribution in the appropriateness studies. On top of each bar is also a confdence 
interval for the mean appropriateness score, scaled to ft the current axes. The dotted black line indicates chance-level 
performance. Conditions are ordered by mean appropriateness score. 

Table 3: Mean appropriateness scores (MAS) from both ap-
propriateness studies with confdence intervals at the level 
� = 0.05. Submissions are ordered alphabetically. 

Con- MAS for. . . Con- MAS for. . . 
dition Speech Interloc. dition Speech Interloc. 

NA 0.81±0.06 0.63±0.08 SF 0.20±0.06 0.04±0.06 
BD 0.14±0.06 0.07±0.06 SG 0.39±0.07 −0.09±0.08 
BM 0.20±0.05 −0.01±0.06 SH 0.09±0.07 −0.21±0.07 
SA 0.11±0.06 0.09±0.06 SI 0.16±0.06 0.04±0.08 
SB 0.13±0.06 0.07±0.08 SJ 0.27±0.06 −0.03±0.05 
SC −0.02±0.04 −0.03±0.05 SK 0.18±0.06 −0.06±0.09 
SD 0.14±0.06 0.02±0.07 SL 0.05±0.05 0.07±0.06 
SE 0.16±0.05 0.05±0.07 

design was not optimised for pairwise testing since a re-analysis of 
the data from Mehta et al. [33] to compare the efect of paired versus 
unpaired �-tests for analysis produced no noteworthy diferences. 

A correction for multiple comparisons was performed to con-
trol the false discovery rate (FDR), i.e., the fraction of erroneous 
rejections of the null hypothesis out of all rejected null hypotheses. 
Specifcally, we used the BH non-adaptive one-stage linear step-up 
procedure [4] as implemented in the MultiPy package. Note that 
controlling the FDR is not the same as controlling for the family-
wise error rate (which controls the probability of making any false 
rejections at all), as done in Sec. 3. 

After FDR correction, our statistical analysis found 56 of 105 
condition pairs to be signifcantly diferent. Figure 5a visualises the 
statistically signifcant diferences between conditions. 

4.5 Discussion 
Just as in the GENEA Challenge 2022 results, natural motion capture 
(condition NA) exhibited the greatest diference between matched 
and mismatched stimuli. NA attained an MAS of 0.81 ± 0.06 on 
the scale from −2 to 2. A more in-depth discussion of why this 
magnitude of diference is reasonable (and why one should not 
expect 100%) can be found in [28]. 

Unlike the human-likeness evaluation, however, no submission 
came close to NA in terms of specifc appropriateness to the speech 
in this evaluation, with the best synthesis system achieving a MAS 
around 0.39 and a 62% preference for matched motion after splitting 
ties. Also unlike the case for human-likeness, most submissions are 
confned to a narrow range of MAS scores between 0.27 and 0.10, 
or so. Clearly, current synthesis methods are far from as successful 
as humans are in producing gestures that match the specifc speech, 
although the current evaluation does not reveal to what extent the 
shortcomings seen are related to mistimed gesturing, or to failures 
to generate semantically relevant gesticulation. Either way, it is 
not clear if relatively non-specifc gesture motion, as generally 
produced by the systems in the challenge, enhances human-agent 
communication. Since better communication is a major motivator 
of research into (and applications of) embodied conversational 
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(a) Appropriateness for agent speech (b) Appropriateness for the interlocutor 
Figure 5: Signifcant diferences between conditions in the two appropriateness studies. White means the condition listed on 
the �-axis achieved an MAS signifcantly above the condition on the �-axis, black means the opposite , and grey means no 
statistically signifcant diference at level � = 0.05 after correction for the false discovery rate. Conditions use the same order as 
the corresponding subfgure in Figure 4. 

agents in the frst place, our results suggest that improving the 
appropriateness of synthesised gestures for agent speech is an 
important research target. 

5 APPROPRIATENESS FOR THE 
INTERLOCUTOR 

Although there were many similarities to the appropriateness eval-
uation in Sec. 4, this study difered in several important aspects, 
namely in what was being studied, how the motion contained in 
the stimuli was obtained, and how the stimuli were presented for 
evaluation. 

For this fnal evaluation, we wanted to use mismatching to 
quantify motion appropriateness for the interaction whilst con-
trolling for both motion human-likeness and for the efect of the 
main agent’s own speech as far as possible. This required carefully 
crafted stimuli. 

5.1 Data creation for stimuli 
We reasoned that interlocutor-aware behaviour might be most 
salient when the interlocutor is the active speaker, and the main 
agent is reacting to them. For this reason, this appropriateness 
evaluation exclusively considered segments where the interlocutor 
was the active speaker. 

Prior to the test set being shared with challenge teams, we se-
lected 29 segments from the core test set where the main agent 
exhibited dyadic adaptations to the interlocutor, for example head 
nods. The segments selected in this way were between 5.5 and 15 
seconds in duration, with the average duration being 10.4 seconds. 

For each segment that we selected from the test set, we pro-
ceeded to create a second version of the same interaction, where 
the main agent was the same (same WAV, TSV, and speaker ID) but 
the interlocutor was replaced by mismatched interlocutor behaviour 
(WAV, TSV, and speaker ID) taken from another interaction. The 
mismatched interlocutor behaviour was chosen such that the inter-
locutor was the active speaker for the duration of the segment used. 
These mismatched interactions, one interaction for each segment 
used for the present study, formed the extended test set mentioned 
in Sec. 2.1. When participating teams generated motion for the 
extended test set, they would thus create motion examples based 
on the same main-agent speech as the matched segments, but using 
diferent interlocutor behaviour as input. This can be used to create 

stimulus pairs where any systematic diferences in main agent mo-
tion is attributable only to whether or not the motion was generated 
for the matched interlocutor behaviour or not. See Table 2 for a 
complementary specifcation of this setup. 

5.2 Stimuli 
Figure 1 shows static images of example video stimuli that contains 
two frontal views, one of each party in the conversation, and a third 
view showing the two interacting characters from the side. 

Unlike the stimuli in previous appropriateness studies, the audio 
in the stimuli video clips was presented in stereo, with the inter-
locutor audio in the left channel and the main agent audio in the 
right channel. This made it possible to tell who was who and who 
was saying what despite the two avatars not having mouths. 

Stimuli (whether matched or mismatched) would only use audio 
from the matched segment/interaction. Similarly, the interlocutor 
motion would also be taken from the matched interaction for both 
matched and mismatched stimuli. Thus the only diference between 
the two video stimuli in a pair would be in how the main agent 
moves. In the matched case, it would be based on the speech and the 
interlocutor motion seen in the video, but in the mismatched case, it 
would be based on the same agent speech but diferent interlocutor 
speech and motion, leveraging the artifcially-constructed extended 
test set. The only exception would be for condition NA, where the 
mismatched main-agent motion would, by necessity, be based on 
mismatched rather than matched agent speech. 

5.3 Evaluation interface and question asked 
The evaluation interface for the user study of motion appropriate-
ness for the interlocutor was exactly the same as in Sec. 4.2. This 
time, test takers were asked “In which of the two videos is the Main 
Agent’s motion better suited for the interaction?” A screenshot of 
the complete evaluation interface can be seen in Figure 1. 

After an instructions page and a training page, each study parti-
cipant evaluated 40 pages (i.e., 40 pairs of videos) in a counterbal-
anced design. This means that each person watched 80 videos in 
total. A design goal of this study was that each condition would 
receive approximately 1,000 or more responses, similar to before. 

Despite the same number of videos watched, the time taken per 
participant was greater than in Sec. 4. One explanation might be 

798



ICMI ’23, October 09–13, 2023, Paris, France Kucherenko, Nagy, Yoon, et al. 

that the task is more demanding, with multiple characters to pay 
attention to. 

5.4 Response data 
The statistical analysis used mean appropriateness scores based 
on the integer values {−2, −1, 0, 1, 2} as before. Raw response 
statistics for all conditions in each of the two studies are shown 
in Table 3, along with 95% confdence intervals for the MAS, all 
computed as before. 

Like before, the response distributions from the study are further 
visualised through the bar plot in Figure 4b, together with confd-
ence intervals for the mean appropriateness score, scaled to ft the 
rest of the plot. 

5.5 Statistical analysis 
The same two statistical analyses as in Sec. 4.4 were applied. 

5.5.1 MAS diferences from chance performance. The dotted line 
at 50% in Figure 4b marks chance performance. Any condition 
whose 95% MAS confdence interval does not overlap with zero 
(which coincides with the dotted line in the graph) demonstrates 
performance that is statistically diferent from chance (without any 
correction for multiple comparisons). On this measure, NA, BD, 
SA, and SL are signifcantly better than chance, whilst SG and SH 
instead are signifcantly worse. The remaining conditions were not 
statistically diferent from chance. 

5.5.2 MAS diferences between conditions. To assess whether any 
two conditions were statistically diferent from one another, we 
once again used Welch’s �-test together with the BH non-adaptive 
one-stage linear step-up procedure [4] to control the false discovery 
rate. After FDR correction, our statistical analysis found 45 of 105 
condition pairs to be signifcantly diferent. Figure 5b visualises 
these statistically signifcant diferences using the same condition 
order as the box plot. 

5.6 Discussion 
To begin with, it must be pointed out that condition NA in this study 
is not comparable to the others, since its motion is mismatched 
not only with respect to the interlocutor, but also with respect to 
the main agent’s own speech. This cannot be avoided, since the 
interactions in the extended test set do not have any counterparts 
in real interactions. The performance of NAs is thus in a sense 
a (likely unattainable) upper bound on MAS in this experiment. 
However, it does establish that mismatched behaviour can reliably 
be detected by the test takers, even for cases where the main agent 
is listening rather than speaking, albeit with a slightly lower MAS 
than for the speaking segments in Table 3. 

In general, we may expect the diference between matched and 
mismatched stimuli to be smaller in the dyadic study, since for the 
monadic study, all inputs to the models difered when generating 
the two motions being compared, whereas only the model inputs 
corresponding to the interlocutor difered for this study. The greater 
fraction of “They are equal” responses in Figure 4b compared to 
Figure 4a indicates that this is indeed the case. 

Having 5 out of 14 artifcial systems difer from chance per-
formance at level � = 0.05 is very unlikely to occur by random 

happenstance despite the absence of a correction for multiple com-
parisons. This strongly suggests that a notable fraction of the dyadic 
systems indeed create meaningfully diferent motion depending on 
the behaviour of the interlocutor, although the efect in absolute 
terms is small. 

Looking at individual conditions, we can make some additional 
observations. Unlike previous studies, the two baselines are now 
far apart in the rankings, with BD (as hoped) being signifcantly 
diferent from chance performance, whilst BM (as expected) was 
not. The MAS of conditions SG and SH are also notable. Condi-
tion SG has gone from one of the most appropriate conditions (for 
the agent speech) to one of the least appropriate (for the inter-
locutor/interaction) in Table 3. Condition SH, meanwhile, exhibited 
the largest efect size of any artifcial system in this dyadic evalu-
ation, but in the direction of being less appropriate than random 
chance. It is not clear to what extent this may be infuenced by to 
the use of listening rather than speaking, or by the “chimeric” and 
artifcial inputs in the extended test set, or even by the use of a 
dyadic visualisation. 

6 CONCLUSION 
We have hosted the GENEA Challenge 2023 to investigate and eval-
uate diferent techniques of speech-driven gesture-generation. Via 
our evaluation, we remark that it is challenging to generate human-
like and speech-appropriate gestures that also address the problem 
of assuring appropriateness with respect to the behaviour of the 
interlocutor. Nevertheless, it is promising to see that a substantial 
amount of submissions managed to respond to the interlocutor. Not-
ably, from the dyadic systems that consider the information from the 
interlocutor, we remark that the interlocutor’s information surely 
plays a role in rendering reactive motions that match the inter-
locutor’s behaviours. Communication is not only mono-directional 
or bi-directional, but also multi-party. We envision observing more 
research conducted on dyadic interaction in the short-term and 
on multi-party interaction in the mid-term future to address all 
types of interaction. ECAs use synthetic speech to render their 
utterances. Recent studies show that human voice is perceived as 
more natural and intelligible than synthesised speech [1, 35]. We 
are interested in exploring the overall impression of the agent of 
whether the synthesised speech infuences the global perceptive 
efect of the agent’s human-likeliness. Further research awaits for 
study around gesture-generation to create human-like and appro-
priate ECAs capable of interacting in all types of conversations. The 
proposed challenge and similar ones can serve as the foundation 
for the development of such ECAs by identifying and sharing key 
aspects of gesture generation with the research community. 
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