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ABSTRACT
Iterative stencils are used widely across the spectrum of High Per-
formance Computing (HPC) applications. Many efforts have been
put into optimizing stencil GPU kernels, given the prevalence of
GPU-accelerated supercomputers. To improve the data locality, tem-
poral blocking is an optimization that combines a batch of time
steps to process them together. Under the observation that GPUs
are evolving to resemble CPUs in some aspects, we revisit temporal
blocking optimizations for GPUs. We explore how temporal block-
ing schemes can be adapted to the new features in the recent Nvidia
GPUs, including large scratchpad memory, hardware prefetching,
and device-wide synchronization. We propose a novel temporal
blocking method, EBISU, which champions low device occupancy
to drive aggressive deep temporal blocking on large tiles that are
executed tile-by-tile. We compare EBISU with state-of-the-art tem-
poral blocking libraries: STENCILGEN and AN5D. We also compare
with state-of-the-art stencil auto-tuning tools that are equipped
with temporal blocking optimizations: ARTEMIS and DRSTENCIL.
Over a wide range of stencil benchmarks, EBISU achieves speedups
up to 2.53x and a geometric mean speedup of 1.49x over the best
state-of-the-art performance in each stencil benchmark.

CCS CONCEPTS
• Computing methodologies → Concurrent computing method-
ologies; Parallel computing methodologies; • Computer systems
organization→ Parallel architectures.

KEYWORDS
Stencil, Temporal Blocking Optimizations, GPU
ACM Reference Format:
Lingqi Zhang,MohamedWahib, Peng Chen, JintaoMeng, XiaoWang, Toshio
Endo and Satoshi Matsuoka. 2023. Revisiting Temporal Blocking Stencil
Optimizations. In 2023 International Conference on Supercomputing (ICS ’23),
June 21–23, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3577193.3593716
∗ Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICS ’23, June 21–23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0056-9/23/06. . . $15.00
https://doi.org/10.1145/3577193.3593716

1 INTRODUCTION
Stencils are patterns in which amesh of cells is updated based on the
values of the neighboring cells. They are common computational
patterns that exist widely in many scientific applications. They
account for up to 49% of workloads in many HPC centers [14].
Applications of stencils include mainly finite difference solvers of
Partial Differential Equations. (PDEs) [3, 8]. PDEs further support
a wide spectrum of applications, spanning from weather modeling
and seismic simulations to fluid dynamics simulations [49]..

Many efforts have gone into optimizing stencils [2, 16, 51]. Due
to the low computational intensity of stencils [43], combining steps
and processing them together, i.e., temporal blocking, is an opti-
mization widely used in iterative stencils [10, 21, 23, 51, 60]. This
optimization increases the computational intensity, which comes at
the price of adopting complex schemes to handle the constraints of
temporal dependencies. Traditionally, temporal blocking resolves
the dependency between time steps either by redundant overlap-
ping of tiles [16, 25, 27, 40] or by complicated titling geometry (e.g.
diamond [4] and hexagonal [11, 13]). Either way, the overhead of re-
sources for resolving the temporal blocking dependencies increases
the data with the depth of temporal blocking [25]. An increas-
ing number of time steps to block gradually moves the kernel’s
bottleneck from the memory throughput to be bound by either
the memory latency or register pressure [25]. Among temporal
blocking optimization efforts, many of them are related to specific
hardware, e.g., FPGA [50, 60], CGRA [33], multi-core [9], and many-
core [40] architectures. We focus in this paper on GPUs due to their
prevalence in HPC systems [1].

When closely observing the latest GPUs 1, there are notable
changes in key features. We observe a significant increase in cache
capacity. Specifically, the total capacity of the user-managed cache
(shared memory) increased from 720 KB in K20 [30] to 17, 712 KB
in A100 [31]. The shared memory capacity has increased 24.6x
in recent decades. In addition, GPUs provide features that have
been supported by CPUs for years. Examples include cooperative
groups (i.e., device-wide barriers), low(er) latency of operations,
and asynchronous copy of shared memory (i.e., prefetching) [7].

These new developments open opportunities for aggressive op-
timizations in stencil kernels. However, existing state-of-the-art
temporal blocking implementations, e.g. AN5D [25] and STENCIL-
GEN [40], are designed to run at high occupancy and are hence
relatively conservative in the use of resources to avoid adverse pres-
sure on resources (ex: register spilling). For example AN5D [25]

1We focus on Nvidia GPUs in this paper since the continuity of GPU products by
Nvidia over decades provides the grounds for observing changes.
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Figure 1: Spacial Blocking, using 2D 5-point Jacobian (2d5pt)
stencil as an example

uses at maximum 96 registers per thread and STENCILGEN [40]
uses at maximum 64 registers per thread for all the benchmarks
reported. Yet the limit for registers is 255 in both V100 and A100 [7]
GPUs. For shared memory usage, AN5D [25] consumes at most
34.8 MB per thread block and STENCILGEN [40] uses at most 33.8
MB per thread blocks. Yet the limit for shared memory is 164MB
in A100 [7] GPUs. This conservative manner is in part due to the
intention for ensuring a higher occupancy.

In this paper, we take inspiration from the work of Volkov et
al. [48]; we propose a different approach to occupancy and per-
formance in temporal blocking. We first determine a parallelism
setting that is minimal in occupancy while sufficient in instruction
level parallelism. We base our approach for temporal blocking on
lower occupancy, i.e., we build large tiles running at minimum
possible concurrency to be executed tile-by-tile, and accordingly
scale up the use of on-chip resources to run the tile at maximum
possible performance.

We propose EBISU : Epoch (temporal) Blocking for Iterative Sten-
cils, with Ultracompact parallelism. EBISU’s design principle is to
run the code at the minimum possible parallelism that would sat-
urate the device, and then use the freed resources to scale up the
data reuse and reduce the dependencies between tiles. Though the
idea is seemingly simple, the challenge is the lack of design prin-
ciples to achieve scalable optimizations for temporal blocking. In
other words, temporal blocking schemes in literature are designed
to avoid pressure on resources since resources are scarce in over-
subscribed execution; EBISU on the other hand assumes ample of
resources that are freed due to running in low occupancy and the
goal is to scale the data reuse to all the available resources for a
single tile at a time that spans the entire device. We drive EBISU
through a cost model that makes the decision on how to scale the
use of resources effectively at low occupancy.

The contributions of this paper are as follows:
• We propose the design principle of EBISU: low-occupancy exe-
cution of a single-tile at a time while scaling the use of resources
to improve data locality.

• We include an analysis of the practical attainable performance to
support the design decisions for EBISU. We build on our analysis
to identify how various factors contribute to the performance of
EBISU.

• We evaluate EBISU across a wide range of stencil benchmarks.
Our implementation achieves significant speedup over state-of-
the-art libraries and implementation. We achieve a geomean
speedup of 1.53x over the top performing state-of-the-art imple-
mentations for each stencil benchmark.
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T
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Figure 2: Temporal Blocking

Listing 1: Pseudocode for 1D 3-Point Jacobian Stencil
1 for ( i n t i = 0 ; i <N ; i ++)
2 out [ i ]= a ∗ i n [ i −1]+ b ∗ i n [ i ]+ c ∗ i n [ i + 1 ] ;

Listing 2: Pseudocode for 2D 5-Point Jacobian Stencil
1 for ( i n t i = 0 ; i <N ; i ++)
2 for ( i n t j = 0 ; j <M; j ++)
3 out [ i ] [ j ]= a ∗ i n [ i −1 ] [ j ]+ b ∗ i n [ i ] [ j ]+ c ∗ i n [ i +1 ] [ j ]
4 +d ∗ i n [ i ] [ j −1] ]+ e ∗ i n [ i ] [ j + 1 ] ;

Listing 3: Pseudocode for 3D 7-Point Jacobian Stencil
1 for ( i n t i = 0 ; i <N ; i ++)
2 for ( i n t j = 0 ; j <M; j ++)
3 for ( i n t k =0 ; k<L ; k++) {
4 out [ i ] [ j ] [ k ]= a ∗ i n [ i −1 ] [ j ] [ k ] ;
5 out [ i ] [ j ] [ k ]+=b ∗ i n [ i ] [ j ] [ k ] ;
6 out [ i ] [ j ] [ k ]+= c ∗ i n [ i +1 ] [ j ] [ k ] ;
7 out [ i ] [ j ] [ k ]+=d ∗ i n [ i ] [ j −1 ] [ k ] ;
8 out [ i ] [ j ] [ k ]+= e ∗ i n [ i ] [ j +1 ] [ k ] ;
9 out [ i ] [ j ] [ k ]+= f ∗ i n [ i ] [ j ] [ k − 1 ] ;
10 out [ i ] [ j ] [ k ]+=g ∗ i n [ i ] [ j ] [ k + 1 ] ; }

2 BACKGROUND
2.1 Stencils
Stencils are characterized by their memory access patterns. We
present the pseudo code for the 1D 3-Point, 2D 5-Point and 3D-7-
Point Jacobian Stencil in Listing 1, Listing 2, and Listing 3 respec-
tively. We use a 2D Jacobian 5-point (2d5pt) stencil as an example.
Figure 1.a illustrates the neighborhood dependencies of the 2d5pt
stencil. In order to compute one point, the four adjacent points
are necessary. Two blocking methods are widely used to optimize
iterative stencils for data locality:

2.1.1 Spatial Blocking. In spatial blocking on GPUs, thread (blocks)
load a single tile of the domain to its local memory to improve the
data locality among adjacent locations [17, 52]. The local memory
can be registers [6, 58](Figure 1.b) and scratchpad memory [22,
41](Figure 1.c). However, halo layer(s) are still unavoidable.

2.1.2 Temporal Blocking. In iterative stencils, each time step de-
pends on the result of the previous time step. An alternative op-
timization is to to combine several time steps to expose temporal
locality [25, 38]. In this case, the temporal dependency is resolved
by overlapped tilling [16, 27, 35] (Figure 2.a) or by applying complex
geometry [12, 28] (Figure 2.b, diamond tiling [4, 13] as an example).
The main short-coming of overlapped tiling is redundant compu-
tation, while the main disadvantage of complex geometry is an
adverse effects on cache hits [21]. Additionally, complex geome-
try is penalized by the device-wide synchronization necessary to
ensure that the result is updated in the global memory.

2.1.3 N.5-D Temporal Blocking. N.5-D blocking [25, 29, 40] is a
combination of spatial blocking and overlapped temporal block-
ing [29]. Take 3.5-D temporal blocking as an example. We do spatial
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Figure 3: Overview of EBISU.

tiling in the X and Y dimensions, and then stream in the Z dimen-
sion (2.5-D spatial blocking). As we stream over the Z dimension,
each XY plane would conduct a series of temporal steps (1-D tem-
poral blocking). This method reduces the overhead of redundant
computations in an overlapped temporal blocking schema.

2.2 GPU Architecture
2.2.1 CUDA Programming Model. The CUDA programming model
includes: the base execution unit, thread; 32 threads grouped into a
block of schedule units, warp; Several warps grouped together into a
thread block unit; and thread block units can be grouped into a grid.
When mapping the programming model to the GPU architecture,
the CUDA driver maps the thread block to a Stream Multiprocessor
(SM) and grids to a GPU device. The mapping abides by the rules
of dividing the resources among the threads. For example, at most
8 thread blocks and at most 2048 threads can reside concurrently
on a stream multiprocessor. Also, the total number of registers and
shared memory in a stream multiprocessor also limits the number
of thread block that can run concurrently.

2.2.2 Explicit Synchronization. Nvidia introduced cooperative group
APIs [7] to provide a hierarchical of synchronizations in addition
to thread block synchronization from P100 (2016). Among them,
the new grid level synchronization provides additional choice for
program. Zhang et. al. [57] shows that latencies of these APIs are
acceptable that would allow practical use.

2.2.3 Asynchronous Shared Memory Copy. A100 (2020) further
introduced APIs [7] to copy data from global memory to shared
memory, without blocking. Martin et al. [44] demonstrated that
this API benefits low-arithmetic intensity kernels.

3 EBISU: HIGH PERFORMANCE TEMPORAL
BLOCKING AT LOW OCCUPANCY

In this section we give an overview of our temporal blocking
method: EBISU (Figure 3 gives an overview) The design of EBISU fol-
lows two main principles: minimal parallelism that would saturate
the device (the Minimal Parallelism step in Figure 3), and scalability
in using resources (the Implementation step in Figure 3). Addition-
ally, EBISU relies on a comprehensive analysis for implementation
decisions (the pink steps in Figure 3).

3.1 Saturating the Device at Minimal
Parallelism

In EBISU we first tune the parallelism exposed in the kernel to
find the minimal combination of occupancy and instruction level
parallelism that would saturate the device. The minimal occupancy
that we aim for in this paper is 12.5% since further reducing the
occupancy for memory-bound codes can start to regress the perfor-
mance [31]. We aim to minimize resources used for increasing the
locality. We use Little’s Law to identify the minimum parallelism
(occupancy) in the code (discussed in Section 6.1). We point out
that readers can also rely on auto-tuning tools to empirically figure
out the minimal parallelism [41, 42, 46].

3.2 Scaling the Use of Resources
Despite the relatively large amount on-chip resources, there is a
lack in design principles that are able to scale up to take advantage
of the large on-chip resources in temporal blocking. We thereby
build on a set of existing optimizations to drive a resource-scalable
scheme for increasing locality (Section 4).

3.3 Implementation Decisions
We base the decision for implementing EBISU on our analysis for
the practical attainable performance (Section 5). The main utility
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Figure 4: 2D Spatial tiling at the GPU device level.

Listing 4: Pseudocode for 2D 5-Point Jacobian stencil device
level spatial tiling.

1 void __g l o b a l _ _ void dev i c e _ 2d5p t ( . . . ) { . . .
2 / / da ta i s l o a d e d from on− c h i p memory ocm_in
3 / / s t o r e da ta t o ocm_out
4 / / ocm range t i l e _ x , and t i l e _ y ;
5 for ( i n t s =0 ; s < t ; s ++) {
6 for ( i n t l _y =0 ; l_y < t i l e _ y ; l _y +=1) {
7 for ( i n t l _ x =0 ; l_x < t i l e _ x ; l _ x +=blockDim . x ) {
8 ocm_out [ i ] [ j ]= a ∗ ocm_in [ i −1 ] [ j ]+ b ∗ ocm_in [ i ] [ j ]
9 +c ∗ ocm_in [ i +1 ] [ j ]+ d ∗ ocm_in [ i ] [ j −1]
10 +e ∗ ocm_in [ i ] [ j + 1 ] ; }
11 __ sync th r e ad s ( ) ;
12 push_ha l o_ to_ne i ghbo r ( ocm_out [ ] [ ] , g lobal_memory ) ;
13 g r i d . sync ( ) ;
14 swap ( ocm_out , ocm_in ) ;
15 pu l l _h a l o _ f r om_ne i ghbo r ( ocm_in [ ] [ ] , g lobal_memory ) ;
16 __ sync th r e ad s ( ) ;
17 }
18 . . . }

of this analysis is to decide whether to implement a device tile
(Section 6.3), and the parameterization of spatial and temporal
blocking (Section 6.4)).

3.4 Fine-Tuning
After identifying the ideal tiling scheme and parameterization, im-
plementation, we fine-tune the kernel to extract additional perfor-
mance. For instance, we tune the temporal blocking depth (Sec-
tion 6.2).

4 EFFICIENTLY SCALING THE USE OF
RESOURCES

4.1 One Tile At A Time
Beyond the point where the GPU becomes saturated, the workload
will inevitably be serialized. We intentionally introduce a method to
serialize the execution of tiles, where each individual tile becomes
large enough to saturate the GPU. We call this device tiling. Alter-
natively, we can use tiles that are executed in parallel, yet each tile
individually saturates a single streaming multiprocessor. We call
this SM tiling.

In device tiling, we tile the domain such that a single tile can
scale up to use the entire on-chip memory capacity of the GPU.
Next, we let the tile reside in the on-chip memory while updating

the cells for a sufficient number of time steps to amortize the initial
loading and final storing overheads. We then store the final result
for the tile on the device, and then we move to the next tile, i.e.,
the entire GPU is dedicated to computing only one single tile at
any given time. Figure 4 shows how we do spatial tiling at the
device level. We assume 𝑡𝑖𝑙𝑒𝑥 × 𝑡𝑖𝑙𝑒𝑦 to be the thread block tile
configuration and𝐷𝑡𝑖𝑙𝑒𝑥 ×𝐷𝑡𝑖𝑙𝑒𝑦 to be the device tile configuration.
Thus, (𝑡𝑖𝑙𝑒𝑥 +ℎ𝑎𝑙𝑜 ·2) × (𝑡𝑖𝑙𝑒𝑦 +ℎ𝑎𝑙𝑜 ·2) is the total on-chip memory
consumed at the stream multiprocessor level. (𝐷𝑡𝑖𝑙𝑒𝑥 +𝐻𝐴𝐿𝑂 ·2) ×
(𝐷𝑡𝑖𝑙𝑒𝑦 +𝐻𝐴𝐿𝑂 · 2) is the total on-chip memory consumed at the
device level, where 𝐻𝐴𝐿𝑂 = 𝑟𝑎𝑑 · 𝑡 . Additionally, figure 1.c shows
the dependency between thread blocks that we need to resolve. We
use the bulk synchronous parallel (BSP) model to exchange the
halo region and CUDA’s grid level barrier for synchronization. We
transpose the halo region that originally did not coalesce to reduce
the memory transactions. Note that device tiling is an additional
layer on top of SM tiling. Figure 4 shows an example of 2D spatial
tiling at device level, and Listing 4 presents the pseudocode of a 2D
5-point Jacobian stencil with device level spatial tiling.

4.2 Circular Multi-Queue
EBISU aims to scale up resource usage. One way to achieve this goal
is to scale up to very deep temporal blocking. In this section, we
introduce a simple data structure that enables the efficient manage-
ment of very deep temporal blocking: namely, circular multi-queue.
We elaborate on our design by first introducing multi-queue for
streaming (Section 4.2.1), and then we describe the implementation
of the circular multi-queue (Section 4.2.2).

4.2.1 Multi-Queue. We use the 1D 3-Point Jacobian stencil (List-
ing 1) to illustrate our implementation. Streaming is a typical
method to implement temporal blocking. Figure 5.a demonstrates
an example of streaming. The parallelogram in the figure repre-
sents the tiling in time and spatial dimensions that we process in
Figure 5.b. The process of each time step can be abstracted as two
functions: enqueue and dequeue, which are standard methods in
a queue data structure. We additionally add compute for stencil
computation. As such, we manage each time step with a queue data
structure. Next, we link queues in different time steps together, to
become a multi-queue data structure. The data structure description
and the pseudocode for multi-queue is in Listing 5.

Multi-queue facilitates seamless transitions between time steps.
The dequeue operation (data expiration) for the current time step
runs concurrently with the enqueue operation for the next time
step. After the execution of a single tile, we reset the multi-queue
to its initial state - a process we refer to as ’shuffle’. A standard
method of conducting a shuffle involves shifting values to their
designated locations, as demonstrated in lines 24-27 of Listing 5.

It is important to note that although we base our analysis on a
1D stencil example in this section, it can be simply extended to 2D
or 3D stencils by replacing the 1D circular points (domain cells) in
Figure 5 to 1D lines (corresponding to 2D stencils) or 2D planes
(corresponding to 3D stencils), or even the device tiles discussed in
Section 4.1. In the device tiling situation, the sync(); function should
be replaced by device (grid) level synchronization. Additionally, we
can trade the concurrently processed domain cells for additional
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temporal blocking tiling (parallelogram in (a)) 
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temporal blocking, seamless time step transitions, and efficient on-chip 
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Figure 5: The multi-queue data structure enables efficient
temporal blocking tiling: a 1D 3-Point Jacobian stencil with
a depth of 3 as an example. Figure (a) illustrates streaming
with a parallelogram that we process in Figure (b). Figure (b)
illustrate how queue data structure can enhance the process-
ing of the tiling depicted in Figure (a). The execution order
and data reuse are marked in both figures.

instruction level parallelism (ILP), which might be required by the
parallelism setting (discussed in Section 6.1).

Listing 5: Pseudocode for applying naive multi-queue data
structure to a 1D 3-Point Jacobian stencil with temporal block-
ing depth of 3.

1 s t ruc t Queue {
2 REAL ∗ d ; / / da ta a r r ay
3 i ndex t l ; / / t a i l
4 i ndex hd ; / / head
5 Queue ( REAL ∗ data , index head , index t a i l ) :
6 d ( da t a ) , hd ( head ) , t l ( t a i l ) { }
7 REAL dequeue ( ) { } / / Au t oma t i c a l l y a c c omp l i s h e d by s h u f f l e
8 void enqueue ( REAL inpu t ) { d [ t l ]= i npu t ; }
9 REAL compute ( )
10 { return a ∗ d [ hd ]+ b ∗ d [ hd+1]+ c ∗ d [ hd + 2 ] ; } / / 1 d 3p t s t e n c i l
11 } ;
12 template < i n t depth >
13 s t ruc t Mult iQueue { / / Mul t i − queue da ta s t r u c t u r e
14 REAL ∗ d ; / / da ta a r r ay
15 i ndex hds [ depth ] ; / / head o f queue s
16 i ndex r ; / / r ange o f mul t i − queue
17 i ndex q_r ; / / r ange o f s i n g l e queue , r e s e r v e d f o r l a z y s t r e am i n g
18 Mult iQueue ( REAL ∗ data , index range , index queue_range ) :
19 d ( da t a ) , r ( range ) , q_r ( queue_range )
20 { for ( t = 0 ; t <depth ; t ++) hds [ t ]= queue_range −q_r ∗ s ; }
21 Mult iQueue ( REAL ∗ data , index range ) :
22 Mult iQueue ( data , range , 2 ) { }
23 Queue operator [ ] ( i n t t ) { return Queue ( d , hds [ t ] , hds [ t ]+ q_r ) ; }
24 void s h u f f l e ( ) { / / d e f a u l t , move da ta
25 sync ( ) ;
26 for ( i n t i = 0 ; i <r −1 ; i ++) d [ i ]= d [ i + 1 ] ;
27 sync ( ) ;
28 }
29 }
30 # d e f i n e RANGE ( 7 )
31 __g l o b a l _ _ void 1 d 3 p t s t e n c i l ( REAL ∗ input , REAL ∗ output , . . . ) { . . .
32 REAL b u f f e r [RANGE ] ;
33 Mult iQueue t <3 >( bu f f e r , RANGE , 2 ) ;
34 for ( . . . ) { . . .
35 t [ 0 ] . enqueue ( Load ( i npu t ) ) ;
36 sync ( ) ;
37 for ( s = 0 ; s <3 −1; s ++) {
38 tmp= t [ s ] . compute ( ) ;
39 sync ( ) ;
40 t [ s + 1 ] . enqueue ( tmp ) ;
41 / / Do t [ s ] . d equeue ( ) t [ s + 1 ] . enqueue ( )
42 sync ( ) ;
43 }
44 S t o r e ( ouput [ ] , t [ 3 − 1 ] . compute ( ) . . . ) ;
45 . . .
46 t . s h u f f l e ( ) ; / / s h u f f l e head and t a i l i n d e x f o r n e x t t i l i n g
47 . . . }
48 }

Listing 6: Pseudocode for applying circular multi-queue data
structure, which inhirits the structure described in Listing 5.

1 i ndex mod ( index a , index r ) { return ( r &( r −1 ) ) ==0) ? a&( r −1 ) : a%r ; }
2 s t ruc t Ci r cu l a r_Queue : public Queue {
3 / / C i r c u l a r queue i n h i r i t from queue
4 i ndex r ;
5 Ci r cu l a r_Queue ( REAL ∗ data , index head , index t a i l , i ndex range , ) :
6 d ( da t a ) , hd ( head ) , r ( range ) , t l ( t a i l ) { }
7 REAL compute ( ) / / o v e r r i d e 1 d3p t s t e n c i l
8 { return a ∗ d [ hd ]+ b ∗ d [mod ( ( hd +1 ) , r ) ]+ c ∗ d [mod ( ( hd +2 ) , r ) ] ; }
9 } ;
10 template < i n t depth > / / C i r c u l a r mul t i − queue i n h i r i t from mul t i − queue
11 s t ruc t Ci r cu l a r _Mu l t iQueue : public MultiQueue <depth > {
12 Ci r cu l a r _Mu l t iQueue ( REAL ∗ data , index range )
13 : Mul t i −queue <depth >( data , range ) { }
14 Ci r cu l a r _Mu l t iQueue ( REAL ∗ dat , index ran , index q_ran )
15 : MultiQueue <depth >( dat , ran , q_ran ) { }
16 Ci r cu l a r_Queue operator [ ] ( i n t t )
17 { return Ci r cu l a r_Queue ( d , hds [ t ] ,mod ( hds [ t ]+2 , r ) , r ) ; }
18 void s h u f f l e ( ) { / / O v e r r i d e s h u f f l e f o r comput ing a d d r e s s schema
19 for ( i n t i = 0 ; i < r ; i ++) hds [ i ]=mod ( ( hds [ i ] + 1 ) , r ) ;
20 }
21 }
22 # d e f i n e RANGE ( 8 )
23 . . . / / k e r n e l c o d e unchange

4.2.2 Circular Multi-Queue. We further adapt the multi-queue to
be circular. We wrap the tail of time step 0 and the head of the deep-
est time step together. We detail the implementation of different
circular multi-queue we use as follows:
Shifting Addresses: In this scheme, we only copy the index to the
same place after processing a tile (at the ’shuffle step’).
Computing Address: Shifting addresses is the simplest way to
manage the circular data structure. However, shifting can create
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Figure 6: Lazy streaming for temporal blocking. 1D 3-Point
Jacobian stencil with depth=3 as an example. Notations are
the same as Figure 5.

Listing 7: Pseudocode for applying lazy streaming to a 1D
3-Point Jacobian stencil with temporal blocking depth of 3.

1 / / Lazy s t r e am i n g k e r n e l c od e
2 __g l o b a l _ _ void 1 d 3 p t s t e n c i l _ l z ( REAL ∗ input , REAL ∗ output , . . . ) { . . .
3 REAL b u f f e r [ 1 6 ] ; / / more s p a c e f o r b u f f e r i n g
4 Ci r cu l a r _Mu l t iQueue t <3 >( bu f f e r , 1 6 , 3 ) ;
5 for ( . . . ) { . . .
6 t [ 0 ] . enqueue ( Load ( i npu t ) ) ; / / p r e f e t c h
7 for ( s = 0 ; s <3 −1; s ++) {
8 tmp= t [ s ] . compute ( ) ;
9 t [ s + 1 ] . enqueue ( tmp ) ;
10 }
11 S t o r e ( ouput [ ] , t [ 3 − 1 ] . compute ( ) . . . ) ;
12 . . .
13 t . s h u f f l e ( ) ; / / s h u f f l e head and t a i l i n d e x f o r n e x t t i l i n g
14 sync ( ) ; / / One sync p e r t i l e
15 . . .
16 }
17 }

a long chain of dependencies as the address range increases. An
alternative solution is to compute the target address (Listing 6
line 7-8.). The modulo operation is one of the solutions; however,
this operator is time consuming. Instead, we extend the ring index
to be 𝑟𝑎𝑛𝑔𝑒 = 2𝑛, 𝑛 ∈ Z+. In this case, we have 𝑖𝑛𝑑𝑒𝑥%𝑟𝑎𝑛𝑔𝑒 =

𝑖𝑛𝑑𝑒𝑥&(𝑟𝑎𝑛𝑔𝑒 − 1). This consumes additional space (Listing 6 line
22).

4.3 Optimizations
4.3.1 Prefetching. Prefetching is a well-documented optimization.
Readers can refer to [41] for hints. The new asynchronous shared
memory copy API offers another approach for prefetching, with a
trade-off of requiring additional shared memory space for buffering.

4.3.2 Lazy Streaming. The naive implementation showed in Fig-
ure 5 and Listing 5 clearly suffers from the overhead of frequent
synchronization. We propose lazy streaming to alleviate this type
of overhead. The basic idea is that we delay the processing of a
domain cell until all domain cells required to update the current
cell are already updated. Otherwise, we would pack the planes that
include the current domain cell and cache it in on-chip memory.
As Figure 6 shows, the computation of location 3 is postponed until
the three points of the previous time steps have been updated.

The benefit of using lazy streaming is not significant in 1D sten-
cils. In 2D or 3D stencils, we replace the points in Figure 6 with
1D or 2D planes for 2D or 3D stencils. The planes usually involve
inter-thread dependency, which makes synchronizations unavoid-
able (warp shuffle when using registers for locality [5, 6] or thread
block synchronization when using shared memory for locality [22]).

when applying device tiling (Section 4.1), device (grid) level syn-
chronization becomes unavoidable, and it has higher overhead in
comparison to thread block synchronizations. As illustrated in List-
ing 7, lazy streaming can ideally reduce the synchronization to one
synchronization per tile. The benefit of lazy streaming comes from
the number of synchronization it reduced.

It’s worth noting that double-buffering [25, 40] can be viewed as
a special case of lazy streaming when only a single queue evolved.

4.3.3 Redundant Register Streaming. The above discussions, which
do not specify the on-chip memory type, can apply to both shared
memory-based and register based implementations. However, there
is one exception: the circular multi-queue cannot be implemented
with register arrays since register addresses cannot be determined
at compile time.

At low occupancy, we obtain a large number of registers and
shared memory per thread. Therefore, by reducing the occupancy,
we can afford to redundantly store intermediate data in both the
registers and the shared memory. Streaming w/ caching in shared
memory is discussed in STENCILGEN [40]. Streaming w/ caching
in the registers is discussed in AN5D [25]. We benefit from both
components by caching in both shared memory and registers. We
can reduce shared memory access times to their minimum by using
registers first (in comparison to AN5D) and reducing the necessary
synchronizations when using only shared memory (in comparison
to STENCILGEN). Additionally, due to data being mostly redundant,
we can tune to reduce resource usage in either part of registers or
shared memory to reduce the resource burden.

5 PRACTICAL ATTAINABLE PERFORMANCE
In this section, we analyze the practical attainable performance of
temporal blocking by incorporating an the overhead analysis (we
derive valid proportionV from overhead analysis in Section 5.2) to a
roofline-like model [19, 32] that predicts the attainable performance
(P in Section 5.1). We project the practical attainable performance
PP as:

PP = P × V (1)

The model proposed in this section serves as a guide for imple-
mentation design choices in Section 6.

5.1 Attainable Performance
We use the giga-cells updated per second (GCells/s) as the metric for
stencil performance [6, 25]. We consider three pressure points in a
stencil kernel: double precision ALUs, cache bandwidth (i.e., shared
memory bandwidth in this paper), and device memory bandwidth
(GPU global memory in this paper). Note that registers could also
be a pressure point in extreme cases of very high order stencils
(outside the scope of this paper).

Assuming that the global memory bandwidth is B𝑔𝑚 , the shared
memory bandwidth is B𝑠𝑚 , and the compute speed is THR𝑐𝑚𝑝 , the
total access time is A𝑔𝑚 and A𝑠𝑚 for global memory and shared
memory, respectively. The total amount of computation is A𝑐𝑚𝑝 .
The memory access time per cell is 𝑎𝑔𝑚 and 𝑎𝑠𝑚 for global memory
and shared memory, respectively; flops per cell is 𝑎𝑐𝑚𝑝 . The total
number of cells in the domain of interest is D𝑔𝑚 , D𝑠𝑚 and D𝑔𝑚
for global memory, shared memory, and computation, respectively.
The size of the cell (in Bytes) per cell is S𝐶𝑒𝑙𝑙 . We can compute the
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runtime of using each component to be:

T𝑔𝑚 =
A𝑔𝑚

B𝑔𝑚
× S𝐶𝑒𝑙𝑙 =

𝑎𝑔𝑚 × D𝑔𝑚
B𝑔𝑚

× S𝐶𝑒𝑙𝑙 (2)

T𝑠𝑚 =
A𝑠𝑚 × 𝑡

B𝑠𝑚
× S𝐶𝑒𝑙𝑙 =

𝑎𝑠𝑚 × D𝑠𝑚 × 𝑡

B𝑠𝑚
× S𝐶𝑒𝑙𝑙 (3)

T𝑐𝑜𝑚 =
A𝑐𝑚𝑝 × 𝑡

THR𝑐𝑚𝑝

=
𝑎𝑐𝑚𝑝 × D𝑐𝑚𝑝 × 𝑡

THR𝑐𝑚𝑝
(4)

The total runtime of the stencil is projected as:
T𝑠𝑡𝑒𝑛𝑐𝑖𝑙 = max(T𝑔𝑚,T𝑠𝑚,T𝑐𝑚𝑝 ) (5)

The component 𝑐 is the bottleneck if it satisfies:
T𝑐 = T𝑠𝑡𝑒𝑛𝑐𝑖𝑙 (6)

We project the attainable performance P as:

P =
D𝑎𝑙𝑙 × 𝑡

T𝑠𝑡𝑒𝑛𝑐𝑖𝑙
(7)

Normally, we consider D𝑎𝑙𝑙 = D𝑠𝑚 = D𝑔𝑚 = D𝑐𝑚𝑝 . However,
this is a case-by-case factor that depends on the implementation,
i.e., when applying device tiling D𝑔𝑚 ≠ D𝑠𝑚 .

5.2 Overheads
In this section, we discuss the overheads of different spatial block-
ing methods used in this paper:

5.2.1 SM Tiling. The main overhead of SM tiling is related to
redundant computation in halo. Only a portion of the computation
is valid. This valid portion is related to both the spatial and temporal
block sizes and the radius of the stencil. In 2D stencils, we have:

V =
𝑡𝑖𝑙𝑒𝑥 − 𝑡 × 𝑟𝑎𝑑

𝑡𝑖𝑙𝑒𝑥
(8)

In 3D stencils, we have:

V𝑆𝑀𝑡𝑖𝑙𝑒 =
(𝑡𝑖𝑙𝑒𝑥 − 𝑡 × 𝑟𝑎𝑑) × (𝑡𝑖𝑙𝑒𝑦 − 𝑡 × 𝑟𝑎𝑑)

𝑡𝑖𝑙𝑒𝑥 × 𝑡𝑖𝑙𝑒𝑦
(9)

Accordingly, we have:
PP𝑆𝑀𝑡𝑖𝑙𝑒 = V𝑆𝑀𝑡𝑖𝑙𝑒 × P (10)

5.2.2 Device Tiling. The main overhead of the device level tiling is
related to the overhead of synchronization. Only a portion of the
runtime is valid. The valid portion depends on the runtime of the
stencil (T𝑠𝑡𝑒𝑛𝑐𝑖𝑙 ), the time required for device level synchroniza-
tion (T𝐷𝑠𝑦𝑛𝑐 ) and the number of synchronization times per tile 𝑛
(applying lazy streaming (Section 4.3.2) reduces 𝑛 to 1):

V𝐷𝑡𝑖𝑙𝑒 =
T𝑠𝑡𝑒𝑛𝑐𝑖𝑙

T𝑠𝑡𝑒𝑛𝑐𝑖𝑙 + T𝐷𝑠𝑦𝑛𝑐 × 𝑛
(11)

Accordingly, we have:
PP𝐷𝑡𝑖𝑙𝑒 = V𝐷𝑡𝑖𝑙𝑒 × P (12)

To quantify the overhead, we followed the research of Zhang et
al. [57] to test the overheads. The device (grid) level synchronization
overhead in A100 is : T𝐷𝑠𝑦𝑛𝑐 = 1.2𝑢𝑠 .

6 EBISU: ANALYSIS OF DESIGN CHOICES
In this section, we provide a comprehensive analysis to justify our
design choices. The analysis is targeted at the A100 GPU, while it
can be generalized to any GPU platform by adjusting the model
parameters (Table 1 summarizes our findings on design choices).

We use 2D 5-Point (Listing 2) to represent 2D stencils, and 3D
7-Point (Listing 3) to represent 3D stencils for the discussions in
this section. Table 2 shows the detailed parameters of both stencils.

6.1 Minimum Necessary Parallelism
The analysis of this section is an extension of Volkov’s work on
low occupancy at high performance [48]. We also generalize the
analysis by building on Little’s law. Little’s saw uses latency L and
throughput THR to infer the concurrency C of the given hardware:

C = L × THR (13)

The latency L of an instruction can be gathered by common
microbenchmarks [26, 53]. The throughput THR of instructions
is available in Nvidia’s CUDA programming guide [7] and docu-
ments [31].

As long as the parallelism PAR provided by the code is larger
than the concurrency provided by the hardware, we consider that
the code saturates the hardware:

PAR ≥ C (14)

There are two ways of providing parallelism: number of threads
(𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠 ) and Instruction Level Parallelism (𝐼𝐿𝑃 ). So, we have:

PAR = 𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠 × 𝐼𝐿𝑃 (15)

Unlike Volkov’s analysis, instead of maximizing the parallelism
with the combination of 𝐼𝐿𝑃 and 𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠 , we aim to find a minimal
combination of 𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠 and 𝐼𝐿𝑃 that saturates the device:

𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠 × 𝐼𝐿𝑃 = PAR ≥ C = L × THR (16)

To maintain a certain level of parallelism, we can reduce the
occupancy (𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠 ) and increase 𝐼𝐿𝑃 simultaneously. We reduce
the occupancy to the point that it will not increase the resources per
thread block. In the current generation of GPUs (A100), reducing
the occupancy of memory-bound kernels to less than 12.5% will
not increase the available register per thread [7]. So, we set our aim
conservatively at 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 = 12.5% or 𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠 = 256.

In this research, we focus on double precision global memory
access, shared memory access, and DFMA, all of which are the basic
operations in stencil computation. Based on our experimentation,
𝐼𝐿𝑃 = 4 and 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 = 12.5% (𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠 = 256) provide enough
parallelism for all three operations. We set this as a basic parallelism
combination for our implementation. Note that the numbers above
may vary for other GPUs, yet the analysis still holds.

6.2 Desired Depth
We use the attainable performance analysis (Section 5.1) to infer the
desired depth. We aim at determining a sufficiently deep temporal
blocking size to shift the bottleneck.

In this study, we are less concerned with whether the bottleneck
shifts to computation or cache bandwidth. To simplify the discus-
sion, we assume that the optimization goal is shifting the bottleneck
from global memory to shared memory. This assumption is true
for most of the star-shaped stencils [25]. Accordingly, we have:

𝑎𝑠𝑚 × 𝑡

B𝑠𝑚
× D𝑠𝑚 ≥

𝑎𝑔𝑚

B𝑔𝑚
× D𝑔𝑚 (17)

6.2.1 Case Study: 2D 5-Point Jacobian Stencil (representing stencils
w/o device tiling). Ideally, we have D𝑠𝑚 = D𝑔𝑚 . In A100, B𝑔𝑚 =

1555 GB/s, B𝑠𝑚 = 19.49 TB/s. In our 2D 5-point implementation,
a𝑔𝑚 = 2 (assuming perfect caching), a𝑠𝑚 = 4. According to Equa-
tion 17, we have 𝑡 ≥ 6.3. In 𝑡 = 7, we measured the performance



ICS ’23, June 21–23, 2023, Orlando, FL, USA Lingqi Z. et al.

Table 1: Design choices for EBISU.
Type Parallelism Combination SM Tiling Device Tiling Temporal Blocking Strategy Circular Multi-Queue

(𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠 × 𝐼𝐿𝑃 ) (𝑡𝑖𝑙𝑒𝑥 × 𝑡𝑖𝑙𝑒𝑦 )
2D stencils 256 × 4 256 × 4 – Deep enough to shift the bottleneck Compute
3D stencils 256 × 4 32 × 32 (12 × 6) As deep as possible Shifting

of 440 GCells/s. We can fine-tune to achieve slightly better perfor-
mance at 𝑡 = 12, where we measured 482 GCells/s. There is only a
10% difference in performance. The slight inaccuracy might come
from the fact that, on average, the global memory accesses per data
point is not perfectly cached.

6.2.2 Case Study: 3D 7-Point Jacobian Stencil (representing stencils
w/ device tiling). In device tiling 3D 7-point stencil, D𝑔𝑚 must also
include the halo region between thread blocks. As such, we have:

D𝑔𝑚 = (𝑡𝑖𝑙𝑒𝑥 × 𝑡𝑖𝑙𝑒𝑦 ) + (𝑡𝑖𝑙𝑒𝑥 + 𝑡𝑖𝑙𝑒𝑦 ) × 2 × 𝑡 × 𝑟𝑎𝑑 (18)

We intend to determine a 𝑡 that satisfies:
𝑎𝑠𝑚 × D𝑠𝑚 × 𝑡

B𝑠𝑚
>

𝑎𝑔𝑚 × D𝑔𝑚
B𝑔𝑚

(19)

We assume that 𝑡𝑖𝑙𝑒𝑥 = 𝑡𝑖𝑙𝑒𝑦 = 32. We have 𝑎𝑠𝑚 = 4.5, 𝑎𝑔𝑚 = 2.
So we can get 𝑡 > 18.34. In this situation, the on-chip memory
per thread block desired for EBISU is 352 KB, which exceeds the
capacity of A100 (164 KB).

6.3 Device Tiling or SM Tiling?
Device tiling trades redundant computation for device level syn-
chronization. In this section, we focus on: in EBISU, the performance
implications of using one single tile per device (w/ device level syn-
chronization). By comparing the practical attainable performance
with the version that is not using one single tile per device (w/o
device level synchronization).

6.3.1 Case Study: 2D 5-Point Jacobian Stencil. In 2d5pt, we have
T𝑠𝑡𝑒𝑛𝑐𝑖𝑙 = T𝑠𝑚 for the overlapped tilling and the device level tiling.
We simplify the discussion by defining a valid proportion V, i.e.,
the updated output after excluding the halo. The higher the valid
proportion, the higher the performance P. In overlapped tiling, for
2d5pt we have 𝑡 = 7 (Section 6.2.1) and 𝑟𝑎𝑑 = 1. So V𝑆𝑀𝑡𝑖𝑙𝑒 ≈ 95%

For device level tiling, we can go as deep as 𝑡 = 15. So, we
have: T𝑠𝑚 = 2.05𝑢𝑠 . Because T𝐷𝑠𝑦𝑛𝑐 = 1.2𝑢𝑠 . Accordingly, we have
V𝐷𝑡𝑖𝑙𝑒 = T𝑠𝑚/(T𝑠𝑚 + T𝐷𝑠𝑦𝑛𝑐 ) ≈ 63%.

So, we have: V𝐷𝑡𝑖𝑙𝑒 ≪ V𝑆𝑀𝑡𝑖𝑙𝑒 .
For 2D stencils of other shapes, we get:

PP𝐷𝑡𝑖𝑙𝑒 (2𝐷) ≪ PP𝑆𝑀𝑡𝑖𝑙𝑒 (2𝐷) (20)

As a result, in 2D stencils, the overhead of thread block level
overlapped tiling is negligible, making device tiling less beneficial.
This result stands true for all 2D stencils we studied in A100.

6.3.2 Case Study: 3D 7-Point Jacobian Stencils. In 3d7pt, we cannot
shift the bottleneck to shared memory in overlapped (within accept-
able overhead) or device tiling. We need to compare the Practical
Attainable Performance in both cases to judge.

We have V𝑆𝑀𝑡𝑖𝑙𝑒 = (34 − 2 × 𝑟𝑎𝑑 × 𝑡)2/342. In 3d7pt, we have
𝑟𝑎𝑑 = 1, 𝑡 = 3, V𝑆𝑀𝑡𝑖𝑙𝑒 ≈ 77%. In 𝑡 = 3, we have P𝑆𝑀𝑡𝑖𝑙𝑒 = 292
GCells/s, and PP𝑆𝑀𝑡𝑖𝑙𝑒 ≈ 225 GCells/s.

On the other hand, for device tiling, we can go as deep as 𝑡 = 8, so
we have L(𝑔𝑚) = 2.42 . Because T𝐷𝑠𝑦𝑛𝑐 = 1.2 us. So, V𝐷𝑡𝑖𝑙𝑒 ≈ 67%

GCells/s. In 𝑡 = 8 we have P𝐷𝑡𝑖𝑙𝑒 = 365 GCells/s. Accordingly, we
have PP𝐷𝑡𝑖𝑙𝑒 ≈ 244 GCells/s.

So, we have: PP𝐷𝑡𝑖𝑙𝑒 > PP𝑆𝑀𝑡𝑖𝑙𝑒 on a 3d7pt stencil.
We measured, for instance, 151 GCells/s for w/o device tiling

and 197 GCells/s for w/ device tiling. The experiment results is
consistent with the analysis (for 3D stencils of other shapes as
well):

PP𝐷𝑡𝑖𝑙𝑒 (3𝐷) > PP𝑆𝑀𝑡𝑖𝑙𝑒 (3𝐷) (21)

As a result, for 3D stencils, the overhead of thread block level
overlapped tiling is so significant that it prohibits the temporal
blocking implementation from going deeper. This result stands true
for all 3D stencils we studied in A100.

Based on the analyses above, in EBISU, we only implement device
tiling for 3D stencils. The analysis in the following section is built
on top of this decision.

6.4 Deeper or Wider?
As the capacity of on-chip memory is limited, there is a trade-off
between increasing the width of spatial blocking and increasing the
depth of temporal blocking. In this section, we discuss our heuristic
for we use for parameter selection in EBISU.

6.4.1 Case Study: 2D 5-Point Jacobian Stencil. Firstly, as Section 6.3.1
showed, the overhead of 2D 5-Point Jacobian Stencil is negligible.
Additionally, according to Section 6.2.1, in theory, at depth 𝑡 = 7,
we shift the bottleneck from global memory to shared memory.

As such, after the bottleneck is shifted, we aim at wider spatial
blocking to reduce the overhead of overlapped tilling as is discussed
in Section 5.2.1. Yet, we still need to consider the implementation
simplicity. For example, we choose a tiling of size 𝑡𝑖𝑙𝑒𝑥 = 256 instead
of 𝑡𝑖𝑙𝑒𝑥 = 328, since the latter is hard to implement in CUDA. .

6.4.2 Case Study: 3D 7-Point Jacobian Stencil. For simplicity, we
assume that the very first plane loaded and the last plane stored
have already been amortized. Then, for global memory access, we
only focus on the halo region. According to Equation 17, we have:

𝑡𝑖𝑙𝑒𝑥 × 𝑡𝑖𝑙𝑒𝑦 × 𝑎𝑠𝑚

B𝑠𝑚
>

(𝑡𝑖𝑙𝑒𝑥 + 𝑡𝑖𝑙𝑒𝑦 ) × 2 × 𝑎𝑔𝑚 × 𝑟𝑎𝑑

B𝑔𝑚
(22)

We assume that 𝑡𝑖𝑙𝑒𝑦 = 𝑡𝑖𝑙𝑒𝑥 . So, we can get:

𝑡𝑖𝑙𝑒𝑦 = 𝑡𝑖𝑙𝑒𝑥 >
4 × 𝑎𝑔𝑚 × B𝑠𝑚
𝑎𝑠𝑚 × B𝑔𝑚

× 𝑟𝑎𝑑 (23)

In our 3d7pt implementation, 𝑎𝑔𝑚 = 2, 𝑎𝑠𝑚 = 4.5. We have
𝑡𝑖𝑙𝑒𝑦 = 𝑡𝑖𝑙𝑒𝑥 ≥ 22.3. For implementation convenience, we use 32 ×
32 (also fitted to the Minimal Necessary Parallelism that saturates
the device as Section 6.1 discussed). As such, after the spatial tiling is
large enough for overlapping halo region, we then run the temporal
blocking as deep as possible to amortize the overhead of using
device (grid) level synchronization.
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Figure 7: Speedup of EBISU over the state-of-the-art temporal blocking implementations. We also plot the performance of
EBISU (right Y-axis plotted as ’+’ ticks).

Table 2: Stencil benchmarks. Readers can refers to [25, 40]
for details description.We also include ideal sharedmemory
access times per cell, 𝑎𝑠𝑚 , when applying redundant register
streaming (w/ RST) and without it (w/o RST) in the table.

Stencil Domain Size 𝑎𝑠𝑚 𝑎𝑠𝑚
[Order, FLOPs/Cell] w/o RST w/ RST
j2d5pt [1,10] 83522 6 4
j2d9pt [2,18] 80642 10 6
j2d9pt-gol [1,18] 87842 10 4
j2d25pt (gaussian) [2,25] 86402 26 6
j3d7pt (heat) [1,14] 2560 × 288 × 384 8 4.5
j3d13pt [2,26] 2560 × 288 × 384 14 7
j3d17pt [1,34] 2560 × 288 × 384 18 5.5
j3d27pt [1,54] 2560 × 288 × 384 28 5.5
poisson [1,38] 2560 × 288 × 384 20 5.5

Table 3: Depth of temporal blocking for each stencil imple-
mentations in this evaluation.

Type STENCILGEN AN5D DRSTENCIL ARTEMIS EBISU
j2d5pt 4 10 3 12 12
j2d9pt 4 5 2 6 8
j2d9pt-gol 4 7 2 6 6
j2d25pt 2 5 2 3 4
j3d7pt 4 6 3 3 8
j3d13pt 2 4 2 1 5
j3d17pt 2 3 2 2 6
j3d27pt 2 3 - 2 5
poisson 4 3 2 2 6
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Figure 8: Percent of occupancy achieved and resources used
(registers and sharedmemory) for EBISU and SOTA libraries
among all stencil benchmarks.

7 EVALUATION
We experiment on a wide range of 2D and 3D stencils (listed in
Table 2). The test data are generated by STENCILGEN [40]. We eval-
uate the benchmarks on an NVIDIA A100-PCIe GPU device(host
CPU: Intel Xeon E5-2650).

7.1 Compile Settings of EBISU
The code is compiled with NVCC-11.5 (CUDA driver V11.5.119) and
gcc-4.8.5, using flags -rdc=true -Xptxas "-v " -std=c++14. We only
generate code for A100 architecture 2. "–rdc=true" flag is necessary
for enabling grid level synchronization, so we set it by default. We
use c++14 features, so we add "-std=c++14" flag. -Xptxas "-v" is set
to gather information on registers.

7.2 Evaluation Setup
7.2.1 Domain Size. We used the domain sizes listed in Table 2 for
EBISU, comparable to those used in the literature [4, 6, 39].

7.2.2 Warm-Up and Timing. For all experiments, we do warm-up
iterations and then use GPU event APIs to measure one kernel run.
We repeat this process ten times and report the peak.

7.2.3 Depth of Temporal Blocking. We only evaluate a single ker-
nel. Therefore, the total number of time steps is equal to the depth
of temporal blocking of each implementation in each stencil bench-
mark. We summarize the depth of temporal blocking in Table 3.

7.3 Comparing with State-Of-The-Art
Implementations

We compare EBISU with the state-of-the-art temporal blocking
implementations AN5D [25] and STENCILGEN [40], and the state-
of-the-art auto-tuning tools ARTEMIS [41] and DRSTENCIL [54].

7.3.1 Setting up State-Of-The-Art Libraries. We use the domain
sizes reported by each library in the original paper (not adversely
change domain sizes). We assume that the libraries can achieve
reasonably good performance in the setting used in the original
paper. For example, in 2D stencils, AN5D used 163842, while STEN-
CILGEN used 81922. ARTEMIS did not report 2D stencils; we used
the same setting as STENCILGEN. Details can be obtained from the
original papers [25, 40, 41, 54].

As for timing and warm-up. AN5D’s original code already does
the warm-up, so we use the default setting. We use the same host
warm-up and timer function as EBISU to test the kernel perfor-
mance for STENCILGEN, ARTEMIS, and DRStencil.

The detailed settings are listed as follows:
STENCILGENWe used the codes for AD/AE appendix [37] of the
original paper. We do not change anything inside the kernel.

2setting CUDA_ARCHITECTURES "80" in CMAKE
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AN5D AN5D is a code auto-generator tool. We only used the code
already generated in their code [24] . We port the makefile system
to A100 and iterate over all generated codes to find the one with the
highest performance for each stencil benchmark. The original code
did not include some stencil benchmarks we use. We use the imple-
mentations with similar memory access patterns to represent them:
gaussian (box2d2r), j3d7pt (star3d1r), j3d13pt (star3d2r), j3d17pt
(j3d27pt) and poisson (j3d27pt).
DRSTENCIL DRSTENCIL [54] is also an auto-tuning tool. We use
the benchmark in the codebase [18] . In the paper, the authors in-
cluded only the implementations of the j3d7pt stencil in the range of
3D stencils. We extend their j3d7pt stencil setting to other 3D sten-
cils for comparison. However, with the j3d7pt setting, DRSTENCIL
was unable to generate runnable code in j3d27pt. We report the ker-
nel with the peak performance among the policies that DRSTENCIL
iterated over.
ARTEMISARTEMIS is an auto-tuning tool. We use the benchmark
in the codebase [36] . We replaced the profiler nvprof (deprecated)
with ncu. ARTEMIS [41] only provides samples for 3d7pt and 3d27pt.
We extend 3d7pt to all star-shape stencils (including heat and 2d
star-shape stencils) and 3d27pt to all box-shape stencils (including
poisson, 3d17pt and 2d box-shape stencils). We report the kernel
with the peak performance among the policies that ARTEMIS iter-
ated over.

7.3.2 Performance Comparison. Figure 7 shows the speedup of
EBISU over state-of-the-art temporal blocking implementations.
EBISU shows a clear performance advantage over all of the state-of-
the-art temporal blocking libraries, i.e., STENCILGEN and AN5D.
It is also faster than the state-of-the-art auto-tuning tool DRSTEN-
CIL and ARTEMIS. EBISU achieves a geomean speedup of over
2.0x when comparing with each state-of-the-art. When comparing
EBISU with the best state-of-the-art in each stencil, EBISU achieves
a geomean speedup of 1.49x.

7.3.3 Resources. We additionally report occupancy and the re-
sources used for all the benchmarks with the ncu profiler (Figure 8).
EBISU is able to use the on-chip resources efficiently despite its low
occupancy (12.5%). It is worth noting that, as Table 3 shows, EBISU
usually has deeper temporal blocking. However, EBISU does not
show significantly higher register pressure than other implemen-
tations. EBISU can, on average, do temporal blocking 1.3x deeper
than the deepest state-of-the-art implementations. But only use
87% of the registers compared to the most register-consuming state-
of-the-art equivalent kernel.

7.4 Performance Breakdown
The remarkable speedup achieved by EBISU in comparison to other
SOTA methods can be attributed to a fundamental shift in GPU
programming principles. While existing SOTAs typically focus on
constraining resources to enhance parallelism, EBISU constrains
parallelism to optimize resource utilization. This novel approach
enables the implementation of resource-scalable schemes, which
ultimately contribute to EBISU’s performance.

In this section, we provide a detailed explanation of how the op-
timizations proposed in earlier sections impact the performance of
EBISU. To demystify their effects, we present case studies involving

2D 5-Point Jacobian stencils (representing 2D stencils) and 3D 7-
Point Jacobian stencils (representing 3D stencils). Figure 9 displays
the roofline plot of various implementations, with the black arrow
indicating the incremental implementation of each scheme.

For the roofline analysis, we report the performance as measured
in TFLOPS (teraflops). Table 2 shows the relationship between
TFLOPS and GCells/s metrics.

7.4.1 BASE. The BASE implementation refers to the approach that
applies minimal parallelism analysis, as discussed in Section 6.1.
In this phase, we prepare the necessary resources for EBISU. It is
important to note that in the case of the 3D 7-Point stencil, the
BASE implementation already incorporates device tiling, similar to
the approach employed in the existing research of PERKS [56].

7.4.2 Circular Multi-Queue (CMQ). CMQ is a foundation for deep
temporal blocking. As Figure 9 shows, in 2D stencils, we increase
the depth of temporal blocking to move the bottleneck from global
memory to shared memory. In 3D stencils, due to the shared mem-
ory’s limited capacity, we only move the Operation Intensity (OI)
from left to right. Either way, we move the OI such that we increase
the attainable performance shown in the roofline model.

7.4.3 Prefetching (PRE). As Figure 9 shows, the PRE scheme has
the effect of moving the roofline plot towards the attainable bound.
However, it does not directly impact the attainable bound itself.

7.4.4 Lazy Streaming (LST). The LST scheme aims to reduce syn-
chronizations by using long buffers. By default, we employ LST to
minimize device level synchronizations. This section specifically
focuses on the impact of LST on reducing thread block synchroniza-
tions. As illustrated in Figure 9.a, applying LST to the 2D 5-point
stencil brings its performance closer to the attainable bound. How-
ever, in the case of the 3D stencil, as shown in Figure 9.b, applying
LST may harm performance. This is primarily due to the global
memory still being the bottleneck, and the additional on-chip mem-
ory space required by LST implementation leads to a shallower
temporal blocking. This results in a leftward shift in the OI, which
consequently reduces the attainable performance. It is worth noth-
ing that in the final version of EBISU, disabling LST for the 3D
7-point stencil allows for a doubling of the temporal blocking depth,
from 𝑡 = 8 to 𝑡 = 16, leading to a performance increase from 2.7
TB/s to 2.9 TB/s. However, when excluding the redundant halo, the
performance dips from 2.4 TB/s to 2.3 TB/s. Therefore, this result
has been excluded from the discussion

7.4.5 Redundant Register Streaming (RST). RST’s primary goal is
to cut down shared memory access time (refer to Table 2). By doing
so, we can shift the roofline plot closer to the compute bound from
left to right when shared memory is the bottleneck (as shown in
Figure 9.a). Also, we leverage RST to cache a portion of the tiling,
which helps reduce the amount of data cached in shared memory.
This enables us to achieve deeper temporal blocking and move the
roofline plots closer to the compute bound from left to right, when
global memory remains the bottleneck (as shown in Figure 9.b).

7.4.6 Relations Between Optimizations. The PRE and LST opti-
mizations have the effect of improving performance and bringing it
closer to the attainable bound. The RST optimization is designed to
shift the roofline plots to the right, to increase the attainable bound.
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refers to thread block level lazy streaming. Device tiling without lazy streaming will be extremely slow as can be inferred in
Section 5.2.2.

Red arrows in Figure 9 clearly shows that disabling either of these
optimizations results in a degradation of performance.

7.4.7 Practical Attainable Performance. In 2D 5-point stencil, we
achieved 4.8 TFLOPS (80% of the attainable bound). In 3D 7-point
stencil, we achieved 2.7 TFLOPS (50% of the attainable bound). The
big gap is due to the omission of the overheads in roofline model.
As we consider overhead in our model (Section 5), we achieved 88%
and 80% of PP in 2D 5-point and 3D 7-point stencils respectively. A
model that considers the overheads can model the practical attain-
able performance better. As such, this model contributing to the
decision-making also benefits the performance of EBISU.

8 RELATEDWORKS
Apart from the tiling optimizations we covered in Section 2.1,
there are many stencil optimizations that are architecture-specific.
For example, vectorization [15, 55, 58]; cache optimizations on
CPUs [2, 21, 45, 51]. For GPUs [11, 16, 38], Chen et al. proposed
an execution model on top of the shuffle operation on GPU [6];
Liu et al. uses tensor cores to accelerate low precision stencils [20].
Rawat et al. also summarized optimizations that can be used in
stencil optimization, i.e., streaming, unrolling, prefetching [41], and
register reorder [39].

State-of-the-art implementations are usually built on top of mul-
tiple optimizations. For example, wavefront diamond blocking [21]
is built on top of vectorization, cache optimization, streaming, and
diamond tiling, STENCILGEN [40] is built on top of shared memory
optimization, streaming, and N.5D tiling.

But combining different optimizations is tedious for implemen-
tation. Many researches focus on autocode generation using on do-
main specific language [23, 40, 59], or compiler-based approaches [34,
47]. Some optimizations, especially those related to registers, are
difficult to implement manually. Matsumura et al. implemented
AN5D [25] that generates codes using registers effectively.

9 CONCLUSION AND FUTUREWORK
In this paper we propose, EBISU, a novel temporal blocking ap-
proach. EBISU relies on low occupancy and mapping on large tiles
over the device. The freed resources are then used to improve
the data locality. We compared EBISU with two state-of-the-art
temporal blocking implementations and two state-of-the-art auto-
tuning tools. EBISU constantly shows its performance advantage. It
achieves a geomean speedup of 1.49x over any of the top alternative
state-of-the-art implementations for each stencil benchmark.

This paper focuses on studying how modern GPU characteristics
influence the optimization of temporal blocking stencils. Neverthe-
less, as EBISU proved effective, its optimization approach can be
absorbed into production libraries like Halide [34] so that the end
user can get the performance with minimal effort.
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