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ABSTRACT
As diverse high-performance computing (HPC) systems are
built, many opportunities arise for applications to solve
larger problems than ever before. Given the significantly
increased complexity of these HPC systems and application
tuning, empirical performance tuning, such as autotuning,
has emerged as a promising approach in recent years. De-
spite its effectiveness, autotuning is often a computationally
expensive approach. Transfer learning (TL)-based autotun-
ing seeks to address this issue by leveraging the data from
prior tuning. Current TL methods for autotuning spend sig-
nificant time modeling the relationship between parameter
configurations and performance, which is ineffective for few-
shot (that is, few empirical evaluations) tuning on new tasks.
We introduce the first generative TL-based autotuning ap-
proach based on the Gaussian copula (GC) to model the
high-performing regions of the search space from prior data
and then generate high-performing configurations for new
tasks. This allows a sampling-based approach that maximizes
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few-shot performance and provides the first probabilistic es-
timation of the few-shot budget for effective TL-based auto-
tuning. We compare our generative TL approach with state-
of-the-art autotuning techniques on several benchmarks. We
find that the GC is capable of achieving 64.37% of peak few-
shot performance in its first evaluation. Furthermore, the
GC model can determine a few-shot transfer budget that
yields up to 33.39× speedup, a dramatic improvement over
the 20.58× speedup using prior techniques.

CCS CONCEPTS
• Computing methodologies → Transfer learning; •
Mathematics of computing→Hypothesis testing and confi-
dence interval computation; • Software and its engineering
→ Source code generation.
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1 INTRODUCTION
The arrival of diverse architectures in high-performance
computing (HPC) systems has unlocked many new opportu-
nities and also permits existing applications to push beyond
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their former limitations. In order to maximize performance,
new and old applications alike will need to be tuned. Since
these applications frequently allow many potential optimiza-
tions, searching for the best configurations by hand or with
exhaustive enumeration is typically too expensive. Empir-
ical performance tuning, widely known as autotuning, is
a promising approach that evaluates a small subset of pa-
rameter configurations of a given kernel or application from
a large user-defined search space by running them on the
target platform to identify the best-performing configura-
tions. A sophisticated search algorithm is often employed
to intelligently navigate the large search space. Such auto-
tuning approaches have achieved success in several prior
works [2, 11, 15, 16, 22, 23, 25].

Despite prior successes, however, autotuning has faced
adoption challenges for real applications because it is still
resource expensive. Each empirical evaluation involves gen-
erating the executable with the parameter configuration and
actual execution. Even simple kernels may require several
hours to tune, while more advanced and complex applica-
tions with larger search spaces may require days. To reduce
the computational expense of autotuning, researchers have
developed transfer learning (TL) methods to leverage data
from related autotuning tasks (e.g., similar input sizes or
kernels). Although the optimum for a kernel changes with
input size, high-performing regions in the search space are
related across input sizes. This allows TL in autotuning to
tune new input sizes of that kernel efficiently.
Existing TL autotuning methods are ineffective for few-

shot, i.e., a minimal number of empirical evaluations, as they
require many samples for new tasks to model the transfer
relationship. To overcome this issue, we develop a new gener-
ative autotuning approach that uses Gaussian copula (GC), a
data-efficient statistical model, to enable rapid TL autotuning.
We use GCs to model each configuration parameter’s distri-
bution and codependencies. GCs permit generative tuning
via conditional sampling, which restricts sample generation
to configurations to satisfy constraints such as high perfor-
mance for the input size or kernel of interest. Conditional
sampling enhances the explainability of generated configura-
tions and improves the likelihood of success on transferred
problems. We enhance the GC’s ability to model the mar-
ginal and joint distributions of parameters while mitigating
its limitations for autotuning settings.

Our main contributions are as follows:

• A new generative modeling approach based on a data-
efficient GC model, which enables few-shot TL based
autotuning with a small number of empirical evalua-
tions for new tasks; a generative modeling approach
has never been developed or applied for TL autotuning
before.

• Estimation of success probability for generative model-
ing to determine the necessary budget to expect quality
autotuning results; this is the first work that provides
probability estimation for TL autotuning.

• We demonstrate new performance insights for Poly-
bench and Exascale Computing Projectmini-applications
by utilizing few-shot autotuning.

Our code is open source and available at https://github.
com/tlranda/GC_TLA.

2 BACKGROUND
2.1 Autotuning
Autotuning [3, 22, 23] is a process that efficiently evaluates
a number of parameter configurations from a user-defined
parameterized kernel or application to optimize a given ob-
jective such as performance (e.g., runtime, FLOPS). Here
we provide a walkthrough with the Polybench kernel [26]
“3mm” as a concrete example of basic autotuning concepts.
The kernel performs dense matrix multiplication with four
matrices 𝐴, 𝐵,𝐶, 𝐷 such that the output is (𝐴 × 𝐵) × (𝐶 ×𝐷).

Autotuning utilizes a finite budget (typically time or num-
ber of evaluations) to optimize a relationship 𝑓 (𝑐; 𝑡) ∈ R𝑑
between a given parameter configuration 𝑐 , out of all possi-
ble configurations𝐶 , a tuning task 𝑡 , and 𝑑 objective outputs
such that argmax𝑐 𝑓 (𝑐; 𝑡) ∀𝑐 ∈ C. Each task 𝑡 is a specific
instance from a set of related tasks T , which may have differ-
ent configurations for optimum performance. Each objective
𝑑 is a real-valued metric that functionally depends on both
the task and parameters according to 𝑓 (𝑐 ; 𝑡). The exact closed
form of 𝑓 (𝑐; 𝑡) is unknown but is assumed to be a complex,
nonlinear relationship.

An example task of tuning the 3mm kernel’s runtime per-
formance involves 𝑛 = 10 parameters in the form of source
code annotations that affect loop tile sizes (i.e., 4, 8, 32), loop
interchanges (the order loop iterators appear in nested loops),
and memory management (the packing used for tile mem-
ory structures). Each evaluation of the objective requires
annotating the source with parameter values, then compil-
ing and executing it on the benchmark system to collect
timing data, which incurs considerable cost even for small
input matrices. There are 376,320 unique combinations of the
ten parameters that define our tuning space for 3mm, which
is prohibitively costly to brute-force with empirical searches.
Autotuning uses more intelligent approaches to identify the
configurations that achieve optimal performance.
Autotuning must differentiate input scales as different

tasks because changing the input scale frequently induces
drastic changes in the optimum configuration. As shown
in Table 1, small sizes require the packed-array technique
for matrices 𝐴 and 𝐸, but medium-sized inputs do not. The
degree of improvement can also vary between input scales,
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Table 1: Matrix input scales affect speedup and the best
configurations for the 3mm kernel.

Input Scale
Small Medium Large

Input Scale Characteristics
Array Dimensions ≤ 80 ≤ 220 ≤ 1200
Naive Tera-Ops 0.037 4.75 2924.24
Worst Runtime (s) 0.00017 0.1096 9.8631

Best Configuration Values
Packed Arrays A,E,F F A,B,E
Loop Interchanges N/A N/A Outer Exchange
Tile Sizes 16, 2048, 4 96, 16, 4 4, 2048, 4
Speedup Over Default 1.13× 14.94× 50.50×

where small 3mm inputs can gain 1.13× speedup from au-
totuning. However, medium-sized 3mm inputs gain 14.94×
speedup over the respective baselines.
2.2 Transfer Learning in Autotuning
Several search methods have been developed to reduce the
number of evaluations required to find the best configuration
for autotuning tasks. They can be classified into model-based
and model-free methods. The former methods learn the re-
lationship between the parameter configurations and the
objective function through an incrementally updated sur-
rogate model and leverage it to cheaply evaluate multiple
points and minimize the number of actual evaluations. Exam-
ples include Bayesian optimization that employs Gaussian
process regression and random forest and their variants. The
latter methods optimize the objective function without such
models. Examples include random search, grid search, ge-
netic algorithms, and Nelder-–Mead. The key advantage of
the model-based methods is that they require significantly
fewer evaluations than the model-free methods, especially
for large search spaces [11, 22, 23, 25].

TL in autotuning is an emerging approach that leverages
data from one autotuning task in related autotuning tasks to
improve sample efficiency significantly. Related autotuning
tasks are common in HPC applications, which include tuning
different input sizes of the same kernel or application, tun-
ing the same kernel across architectures, and tuning related
kernels with the same computational signature. While the
best configurations are often different for different autotun-
ing tasks, TL is particularly effective when the related tasks
share similar high-performing characteristics in the search
space. Model-based search methods are promising for TL
because the model can be pretrained or bootstrapped with
the existing data from related tasks.
2.3 Gaussian Copula
The generative modeling-based TL approach that we propose
is based on the GC, a well-known multivariate probability
distribution in statistics literature. Let us consider a simple
autotuning example with three variables: input scale, one
tunable parameter, and the performance metric. After tun-
ing several input scales, we can model the distribution of

the values of the three variables independently. These are
referred to as marginal distributions. The three variables are
correlated, however, so we also model their interactions with
one another using a joint probability distribution.

Copulas are a class of statistical modeling techniques that
decompose a multivariate probability distribution into its
marginal distributions and use a separate function to couple
those distributions. This approach allows us to specify the
correlation separately via a correlation matrix. GCs adopt
probability integral transform, a technique that can trans-
form any probability distribution into a uniform distribution
and vice versa. GCs use the uniform and normal distribution
as the intermediate distribution to model complex joint prob-
ability distribution. This is achieved as follows. Given the
values of the three variables, a covariance matrix that models
the correlation among the variables is computed. Amultivari-
ate normal distribution is then defined using the computed
covariance matrix with a zero mean vector. The probability
integral transform is applied to convert the marginals of the
Gaussian distribution to uniform distributions. The uniform
marginal distributions are then converted into the original
distribution using the probability integral transform. We re-
fer the reader to the work of Masarotto and Varin [13] for
a more detailed mathematical exposition of the statistical
model and mechanics.

3 PROPOSED FRAMEWORK
The key idea of our TL approach is to leverage the GC to
predict high-performing configurations on related tasks in
few-shot autotuning.

Our proposed method consists of two phases: model train-
ing and model inference, as shown in Figure 1. Model train-
ing uses GC to fit data collected from source tasks in an
expert-defined tuning space. In our work, the source tasks
correspond to different input sizes for the same application,
and the tuning space is specified via application source code
annotation and predefined parameter values. The source
tasks, tuning space, and source input sizes are presented to
an existing autotuner [4–6, 9, 16, 21, 25] with a fixed eval-
uation budget to collect a small, quality training dataset of
empirical performance. Model inference uses the fitted GC
model to propose high-performing configurations for new
tasks, which are then empirically evaluated. We discuss the
modules in greater detail in the remainder of this section.
3.1 Model Training
Autotuning problems require experts to delineate key high-
level features. The GC also requires several interventions to
permit its general usage in autotuning and to improve its
utility as a few-shot TL autotuner.

3.1.1 GC for Autotuning. We make several adaptations for
GC to generalize it for the autotuning problem.
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Figure 1: TL-based Autotuning Framework Using GC.
TOP: Model Training, which uses GC to train fitted
models with data collected from source tasks (multi-
ple input sizes of an application) in a human-designed
tuning space. BOTTOM: Model Inference, which uses
the fitted GC models to propose high-performing con-
figurations for new tasks and evaluates them.

Variable Preprocessing. Standard GCs model real variables
but do not model mixed-integer (discrete, integer, and cate-
gorical) variables. To address this issue, we adopt a new GC
approach proposed for synthetic data generation [14]. In this
GC approach, numeric variables (real or integer) are mod-
eled by truncated Gaussian distributions, and categories are
reordered by their frequency in the fitting data. The GC also
reduces the bias from distribution shape by converting all
variable distributions to standard normal distribution before
computing covariance.

GC as an Autotuner. GC can be used as an autotuner given
a dataset of observed configurations in a defined tuning
space. Each tunable parameter in an autotuning space can be
represented by a marginal variable in the GCmodel; the com-
bination of parameter interactions can be described through
the joint model of the GC, permitting representation of dis-
tributions throughout a tuning space. The resulting fitted
model identifies appropriate marginal and joint distributions.
The fitted model can generate new configurations through
the GC’s probability integral transform, which statistically
resembles the training data’s observed marginal and joint
behaviors. Any configurations a GCs generates can be em-
pirically evaluated to determine its fitness without iterative
feedback.

3.1.2 GC Model Fitting for Few-Shot Tuning. Unlike exist-
ing TL autotuning methods, the GC does not benefit from
access to extensive or exhaustive datasets. Without model-
ing the relationships between performance and parameter

configurations, GC lacks a mechanism to disfavor parameter
configurations with subpar performance. Nevertheless, we
can intentionally filter training data based on observed high-
performance and fit the GC only to high performance con-
figurations. In the TL setting, GC-based autotuners generate
high-performing configurations immediately and minimize
the exploration of low-performing regions.

Quantile Filtering. We investigate dataset filtering based
on performance quantiles to include only top-performing
configurations in the training data for GCmodeling. The best
quantiles should result in a training data subset with similar
distribution for high-performing configurations while main-
taining ample tuning space coverage. To motivate the need
for the proper threshold quantile, we present a brief analy-
sis from an exhaustively tuned Syr2k task using Kullback–
Leibler (KL) divergence [10], a statistical measure of the
difference between two probability distributions. Zero KL
divergence indicates that the compared distributions are
identical; increasing differences between compared distri-
butions increases divergence. We also analyze the tuning
space coverage based on the filtered dataset since filtering
can prevent some configurations from being generated.

Table 2: The tuning space coverage and average mar-
ginal KL divergence of quantile-based filtering for the
Syr2k benchmark. The KL divergence is calculated us-
ing the top 10% of all configurations as a reference,
obtained through brute-force.

Filtering Tuning Space KL
Quantile (%) Coverage Divergence

100 1.00 0.1878
90 1.00 0.1713
80 1.00 0.1609
70 1.00 0.1525
60 0.91 0.1409
50 0.91 0.1212
40 0.91 0.1333
30 0.82 0.1713
20 0.07 0.2766
10 0.06 0.3079

Quantile filtering cannot be too aggressive. As shown in
Table 2, the tuning space coverage decreases gradually at
first but decreases dramatically (i.e., 0.82 to 0.07) when the
filtering quantile decreases from 30% to 20%. The signifi-
cant decrease suggests that a majority of parameter options,
especially categorical parameters, have been eliminated. Gen-
erating near-optimal configurations for many tasks requires
variation within the tuning space, so filteringmust not overly
restrict coverage. The table also indicates that reducing the
filtering quantile of source data reduces the average mar-
ginal KL divergence between the represented data and the
top 10% of all possible configurations of this particular Syr2k
tuning task. Again, the filtering quantile cannot be reduced
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indefinitely without consequence: an aggressive filter can
increase divergence. We expect the optimum to change be-
tween tasks; overreliance on the source task optimum harms
the generalization of the 𝑓 (𝑐, 𝑡) relationship.

A smaller divergence for the filtered source increases the
likelihood of sampling optimal configurations by redistribut-
ing the sampling probability from suboptimal areas of the
space to regions that closely resemble known near-optimal
configurations. Based on this trend and our experiments,
we recommend using less than 50% of the original tuning
data to exclude low-performing characteristics from prior
data. This excludes many evaluations that prior autotuners
made to inform the surrogate model rather than to improve
the best-known optimum. Empirically, we determine that at
least the top 15% of data from related tuning runs is needed
to avoid over-specification. We utilize the top 30% of prior
data in our experiments to ensure adequate information is
available for complex tuning tasks without overly harming
the tuning space coverage.

3.2 Model Inference
The fitted GC model represents learned distributions that
can be used for inference, but additional steps must be taken
to utilize it as an effective TL autotuner.

3.2.1 Conditional Sampling. Quantile filtering increases the
likelihood that a sampled configuration from the GC will
reproduce optimal traits in new tasks, but this fails to re-
spect the specific tuning needs for different tasks. Meaningful
transfer between tasks requires us to label fitting data with
a representation of the task, 𝑡 . This permits conditional sam-
pling; we specify the condition that every sample indicates
a particular task. Conditional sampling imposes arbitrary
constraints on the model during generation, which affect
the distributions of unconstrained variables before generat-
ing their values. We explain the mathematical mechanics of
conditional sampling for GCs in greater detail in our reposi-
tory. Conditional sampling prompts the GC to reconstruct
the best-fit distribution it learned for the indicated task; if
that task was not observed in prior tuning, the same model
mechanics “recover” a transferred relationship for the new
task.
Conditional sampling is particularly effective for the GC

because it identifies and isolates critical information from the
model. Since the GC operates on filtered high-performing
source data, conditional sampling generates configurations
that are expected to perform well for the transferred task.

3.2.2 Advantages over Alternative Generative Models. Other
generative models can fit a labeled dataset and generate
constrained samples, but the GC has lower latency and yields
more usable samples than alternatives. Table 3 demonstrates

the inference latency of comparable deep neural-network-
based generative methods such as CTGAN and TVAE [24].
GC has the lowest latency of all, which is comparable to
purely random sampling.

Table 3: The cost of generating 1,000 unique samples
using various techniques. Conditional sampling with
the GC has latency similar to random sampling but rep-
resents learned relationships without ill-conditioned
data.

Method Time (s) Reject Reason (%)
Repeated Ill-Conditioned

Random 0.24 – –
GC 0.52 62.13% 0%

CTGAN 1.28 7.33% 87.87%
TVAE 80.77 2.25% 97.70%

The GC’s advantage in latency is partially due to the ac-
ceptance rate of generated samples, also shown in Table 3.
The separation of joint and marginal models permits the
GC to satisfy constraints before generating other values, so
only repeated parameter configurations are removed from
its generated configurations. Some other models, such as
the CopulaGAN [1], can also utilize conditional sampling;
however, it can fail to generate any configurations when
prompted to produce out-of-distribution data, which is im-
portant for transferring tuning to new tasks.

CTGAN and TVAE generate excess samples and then em-
ploy filters to discard ill-conditioned data. These methods
are computationally inefficient. While relaxing constraints
can help reduce their generation latency, it comes at the cost
of compromising the quality of the generated data, which
no longer best fits the desired task. CTGAN and TVAE are
not ideal for few-shot transfer learning autotuning scenarios,
where both latency and utility are crucial factors to consider.

CopulaGAN, CTGAN, and TVAE are proposed for syn-
thetic data generation and are effective when provided with
large amounts of data. In autotuning, however, we often have
limited data. GC is more effective for these settings because
of its computational simplicity.

3.2.3 Managing Probability of Success. The success rate for
generative autotuning is subject to randomness, even though
the transferred distribution is biased toward values that are
expected to be near-optimal. Therefore, it is crucial to under-
stand the probabilities involved in GC generation to deter-
mine whether the technique is appropriate and what eval-
uation budget is necessary to expect a certain threshold of
success.
The GC’s autotuning process samples 𝑘 configurations

without replacement from a distribution that spans |𝐶 | po-
tential candidates. Within the distribution are |𝐼 | ideal can-
didates, which are optimal or near-optimal. Frequently, the
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top 1% of evaluations in real-world benchmarks have nearly
equivalent performance. Identifying one or more of these top
1% candidates within the budgeted 𝑘 trials is an acceptable
goal for few-shot TL autotuning. The probability that one
or more such ideal candidates are selected within 𝑘 trials is
hypergeometric sampling, described by Equation 1:

𝑃 (#𝑂𝑝𝑡𝑖𝑚𝑎𝑙 ≥ 1) =
𝑘∑︁
𝑖=1

( |𝐼 |
𝑖

) ( |𝐶 |− |𝐼 |
𝑘−𝑖

)( |𝐶 |
𝑘

) . (1)

If we fit all source task data and |𝐶 | is the size of the entire
configuration space, then sampling the top 1% of perfor-
mance within a few shots is unlikely. Using quantile filtering
on the source data for the GC can make some configurations
statistically improbable or impossible to generate, eliminat-
ing them from the search. These excluded configurations
are expected to be suboptimal because they fail to exhibit
characteristics common with known optimal-like data from
source task tuning.

Eliminating suboptimal configurations with quantile filter-
ing reduces the size |𝐶 |. Recall from Table 2 that the tuning
space coverage decreases dramatically after a certain quan-
tile. The best filtering quantile will minimize KL divergence
from the optimal distribution and limit |𝐶 | without overspec-
ifying the search space since the latter also contributes to
the probability of the few-shot success. We can determine
the reduced |𝐶 | from the GC by estimating the number of
unique samples generated by the fitted GC. Nevertheless, we
can only measure the resulting change in |𝐼 | with exhaustive
evaluation, which is needed to quantify the probability of
success in Equation 1.

The exact reduction in |𝐼 | is unknown but can be modeled
as a proportion of the eliminated configurations, which rep-
resents the opportunity cost of some removed configurations
being optimal. With adjusted |𝐶 | and |𝐼 |, the value of 𝑘 in
Equation 1 can be increased until the probability meets a
desired confidence level. This provides an adequate budget
of evaluations 𝑘 that generates one or more ideal candidates
with probability equal to the specified confidence (e.g., 95%).
This budget-engineering calculation operates similarly to a
convergence guarantee because it permits evaluations of the
GC’s viability via the size of its budget constraint without
performing any empirical evaluations.

3.3 Addressing Limitations for Autotuning
Even with our modifications, a few of the known limitations
of GC models have limited significance in our intended use
case of TL autotuning for source code annotations.

3.3.1 Underfitting Cross-Variable Dependencies. The GC ex-
presses codependence between variables using linear corre-
lation, which will underfit complex variable codependencies.

The GC’s correlation is expressed between variable pairs, so
the number of simultaneously interacting variables is less im-
portant than the complexity of dependence between variable
pairs. In most cases for source-code autotuning, annotations
are functionally independent of one another or adhere to the
linear correlation that the model can express.

3.3.2 False Ordering and Transitivity for Categories. The
GC’s linearized representation of categorical values implies
and attempts to leverage a total ordering that may not exist
between categories. This creates transitive relationships that
may prove counterproductive for the marginal optimization
of categorical data. One way to counteract this behavior is
to utilize binary expansion or one-hot encodings for each
category, but this can create many variables when applied
to large categories. Many source code annotations consist
of only two values, such as the presence or absence of a
#pragma annotation, which limits the variable to two cate-
gories. Other categorical variables in annotation autotuning
are limited to fewer than ten values, which bound the error
that marginal kernels must overcome to acceptable degrees.

3.3.3 Model-Fitting Complexity. Fitting a GC has cubic time
complexity based on the number of variables due to the joint
covariance model. Other TLmethods gain a competitive edge
when the GC models fifty or more variables, which can make
some modifications, such as one-hot encoding, less desirable
in practice. Source code annotations pose some inherent lim-
its on the number of tunable variables due to the decreasing
performance significance of additional, non-bottleneck opti-
mization points in an application. Larger applications require
explicit measures, such as importance sampling, to identify
the most critical variables to tune. Our current techniques
continue to rely on experts for annotation and can also rely
on them to curate an appropriately sized set of variables.

4 EXPERIMENT DESIGN
We evaluate our method and several existing techniques
in few-shot TL autotuning with a variety of benchmarks
empirically evaluated on a real system.

TL Autotuning Benchmarks. We use the Polybench 4.2 [26]
benchmark suite and several Exascale Computing Project
(ECP) proxymini-applications to evaluate our GC autotuning
methodology. ECP benchmarks are multithreaded, and one
(SWLite) is a GPU program. The selected applications are
based on our ability to define valuable optimizations in our
tuning spaces.

Polybench consists of numerical computation kernels ex-
tracted from various application domains. We utilize six of
the most complex benchmarks spanning the application do-
mains of linear algebra, image processing, stencils, and data
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Table 4: Tuning spaces for each benchmark alongside
the GC’s coverage and budget based on the top-30% of
source evaluations. Specific parameters are described
in Tables 5 and 6.

Benchmark #Params # Configurations GC Coverage GC Budget
3mm 10 376,320 ≈ 2,500 –
Covariance 5 5,324 ≈ 110 –
Floyd–Warshall 5 5,324 ≈ 1,800 15
Heat3d 6 10,648 ≈ 1,600 8
LU 5 5,324 ≈ 210 –
Syr2k 6 10,648 ≈ 800 3
AMG 9 1,180,980 ≈ 108,500 5
RSBench 9 5,196,312 ≈ 316,800 3
XSBench 8 577,368 ≈ 77,500 7
SW4Lite 8 4,752 ≈ 1,800 15

mining: Syr2k, 3mm, Heat-3d, LU, Covariance, and Floyd–
Warshall.

The ECP proxy applications represent essential computa-
tional kernels from high-performance computing programs,
allowing for highly effective performance analyses and tun-
ing without requiring the time-intensive execution of the
entire application. We include four mini-applications—AMG,
RSBench, XSBench, and SW4Lite—with different compute-
memory access ratios and memory accesses patterns.
We parameterize each kernel with code modifications in

performance-critical sections of the benchmark that may
improve performance. These modifications include tile sizes,
loop optimization techniques, parallelization and scheduling
strategies, data allocation formats, and multiprocess synchro-
nization frequencies. Table 4 shows the number of unique
parameters in each experimental benchmark as well as the
combinatoric search space size of all possible parameter con-
figurations. The largest search space has over 5 million po-
tential configurations. The tuning spaces for Polybench and
ECP applications are described in greater detail in Tables 5
and 6, respectively.

Source Tasks and Training Dataset. To form the prior knowl-
edge for TL autotuning, we use offline autotuning through
YTOPT [25] to collect 200 evaluations in each of three non-
target tasks: small, medium, and large. Since 200 evaluations
represent <5% of the search space, any chosen tuner must
span performance for maximally effective TL. All of our
YTOPT autotuning is performed by Bayesian optimization
with random forests, tuned for 90% confidence in the 50𝑡ℎ
quantile of evaluated performance.

Table 4 summarizes the tuning spaces of source tasks and
includes the GC’s predicted evaluation budget based on fil-
tered source data. The prediction is based on the model’s
capability to identify one or more evaluations in the top 1%
with 95% confidence, assuming that as much as 5% of pruned
configurations are potentially optimal. A dash represents an
unknown budget, where the overall problem size is reduced
to such a degree that it is impossible to predict a budget

requirement using Equation 1. In this case, the GC’s tuning
space coverage could fail to include the optimal region if
the transfer relationship is poorly informed. Hence, we cau-
tiously treat indeterminate budgets the same as few-shot TL
for techniques that cannot determine their own budget, and
we determine how well the GC can perform using the same
budget as prior techniques.

Compared Approaches. We evaluate the following autotun-
ing approaches to demonstrate our advantage:

• Baseline. Parameter values are taken directly from
their respective sources; no parameter tuning is per-
formed except compiler flag -O3.

• Bayesian Optimization. Bayesian optimization (BO)
without TL using YTOPT [22, 23, 25]. The autotuner
utilizes a random forest surrogate model and a hedged
Gaussian process to evaluate the expected improve-
ment of proposed configurations.

• GPTune DTLA. GPTune [11] with DTLA is a state-of-
the-art autotuner that is capable of utilizing TL using
a neural joint model to combine Gaussian processes
representing individual parameters.

• Gaussian Copula (ours). A GC is fit to the top 30%
performing data from source tasks, then conditionally
sampled on the target task to generate configurations.

Autotuning Procedure. Each benchmark has three source
task sizes (small, medium, and large) based on given magni-
tudes of performance-scaling input features. The three target
task sizes are small-medium (SM), medium-large (ML), and
extra-large (XL). The first two represent two interpolations
between source tasks, and the last is an extrapolation beyond
the scope of source tasks. Each target is tuned independently
after the model is exposed to all source datasets. In order
to permit the fairest possible comparison among different
techniques, the same source tasks dataset is presented to
each transfer-capable technique, but the GC filters source
datasets for its benefit. In order to mitigate the variance of
randomness employed by each technique, the few-shot tun-
ing process is repeated with three random seeds, and results
are reported using the average across all seeds.

We permit each autotuning technique a fixed budget of 30
evaluations per target task. Even when the GC can predict a
viable budget of fewer than 30 evaluations shown in Table 4,
we collect all 30 and specifically note the intermediate results
when the predicted budget is exhausted. Since we expect TL
techniques to extract some understanding of the problem
from prior data, we evaluate success primarily based on the
best-observed performance among limited evaluations.
For all evaluations of source and target tasks, the param-

eterized code is compiled once and executed three times.
The autotuning objective is reported as the mean of the last
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Table 5: Parameters used to tune Polybench Kernels. Values within brackets indicate the options available for an
independent parameter, and a list of brackets represents multiple independent parameters.

Parameter Values Covariance Floyd-Warshall Heat3d LU Syr2k

Tile Sizes [4-2048], [4-2048], [4-128], [4-2048], [4-128], [4-2048], [4-128], [4-2048], [4-128], [4-2048], [4-128], [4-2048],
[4-2048] [4-256] [4-256] [4-256] [4-256] [4-256]

Loop Interchange [Yes, N/A] [Yes, N/A] [Yes, N/A] [Yes, N/A] [Yes, N/A] [Yes, N/A]
Array Packing [Yes, N/A] × 6 [Yes, N/A] [Yes, N/A] [Yes, N/A] × 2 [Yes, N/A] [Yes, N/A] × 2

Table 6: Parameters used to tune ECP mini-applications.

Parameter AMG RSBench XSBench SW4Lite

Tile Sizes [10-200], [2-256], [2-256], [2-256] [2-256], [2-256] –[2-256], [10-200]

Optional Parameters Parallel For Parallel For Parallel For Parallel For, Nowait,
MPI_Barrier

Parallel For Schedule – [100-2000], [10-200] [10-160] [dynamic, static]

Unrolling Options [unroll, N/A] [unroll, N/A] [unroll, N/A] [unroll (6) 2 , unroll,
no-unroll]

# Threads [4-8] [2-256] [2-256] [2-256]

KMP Affinity
[compact, scatter, [compact, scatter, [compact, scatter,

–balanced] balanced, none, balanced, none,
disabled, explicit] disabled, explicit]

OMP Proc Bind – – – [close, spread, master]
OMP Places [core, threads, sockets] [core, threads, sockets] [core, threads, sockets] [core, threads, sockets]

two evaluations to minimize the impact of variance and un-
controlled noise in the execution environment. Timing data
is collected with internal measurements in the benchmark
source code to ensure that overheads such as process startup
and data initialization are excluded.

Experimental Platform. All experiments are conducted on
a Linux machine with 320 GB 2x AMD EPYC 7742 64-core
processor (128 total cores) 1 TB DDR4 with Ubuntu 20.04.2
LTS. Themachine also includes a 40 GBNVIDIAA100, which
we use for evaluating the GPU-based SW4Lite ECP applica-
tion. Measurements of elapsed time include time for sample
generation, source code compilation using the Clang com-
piler, and program execution. Each benchmark internally
measures empirical performance.
Because the tuning spaces we defined express optimiza-

tions through Polly [7], a loop optimizer for LLVM, we use
a Clang compiler (version 13.0.0) for compilation. However,
any compiler that supports Polly is suitable for replicating
our experiments. Some Polly optimizations can be applied
heuristically based on analysis of the LLVM intermediate
representation, while others can be induced by programmer-
supplied #pragma directives in the source code. Currently,
not all code transformations can be specified by directives,
such as unroll-and-jam, loop fusion, and code motion. For
this reason, two of our applications (3mm and LU) adopt
heuristic optimizations.

5 RESULTS
We separate the presentation of our results between the
Polybench and Exascale benchmark suites and identify key

successes and limitations of our technique compared with
the state-of-the-art approaches.

5.1 Polybench Autotuning
The Polybench benchmarks demonstrate several different
behaviors for generative autotuning with the GC, including
aggressive space pruning, uncertain optimization signals,
and high-confidence benchmarks that represent a best-case
scenario for the technique.
General results for the Polybench benchmarks are pre-

sented in the upper portion of Table 7. On the 3mm XL task,
the GC yields an additional 12.81× speedup (i.e., 33.39× vs.
20.58×) compared with prior autotuning techniques. In half
of the Polybench tasks, the GC’s first evaluation outperforms
the best tuning result discovered by BO or GPTune. When
we utilize the GC’s expected budget or the maximum number
of evaluations whenever the budget is undefined, the GC
outperforms GPTune and BO in over 80% of all tuning tasks.
Even on tasks where the GC does not outperform prior work,
the peak speedup sampled by the GC is within 5.5% of the
peak performance sampled by prior work.

The GC is highly successful both on its first evaluation and
within its allotted evaluation budget because of the effective-
ness of its search space reductions and distribution transfer
through conditional sampling. Both GPTune and BO must
allocate portions of their evaluation budget to explore the
space and refine the model’s transfer or general surrogate
knowledge. The GC does not need these subpar evaluations.
Thus it can be extremely aggressive in the few-shot tuning,

2Specifically unroll loops by a factor of 6 iterations
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Figure 2: Observed speedup vs. log-scale elapsed time for few-shot TL autotuning. The dotted lines indicate results
trimmed to the GC’s predicted budget.

Table 7: Autotuning results after a maximum of 30
evaluations; results are averaged across three repeated
tuning attempts with unique seeds.

App. Scale
Peak Speedup (# Evaluation Discovered)

GC BO
Best

GPTune
Best1𝑠𝑡 Budget Best

Po
ly
be
nc
h
Ke

rn
el
s

3mm
SM 5.09 5.70 (23) 5.70 (23) 3.03 (26) 5.53 (30)
ML 5.25 5.57 (29) 5.57 (29) 3.29 (30) 5.16 (16)
XL 27.10 33.39 (18) 33.39 (18) 20.58 (30) 18.96 (25)

Cov.
SM 21.10 21.98 (21) 21.98 (21) 21.83 (28) 13.30 (30)
ML 4.13 4.27 (26) 4.27 (26) 3.87 (25) 4.07 (30)
XL 23.04 23.96 (2) 23.96 (2) 8.43 (12) 17.88 (9)

Floyd-W.
SM 1.01 1.02 (17) 1.02 (17) 1.02 (20) 1.01 (26)
ML 1.02 1.02 (1) 1.02 (1) 1.01 (25) 1.01 (3)
XL 0.99 1.00 (29) 1.00 (29) 1.01 (16) 1.01 (20)

Heat3d
SM 1.83 2.03 (5) 2.06 (18) 2.21 (15) 2.30 (28)
ML 1.89 1.89 (1) 2.06 (10) 2.12 (25) 1.80 (6)
XL 1.50 2.92 (2) 3.09 (18) 2.16 (13) 2.75 (29)

LU
SM 1.16 1.18 (25) 1.18 (25) 1.12 (30) 1.11 (19)
ML 1.15 1.20 (24) 1.20 (24) 1.17 (26) 1.19 (5)
XL 1.00 1.00 (3) 1.00 (3) 0.98 (13) 1.00 (29)

Syr2k
SM 2.06 2.90 (2) 3.32 (18) 2.34 (12) 2.41 (11)
ML 0.80 1.17 (2) 1.22 (16) 0.93 (29) 0.85 (30)
XL 0.95 1.09 (2) 1.09 (2) 0.42 (23) 0.85 (26)

Ex
as
ca
le
Co

m
pu

tin
g
Pr
ox
ie
s AMG

SM 0.87 0.91 (3) 0.91 (3) 0.92 (19) 0.90 (19)
ML 0.93 0.93 (1) 0.93 (1) 0.93 (20) 0.87 (3)
XL 0.95 0.95 (5) 0.98 (23) 0.97 (27) 0.93 (25)

RSBench
SM 1.40 1.40 (3) 1.40 (8) 1.25 (29) 1.13 (22)
ML 1.02 1.04 (2) 1.04 (15) 0.97 (22) 1.04 (27)
XL 1.00 1.00 (1) 1.01 (10) 0.97 (14) 1.02 (18)

XSBench
SM 1.20 1.20 (7) 1.21 (28) 1.17 (24) 1.21 (24)
ML 1.05 1.06 (4) 1.06 (4) 1.04 (6) 1.07 (5)
XL 1.01 1.02 (5) 1.03 (24) 0.99 (6) 1.05 (5)

SW4Lite
SM 0.99 1.00 (6) 1.00 (6) 0.98 (26) 0.99 (17)
ML 0.99 0.99 (10) 0.99 (16) 0.99 (3) 0.99 (30)
XL 0.99 0.99 (12) 0.99 (12) 0.99 (1) 0.99 (14)

as shown in Figure 2 where nearly every proposed evalua-
tion of the GC outperforms all evaluations proposed by other
tuning methods.
The GC prunes spaces for 3mm, Covariance, and LU too

aggressively for us to predict an evaluation budget. Our re-
sults demonstrate that the GC still identifies the best speedup
across all techniques in all tasks for these benchmarks when
given the same tuning budget allocated to other techniques.
The search space reduction performed by the GC outper-
forms prior autotuning by properly identifying character-
istics of optimal configurations across tasks and correctly
modifying these relationships for each target task.

The Floyd–Warshall and LU benchmarks are challenging
for any autotuning technique to optimize. Without exhaus-
tive data for these benchmarks, it is unclear whether this
is due to the original source code parameters being near-
optimal or the tuning space exposing mostly unhelpful al-
terations to the benchmark source. Critically, the GC still
produces highly consistent and comparatively valuable re-
sults on each evaluation, as shown for the LU benchmark in
Figure 3.
To ensure that few-shot TL autotuning is effective, we

brute-force all configurations of the Syr2k XL task in Fig-
ure 4. Both the GC and GPTune closely approximate the
global optimum within a few shots. However, all evaluations
proposed by the GC are near-optimal, while other methods
require repeated exploration of poor-performing regions to
identify their transfer relationships.

5.2 Exascale Miniapplications Autotuning
The selected exascale benchmarks represent the most sig-
nificant challenge for few-shot TL autotuning, with search
spaces that are orders ofmagnitudes larger than those present
in the Polybench kernels and complex interplay between
many variables. We expect less speedup from autotuning
spaces for these applications for several reasons. First, the
tuning spaces are orders of magnitude larger than Polybench
tuning spaces; we use the same number of source task eval-
uations for all experiments, which means that TL operates
on less complete information about each ECP tuning prob-
lem. Second, for more advanced applications, it is more chal-
lenging to represent highly effective tunable optimizations
than the more straightforward Polybench kernels. Third,
some speedup from system-related tuning parameters can
be hidden by other tuning parameters. The choice of core
affinity, for example, has a greater impact on performance if
the configuration also includes many threads. Finally, some
parameter defaults, such as loop tiling values, are already
highly effective, which limits the improvement that can be
extracted from the tuning space. Although we temper our
expected improvement from autotuning, these experiments
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Figure 3: Ambiguous responses to tuning yield minimal speedup, but the GC remains competitive with prior work.

Figure 4: Brute-forcing the Syr2k XL task proves that
the GC and GPTune can identify the global optimum
in 30 evaluations, but the GC avoids poor evaluations,
giving it better average performance.
represent more realistic tuning scenarios where autotuning
refines more complex and partially optimized code.
Even though our GC technique cannot leverage infor-

mation gained through iterative evaluations, the technique
meets or exceeds the original expert-optimized performance
on over half of the exascale tuning tasks. The AMG task
is the most difficult for any technique to optimize, but the
GC outperforms GPTune either from its first evaluation or
within its predicted budget for all transfer tasks. Even as the
relationship between parameters and performance becomes
more complex and search spaces grow orders of magnitude
larger, the GC can identify high-performing traits in prior
data and produce high-quality candidates in the few-shot
tuning scenario. Across all exascale benchmarks, the GC
produces configurations within a performance margin of 2%
of those discovered by GPTune at worst. Notably, GPTune’s
best evaluations for two XSBench tuning tasks are better
than ours, but the superior evaluations are collected during
its random sampling for the new task, as shown in Figure 5a.
This may indicate that the prior tuning data does not ade-
quately inform autotuning techniques of characteristics of
the optimum for this benchmark.

We also note that the GC retains the black-box character-
istics enjoyed by prior methods such as BO. Unlike other
benchmarks in this work, SW4Lite is a GPU-enabled bench-
mark, and the tuned kernel is executed on GPU hardware.
As shown in Figure 5b, the GC evaluates higher-performing
configurations than exploratory techniques such as GPTune
do. The proposed tuning budget is also reliable across multi-
ple seeds, such that the GC reliably makes its best evaluation
within the budgeted number of evaluations. If much larger
budgets are allowed, the GC has less chance of improving
than other TL autotuning techniques have. In such cases, or
if any possible performance gain is desired, our technique
may be best utilized to perform initial exploration of new
spaces within a limited few-shot budget to bootstrap iterative
techniques.

6 RELATEDWORK
Prior TL autotuning has enabled data reuse on related tasks
for increased sampling efficiency and reduced modeling over-
head. BLISS [16] attributes significant cost to tuning multiple
models for large-scale applications but also demonstrates
that it is difficult to generalize between small datasets and the
full range of potential performance. Other work [8] employs
cost models to substitute cheaper sources of information and
utilizes TL to generalize information as needed. However,
in situations with a limited budget, the cost model is less
relevant to the target problem and requires model reconstruc-
tion. Projecting an optimum via machine learning techniques
such as GPTune [11, 18] enables more budget optimization
for few-shot transfer, but these models require blind eval-
uations in each new task to form the basis for the transfer
relationship. Other works such as Active Harmony, ANGEL,
and ParEGO [5, 9, 21] focus on multiobjective efficiency by
refining a surrogate Pareto frontier. These algorithms pro-
vide stronger long-term convergence guarantees rather than
few-shot performance. Our work permits immediate access
to the most efficient samples through conditional sampling,
allowing for aggressive few-shot tuning.
Prior works have also used biased sample distribution

and importance sampling to increase autotuning capabili-
ties. Marathe et al. [12] found that the correlation between
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Figure 5: The GC remains competitive with state-of-the-art techniques on complex ECP benchmarks.

different input scales and available parallelism improves per-
formance predictions. Their work, however, intends to opti-
mize for common-case average outputs and cannot drive the
search aggressively. GEIST [20] transforms the problem of
bias and variance in parameter spaces into undirected graphs
and reframes the optimization problem into predicting labels
for high or low performance. The autotuning framework
Tuneful [6] utilizes incremental sensitivity analysis in BO
and explicitly utilizes importance to identify performance
trends. Chen et al. [4] use random forest importance mea-
sures in massive search spaces by limiting the number of
simultaneously tuned parameters to permit full-space ex-
ploration. Our biased generative GC reinforces and benefits
from increased likelihood to sample the most important pa-
rameters of a search space.

Copulas have been reported in the literature as part of an
autotuning process. Salinas et al. [17] used the GC process
to bootstrap expected improvement from a small number of
initial samples in a BO framework based on ranked quantiles.
More recently, Zhang et al. [27] utilized the correlation iden-
tified by a GC to explore the multiobjective Pareto frontier.
Both studies used the GC to aid the BO process in TL. Salinas
et al. [17] used GCs to build an expected improvement auto-
tuning model with minimal initial random samples or prior
data and iteratively refit the model as information became
available. The effectiveness of copulas in these techniques is
limited to variable correlations in relatively low degrees.

Our work uses the traditional GC with some modifications
from the SDV [14] implementation. While our experiments

do not yield evidence that special care in dependence model-
ing is necessary, we note that different copulas or GCs are
available [19]. Users can select between variations better
suited for tail distributions for which Pearson correlation is
insufficient to describe covariant behaviors jointly.

7 CONCLUSIONS
In this work, we propose the GC as the first generative
TL-based autotuning technique. Our technique aggressively
searches for best-performing configurations in few-shot set-
tings using quantile filtering and conditional sampling to bias
distributions learned by the GC model. We are the first TL-
based autotuning work to include expectation of success as a
budget-identifying measure to predict few-shot performance.
We then evaluate our technique on various real-world bench-
mark applications, demonstrating remarkable effectiveness
in few-shot TL settings where continued explorations of
benchmark characteristics performed by other methods are
wasteful resource expenditures.

Many avenues remain for further research with this gener-
ative TL-based autotuning framework, including multi-node
evaluations, multiobjective tuning, and modifications to the
internal state that permit iterative refinement or bootstrap-
ping for continued tuning similar to the prior work.
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