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ABSTRACT

Today’s graphics processing unit (GPU) applications produce vast
volumes of data, which are challenging to store and transfer effi-
ciently. Thus, data compression is becoming a critical technique to
mitigate the storage burden and communication cost. LZSS is the
core algorithm in many widely used compressors, such as Deflate.
However, existing GPU-based LZSS compressors suffer from low
throughput due to the sequential nature of the LZSS algorithm.
Moreover, many GPU applications produce multi-byte data (e.g.,
int16/int32 index, floating-point numbers), while the current LZSS
compression only takes single-byte data as input. To this end, in
this work, we propose GPULZ, a highly efficient LZSS compression
on modern GPUs for multi-byte data. The contribution of our work
is fourfold: First, we perform an in-depth analysis of existing LZ
compressors for GPUs and investigate their main issues. Then, we
propose two main algorithm-level optimizations. Specifically, we
(1) change prefix sum from one pass to two passes and fuse mul-
tiple kernels to reduce data movement between shared memory
and global memory, and (2) optimize existing pattern-matching
approach for multi-byte symbols to reduce computation complexity
and explore longer repeated patterns. Third, we perform archi-
tectural performance optimizations, such as maximizing shared
memory utilization by adapting data partitions to different GPU
architectures. Finally, we evaluate GpPULZ on six datasets of vari-
ous types with NVIDIA A100 and A4000 GPUs. Results show that
GPULZ achieves up to 272.1x speedup on A4000 and up to 1.4x
higher compression ratio compared to state-of-the-art solutions.
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1 INTRODUCTION

Many applications running on high-performance parallel and dis-
tributed systems generate large amounts of data, which leads to
storage bottlenecks due to limited capacity. Meanwhile, intercon-
nect technologies in distributed systems advance relatively more
slowly than computing power, causing inter-node communication
and I/O bottlenecks to become a severe issue [4]. This motivates the
design of software solutions to increase the interconnect bandwidth,
such as communication-avoiding linear algebra [2, 14].

Data compression is a popular solution to reduce communica-
tion and I/O overheads significantly. For example, due to the high
data reduction capabilities, lossy compression has recently been
extensively studied to alleviate I/O bottlenecks in large-scale dis-
tributed applications such as high-performance computing (HPC)
simulations. Since the saved data is often used for post-analysis
and visualization, errors introduced by error-bounded lossy com-
pression are acceptable for many applications [4, 10, 19, 20, 33, 43].

However, lossy compression may not be applicable for inter-
node communication in most distributed applications since data
is usually exchanged between nodes at least once per time step,
resulting in an accumulation of compression errors beyond the
acceptable level. This is especially important for HPC simulations
where numerical stability is critical, as accumulated compression
errors can affect the correctness of the results.

Unlike lossy compression, lossless compression can avoid the
loss of accuracy despite the relatively low compression ratio. In
practice, among many lossless compression algorithms, LZ-series
lossless compression is one of the most important algorithms. It
can identify repeated subsequences/patterns, thereby reducing spa-
tial redundancy of the input sequence. Specifically, LZSS [36] is
a derivative of the classical LZ77 algorithm [48] (i.e., the first LZ
compression algorithm). It holds a sliding window for the input
stream to search for the longest match and then encodes each match
as one pointer, including its length and offset (will be discussed in
§2). Input data with longer repeated subsequences are more likely
to achieve higher compression ratios with LZSS. As an entropy
coder, LZSS is often combined with other types of lossless coders
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to (e.g., with Huffman encoding as Deflate [9]) remove both spatial
and frequency redundancy.

On one hand, multi-byte data such as long integers and floating-
point numbers are common as input to lossless compression [26,
37, 46]. However, the classic LZSS compression only takes a single
byte as the input unit, ignoring the data characteristics of different
data types. Using multiple bytes as units in LZSS can improve both
compression throughput (due to fewer symbols to process) and
ratio (due to longer repeated patterns).

On the other hand, more and more applications are being im-
plemented on the GPU due to its high performance and energy
efficiency [12], resulting in multiple critical use cases of GPU com-
pression. For example, GPU compression can speed up GPU-CPU
data transfers [45]. It can also reduce GPU memory footprint to
support larger input in deep learning [21]. However, it is chal-
lenging to parallelize LZSS on GPUs due to its strong data depen-
dency [36]. Simply chunking data and distributing them to different
GPU threads would cause warp divergence [47].

CULZSS [31] is a state-of-the-art open-source GPU LZSS com-
pressor. It can achieve relatively higher compression throughput
on the GPU than the CPU solution [13]. However, CULZSS faces
several critical issues: (1 It cannot handle multi-byte data, and sim-
ply modifying its algorithm to accommodate multi-byte input may
result in a significant drop in compression ratio. ‘2 It lacks tuning of
parameters such as block size and sliding window size for different
GPU architectures. ‘3 Its encoding process is performed on the
CPU, which introduces high CPU-GPU data movement overhead.

To solve the above issues, we propose a highly optimized LZSS
compression for multi-byte data on modern GPUs (called puLZ!).
Specifically, we deeply analyze CULZSS and identify its perfor-
mance issues. Based on these issues, we propose two main algorithm-
level optimizations and a series of performance optimizations. These
optimizations can improve compression throughput and ratio si-
multaneously. To the best of our knowledge, this is the first work
that optimizes LZSS compression for multi-byte data on GPUs.

The main contributions of this paper are summarized as follows.

e We develop a highly efficient LZSS compression on GPUs for
multi-byte data. We perform an in-depth analysis of CULZSS
and investigate its main performance issues.

We optimize the prefix sum from one pass to two passes and fuse
multiple kernels (e.g., matching and local prefix sum) to reduce
data movement between shared memory and global memory.
We propose a pattern-matching method for multi-byte data,
which can reduce computational complexity and explore longer
repeated patterns.

We propose a data partitioning method that can adapt to differ-
ent GPU architectures to maximize shared memory utilization.
We evaluate GPULZ on six datasets with NVIDIA A100 and A4000
GPUs. The evaluation demonstrates that GPULZ outperforms
CULZSS by up to 272.1x in compression throughput with no
degradation of compression ratio (even 20.6% improvement).

In §2, we present the background about CUDA architecture,
LZSS algorithm, GPU implementations of LZSS, and their issues. In
§3, we present the design of GpPULZ with our algorithm-level and
architectural performance optimizations. In §4, we evaluate GpuLZ

IThe code is available at https://github.com/hipdac-lab/GPULZ.
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and compare it with other GPU LZ compression. In §5, we conclude
the paper and discuss our future work.

2 BACKGROUND AND MOTIVATION

In this section, we present the background of CUDA architecture,
LZSS algorithm, and its state-of-the-art GPU implementations.

2.1 CUDA Architecture

CUDA is a parallel computing platform and API that allows the soft-
ware to use NVIDIA GPUs for general-purpose processing. Thread
is the basic programmable unit for GPU programmers to use mas-
sive numbers of CUDA cores. CUDA threads are organized into
three levels, grid, block, and thread. Specifically, a group of 32
threads is called a warp. All threads in the same warp will execute
the same instruction. However, if different threads in a warp follow
different control paths, some threads are masked from performing
any useful work. This situation is called warp divergence, which is
one of the fundamental factors that limit the performance of GPUs.
Multiple warps are combined to form a thread block, and a set of
thread blocks form a thread grid.

Regarding the CUDA memory hierarchy, the largest and slow-
est memory is called the global memory, which is accessible by
all threads. The next layer is shared memory, which is a fast and
programmable cache. All the threads in the same thread block
have access to the same shared memory. Lastly, the fastest layer is
the thread-private register to each thread. To achieve good perfor-
mance, CUDA programmers must effectively utilize the memory
subsystem. For example, when threads in a warp request contigu-
ous global-memory locations, these requests can be aggregated into
a single transaction (called coalesced memory access); non-coalesced
memory access will cause a significant performance slowdown.

2.2 LZSS

LZSS is a variant of LZ77 [48], the first algorithm in the LZ com-
pression family. LZSS has the same fundamental idea as other LZ
algorithms: search through a sliding window for the longest pos-
sible sub-sequence match and encode all identified matches. To
clearly explain the LZSS algorithm, we introduce some basic con-
cepts as follows.

o Input stream is the sequence of bytes to be compressed.

e Symbol is the single-/multi-byte unit of the input stream.

e Look-ahead buffer is the byte sequence from the coding posi-

tion to the end of the input stream.

Coding position is the byte position in the input stream cur-

rently encoded in the look-ahead buffer.

o Sliding window is a buffer (of size W), which is the number of
bytes from the coding position backward. The window is empty
at the beginning, then grows to size W as the input stream is
processed, and “slides” along with the coding position.

o Pointer contains two numbers: the first one is the length of the
match, and the second one is the starting offset. The starting
offset is the count of bytes from the coding position back to the
window, and the length is the number of bytes to read forward
from the starting offset.

o Literal represents the current byte if there is no match.
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GpuLZ
0: I meant what_I said 0: I meant what I said
20: and I said what I meant 20: and(11,7)(23,8)(36,5)
44: 30:
45: From there to here 31: From there to (8,4)
64: from here to there 47: £(19,4)(18,8)(27,5)
83: I said what I meant 55: (59,19)

Figure 1: An example of LZSS algorithm. The left is original data, and the
right is compressed data. Two numbers in brackets denote length and offset.

e Flag array’s each bit indicates whether its corresponding bytes
(in compressed data) represent a pointer or a literal.

The basic steps of LZSS can be summarized as follows.

1) Set the coding position to the start of the input stream;

2) Find the longest match started from the coding position;

3) If a match is found, output the pointer P and move the cod-
ing position and the sliding window L bytes forward, where L
denotes the length of the match;

4) If no match is found, output the first byte in the look-ahead
buffer and move the coding position and the sliding window
one byte forward;

5) Use a flag array to record whether a match is a found;

6) If the look-ahead buffer is not empty, return to Step 2).

Figure 1 illustrates a simple example to demonstrate how LZSS
works. Specifically, the original 102 bytes are compressed to 56,
bytes including a flag array. A pair of numbers in brackets represents
a pointer, where the first is the offset and the second is the length.
If W (also the maximum match length) is less than 256, both the
offset and the length can be represented in one byte. This example
demonstrates why LZSS is well suited for compressing data with
many repeated patterns. However, it also indicates LZSS’s strong
sequential execution characteristics, since the current match must
start from the coding position determined by the last match. Due
to this strong dependency, LZSS cannot fully leverage the massive
parallelism of GPU for high performance.

2.3 GPULZ Compression

CULZSS [7, 31] is a state-of-the-art GPU implementation of the
LZSS algorithm. It first partitions the input data into multiple
chunks to increase the parallelism and then launches a matching
kernel on the GPU and an encoding kernel on the CPU. Specifically,
the matching kernel lets each GPU thread find the longest match for
each byte of the input stream and stores all matches in the global
memory, After that, all matches will be copied from the GPU to the
CPU. Finally, the CPU encoding kernel will sequentially process
these matches like the original LZSS. Note that not all matches will
be used in the encoding: if one match covers the following matches,
these overlapped matches will be skipped. Furthermore, Ozsoy et
al. [32] improved CULZSS by overlapping the GPU and CPU com-
putations to increase the performance. In addition, CULZSS-Bit [30]
adapted CULZSS to handle bit-wise symbols.

We also note that the nvCOMP library [27] developed by NVIDIA
provides a series of lossless compressors on the GPU, including LZ4.
LZ4 is a fast LZ compression implementation, especially featuring
fast decoding. Unlike LZSS, LZ4 does not use a flag array to indicate
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the match pointer; instead, it uses a fixed format with a token
(including literal and match length) to save each match. However,

Literal length
(optional)

Match length

4-high-bits: literal length / 4-low-bits: match length
q (optional)

Token ‘ ‘ Literals ‘ offset ‘

1 byte 0-n byte 0-L byte 2 byte 0-n byte
Figure 2: LZ4 format.

compared to LZSS’s flag array, the fixed-length token may result in
alower compression ratio, especially when the length of continuous
literals is relatively short. More importantly, we cannot modify the
proprietary nvCOMP to accommodate multi-byte data. Thus, in
this work, we focus on CULZSS as our major comparison baseline.

2.4 Issues of CULZSS

CULZSS faces several critical issues: ‘1 No support of multi-byte
data: CULZSS treats the input as a sequence of single bytes regard-
less of the data type. This can lead to lower compression ratios
because patterns are in multi-byte units and/or lower compression
throughput due to the higher computational complexity of search-
ing for matches in units of single bytes. 2 Fixed data chunk size:
Data chunk size highly impacts the compression ratio and through-
put, but it is a fixed value in CULZSS. Thus, it is challenging to
adapt CULZSS to different GPU architectures with different shared
memory sizes. 3 Fixed sliding window size: CULZSS uses a
fixed sliding window size, which prevents a potential tradeoff be-
tween compression ratio and throughput. 4 Under-utilization
of shared memory: CULZSS underutilizes the GPU shared mem-
ory, resulting in multiple buffer updates in shared memory. ‘5

CPU encoding: CULZSS copies matches (twice the size of the in-
put stream) from the GPU to the CPU and performs the encoding,
which causes a significant performance drop due to data copies and
slow sequential CPU encoding.

3 OUR PROPOSED DESIGN

In this section, we first overview our GPULZ. Then, we describe our
proposed algorithm-level optimizations to solve the above issues.
Finally, we present the implementation details of our GPU kernels.

3.1 Overview of GPULZ

Kernel III

Kernel I Kernel II

Local
Prefix Sum

i|  Global
il Prefix Sum

Figure 3: Workflow of our proposed GpuLZ.

The goal of our design is to fully utilize the GPU resources for
high compression throughput and maintain as high in compression
ratio as the original/sequential LZSS algorithm. We illustrate our
proposed GPULZ in Figure 3. Specifically, GPULZ consists of five
steps: matching, local (block-level) prefix sum, encoding, global
(grid-level) prefix sum, and deflating. We propose three kernels for
these steps. Specifically, Kernel I is for the matching step, the local
prefix sum, and encoding to generate the compressed symbols for
each data chunk (§3.3.2); Kernel II is for the global prefix sum to
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Figure 4: Three workflows of GPU LZSS.

calculate the memory address (or write offset) of each compressed
data chunk in the global memory (§3.3.3); and Kernel III is for
deflating empty bytes based on the calculated offsets and writing
the compressed data (§3.3.4).

Note that we use three separate kernels because a grid-level syn-
chronization across thread blocks is needed to calculate the global
memory addresses. In comparison, there is an implicit synchro-
nization between two kernels. Moreover, although we cannot use
a single kernel to handle all computations in the shared memory
due to hardware constraints (§3.2.2), we propose an optimization
(i-e., two-pass prefix sum with kernel fusion) that minimizes data
movement between the shared and global memories and reduces
the global memory footprint (§3.2.2).

For the matching step, similar to CULZSS, we also find the longest
match in the sliding window for each symbol in the input stream,
even though some matches will not be used in the encoding pro-
cess. However, as discussed in §2.4, CULZSS’s matching step does
not consider multi-byte symbol, which significantly degrades the
compression ratio and throughput. To solve this issue, we propose a
multi-byte matching approach, which can reduce the computational
complexity and find longer matches (§3.2.3). For the encoding step,
as discussed in §2.4, CULZSS must copy matches from the GPU
to the CPU and perform the CPU encoding sequentially, leading
to low throughput. This makes CULZSS impractical for use cases
where data generated on the GPU needs to be compressed. Thus, we
propose a new compression workflow, including encoding and de-
flating (see §3.2.2 and §3.2.1, respectively) to get rid of the handling
from the CPU side completely.

3.2 Algorithm-level Optimizations

Next, we describe our four algorithm-level optimizations in detail.

3.2.1 Exploring Optimal Workflow. First, we explore the optimal
workflow of LZSS compression on the GPU. CULZSS uses the CPU
to encode/compress the matches found by the GPU, as shown in
Figure 4 (a). The CPU encoding kernel and the GPU matching kernel
are executed asynchronously to maximize overlapping. However,
this workflow makes the encoding process difficult to parallelize,
and the GPU-to-CPU data movement is time-consuming. To solve
this issue, we propose to perform the encoding on the GPU. One
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Figure 5: Our proposed two-pass prefix sum.

straightforward solution is to replace the CPU encoding directly
with a GPU kernel without changing the workflow, as illustrated
in Figure 4 (b). However, this workflow is still not optimal because
every encoding kernel depends on the last matching kernel. This
dependency causes only one kernel to be executed at one time (i.e.,
sequential execution), which brings the GPU resources starvation
problem, especially for small data chunks. Moreover, the multiple
kernel launches further increase the time overhead.

To address this issue, we propose our second workflow, as il-
lustrated in Figure 4 (c). In this design, we perform the matching
and encoding steps in two separate GPU kernels. While the de-
pendency between these two kernels still exists, the size of the
data processed is changed from one data chunk to the entire input
stream, which solves the starvation problem. However, this design
requires a large global memory space to store the intermediate data
(i-e., high memory footprint) and causes a large amount of data to
be moved between global memory and shared memory. To this end,
we propose our third workflow that performs the matching and
encoding steps in the same kernel, as shown in Figure 4 (d). One
major issue with fusing the matching and encoding kernels is that
the output includes empty bytes. Thus, we need to add another
kernel to eliminate these empty bytes (called “deflating kernel”).
This workflow is non-trivial because it is only feasible with our
proposed two-pass prefix sum (detailed in §3.2.2).

3.22  Two-pass Prefix Sum with Kernel Fusion. Fine-grained paral-
lelization of LZSS on GPU is more challenging than coarse-grained
parallelization on CPU because GPU thread blocks do not com-
municate with each other while the kernel function is running,
causing the memory offset of each compressed data chunk to be
unknown. To solve this issue, we first locally calculate the size
of each symbol after compression (could be either a pointer or a
literal), then globally synchronize these sizes, and finally calculate
the global offset for each symbol based on a prefix sum. One ap-
proach to achieve global synchronization in a CUDA kernel is to
use “cooperative groups” [28]. However, the cooperative groups
API has a limited number of threads (e.g., 1,280 threads on A4000),
smaller than we need, which is typically 5,000 threads. Thus, we
need to divide the kernel into two with an implicit device-level
synchronization involved. However, this design requires moving
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compressed data back to the global buffer, incurring multiple data
movements between shared memory and global memory.

To solve this issue, we propose an optimization called two-pass
prefix sum. It includes both a local prefix sum and a global prefix
sum. The design is shown in Figure 5. Specifically, the local prefix
sum calculates the offset for each compressed symbol within each
data chunk/thread block. Here we adopt an optimized two-sweep
prefix-sum algorithm that fits GPU well [3]. It includes up-sweep
and down-sweep processes, detailed in §3.3.2.

After we get the compressed size of each data chunk from the
local prefix sum, we can calculate the offset of each compressed
chunk through a global prefix sum across data chunks. Compared
with the single-pass prefix sum, our proposed two-pass prefix sum
only needs to store the size of each compressed data chunk instead
of the size of each compressed symbol, which significantly reduces
the amount of data written to and read from the global memory
(e.g., by at least C times, where C is the number of symbols per
data chunk). Moreover, our two-pass prefix sum can also reduce
space complexity and the global memory footprint. Note that to
avoid moving the match result back and forth between the shared
and global memories for the local prefix sum, we propose to fuse
the local prefix-sum computation into the matching kernel. Thus,
we can perform the local prefix-sum computation directly on the
matching result stored in the shared memory. This can also reduce
the global memory footprint.

After the local prefix sum, each GPU thread encodes symbols
based on the calculated local offsets and the found matches, similar
to the CPU sequential encoding in LZSS, as mentioned in §2.2. Note
that since this encoding is performed at the thread-block level, no
grid-level synchronization is needed. As a result, the encoding can
be further fused with the matching and local prefix sum steps to
form Kernel I. It is also worth noting that compared with CULZSS,
our encoding enables massive GPU threads, which maximizes the
parallelism and encoding throughput.

3.2.3  Multi-byte Matching Approach. CULZSS only performs the
matching step on a single-byte basis, which leads to a decrease
in compression throughput and a potential loss of compression
ratio. This is because, for datasets based on multi-byte symbols,
single-byte matching would lose the characteristics of a specific
data structure. To this end, we propose a novel multi-byte matching
approach that finds matches based on symbols instead of bytes.
This strategy has two advantages: ‘1 Searching for matches based
on symbols is less expensive than searching for matches based on
bytes since there are far fewer symbols than bytes, which increases
compression throughput. 2 It can bring potentially higher com-
pression ratios because each match can contain more bytes. We use
S to denote the symbol length in the following discussion.
However, the potential gain in compression ratio is not guaran-
teed, especially when the match length is generally short. Therefore,
to maximize the chance of increasing the compression ratio with
our multi-byte matching approach, we propose to adaptively select
the symbol length and increase the sliding window size. For exam-
ple, assuming that the input data type is int32, by default, GpuLZ
adopt the 4-byte symbol length and the sliding window size of 128.
Our approach is to adapt the symbol length (ranging from 1 to 4)
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and the sliding window size (ranging from 32 to 2552) to achieve the
best trade-off between the compression ratio and the throughput.

After studying the impacts of symbol length S and sliding win-
dow size W on various datasets (detailed in §4.2), we propose a
lightweight parameter selection approach. Specifically, assuming
the datasets contain multiple fields that are the input to GPULZ at
one time, we monitor the average compression ratio with the multi-
byte matching strategy (default). 1 When the average compression
ratio is relatively low (for instance, lower than 1.5), we switch back
to single-byte matching, considering that the multi-byte matching
is not effective under low compression ratio circumstances (will be
illustrated in §4.2). This is because the multi-byte matching results
in a smaller number of repeated patterns and ignores byte-level
repeated patterns. 2 When the average compression ratio is high,
we keep using multi-byte matching, considering that multi-byte
matching has a significant improvement in compression ratio over
single-byte matching. On the other hand, for W, we enlarge it to
S times when we use the multi-byte matching strategy since the
multi-byte matching can bring a speedup of about S times over the
single-byte matching, which will offset the higher time complexity
brought by a larger sliding window size.

In addition, we provide another option that allows users to set dif-
ferent sliding window sizes, e.g., 32/64/128/255 as level 1-4. A higher
level will bring a higher compression ratio but lower throughput.
The user can decide the level based on their needs. For example, if
compression throughput is a priority, users should select level 1; if
the compression ratio is a priority, users should select level 4.

3.3 Details of GPULZ and Its Implementation

Finally, we introduce our architectural performance optimizations
with some implementation details. We describe these details follow-
ing our compression workflow. We first introduce the data partition
and then describe the kernel details.

3.3.1 Data Partition. First, we divide the input data into multiple
blocks and then divide each block into multiple chunks. We launch
a GPU kernel for each data block and map each data chunk to one
GPU thread block in the kernel. Our data partition strategy is il-
lustrated in Figure 6. The reasons for performing a two-level data
partition are as follows: (1 Data block: GPUs have limited memory
capacity (e.g., 16 GBs for an NVIDIA A4000 GPU), so partitioning
data into blocks allows the GPU to process datasets that are larger
than its memory space. 2 Data chunk: As aforementioned, the en-
coding step requires iterating over the found matches and encoding
the matches that are not covered by previous matches, introducing
data dependencies and sequential execution. Thus, data partition-
ing can enforce matches not across different chunks, increasing the
encoding parallelism.

Data block size: CULZSS divides the input data into many small
blocks (e.g., 1 MB) such that it overlaps CPU encoding with GPU
matching as much as possible. However, this very small block sig-
nificantly limits the GPU resource utilization and overall compu-
tational efficiency. In contrast, since our design does not involve
the CPU for encoding, we can use a relatively large block size to

Note that we set the maximum W to 255 because we only use one byte to save the
sliding window size and reserve 0 for no match found.
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One iteration
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Figure 6: Data partition strategy

increase GPU efficiency. Therefore, we choose the block size of 30%
of the global memory (e.g., 12 of 40 GB for NVIDIA A100 GPU).

Data chunk size: On the one hand, our data partition results in
lower compression ratios since we ensure matches cannot span
chunks; in other words, larger chunks have higher compression
ratios. On the other hand, the chunk size needs to satisfy the GPU
hardware constraint as each chunk is stored temporarily in the
GPU shared memory. Note that the shared memory is part of the
GPU’s L1 cache, so the more shared memory is used the less L1
cache is left. The trade-off between shared memory and L1 cache is
discussed in detail in §4.2. In addition, each thread in a thread block
processes multiple symbols in a data chunk. We use C to denote
the data chunk size in the following discussion.

3.3.2 Kernel I. Next, we describe Kernel I and our optimization in
warp divergence. We also present its pseudocode in Listing 1.

Listing 1: Proposed Kernel I

1 input: original data

2 output: compressed data, flag array, offset arrays

3

4 // find matches

5 for iteration in chunkSize / blockDim.x:

6 tid = threadIdx.x + iteration * windowSize

7 while windowPointer < bufferStart && bufferPointer
< blockSize

8 if buffer[bufferPointer] == buffer[

windowPointer]:

9 if offset[bufferPointer] == 0:

10 offset = bufferPointer - windowPointer

1 len++

12 bufferPointer++

13 else:

14 if len > maxLen:

15 maxLen = len

16 maxOffset = offset

17 len = 0

18 offset = 0

19 bufferPointer = bufferStart

20 windowPointer++

21 writeToSharedMem(lengthArr, offsetArr)

22 initializeToZero(prefixArr)

23

24 // synchronize threads

25 __syncthreads ()

26

27 // find encoding information

28 __shared__ uint8_t byteFlagArr[(dataChunkSize / 8)]
29

30 if threadidx.x == 0:

31 while encodeIndex < blockSize:

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
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if lengthBuffer[encodeIndex] < minEncodelength:
prefixBuffer[encodeIndex] = sizeof(dataType)
encodeIndex++

else:

prefixBuffer[encodeIndex] = 2
encodeIndex += lengthBuffer[encodeIndex]
generateFlagArr (byteFlagArr)

// local prefix sum
localPrefixUpSweep (prefixArr)
saveTheCompressedChunkSize ()
localPrefixDownSweep (prefixArr)

// compress data
for iteration in chunkSize / blockDim.x:
encodeBasedOnlocalPrefix ()

// copy flag array back to global mem
writeBackToGlobal (byteFlagArr)

At the beginning of Kernel I, we load the input stream into the
shared memory. Different from CULZSS, which uses two arrays
in the shared memory to store the input stream and the sliding
window, we integrate them into one array and use pointers to
indicate the start positions of the input stream and sliding window.
This design saves the context switch time for updating arrays and
fully utilizes the shared memory to accelerate the matching step.

Then, we find matches for every symbol in the designated data
chunk. In the sequential LZSS, the matching process is highly time-
consuming. In the best case, it takes O(n) (when no match is found),
while in the worst case, it takes O(n?) time complexity (when the
sliding window and the look-ahead buffer contain the same symbol).
This unstable time complexity would cause a severe divergence
among different GPU threads. To solve this issue, we use an opti-
mized matching method with a stable time complexity to reduce
the divergence among threads. Our method is described as follows.

1) We use a search pointer to the start of the window and a position
pointer to the coding position (Lines 12-25).

2) We move the search pointer until it reaches the same value as
the position pointer points to, and then move both pointers until
they point to different values (Lines 13-17).

3) We record the length and offset of the current match only if it
is longer than the previously recorded match (Lines 18—24).

4) We let the position pointer point to the coding position again,
advance the search pointer to the next location, and repeat step
2) until the sliding window is iterated all over or the look-ahead
buffer is empty (Lines 12, 22-24).

Although this method cannot guarantee an optimal output (ie.,

always finding the longest matches), it gives a sufficient result (will

be shown in the evaluation) with a very stable time complexity of

O(n). Moreover, unlike the traditional LZSS, the maximum encoding

length in our method does not exceed the offset. Both aspects can

minimize the possibility of warp divergence.

After that, we encode the matches (Lines 35-43). Specifically,
we use one thread per thread block to calculate the compressed
size and produce the flag array (due to LZSS’s sequential nature).
Specifically, if a match is found for the current symbol, it takes two
bytes (i.e., one for length and one for offset) to encode the match
and appends one bit “1” to the flag array to denote “match” and then
skips the symbols that the match covers (Lines 40-42). If no match
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Figure 7: Two-sweep algorithm

is found, it saves the original symbol (i.e., the number of bytes for
the input data type) and appends one bit “0” to the flag array to
denote “no match” (Lines 37-39). Note that before the local prefix
sum to calculate the memory offsets, we allocate an array in the
shared memory to save the size of each compressed symbol (Line
7) and initialize the array to all zeros (Line 27). Thus, we can skip
the symbols covered by a match to further improve performance.
Finally, we use the local prefix sum (described in §3.2.2) to calcu-
late the memory offset of each symbol within its data chunk and
write the compressed data chunks and their sizes to the global mem-
ory for deflating. We use a two-sweep method [3] to implement
our local prefix sum, as illustrated in Figure 7. Specifically, in the
up-sweep phase, we calculate the summation of two elements with
a distance of 25'P~1 (Figure 7a). Then, we can get the summation
of all elements stored in the last position. After that, we save this
back to the global memory for the following global prefix sum and
reinitialize it with 0. In the down-seep phase, we copy each element
to a new position and calculate the summation of two elements
(Figure 7b). Finally, we get the prefix sum of the whole array.

3.3.3 Kernel Il. Next, we present Kernel II and show its pseudocode
in Listing 2. Specifically, we perform the global prefix sum (dis-
cussed in §3.2.2) in Kernel II. Since prefix sum has been imple-
mented and highly optimized in the CUB library [6], we directly
call it to achieve high performance. Note that Kernel II launches
the CUB’s prefix-sum kernel twice, because we not only need to
calculate the offset of the compressed data (Line 5) but also need to
calculate the offset of the flag array (Line 8).

Listing 2: Proposed Kernel II

input: compressed size, flag array size
output: compressed offset, flag array offset

// calcualte the offset for compressed size
cub::DeviceScan::ExclusiveSum(compressedSize, prefix)

// calcualte the offset for flagarray
cub::DeviceScan::ExclusiveSum(flagSize, flagPrefix)

® N v AW N =
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3.34 Kernel Ill. Finally, we implement the deflating process in
Kernel III. The pseudocode of Kernel III is presented in Listing 3.
We use the same granularity as the matching step to fully utilize
the parallelism of the GPU. Specifically, we calculate the sizes of
the flag array and the compressed data chunk (Lines 5-6) and then
write the flag array (Lines 9-11) and the compressed data (Lines
14-16) based on the memory offsets.

Listing 3: Proposed Kernel III

input: compressedData, cOffset, flagArray, fOffset
output: compressedOut, flagArrayOut

1
2
3
4 int tid = threadIdx.x

5 flagArrSize = fOffset[Index + 1] - fOffset[Index]

6 compressedSize = cOffset[Index + 1] - cOffset[Index]
7
8
9

// write back flag array

while tid < flagArrSize:
10 write(flagArray, fOffset[index], tid)
1 tid += blockDim.x

13 // write back compressed data

14 while tid < compressedSize:

15 write(compressedData, cOffset[index], tid)
16 tid += blockDim.x

4 PERFORMANCE EVALUATION

In this section, we present our evaluation of GPULZ on six represen-
tative multi-byte datasets and its comparison with state-of-the-art
LZ GPU solutions, i.e., CULZSS and nvCOMP’s LZ4.

4.1 Experimental Setup

Platforms. We use two platforms in our evaluation: ‘1 One node
from the Big Red 200 supercomputer [1], equipped with two 64-core
AMD EPYC 7742 CPUs @2.25GHz and four NVIDIA Ampere A100
GPUs (108 SMs, 40GB), running CentOS 7.4 and CUDA 11.4.120.

2 An in-house workstation equipped with one 24-core Intel Xeon
W-2265 CPU @3.50GHz and two NVIDIA GTX A4000 GPUs (40
SMs, 16 GB), running Ubuntu 20.04.5 and CUDA 11.7.99.

Datasets. We conduct our evaluation using six representative
multi-byte datasets from two benchmarks, i.e., TPC-H benchmark
[42] and Scientific Data Reduction Benchmarks (SDRBench) [35].
Specifically, TPC-H benchmark is a suite of business-oriented ad-
hoc queries and concurrent data modifications. It includes one
int32 integer dataset (i.e., tpch-int32) and one utf-8 string dataset
(i.e., tpch-string). SDRBench includes three uint16 datasets (i.e.,
hurr-quant, hacc-quant, nyx-quant) and one float32 dataset (i.e.,
rtm). Note that the three uint16 datasets are intermediate data
3 generated from three real-world HPC simulation datasets, i.e.,
HACC (cosmology particle simulation) [15], Hurricane (ISABEL
weather simulation) [17], and Nyx (cosmology simulation) [29],
which have been widely used in previous studies on scientific data
compression [24, 25, 34, 39-41, 44]; the float32 rtm dataset is from
a seismic imaging application for petroleum exploration [18, 22].

3The intermediate data is the quantization code generated by cuSZ [8] under the
relative error bound of 1e-3, and is stored in uint16 format.
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Table 1: Compression ratio of GpULZ. Note that some fields are noted as “n/a” due to out of the limited shared memory.

chunk size: 2048

window size | = 1byte 2bytes 4bytes 1byte 2bytes
hurr 32 3.14 3.77 3.58 3.18 3.84
quant 64 3.79 4.39 4.05 3.86 4.50
128 4.39 491 4.44 4.51 5.09
255 4.89 5.32 4.78 5.07 5.59
hacc 32 1.55 1.67 1.59 1.55 1.68
quant 64 1.71 1.82 1.71 1.72 1.84
128 1.87 1.97 1.83 1.88 2.00
255 2.01 2.12 1.92 2.03 2.18
nyx 32 3.97 5.07 4.80 4.04 5.20
quant 64 5.06 6.18 5.73 5.19 6.42
128 6.14 7.19 6.52 6.36 7.57
255 7.08 8.03 7.11 7.46 8.65
tpch 32 1.31 1.25 1.29 1.32 1.26
int32 64 1.37 1.30 1.34 1.38 1.31
128 1.43 1.34 1.38 1.44 1.35
255 1.50 1.38 1.41 1.51 1.39
tpch 32 1.55 1.58 1.46 1.56 1.59
string 64 2.02 1.96 1.72 2.04 1.99
128 2.57 2.43 2.03 2.62 2.50
255 3.08 2.84 2.27 3.19 3.00
rtm 32 2.45 2.72 2.88 2.47 2.75
float32 64 2.59 2.80 2.92 2.61 2.83
128 2.66 2.84 2.94 2.69 2.88
255 2.69 2.85 2.97 2.72 2.90

Baselines. We compare GpuLZwith two baselines: (1 CULZSS:
CULZSS is the state-of-the-art GPU implementation (open-source) [7]
of LZSS, but it uses the GPU to find matches and the CPU to encode
matches. 2 nvCOMP’s LZ4: 1LZ4 is similar to LZSS but uses a partic-
ular data format to achieve portability. We use the state-of-the-art
GPU implementation (closed-source) of LZ4 from nvCOMP [27].
We use the latest nvCOMP 2.6.0.

Evaluation metrics. We focus on evaluating and analyzing GPU-
based LZ compressors on two main metrics. ‘1 Compression ratio is
one of the most commonly used metrics in compression research.
It can be calculated as the ratio of the original data size and recon-
structed data size. Higher compression ratios mean denser informa-
tion aggregation against the original data and faster data transfer.

2 Compression throughput is the primary consideration when using
a GPU-based lossy compressor instead of a CPU-based one. It can
be calculated as the ratio of original data size to compression/de-
compression time. Higher throughput means faster compression
and more significant benefits of using compression.

4.2 Impacts of Parameters C, W, and S

First, we evaluate the impacts of parameters C, W, and S. We con-
duct the experiments on both the A100 and A4000 platforms. The
compression ratio is shown in Table 1, and the compression through-
put is shown in Table 2. Specifically, we choose the data chunk sizes
(i.e., C) of 2048, 4096, 8192, and 16,384. The data chunk size directly
decides the shared memory size we utilize in our design. Because
the shared memory is part of the L1 cache. As a result, we can
observe the impact of the trade-off between shared memory and
L1 cache on the overall throughput. Note that some fields in the
table are empty because of the limited shared memory. The sliding
window size W will directly decide the time complexity. The longer
the sliding window is, the higher the time complexity will be. It

chunk size: 4096
4 bytes

chunk size: 8192 chunk size: 16384

1byte 2bytes 4bytes 1byte 2bytes 4 bytes
3.66 n/a 3.88 3.70 n/a n/a 3.72
4.18 n/a 4.56 4.25 n/a n/a 4.28
4.64 n/a 5.18 4.75 n/a n/a 4.81
5.15 n/a 5.73 5.36 n/a n/a 5.47
1.60 n/a 1.68 1.61 n/a n/a 1.61
1.73 n/a 1.85 1.74 n/a n/a 1.75
1.86 n/a 2.02 1.88 n/a n/a 1.89
1.99 n/a 2.20 2.03 n/a n/a 2.05
4.95 n/a 5.27 5.02 n/a n/a 5.06
6.00 n/a 6.54 6.14 n/a n/a 6.21
6.99 n/a 7.79 7.25 n/a n/a 7.38
7.94 n/a 9.01 8.42 n/a n/a 8.64
1.30 n/a 1.26 1.30 n/a n/a 1.30
1.35 n/a 1.31 1.35 n/a n/a 1.36
1.39 n/a 1.36 1.40 n/a n/a 1.41
1.43 n/a 1.40 1.44 n/a n/a 1.45
1.47 n/a 1.60 1.48 n/a n/a 1.48
1.76 n/a 2.01 1.78 n/a n/a 1.79
2.12 n/a 2.54 2.17 n/a n/a 2.20
2.47 n/a 3.09 2.58 n/a n/a 2.64
291 n/a 2.77 2.93 n/a n/a 2.94
2.96 n/a 2.85 2.98 n/a n/a 2.99
2.99 n/a 2.89 3.01 n/a n/a 3.02
3.02 n/a 2.92 3.05 n/a n/a 3.07

will also potentially increase the compression ratio. Moreover, we
introduce multi-byte symbols into the LZSS algorithm to explore
the potential compression ratio and throughput gains. To this end,
we select three symbol lengths (i.e., S): 1, 2, and 4 bytes.

First, we focus on the impact of C. As mentioned before, we
partition the data into chunks to allow LZSS to execute in parallel.
However, due to the independence of each data chunk, the com-
pression ratio would drop slightly because the match does not span
the boundaries of data chunks, leading to the limited match length.
The evaluation result also proves this, as illustrated in Table 1. The
compression ratio increases as the data chunk size increases in
all test cases. The average improvement is 1.02X. However, as the
data chunk size increases, the compression throughput decreases
in almost all test cases. This proves that a larger L1 cache is better
for compression throughput than utilization of shared memory,
at least in the range of feasible data chunk sizes of GpULZ. With
smaller data chunk size, the compression throughput is improved
by 1.33X on average. Note that the compression throughput drops
significantly with larger data chunk sizes. For example, on the 4-
byte nyx-quantization dataset, the compression throughput drops
from 19.05 to 18.76 when the data chunk size changes from 2048 to
4096. At the same time, it drops from 14.67 to 8.36 when the data
chunk size changes from 8192 to 16,384. This is because when the
data chunk size is 16,384, the shared memory size is close to the
hardware’s limit, resulting in a fairly small L1 cache size and fur-
ther impacting the overall throughput. This phenomenon is more
obvious when the data chunk size is bigger. Note that A100 has a
higher speedup than A4000 when the block size is large because
A100 has larger L1 cache (192 KB/SM) than A4000 (128 KB/SM).

Next, we explore the impact of W. On the one hand, as analyzed
before, a larger sliding window brings a potentially longer match,
increasing the compression ratio. Table 1 shows that the ratio of
compression ratio to the sliding window size is near linearly in
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Table 2: Compression throughput of GPULZ on both A100 (blue) and A4000 (gray) GPUs. The red bars show the performance gain when scaling from A4000 to

A100.
chunk size: 2048 chunk size: 4096
window size | 1 byte 2 bytes 4 bytes 1 byte 2 bytes
hurr 32 1.7><8'_1 1.61><4£ 1.6§<()£ 2.2 6_9 1.322
quant 64 Lot 1.5><Si 1.61><7i 2.0% ﬁ 1.6><8i
128 1.6><2i 1.5><4i 1.6}<1'_0 1.8% 24 1.5><4i
255 el U0 GRS G e el
hace 32 1.8x [ 1.6131 1.5%<Q£ 2.2 =8 147><13'_1
quant 64 1.6><4i 1.5><8£ 1.7>1<9'_2 2.0¢ 2L 1.6><8£
28GR0 LT B B o 22 5L
255 1.5><1i 1.53'1 1.7><7‘_4 1.8x E 1.s><zi
nyx 32 1.6><9i 1.5]><51 1.63><Oi 1.9x 2 1.7>}5‘_8
quant 64 1.6><Si 1.5><9i 1.7>19‘_8 1.9x 2 1.5><9£
128 1,s><3i 1.5><5i 1,sl><li Lox oL 1.7% 20
255 1.7% 1_8 1,7><?i 1.42'2 1.8% i 1.7><3£
tpch 32 1.8% 2 1§>fi 1,7>%5'_4 2.3x i 1.9><l£
int32 64 1.6><4i 1,5><7£ 1.6&62 2.2x 28 1.7><7'_5
T P 2ot Ll ol
255 1.6><li 1.6><2ﬁ 1.7xéi 1.8% 2 1.5><2i
tpch 32 1.7><7i 1.51><2i 1.7>2<2ﬁ 2.2x =3 1.8><1£
string 64 1.5><4i 1.axgi 1.61<5£ 2.1 ﬁ 1.5><7£
128 1.4g<'i 1.53& 1.s><10‘_7 2.0x i 1.5;41
255 1.5><li 144;%'(; 1.8><£ 1.8><i 1.5><2£
rtm 32 1.7><7'_3 1.5&42 1.6%<8i PPV 1.s><12
float32 64 1.6><4i 1.7><9'i 1.6l><7i 1.8 2 1.6><8£
128 1.4>2<’i 1.43'1 1.61><0i 1.7><2'_4 1.5><4i
255 1.43{1 1.531 1.7><8i I.GXIi 1.7><3i

4 bytes 2 bytes 4 bytes 4 bytes
28.0 11.3 26.6 16.0
1.6X s 2.6X m— 2.0X s 21X s
17.2 7.4 16.6 11.8
1.6X s 2.4X s— 1.8X 21X s
10.1 4.3 9.5 7.4
1.6X 2.2X e— 1.7X 2.0X
5.7 2.3 5.3 4.3
1.6X 2.1X 1.6X 1.9X s
27.5 9.3 24.6 14.5
1.8X 2.7X e— 2.3X m— 2.4X s—
19.1 6.6 17.4 11.1
17X 2.4X — 2.1X e 2.1X e—
11.1 4.2 11.1 7.9
1.6X mm 2.1X e 1.8X 2.2X e—
6.7 2.5 6.0 4.9
17X 2.1X s 17X s 2.0X s
30.3 12.4 29.2 18.1
1.6X 2.2X e— 2.0X — 2.2X e—
18.0 8.1 17.9 12.9
1.6X s 2.2X e— 1.7X s 2.0X s
10.3 5.0 10.2 8.7
1.5X s 2.0X s 1.6X 1.9X
6.6 3. 6.3 5.3
1.6X 2.2X me— 1.6X 1.9X
21.4 7.7 19.4 10.5
1.6X 2.5X e— 21X 21X
14.6 5.9 14.2 8.2
1.5X 2.5X m— 2.0X m— 2.0X m—
9.2 3.8 8.4 6.4
17X s 2.3X e— 17X 2.1X e
5.8 2.1 5.0 3.8
1.7X 2.1X s 1.6X s 1.9X
21.1 8.0 19.0 10.0
17X 2.3X e 2.3X ee— 2.1X e
15.6 6.3 14.0 8.2
17X s 2.2X e 2.0X s 2.0X s
9.4 4.0 8.2 5.7
1.7X s 2.0X m— 1.7X 1.6X
6.1 2.3 4.7 3.7
1.8X 1.9X 1.4X 1.6X s
28.6 11.2 26.6 16.2
17X s 2.9X e— 2.0X s 2.2X e—
17.4 7.0 16.8 12.4
1.6X 2.3X m— 1.8X 2.2X e
10.0 4.2 9.6 7.5
1.6X 2.2X e— 17X 2.1X
6.1 2.6 5.8 4.5
1.6X 2.0X e 1.8X 17X
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chunk size: 8192

chunk size: 16384

almost all datasets. For example, on the 2-byte tpch-int32 dataset,
the compression ratio is 1.26, 1.31, 1.35, and 1.39 when the sliding
window size is 32, 64, 128, and 255, respectively. Moreover, the
overall compression ratio improvement by extending the sliding
window size from 32 to 255 is 1.4X. On the other hand, a larger
sliding window incurs more operations per thread, decreasing the
compression throughput. The average speedup when we change
the sliding window size from 255 to 32 is 3.9X. Compared with
the relatively small increase in compression ratio, the throughput
decreases dramatically as the sliding window size doubles. However,
we find GpULZ highly stable in throughput across different datasets
under the same configuration (i.e., C, W, and S). For example, the
throughput of C = 2048, W = 32, and S = 2 is 9.57 GB/s, 8.49 GB/s,
10.14 GB/s, 8.3 GB/s, 7.96 GB/s, and 9 GB/s on A4000 on {hurr, hacc,
nyx}-quant, tpch-{int32, string}, and rtm datasets, respectively.
Finally, we discuss the impact of the symbol length S. As men-
tioned, the multi-byte symbol length can introduce a potential com-
pression ratio improvement and increase the compression through-
put due to longer matches and fewer symbols to process. Table 1
shows that the compression ratio improvement is not determined
as we expected. It has different patterns for different datasets. For
example, on the three uint16 quantization-code datasets, the com-
pression ratio reaches the peak at S = 2, which is the same as
the length of uint16. However, on the int32 tpch-int32 dataset, the

compression ratio is optimal at S = 1, which is different from the
length of int32. This is because the number of repeated patterns is
relatively smaller in the tpch-int32 dataset, as indicated by the low
compression ratio. Thus, using a 1-byte symbol (i.e., S = 1) may
detect more byte-level repeated patterns and achieve a higher com-
pression ratio than using a 4-byte symbol. On the utf-8 tpch-string
dataset and the float32 rtm dataset, the best compression ratio is
achieved at S = 1 and S = 4, respectively, which is the same as the
unit length of their data types.

Regarding throughput, the impact of the symbol length is more
obvious; that is, longer symbol results in higher throughput. The
average throughput improvement is 4.5X when we change S from 1
to 4. Combined with the above observation regarding compression
ratio, we find that S = 2 has both a higher compression ratio and
throughput than S = 1 in some cases. For example, on the hurr-
quantization dataset with any W and C, S = 2 can always lead to a
better compression ratio and throughput than S = 1. Note that this
observation can be generalized to all LZ compressors.

4.3 Evaluation on Compression Ratio

Next, we compare the compression ratio of GPuLZ with CULZSS
and nvCOMP’s LZ4, as shown in Figure 8. Note that in the figure,
we use “gpulz” to denote the default configuration (C = 2048, S = 2,
and W = 128) and “gpulz-best” to denote the best compression ratio
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from all settings. The figure shows that compared with CULZSS,
GPULZ achieves a similar compression ratio on all datasets because
the compression ratio is highly dependent on the sliding window
size. In our default configuration, we use W = 128 as the same as the
CULZSS. In the best cases (overall configurations), GpuLZ has an im-
provement of 1.4X on compression ratio. Compared with nvCOMP’s
LZ4, GpuLZ achieves an average compression ratio improvement of
1.23%. Specifically, on the hurr-quantization and nyx-quantization
datasets, GPULZ has the highest compression ratio improvements,
which are 1.53x and 1.8x, respectively. In the best cases (of all con-
figurations), GPULZ has an improvement of 1.42X on compression
ratio thanks to our fine-tuned parameters.

4.4 Evaluation on Compression Throughput

Then, we evaluate the performance of GpuLZ, with its scalability on
A100 and A4000 shown in Figure 9. Note that “culzss” denotes the
overall throughput of CULZSS, including the GPU matching kernel
and the CPU encoding process. “culzss-kernel” denotes the through-
put of the GPU matching kernel. “gpulz” denotes our method with
the default setting (C = 2048, S = 2, and W = 128). “gpulz-best”
denotes the best compression throughput from all settings. We note
that the settings for the best case are generally C=2048, W=32, S=4,
except for the nyx-quantization and rtm datasets on A100, which
achieve the best performance with C=4096, W=32, S=4. This is be-
cause A100 has a larger L1 cache (192 KB/SM) than A4000 (128
KB/SM); a larger chunk size (i.e., more shared memory utilization)

of different GPU compressors on A100 and A4000.

will not significantly affect performance. Compression throughput
is potentially increased by fully utilizing the high-speed shared
memory.

Compared with CULZSS, our method has an average speedup
of 22.19% on all datasets with A4000. When compared with our
best case, this speedup increases to 130.01X. The reason is three-
fold: 1 the slow CPU encoding process, 2 the data movement
overhead between CPU and GPU, and ‘3 the overhead of multiple
times of launching the same kernel. Note that the entire process of
GPULZ is almost as fast as the matching kernel of CULZSS both on
A100 and A4000, thanks to our optimizations in both algorithm and
implementation. Compared with nvCOMP’s LZ4, GpuLZ has similar
compression throughputs on the hurr-quantizaiton, tpch-int32, and
tpch-string datasets but slightly slower on the hacc-quantization
and nyx-quantization datasets. However, since nvCOMP is not
an open-source library, we can only infer the underlying reason,
which may be that some field sizes in these datasets are too small. By
comparison, GPULZ has more stable performance across all datasets,
and our best case achieves higher throughput than nvCOMP with
both A100 and A4000 platforms on almost all datasets. For example,
the average speedup is 4.32X on A100.

In addition, we also implement our decompression and evaluate
its throughput. Considering decompression is easy to parallel, we
do not describe and compare it with other compressors in detail; in-
stead, we only show the average decompression throughput across
all datasets. Specifically, the average decompression throughput of
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GPULZ on all datasets is 16.4 GB/s on A4000 and 29.1 GB/s on A100.
For comparison, nvCOMP’s LZ4 has an average decompression
throughput of 21.1 GB/s on A4000.

4.5 Use-case of cpULZ

Finally, we apply GPULZ to cuSZ (a state-of-the-art GPU lossy
compressor for scientific data) due to its high performance on the
quantization-code datasets to improve the compression ratio. Note
that the original cuSZ only has a Huffman encoding [16], whereas
the improved cuSZ includes GPULZ before the Huffman encoding.
We evaluate the original cuSZ and the improved cuSZ on the A100
platform under the relative error bound 1e-2. Besides Hurricane,
NYX, and RTM, we also include one more dataset from SDRBench,
i.e., CESM (climate simulation) [5].

Table 3: Comparison of compression ratio and throughput (GB/s) between
original cuSZ and improved cuSZ (with GpuLZ) on A100 platform.

Dataset cuSZ cuSZ w/ GpULZ
CR THR CR THR

CESM 22.6 12.0 43.2 2.7
Hurricane 24.3 31.9 29.1 5.9
Nyx 30.1 87.2 74.8 10.4
RTM 28.6 49.2 249.8 7.2

Table 3 shows that the improved cuSZ obtains an improvement
of 1.9x ~ 8.7X in compression ratio with a slightly lower com-
pression throughput. We note that the improved cuSZ has higher
compression ratio improvements on larger error bounds and higher
dimensional datasets (e.g. 3D Hurricane and RTM), since the quan-
tization code generated by cuSZ in these cases has more spatial
redundancy, thus benefiting GPULZ. Enabling higher compression
ratios is critical for many HPC applications using lossy compression
(rather than lossless compression). We also note that some CPU
lossy compressors with multi-threading support such as SZ [38]
and ZFP [23] can also achieve compression throughputs of about
2~4 GB/s on 32 cores [11], but their overall throughput is limited
by moving uncompressed data from the GPU to the CPU; in com-
parison, the time of moving compressed data (with hundreds of
compression ratios) with the improved cuSZ is much lower.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a series of optimizations for one of the
most important lossless compression algorithms LZSS for multi-
byte data on GPUs. Specifically, we develop a new method for multi-
byte pattern matching, optimize the prefix-sum operation, and fuse
multiple GPU kernels, thereby improving both compression ratio
and throughput (due to lower computational time complexity, less
data movement, and potentially longer matches). GPULZ achieves
up to 272.1x speedup and up to 1.4x higher compression ratio over
state-of-the-art solutions.

In the future, we plan to evaluate GPULZ on more multi-byte
datasets. We will attempt to develop an analytical model for search-
ing the optimal parameter combination for different datasets. In
addition, we will integrate GPULZ into more data-intensive applica-
tions running on different parallel and distributed systems.
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