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ABSTRACT
Collaborative filtering (CF) has been proven to be one of the most ef-
fective techniques for recommendation. Among all CF approaches,
SimpleX is the state-of-the-art method that adopts a novel loss
function and a proper number of negative samples. However, there
is no work that optimizes SimpleX on multi-core CPUs, leading to
limited performance. To this end, we perform an in-depth profiling
and analysis of existing SimpleX implementations and identify their
performance bottlenecks including (1) irregular memory accesses,
(2) unnecessary memory copies, and (3) redundant computations.
To address these issues, we propose an efficient CF training sys-
tem (called HEAT) that fully enables the multi-level caching and
multi-threading capabilities of modern CPUs. Specifically, the opti-
mization of HEAT is threefold: (1) It tiles the embedding matrix to
increase data locality and reduce cache misses (thus reduces read
latency); (2) It optimizes stochastic gradient descent (SGD) with
sampling by parallelizing vector products instead of matrix-matrix
multiplications, in particular the similarity computation therein, to
avoid memory copies for matrix data preparation; and (3) It aggres-
sively reuses intermediate results from the forward phase in the
backward phase to alleviate redundant computation. Evaluation
on five widely used datasets with both x86- and ARM-architecture
processors shows that HEAT achieves up to 45.2× speedup over
existing CPU solution and 4.5× speedup and 7.9× cost reduction in
Cloud over existing GPU solution with NVIDIA V100 GPU.

CCS CONCEPTS
• Information systems→ Collaborative filtering; • Comput-
ing methodologies→ Shared memory algorithms.
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1 INTRODUCTION
With the development and popularization of the Internet and smart
devices, these platforms have become ideal tools for collecting vari-
ous data/information that can be used to identify user preferences
[27]. However, the exponential growth in the amount of digital
information and the explosion in the number of Internet users can
lead to the problem of information overload that prevents timely
access to things of interest on the Internet [23]. As a result, recom-
mender systems (a.k.a recommendation systems) that use a user’s
choices, interests, or observed behavior to filter out key information
from a massive amount of dynamically collected information are
more in demand than ever [32].

Collaborative filtering (CF) has been proven to be one of the
most effective techniques for building recommender systems due
to its ability to recommend completely dissimilar content. Learning
effective latent factors directly from the user-item rating matrix
through matrix factorization (MF) is the most effective method
among CF-based approaches [29] (will be discussed in §2.2). De-
spite the effectiveness of MF-based CF, training MF-based CF is
challenging due to two reasons: (1) Performance: Irregular mem-
ory access causes a significant performance degradationwhen using
sparse real-world user-item rating matrices [14]. (2) Cost: Weekly
or monthly updates on large training datasets (millions of users
and items) causes a drastic cost increase. Recommendation tasks in
the industry are time-sensitive and profit-oriented, which means
that training time and cost are critical for entrepreneurs.

Although today’s various accelerators such as graphics process-
ing units (GPUs) are widely used to train machine learning models
today, in this work we focus on using multi-core CPUs for training
recommendation models due to the following three main reasons.
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CF training with GPUs is expensive. Nowadays, users typi-
cally accelerate machine learning applications [43] using GPUs that
are capable of performing floating-point operations in a massively
parallel fashion. However, CF training on large datasets using GPUs
is expensive. For example, training an MF-based CF model for 3,000
epochs on a dataset with 200 million users and 200 million items
takes about 297.7 hours using 100 16 GB V100 GPUs. Assuming this
training service is deployed on an AWS p3.2xlarge instance [3] at an
hourly cost of around 3 dollars, the total cost for one-time training
is approximately 91,081 dollars. Furthermore, the model needs to
be retrained every month or week due to the dataset update.

GPU memory is limited. Besides the user-item rating matrix
as input, training MF-based CF also requires holding two large
embedding matrices in memory, i.e., a user embedding matrix 𝑆 ∈
R |𝑈 |×𝐾 and an item embedding matrix 𝑇 ∈ R |𝐼 |×𝐾 . Here |𝑈 | is the
number of users, |𝐼 | is the number of items, and𝐾 is usually between
64 and 128. For instance, the Amazon Product Reviews dataset
[18, 19] contains 21 million users and 9 million items. However,
currently the most powerful GPUs have only 80 GB of memory [11],
which can only accommodate embedding matrices of up to 4 million
users/items when 𝐾 is 128 and the data type is float32. For larger
datasets, we need to split embedding matrices and rating matrix
across different GPUs, which introduces high global communication
overhead. In comparison, the popular CPU nodes in HPC systems
typically have 512 GB or even 1-2 TB of memory.

MF-based CF is not suitable for GPUs. An MF-based CF fea-
tures low computation intensity and highly irregular memory ac-
cesses. For MF-based CF training, we need to maximize the simi-
larity of a positive user-item pair while minimizing the similarity
of a negative user-item pair. This procedure requires fetching (1) a
𝐾-dimensional user embedding (vector) from the user embedding
matrix, (2) one 𝐾-dimensional positive item embedding from the
item embedding matrix, and (3) random 𝑛 𝐾-dimensional nega-
tive item embeddings from the item embedding matrix. Based on
these sampled vectors, we need to compute the similarity of the
user-item pairs using vector-dot product operations. These compu-
tation patterns (i.e., embeddings are first accessed in an irregular
fashion and then used in a regular way with spatial locality for
low computation-intensive vector products) make MF-based CF
training more suitable for CPUs than GPUs.

Prior works have focused on optimizing the performance of
MF-based CF training. For example, MSGD [30] improves training
performance on GPUs by removing dependencies on user and item
pairs. However, MSGD does not support sampling multiple negative
terms, which leads to inferior training results (i.e., low accuracy).
Recently, Mao et al. proposed SimpleX [31], a state-of-the-art CF
method, that has a novel loss function and a large negative sam-
pling rate, greatly outperforming other existing methods. However,
SimpleX only uses PyTorch to implement its approach without con-
sidering the computational efficiency. Specifically, (1) training on
sparse user-item rating matrices and random sampling for multiple
negative items lead to irregular memory accesses to embedding
matrices. (2) The similarity computation before the loss compu-
tation is usually based on parallel matrix-matrix multiplication,
which introduces expensive memory copies to concatenate sam-
pled vectors into matrices. (3) Automatic differentiation engines

in machine learning frameworks (such as autograd in PyTorch)
ignore potential data reuse in the backward phase (see §4.4).

To this end, we propose a Highly Efficient and Affordable Traini-
ng system (called HEAT1) for collaborative filter based recommen-
dation on multi-core CPUs based on the SimpleX approach. First,
we propose to take advantage of modern CPUs’ memory hierar-
chies to reduce embedding read latencies. Specifically, we propose
an effective tiling method that partitions item embedding matrices
to fit into multi-level caches according to their sizes. Second, we
adopt a multi-threaded training method [36], where each thread
independently and parallelly reads its corresponding user and item
embeddings, calculates their gradients, and updates them rather
than all embeddings, and fuse forward and backward phases to re-
duce the size of the per-thread memory footprint. Third, we identify
reuse opportunities for intermediate results during the backward
pass of training. This reuse is missed in automatic differentiation
systems that work at a more fine-grained operator level. To the best
of knowledge, this is the first work that enables high-performance
and low-cost CF training for recommendation based on the SimpleX
approach on multi-core CPUs.

The main contributions of this paper are summarized as follows:
• We deeply analyze the performance of two state-of-the-art MF-
based CF solutions and identify their performance bottlenecks.
• We propose to tile the item embedding matrix according to
multi-level cache sizes to reduce read latency. Furthermore, we
propose a light-weight algorithm to find the optimal tiling size
and cache eviction policy (e.g., refresh interval).
• We develop a parallel method for similarity computation based
on vector products rather than matrix-matrix multiplication to
avoid matrix data preparation (i.e., memory copies).
• We propose to save the result of the partial derivative of em-
beddings in the forward computation and reuse them in the
backward computation to avoid redundant calculations.
• We propose two implementation optimizations to improve the
performance of weight updates by alleviating read/write con-
flicts in shared memory and reducing the amount of updates.
• Evaluation on three real-world datasets with AMD 7742 CPUs
and Fujitsu A64FX CPUs shows that HEAT achieves up to 45.2×
and 4.5× speedups over state-of-the-art CPU and GPU solutions,
respectively. We also derive some takeaways for CF training on
different CPU architectures.
The remaining of the paper is organized as follows. In §2, we

present the background about recommender systems and matrix
factorization based collaborative filtering. In §3, we present our
profiling and analysis of existing solutions. In §4, we describe the
design of our HEAT. In §5, we evaluate HEAT on different datasets
and compare it with other works. In §6, we discuss related work.
In §7, we conclude our work and discuss future work.

2 BACKGROUND
In this section, we present the background information about rec-
ommender systems and collaborative filtering techniques for rec-
ommendation.

1The code is available at https://github.com/hipdac-lab/HEAT.

https://github.com/hipdac-lab/HEAT
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2.1 Basics of Recommender Systems
Input Data. There are two main types of collected feedback (i.e.,
rating matrix): (1) explicit feedback [28] that is directly provided by
users, such as likes and ratings, and (2) implicit feedback [6] that
is obtained from users’ interactions, such as click data, purchases,
and implicit visit information. Recent research on recommender
systems has shifted from explicit feedback to implicit feedback [13]
because the majority of a user’s preference-related signal is implicit.
Thus, we focus on implicit feedback in this work.

Filtering Techniques. Recommender systems mainly include
content-based [8] filtering and collaborative filtering (CF) [21] tech-
niques. Content-based filtering is based on the items’ information
and recommends items that have attributes similar to those that
users like. However, the technique is notorious for its inability to
recommend dissimilar items [39]. To address this issue, collabora-
tive filtering makes recommendations by learning preferences or
taste information from many other users’ interactions [21] and is
able to provide diverse recommendations. CF techniques can be
further classified into user–user CF [38], item-item CF [40], dimen-
sionality reduction [7], and probabilistic methods [26]. Specifically,
user–user and item–item CF techniques directly use feedback to
calculate similarities between users or items. But vectors in feed-
back are highly sparse and have extremely large dimensions. For
example, an item is a |𝑈 |-dimensional vector and a user is a |𝐼 |-
dimensional vector, where 𝑈 is the set of all users and 𝐼 is the set
of all items. This causes high overhead of computing resources
and memory space. To address this issue, dimensionality reduction
techniques such as matrix factorization (MF) reduce the dimension
of the rating space to a constant number 𝐾 [41] thereby reducing
computational complexity and memory requirements (will be de-
tailed in the next section). Other techniques such as probabilistic
methods seek to create probabilistic models of users’ behaviors and
employ those models to predict users’ future behaviors.

Software Frameworks. There are two popular training frame-
works to implement recommender systems: (1) PyTorch provides
a lookup table (torch.nn.Embedding) to store embeddings of a
fixed dictionary and size. Users can build a complete model us-
ing necessary modules (e.g., loss function, optimizer) provided by
PyTorch. Besides, users can utilize the autograd module to com-
pute gradients and then update the embeddings. However, on the
one hand, using torch.nn.Embedding with dense gradient would
directly update all embeddings, which leads to unnecessary op-
erations since only part of the embeddings are involved in one
training iteration; on the other hand, using torch.nn.Embedding
with sparse gradient causes worse performance (detailed in Section
§3.1). (2) TorchRec [24] is a production-quality recommender sys-
tems package in the open-source PyTorch ecosystem. It provides
model and data parallelism and represents sparse inputs by jagged
tensors. Moreover, TorchRec supports computations on sparse data
through FBGEMM [25] and overlaps communication and computa-
tion through train_pipeline. However, similar to PyTorch, TorchRec
also suffers from the above dense/sparse embedding update issue.

2.2 MF-based Collaborative Filtering
The purpose of MF-based CF training is to maximize the similarity
of embeddings of a positive user-item pair while minimizing the

Figure 1: Basic concept of MF-based CF.

similarity of embeddings of a negative user-item pair. We can use
dot product similarity or cosine similarity as expressed in Equation
2. Assume𝑈 is the set of all users and 𝐼 is the set of all items. The
implicit feedback can be expressed as 𝑋 ⊆ 𝑈 × 𝐼 as depicted in
Figure 1. Particularly, “+” indicates a user’s preference for an item.
Such corresponding items are called positive items. “?” represents
either negative (not interested) or missing (not interacted) values.
The items corresponding to the negative values are called negative
items. MF-based techniques train two low-dimensional matrices,
i.e., a user embedding matrix 𝑆 ∈ R |𝑈 |×𝐾 and an item embedding
matrix 𝑇 ∈ R |𝐼 |×𝐾 , to approximate 𝑋 as expressed in Equation (1).
Then, the main task is to predict missing ratings in 𝑋 using the
corresponding embeddings.

𝑋 ≈ �̂� = 𝑆𝑇 𝑡 (1)

𝑥𝑢,𝑖 =


𝑆𝑢 ·𝑇𝑖 =

𝐾∑︁
𝑘=0

𝑆𝑢,𝑘𝑇𝑖,𝑘 (dot)

𝑆𝑢 ·𝑇𝑖
∥𝑆𝑢 ∥2 ∥𝑇𝑖 ∥2

=

∑𝐾
𝑘=0 𝑆𝑢,𝑘𝑇𝑖,𝑘√︃∑𝐾

𝑘=0 𝑆
2
𝑢,𝑘

√︃∑𝐾
𝑘=0𝑇

2
𝑖,𝑘

(cosine)
(2)

L(𝑢, 𝑖) = (1 − 𝑥𝑢,𝑖 ) +
`

|N |
∑︁
𝑗∈N

max(0, 𝑥𝑢,𝑗 − \ ) (3)

Prior MF-based CF works can be generally classified into two
directions. The first direction only targets recall (i.e., accuracy) and
adopts simple similarity functions (e.g., dot product) and point-wise
loss functions (e.g., mean square error, binary cross entropy) for
user-item pairs without using negative items. For example, rep-
resentative works such as CuMF_ALS [44], CuMF_SGD [48], and
MSGD [30] focus more on the computational efficiency of matrix
factorization than on recall. The second direction brings higher
accuracy and creates a user-specific item ranking by using the
concept of positive/negative items, novel loss functions, and more
sophisticated similarity functions (e.g., cosine similarity) with sam-
pling methods. For example, [37] proposed Bayesian personalized
ranking (BPR) loss function, while [17, 46] proposed a contrastive
loss (i.e., a Euclidean distance-based loss). More recently, SimpleX
[31] proposes a cosine contrastive loss (CCL) and utilizes multiple
negative samples, which outperforms other approaches regarding
accuracy. Equation (3) is the CCL, where (𝑢, 𝑖) is a positive user-item
pair, N is the number of randomly sampled negative samples, ` is
a hyperparameter, and \ is the threshold to filter negative samples.

3 PERFORMANCE PROFILING & ANALYSIS
In this section, we characterize the performance of SimpleX on
both CPU and GPU. Note that we focus on the PyTorch implemen-
tation rather than the TorchRec implementation since TorchRec
optimizes sparse computation and communication/computation
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Figure 2: Overview of SimpleX. “+”/“-” denote positive/negative embedding.

Table 1: Profiling of embedding update in SimpleX. “ET”, “FP”, “BP” are short
for epoch time, forward percentage, backward percentage, respectively.

Dataset Method ET FP BP

AmazonBooks dense 257.4 19.9% 67.0%
sparse 946.6 6.2% 92.8%

Yelp18 dense 129 21.2% 65.1%
sparse 386.3 9.1% 89.3%

Gowalla dense 94.9 20.7% 66.8%
sparse 251.8 9.2% 89.2%

overlap, which does not address the performance bottleneck of
MF-based CF training methods. Thus, for simplicity, we only show
the performance breakdown of the PyTorch implementation to
motivate the design of our HEAT.

We set the embedding dimension to 128 and the number of
negatives to 64, and the batch size to 1024. We use PyTorch 1.10.0
and CUDA 10.2. We use the PyTorch profiler [35] to perform the
breakdown.We use three real-world large datasets (containingmore
than millions of users and items) for profiling, i.e., Goodreads Book
Reviews (Goodreads) [45], Google Local Reviews (2018) (Google)
[33], and Amazon Product Reviews (Amazon) [19].

3.1 Embedding Update in SimpleX
The core component in the PyTorch implementation of SimpleX [31]
is torch.nn.Embedding, a simple lookup table storing embeddings.
SimpleX fetches a batch of embeddings from torch.nn.Embedding
to perform one training iteration. Logically, we only need to gen-
erate the gradients of the involved embeddings and update those
embeddings. Thus, we can leverage torch.nn.Embedding’s capa-
bility which allows users to enable sparse gradient computation
and embedding update (by setting the parameter sparse to True).

Table 1 shows the profiling results of the embedding update in
SimpleX with dense or sparse gradients. In the case of dense gra-
dient, the backward phase takes more than 60% of the epoch time.
We observe that torch.nn.Embedding updates all embeddings in

every iteration. In the case of sparse gradient, although we theo-
retically reduce the computation complexity, the actual epoch time
of training with sparse gradient is almost 3× higher than that of
dense gradient, where the backward phase takes more than 90% of
the epoch time. This motivates us to design a training method that
supports updating embedding sparsely and efficiently in parallel.

3.2 Computation Efficiency of SimpleX
SimpleX utilizes torch.bmm, a batch matrix-matrix product for sim-
ilarity computation. Before that, it needs to concatenate and then re-
shape embeddings. Specifically, as shown in Figure 2, SimpleX reads
a batch of user embeddings and item embeddings, and reshapes
them to let batch dimension be the first dimension. After reshaping,
SimpleX performs normalization and matrix-matrix multiplication.
torch.bmm can fully enable the underlying high-performance BLAS
library on multi-core CPUs.

Table 2 shows the breakdown of the forward phase of SimpleX.
The forward phase includes reading user embeddings (u_emb), read-
ing item embeddings (i_emb), normalization of user embeddings
(u_norm), normalization of item embeddings (i_norm), concatena-
tion and reshaping of embeddings (mem_cp), a batch matrix-matrix
product (bmm), and a loss function (loss). We observe that the time
of mem_cp and the time of bmm are comparable. This inspires us
to avoid explicit concatenation and reshaping. To normalize the
embedding tensor 𝐸, it needs to sum the square of 𝐸 along the di-
mension of the embedding dimension, and then calculate the square
root of the summation, and then reverse values of the square root,

i.e., the norm 𝑅 =

(√︁
𝐸2 .𝑠𝑢𝑚(𝑑𝑖𝑚 = 1)

)−1
. We observe that this

normalization takes more than 20% of the forward time because of
two main reasons: (1) The underlying library does not have good
support for the above operations. (2) Reading the entire matrix dur-
ing the computation and the writing of the generated intermediate
tensor 𝑅 back to the memory cause additional memory access time.
In addition, the time of reading item embeddings takes around 30%
of the forward time, which is caused by irregular memory accesses.

3.3 Memory Usage of SimpleX
The sizes of user and item embedding matrices in MF-based CF are
linearly scaled to the size of training dataset (i.e., item-user rating
matrix). Table 3 shows the memory usage of SimpleX on both CPU
and GPU. The total memory capacity of GPU and CPU is 32 GB
and 256 GB, respectively. We observe that SimpleX almost runs out
of the GPU memory when the numbers of users and items are over
3 millions. This is because it needs to save not only the embedding
matrices, but also the gradient matrices (scaled with user/item sizes)
and optimizer states (scaled with batch size). The out of memory
happens when training on the Amazon dataset due to the limited
GPU memory. This observation further strengthens our motivation
to use multi-core CPUs with larger memory as our target platform.
Table 2: Breakdown of the forward phase of SimpleX. The ratio of each com-
ponent’s time to the forward time. Amazon is short for AmazonBooks.

Dataset u_emb i_emb u_norm i_norm mem_cp bmm loss

AmazonBooks 9.6% 39.8% 5.9% 22.3% 5.0% 7.1% 9.7%
Yelp18 9.1% 35.3% 5.1% 28.3% 4.8% 7.2% 9.6%

Gowalla 8.3% 33.2% 5.6% 31.1% 4.8% 7.3% 9.1%
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Figure 3: Overview of our proposed HEAT’s workflow/dataflow. HEAT has four main optimizations: “random tiling” (§4.2), “parallelization” (§4.3), “data reuse”
(§4.4) and “parallel gradient update” (§4.5).

Table 3: Memory usage of SimpleX. OoM is short for out of memory.

Dataset users items CPU GPU

Goodreads 0.81M 1.56M 4.2% 30.1%
Google 4.57M 3.12M 11.3% 80.2%

Amazon 20.98M 9.35M 38.4% OoM

4 DESIGN METHODOLOGY
In this section, we propose our multi-threading MF-based CF train-
ing system with optimizations to improve the training performance.

4.1 Overview of HEAT
Figure 3 shows the key components of HEAT: (1) It initializes
user/item embedding matrices with values either drawn from the
normal distribution N(𝑚𝑒𝑎𝑛, 𝑠𝑡𝑑2) or initialized by Xavier [16]. (2)
It chooses either the original random sampler or our proposed ran-
dom tiling sampler that increases the cache hit ratio (see in §4.2) to
sample one user, one positive item, and 𝑛 negative items. Then, it
reads the user’s corresponding embeddings and these positive/neg-
ative items’ embeddings. (3) The behavior aggregation layer with
our proposed optimization of gradient update (see §4.5) generates a
new user embedding via aggregating embeddings of historically in-
teracted items of the user when enabling behavior aggregation. (4)
It calculates similarities in parallel (see §4.3) of user-item pairs and
calculate the loss. (5) It calculates gradients through an optimized
gradient computation kernel (see §4.4). (6) It updates and writes
back corresponding embeddings.

4.2 Random Tiling
Cache size oriented tiling. The original method randomly sam-
ples 𝑛 negative items following a uniform distribution and reads
their embeddings. As shown in Table 4, the time of reading item
embeddings exceeds 60% of the total forward time. This is due to
two reasons: (1) randomly sampled negative items lead to irregular
memory accesses, which causes poor data locality, low cache hit
rate, and high latency. (2) Each embedding consists of 𝐾 (𝐾 ≥ 64)
floating-point numbers, which will further exacerbate this problem
when 𝐾 is relatively large. Meanwhile, reading user embeddings
takes less than 5% of the total forward time because we only sample
one user in each iteration.

To utilize modern CPU’s memory hierarchy, especially multi-
level caches, we propose to tile the item embedding matrix ac-
cording to the cache size and make sure a tile of items and their

Table 4: Breakdown of the forward phase of HEAT with random sampling.

Dataset u_emb i_emb compute loss

Amazon 5.1% 63.2% 25.9% 4.3%
Yelp18 5.3% 62.4% 26.6% 4.6%

Gowalla 5.5% 61.4% 26.4% 4.5%

embeddings can be fitted into the cache. Then, we randomly sam-
ple negative items directly from the cached tile of items, which
increases the cache hit rate and thus reduces the latency of reading
embeddings. Assume 𝑁1 and 𝑁2 are tiling size and refresh interval,
respectively. The sampling space of the original strategy is whole
items. However, the sampling space is shrunk to the tiling size 𝑁1
after applying the tiling strategy. To reduce the impact of the tiling
strategy on training results as much as possible, we hope to have
as large a sampling space as possible while ensuring acceleration.
Thus, we will refresh the cached tile every 𝑁2 iterations to enlarge
the sampling space. The sampling space becomes 𝑀

𝑁2
× 𝑁1, where

𝑀 is the number of total iterations.
Figure 4 illustrates the proposed random tiling strategy in each

thread. Specifically, each thread preallocates a suitable cache space
to buffer randomly sampled 𝑁1 embeddings. In each iteration, each
thread also randomly samples 𝑛 negative embeddings from the
cached tile to compute the gradients and update corresponding
embeddings. After 𝑁2 iterations, each thread randomly samples 𝑁1
embeddings again to refresh the cache space. Since the behavior
aggregation layer aggregates embeddings of a user’s historical in-
teraction items (i.e., positive items) and one user’s negative items
may be transformed into another user’s positive items, the tiling
method can also benefit the behavior aggregation layer.

Tiling size & refresh interval tuning. In order to avoid man-
ually tuning 𝑁1 and 𝑁2 by trial and error, we propose Algorithm 1
to systematically determine 𝑁1 and 𝑁2 given an expected speedup
𝑃 . Specifically, (1) the negative sampling space of random tiling is

Figure 4: Random tiling strategy in each thread.
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Algorithm 1: Proposed tuning method for tiling size & refresh interval.
Inputs :𝐼 : # of items,𝑀 : total iterations; 𝑁1 : tile size; 𝑁2 : refresh interval; 𝑛𝑛 : number

of negatives; 𝑛𝑝 : number of positives; 𝑟 : average positive hit ratio; 𝑠𝑙2, 𝑠𝑙3 : L2,
L3 cache size; 𝑡𝑚 , 𝑡𝑙2, 𝑡𝑙3 : latency of reading data from memory, L2 cache, and
L3 cache; 𝑃 : expected speedup; 𝛼, 𝛽 : percentage of positive, negative speedup

Outputs :𝑁1 : optimized tile size; 𝑁2 : optimized refresh interval

1 // Negative sampling space of tiling

2 𝑛𝑒𝑔_𝑠𝑝𝑎𝑐𝑒 ← 𝑀
𝑁2
× 𝑁1 = 𝑀 × 𝑁1

𝑁2
3 // Time of reading negatives using random sampling
4 𝑛𝑒𝑔_𝑡𝑖𝑚𝑒_𝑟𝑎𝑛𝑑𝑜𝑚 ← 𝑀 × 𝑛𝑛 × 𝑡𝑚
5 // Estimate latency of reading cache
6 𝑠𝑡 ← 𝑁1 × 𝑠𝑖𝑧𝑒𝑜 𝑓 (𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑟𝑜𝑤) × 𝑛𝑢𝑚_𝑡ℎ𝑟𝑒𝑎𝑑𝑠
7 if 𝑠𝑡 < 𝑠𝑙2 then
8 𝑡𝑐 ← 𝑡𝑙2
9 else if 𝑠𝑡 ≥ 𝑠𝑙2 and st < sl3 then
10 𝑡𝑐 ← 𝑡𝑙3
11 else
12 𝑡𝑐 ← 𝑡𝑚
13 end
14 // Time of reading negatives using tiling
15 𝑛𝑒𝑔_𝑡𝑖𝑚𝑒_𝑡𝑖𝑙𝑖𝑛𝑔← 𝑛𝑛 × 𝑀

𝑁2
× ( (𝑁2 − 𝑁1) × 𝑡𝑐 + 𝑁1 × 𝑡𝑚 )

16 𝑛𝑒𝑔_𝑠𝑝𝑒𝑒𝑑𝑢𝑝 ← 𝑛𝑒𝑔_𝑡𝑖𝑚𝑒_𝑟𝑎𝑛𝑑𝑜𝑚
𝑛𝑒𝑔_𝑡𝑖𝑚𝑒_𝑡𝑖𝑙𝑖𝑛𝑔 =

𝑡𝑚

𝑡𝑐 +(𝑡𝑚−1)×
𝑁1
𝑁2

≈ 𝑁2
𝑁1

17 𝑝𝑜𝑠_𝑠𝑝𝑒𝑒𝑑𝑢𝑝 ← 𝑛𝑝×𝑡𝑚
𝑛𝑝×𝑟×𝑡𝑐 +𝑛𝑝×(1−𝑟 )×𝑡𝑚

18 // Percentage of speedup

19 𝛼 ← 𝑝𝑜𝑠_𝑠𝑝𝑒𝑒𝑑𝑢𝑝
𝑃

𝛽 ← 𝑛𝑒𝑔_𝑠𝑝𝑒𝑒𝑑𝑢𝑝
𝑃

20 // Calculate 𝑁1 𝑁2
21 𝑁1 ← 𝑓0 (𝑠𝑙2, 𝑠𝑙3, 𝑛𝑢𝑚_𝑡ℎ𝑟𝑒𝑎𝑑𝑠, 𝑒𝑚𝑏_𝑑𝑖𝑚)
22 𝑁20 ←

𝑀×𝑁1
𝐼

23 𝑁21 ←
𝑁1
𝛽×𝑃

24 if 𝑁20 < 𝑁21 then
25 𝑁2 ← 𝑁20
26 else
27 𝑁2 ← 𝑁21
28 end
29 𝑁1 ← 𝑁1

determined by 𝑁1
𝑁2

(Line 2) and affects the training results. Thus, 𝑁1
𝑁2

affects the training results. (2) We determine the latency of reading
negative embeddings by estimating which level of cache can buffer
a tile of embeddings (Lines 5-13). (3) We calculate the total time
of reading negative embeddings and speedup after using random
tiling, and the speedup can be approximated as 𝑁2

𝑁1
(Lines 15-16).

(4) We calculate the speedup of reading positive embeddings after
using random tiling (Line 17). (5) Negative and positive speedups
for 𝛼, 𝛽 (in percentile) of the total speedup (Line 19). In our design,
we set 𝛼, 𝛽 to 0.15 and 0.85, respectively. (6) We first obtain 𝑁1
via function 𝑓0. The main idea of 𝑓0 is to determine a suitable 𝑁1
through the number of threads and the embedding size to ensure
that 𝑛𝑢𝑚_𝑡ℎ𝑟𝑒𝑎𝑑𝑠 × 𝑁1 embeddings can be held in the L2 cache
(Line 21). (7) We can either choose the negative sampling space
𝐼 = 𝑀 × 𝑁1

𝑁2
or the negative speedup 𝑛𝑒𝑔_𝑠𝑝𝑒𝑒𝑑𝑢𝑝 ≈ 𝑁2

𝑁1
to calculate

𝑁2 (Lines 22-23). (8) We select a smaller 𝑁2 to ensure high accuracy
since smaller 𝑁2 larger negative sampling space (Lines 24-28).

4.3 Parallelization of Similarity Computation
Modern CPUs are usually multi-core architectures and support
the multi-threading paradigm to further exploit instruction-level
parallelism. A multi-core processor typically uses a single thread
in a single physical core. In order to utilize hardware parallelism
(e.g., multiple cores in CPUs, CUDA threads in GPUs) and high-
performance libraries (e.g., BLAS, LAPACK), PyTorch abstracts
input data into tensors (i.e., multi-dimensional matrix) and calcula-
tions into tensor operations. PyTorch-based SimpleX follows the

Figure 5: Overview of our training workload partition strategy. Different col-
ored circles represent the embeddings sampled for different threads. “+” and
“-” denote positive and negative embeddings, respectively.

same design philosophy. As discussed in §3.2, SimpleX first concate-
nates embeddings, then reshapes them and adopts matrix-matrix
multiplication to calculate the similarity.

However, directly adopting such a parallel computing design
in CF training introduces two severe performance problems: (1)
concatenating sampled embeddings into matrices and reshaping
introduce expensive memory copies; and (2) normalization of em-
bedding tensor needs writing of the generated intermediate tensor
𝑅 back to the memory, which causes additional memory access time.
To conquer the above limitations and make full use of the multi-
core architecture and the multi-threading paradigm in CF training,
we propose a new parallel method in that different threads directly
perform dot products after reading sampled user/item embeddings
without concatenation and reshaping.

Figure 5 depicts our proposed parallelization of similarity com-
putation strategy. Specifically, for each iteration, each thread first
fetches one user embedding 𝑆𝑢 , one positive embedding𝑇𝑝𝑜𝑠 , and 𝑛
negative embeddings𝑇𝑛𝑒𝑔 . Then, each thread performs the dot prod-
uct of user embedding and positive/negative embeddings 𝑆𝑢 ·𝑇𝑝𝑜𝑠
or 𝑆𝑢 ·𝑇𝑛𝑒𝑔 . Meanwhile, to facilitate calculations of cosine similar-
ities and reuse these embeddings, each thread also does the dot
product of each embedding with itself, since | |𝑆𝑢 | |2 =

√
𝑆𝑢 · 𝑆𝑢 ,

| |𝑇𝑝𝑜𝑠 | |2 =
√︁
𝑇𝑝𝑜𝑠 ·𝑇𝑝𝑜𝑠 and | |𝑇𝑛𝑒𝑔 | |2 =

√︁
𝑇𝑛𝑒𝑔 ·𝑇𝑛𝑒𝑔 . Each thread

finally generates gradients using the optimized similarity and gra-
dient computation and then updates corresponding embeddings.

This strategy also facilitates updating embedding matrices in a
sparse fashion. Theoretically, we only need to generate the gradi-
ents of involved embeddings and update them. Note that although
PyTorch allows users to set the parameter “sparse” to True to en-
able sparse gradients so as to update embeddings sparsely, it leads
to worse performance as demonstrated in §3.1. By comparison,
in our proposed method, different threads independently and in
parallel are responsible for gradient calculations of involved em-
beddings. Besides, different threads can write embeddings matrices
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independently. Therefore, different threads are able to update these
embeddings instead of updating all embeddings.

4.4 Aggressive Data Reuse
With matrix factorization, the rating matrix 𝑋 is approximated
by the matrix product of two low-rank matrices 𝑆 ∈ R |𝑈 |×𝐾 and
𝑇 ∈ R |𝐼 |×𝐾 . Each row 𝑆𝑢 in 𝑆 can be seen as a feature vector
describing a user 𝑢 and similarly each row 𝑇𝑖 of 𝑇 describes an
item 𝑖 . We need to use the feedback 𝑋 and a suitable loss function
to train 𝑆 and 𝑇 . The training procedure is (1) pick a user-item
pair (𝑢, 𝑖) from 𝑋 . (2) calculate the similarity 𝑥𝑢,𝑖 of the user-item
pair, we can use dot product similarity or cosine similarity. We
focus on cosine similarity since it delivers better training results as
demonstrated in SimpleX. (3) generate loss and loss gradient using
the suitable loss function. (4) do gradient backpropagation to obtain
partial derivatives (gradients) of involved embeddings. (5) utilize
the obtained gradients to update engaged embeddings.

𝜕𝑥𝑢,𝑖

𝜕𝑆𝑢
=
𝑇𝑖 ·

√︁∑
𝑆2𝑢

√︃∑
𝑇 2
𝑖
− 1

2
(∑
𝑆2𝑢

)− 1
2 · 2𝑆𝑢 ·

√︃∑
𝑇 2
𝑖

∑
𝑆𝑢𝑇𝑖(√︁∑

𝑆2𝑢

√︃∑
𝑇 2
𝑖

)2
=
𝑇𝑖 ·

∑
𝑆2𝑢 −

∑
𝑆𝑢𝑇𝑖 · 𝑆𝑢∑

𝑆2𝑢
√︁∑

𝑆2𝑢

√︃∑
𝑇 2
𝑖

(4)

𝜕𝑥𝑢,𝑖

𝜕𝑇𝑖
=
𝑆𝑢 ·

∑
𝑇 2
𝑖
−∑𝑆𝑢𝑇𝑖 ·𝑇𝑖∑

𝑇 2
𝑖

√︃∑
𝑇 2
𝑖

√︁∑
𝑆2𝑢

(5)

The partial derivative of 𝑥𝑢,𝑖 with respect to the variable 𝑆𝑢 is
defined in Equation (4). 𝜕𝑥𝑢,𝑖

𝜕𝑆𝑢
mainly consists of

∑
𝑆2𝑢 the sum of

squares of 𝑆𝑢 ,
∑
𝑇 2
𝑖
the sum of squares of 𝑇𝑖 , and

∑
𝑆𝑢𝑇𝑖 the dot

product of 𝑆𝑢 and 𝑇𝑖 .
We also need to calculate

∑
𝑆2𝑢 ,

∑
𝑇 2
𝑖
, and

∑
𝑆𝑢 when calculat-

ing the cosine similarity 𝑥𝑢,𝑖 of the user-item pair in the forward
phase. Thus, to avoid redundant calculation of the values of

∑
𝑆2𝑢 ,∑

𝑇 2
𝑖
, and

∑
𝑆𝑢𝑇𝑖 , we will cache the values of these variables in the

forward phase to achieve data reuse.
Similarly, the partial derivative of 𝑥𝑢,𝑖 with respect to the variable

𝑇𝑖 is defined in Equation (5). 𝜕𝑥𝑢,𝑖
𝜕𝑇𝑖

is also related to
∑
𝑆2𝑢 ,

∑
𝑇 2
𝑖
, and∑

𝑆𝑢𝑇𝑖 . Thus, we can reuse
∑
𝑇 2
𝑖
,
∑
𝑆2𝑢 , and

∑
𝑆𝑢𝑇𝑖 in the calculation

of 𝜕𝑥𝑢,𝑖
𝜕𝑇𝑖

in the backward computation.

4.5 Optimized Parallel Gradient Update
To parallelize similarity computation (in §4.3), different threads
independently and in parallel are responsible for similarity compu-
tation, gradient calculations, and embedding updates of involved
embeddings. This parallelization strategy brings another challenge
when enabling the behavior aggregation layer.

As aforementioned, the traditional MFmethods only need to read
one user embedding, one positive embedding, and multiple negative
embeddings in each iteration, and then feed these embeddings into
the model to calculate gradients and then update the corresponding
embeddings. But SimpleX uses an extra behavior aggregation layer
to process interacted item sequence of each user to better model
user behaviors. The essence of the behavior aggregation layer is a
small fully connected layer, its input/output dimension is the same
as the embedding dimension.

This layer aggregates the user’s embedding and embeddings of
the user’s historical interaction items to generate a new embed-
ding. Then, we feed the new embedding, a positive embedding,
and multiple negative embeddings, into the model to update the
corresponding embeddings. The effectiveness of the behavior ag-
gregation layer has been proven in many previous works, such as
YouTubeNet [12] and ACF [9]. It has three common aggregation
choices, i.e., average pooling, self-attention, and user-attention

In HEAT, each thread performs the training procedure indepen-
dently to avoid synchronization among threads, which will degrade
the overall performance. Each thread reads the weight matrix of
the behavior aggregation layer to perform forward and backward
computations using different training data. This training mode is
similar to data parallel distributed training. We can follow asyn-
chronous distributed stochastic gradient descent (SGD) and specify
one thread as the parameter server for the global weights of the
behavior aggregation layer, other threads request weights replicas
from the parameter server to process a mini batch to calculate gra-
dients and send them back to the parameter server which updates
the global weights accordingly. However, this method causes high
overheads of memory and synchronization among threads due to
multiple weights replicas and gradients exchange.

To solve this issue, inspired by a prior work (called Hogwild!)
[36] that uses shared memory to hold global weights, which enables
processes to access global weights without lock mechanism, we also
let all threads access global weights without lock mechanism. How-
ever, Hogwild! cannot be directly applied to HEAT since Hogwild!
targets to the sparse optimization problem but the optimization of
the behavior aggregation layer is a dense optimization problem.
In our HEAT design, we let all threads share one weight matrix,
thus each thread just holds a pointer to the weight matrix, and
then generates gradients to update the weight matrix directly. The
conflict will happen when one thread tries to update the weight
matrix while other threads try to read/write the weight matrix since
there is only one copy of the data in the memory. To alleviate the
conflict, we let each thread first accumulate the gradients locally,
and update the global weight matrix every𝑚 iterations.

Listing 1 describes the simplified training workflow of the behav-
ior aggregation layer. Specifically, (1) we enable multi-threading
processing and let aggregator_weights be shared by all threads (Line
7). (2) We calculate weight gradients (weights_grad) locally and ac-
cumulate gradients to the accu_weights_grad (Lines 13-16). (3) We
update the global weight matrix every mini_batch_size (Lines 17-
21). According to our experimental results, we set mini_batch_size
to 32 to avoid accuracy drop.
1 / / I npu t : t o t a l i t e r a t i o n I , i n i t _we i g h t s 0 ,
2 / / a c t i v a t i o n da t a a c t _da t a , ou t pu t s g r a d i e n t ou t s _g r ad
3 / / m i n i _ b a t c h _ s i z e
4 / / Output : updated agg r e g a t o r _we i gh t s
5 typedef Array < f loat , Dynamic , Dynamic> XMatrix
6 XMatrix a gg r e g a t o r _we i gh t s ( emb_dim , i n i t _w e i g h t s 0 )
7 #pragma omp para l l e l shared ( a g g r e g a t o r _we i gh t s ) {
8 in t i _ c o un t s = 0 ; / / i t e r a t i o n coun t s
9 XMatrix we igh t s_g rad = Zero ( emb_dim , emb_dim ) ;
10 XMatrix a c cu_we igh t s_g rad = Zero ( emb_dim , emb_dim ) ;
11 #pragma omp for
12 for ( in t i = 0 ; i < I ; ++ i ) {
13 for ( in t k =0 ; k<emb_dim ; ++k ) {
14 weigh t s_g rad . row ( k ) = a c t _ d a t a ( 0 , k ) ∗ ou t s _g r ad ;
15 }
16 accu_we igh t s_g rad += we igh t s_g rad ;
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17 i f ( i _ coun t s >0 && i _ c oun t s % m in i _ b a t c h _ s i z e ==0) {
18 weigh t s_g rad = accu_we igh t s_g rad / m i n i _ b a t c h _ s i z e ;
19 agg r e g a t o r _we i gh t s −= l _ r ∗ weigh t s_g rad ;
20 accu_we igh t s_g rad = Zero ( emb_dim , emb_dim ) ;
21 } } }

Listing 1: Psuedocode of our behavior aggregator design.

5 PERFORMANCE EVALUATION
In this section, we present our experimental setup and demonstrate
the effectiveness of HEAT compared with other solutions.

5.1 Experimental Setup
Datasets. We evaluate HEAT on five real-world datasets as they
have been preprocessed for fairness and ease of comparison. Specif-
ically, (1) we perform most of our experiments on three datasets,
Amazon-Books, Yelp2018, and Gowalla, which are commonly used
in recent CF works [10, 20]. Amazon-Books, Yelp2018, Gowalla have
52643, 31668, 29858 users, and 91599, 38048, 40981 items, respec-
tively. (2) To demonstrate that HEAT is affordable, we further eval-
uate on two larger datasets, Goodreads Book Reviews (Goodreads)
and Google Local Reviews (2018).

Platforms. We perform our experiments on three types of plat-
forms: (1) a regular memory (RM) node from the Bridges-2 super-
computer [34] equipped with x86-architecture processors. Each RM
node has two 64-core AMD EPYC 7742 CPUs with 32 MB L2 cache
and 256 MB L3 cache; (2) a compute node from the Ookami [5]
cluster equipped with Fujitsu ARM A64FX processors. Each A64FX
processor features 48 cores, 512-bit wide SIMD, 32 MB L2 cache,
and 32 GB HBM2 memory with 1024 GB/s bandwidth; and (3) a
GPU node from the Bridges-2 supercomputer equipped with one
NVIDIA Tesla 32 GB V100 GPU to perform GPU experiments.

Baselines. SimpleXmainly consists of MF, behavior aggregation
layer, and cosine contrastive loss (CCL). Note that Simplex without
aggregation layer degenerates to an MF-based model. We compare
HEAT with five baselines: PyTorch-implemented MF with CCL
(T-MF-CCL), TorchRec-implemented MF with CCL (R-MF-CCL),
PyTorch-implemented SimpleX (T-S), TorchRec-implemented Sim-
pleX (R-S), and CuMF_SGD.

Implementation details.We implementHEATusing C++. Specif-
ically, we implement computation kernels using Eigen [15] for
vector-dot product, and vector-matrix product. Eigen is a C++ tem-
plate library for linear algebra. We use OpenMP to support our
shared-memory multi-threading computation. We use Intel oneAPI
C++ compiler [22] to compile C++ source code. We also use the
Intel MKL library for BLAS operations and LAPACK operations. We
use ARM C/C++ compiler [1] which provides armclang and arm-
clang++. We link HEATto ARM performance library (ARMPL) to
enable BLAS or LAPACK as Eigen’s backend for dense matrix prod-
ucts. ARMPL [2] provides optimized standard core math libraries
such as BLAS, LAPACK, FFT, and sparse routines with OpenMP.

5.2 Training Time
For training epoch time, we first compare HEAT with T-MF-CCL,
R-MF-CCL, T-S, R-S. We run HEAT on the CPU and run T-MF-
CCL, R-MF-CCL, T-S, and R-S on both the CPU and GPU. For this
comparison, we use the embedding dimension of 128, 64 negative

basic config

emb_dim:128 

num_negs:64 batch 

size:1024 

epoch time epoch time

AmazonBooks Yelp18 Gowalla AmazonBooks

T-MF-CCL CPU 173.02 72.19 48.328 T-MF-CCL CPU 173.02

R-MF-CCL CPU 74.02 34.28 21.65 R-MF-CCL CPU 74.02

T-S CPU 264.088 109.61 68.19 T-S CPU 264.088

R-S CPU 115.09 52.52 35.95 R-S CPU 115.09

T-MF-CCL GPU 20.72 8.79 5.76 T-MF-CCL GPU 20.72

R-MF-CCL GPU 11.21 5.23 3.51 R-MF-CCL GPU 11.21

T-S GPU 22.72 10.24 7.467 T-S GPU 22.72

R-S GPU 13.41 6.34 4.36 R-S GPU 13.41

H-CCL 3.83 2.55 1.79 H-CCL 3.83

H-ACCL 7.17 5.31 2.13 H-ACCL 7.17

average

T-MF-CCL CPU Speedup 45.17493473 28.30980392 26.9988827 33.4945404

R-MF-CCL CPU 19.32637076 13.44313725 12.0949721 14.9548267

T-S CPU Speedup 36.83235704 20.64218456 32.0140845 29.829542

R-S CPU 16.05160391 9.890772128 16.8779343 14.2734368

T-MF CCL GPU Speedup 5.409921671 3.447058824 3.21787709 4.02495253

R-MF-CCL GPU 2.92689295 2.050980392 1.96089385 2.3129224

T-S GPU Speedup 3.168758717 1.928436911 3.5056338 2.86760981

R-S GPU 1.870292887 1.193973635 2.04694836 1.70373829
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Figure 6: Comparison of epoch time between SimpleX and HEAT. Simplex
without aggregation layer degenerates to MF-based model.

samples, and 100 historical items for fairness and ease of compari-
son. Moreover, we also compare HEAT with CuMF_SGD (i.e., the
state-of-the-art GPU-based MF solution with high performance)
and TorchRec-based MF (R-MF). For this comparison, we use the
embedding dimension of 128, one negative sample, dot-product
similarity, and mean square error loss because CuMF_SGD only
supports these settings.

Figure 6 shows the training epoch time comparison on the
CPU and GPU among T-MF-CCL, R-MF-CCL, T-S, R-S, HEAT with
CCL (H-CCL), HEAT with behavior aggregation layer and CCL (H-
ACCL). Compared with the CPU baselines, H-CCL achieves 45.2×,
28.3×, and 27.0× speedup over T-MF-CCL on AmazonBooks, Yelp18,
and Gowalla, respectively. H-CCL also achieves 14.9× on average
over R-MF-CCL. H-ACCL achieves 36.8×, 20.6×, and 32.1× speedup
over T-S on AmazonBooks, Yelp18, and Gowalla, respectively. H-
ACCL also achieves 14.3× on average over R-S. Compared with
the GPU baselines, HEAT with CCL achieves 4.5×, 3.4×, and 3.2×
speedup over T-MF-CCL on AmazonBooks, Yelp18, and Gowalla,
respectively. H-CCL also achieves 2.3× on average over R-MF-CCL.
H-ACCL provides 3.2×, 1.9×, and 3.5× speedup over T-S on Ama-
zonBooks, Yelp18, and Gowalla, respectively. H-ACCL achieves 1.7×
speedup on average over R-S. We get such significant speedups
because (1) we let each thread run independently and avoid syn-
chronization between threads, (2) we aggressively reuse data in
forward and backward computation to improve the performance,
and (3) we only update the involved embeddings in each thread.

Figure 7 shows a comparison of training epoch time among
CuMF_SGD on the GPU, TorchRec-based MF on the GPU, and
HEAT on the CPU. The performance of HEAT and CuMF is com-
parable. However, CuMF_SGD implements the most basic CUDA-
based (stochastic gradient descent) SGD solution for MF problems.
CuMF_SGD only supports basic mean squared error loss function, 1

basic config

emb_dim:128 

num_negs:1 batch 

size:1024 

epoch time

AmazonBooks Yelp18 Gowalla

HEAT 0.53 0.28 0.19

CuMF 0.24 0.11 0.09

R-MF 1.51 0.72 0.49

libmf 0.155 0.129 0.112

HEAT 0.53 0.28 0.19

CuMF 0.24 0.11 0.09

R-MF 1.51 0.72 0.49

Speedup 2.849056604 2.571428571 2.578947368 2.66647751
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Figure 8: Performance breakdown of HEAT on CPU. Note that sim and aggr
are short for similarity computation and aggregation.

negative sample, and sets the embedding dimension to a fixed value
of 128 for performance. HEAT achieves 2.6× speedup on average
over TorchRec-based MF.

In addition, we break down the epoch time into different phases.
Figure 8 shows that in HEAT-CCL the time of reading embeddings
takes 40.4%, which proves the necessity of our tiling strategy. Simi-
larity computation including dot product and normalization only
takes up 3.4%, which shows our similarity computation is very
efficient. Moreover, in HEAT-ACCL, the percentage of reading em-
beddings and aggregation reaches 46.3% and 17.8%, respectively,
which indicates aggregation exacerbates the issue of reading em-
beddings and further optimization on the aggregation computation
in future work.

5.3 Training Cost
Next, to demonstrate that our training system is highly affordable,
we compare the training cost of our HEAT on the CPU and SimpleX
on the GPU on two large datasets, i.e., Goodreads Book Reviews
(Goodreads) and Google Local Reviews (2018) (Google). We use
AWS p3.2xlarge instance as the GPU platform, which is equipped
with one 16 GB V100 GPU. The price of p3.2xlarge is $3.06 per hour.
We need two p3.2xlarge to fit these two large datasets since each
GPU has only 16 GB memory. We use AWS c5a.16xlarge as the CPU
platform, which is equipped with one AMD EPYC 7R32 and 128 GB
memory. The price of c5a.16xlarge is $2.46 per hour [4]. Figure 9
shows the comparison of the total training cost of the two methods
for 100 epochs. Compared with SimpleX on the GPU, HEAT can
reduce the cost by 7.9×.
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SimpleX 19.6027 60.7206
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Figure 9: Comparison of total training cost ($) for 100 epochs.
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Figure 10: Speedup & recall with different tiling sizes on AmazonBooks.

5.4 Training Accuracy
After that, we report the training results on different datasets using
the same evaluation metrics (e.g., Recall@20 and NDCG@20) and
parameter configuration as SimpleX in Table 5, to demonstrate
that our proposed multi-threading training system does not affect
the training accuracy. Both SimpleX and HEAT’s negative sampler
obey the uniform distribution. We use the metric “recall”, which is
a widely used indicator to assess the proportion of positive samples
successfully predicted by the CF model to all actually positive sam-
ples. It is calculated as Recall = 𝑇𝑃

𝑇𝑃+𝐹𝑁 , where 𝑇𝑃 and 𝐹𝑁 stand
for true positive and false negative in the confusion matrix, respec-
tively. “NDCG” is short for normalized discounted cumulative gain.
The difference between the Recall@20 of HEAT and the Recall@20
of SimpleX is within 0.01. Therefore, we can conclude that the pro-
posed multi-threading training framework has negligible impact
on training accuracy.

5.5 Impacts of Tiling Sizes and Refresh
Intervals on Performance and Accuracy

Furthermore, we show the effectiveness of our proposed random
tiling strategy and the proposed tuning algorithm for tiling size
and refresh interval. We perform experiments on AmazonBooks
dataset and set the embedding dimension to 128, the number of
negatives to 64, and the number of historical items to 100.

First, we show how the speedup and recall change with different
tiling sizes when the refresh interval is fixed. Figure 10 depicts the
speedup over HEAT with a random negative sampler gradually
decreases with increasing tiling size. In particular, the speedup
exceeds 2×when the tiling size is less than 128 because embeddings
can be fully cached in the L2 cache. Meanwhile, the recall will
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Figure 11: Speedup& recall with different refresh intervals onAmazonBooks.
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Table 5: Comparison of training results under different frameworks and datasets.

Method AmazonBooks Yelp18 Gowalla
Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

MF-CCL 0.0559 0.0447 0.0698 0.0572 0.1837 0.1493
SimpleX 0.0583 0.0468 0.0701 0.0575 0.1872 0.1557

HEAT-CCL 0.0521 0.0416 0.0651 0.0548 0.1742 0.1413
HEAT-ACCL 0.0541 0.0429 0.0683 0.0561 0.1793 0.1457

Table 6: Tiling size and refresh interval for optimal training accuracy and speedup. “R” and “T” represent random tiling sampler and random sampler, respectively.

Method AmazonBooks Yelp18 Gowalla
Recall@20 Tile Interval Speedup Recall@20 Tile Interval Speedup Recall@20 Tile Interval Speedup

RCCL 0.0506 N/A N/A N/A 0.0625 N/A N/A N/A 0.1691 0.1495 N/A N/A
RACCL 0.0527 N/A N/A N/A 0.0675 N/A N/A N/A 0.1732 0.1554 N/A N/A
TCCL 0.0498 1024 4096 1.5 0.0608 1024 3072 1.8 0.1663 512 4096 1.7

TACCL 0.0518 1024 3072 1.6 0.0657 1024 4096 1.5 0.1716 1024 4096 1.8

Table 7: Epoch time and recall w/ and w/o local gradient accumulation.

Metrics AmazonBooks Yelp18 Gowalla
W W/O W W/O W W/O

Epoch 7.17 16.92 5.31 9.45 2.13 4.96
Recall 0.0527 0.0531 0.0675 0.0678 0.1732 0.1741

gradually increase as the tiling size increases because the sampling
space of the negative sampler increases.

Second, we show how the speedup and recall change with differ-
ent refresh intervals when the tiling size is fixed. Figure 11 shows
the speedup over HEAT with a random negative sampler gradually
increases with increasing refresh interval. The reason is that in-
creasing refresh interval raises the probability of data appearing in
the cache, thereby reducing the time to read data. Simultaneously,
the recall will gradually decrease as the refresh interval increases
because the sampling space of the negative sampler decreases. From
these two experiments and the derivation of §4.2, we conclude that
we need to adjust tiling size and refresh interval simultaneously to
get the optimal accuracy and performance.

In addition, Table 6 shows the tiling size and refresh interval
corresponding to the optimal training results and speedup obtained
by our Algorithm 1. HEAT with the random tiling sampler delivers
a 1.6× speedup on average over HEAT with the random sampler,
while the recall drop is also negligible (i.e., within 0.003).

Amazon
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Figure 12: Scalability of HEAT with original random sampler (random) and
our random tiling sampler (tiling).

0

50

100

150

200

250

 AmazonBooks  Yelp18  Gowalla

E
po

ch
 ti

m
e 

(s
)

MF CCL  SimpleX
HEAT CCL HEAT ACCL

1

1.5

2

2.5

3

3.5

64 128 256 512 1024

Sp
ee

du
p

Tile size

CCL ARM CCL AMD
ACCL ARM ACCL AMD

Figure 13: Comparison of training epoch time on ARM CPUs.

5.6 Behavior Aggregation Evaluation
To prove the proposed local gradient accumulation benefits the
performance of the behavior aggregation layer, we compare the per-
formance of HEAT with and without local gradient accumulation,
as shown in Table 7. HEAT with our local gradient accumulation
provides a 2.2× speedup on average due to fewer write conflicts.
Moreover, its recall drop is within 0.0009.

5.7 Scalability Evaluation
To demonstrate the scalability of HEAT, we choose the Amazon-
Books dataset and set the embedding dimension to 128 and the
number of negatives to 64. We increase the number of threads/-
cores from 1 to 64 (commonly used in other CF works [42, 47]).
Figure 12 illustrates that the epoch time (in log-scale) decreases
linearly as the number of threads increases (with the parallel effi-
ciency of 63.7%). HEAT can achieve this high scalability because (1)
different threads are responsible independently for the gradient cal-
culation and embedding update in parallel, and (2) there is no need
for communication and synchronization across different threads.

5.8 Discussion of Different CPU Architectures
To explore suitable CPU architectures for CF applications, which
feature highly irregular memory access and low computation in-
tensity, we also evaluate the performance of HEAT on an ARM-
architecture processor, i.e., Fujistu A64FX, since A64FX provides
1024 GB/s bandwidth and 48 compute cores with 512-bit wide SIMD.
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Figure 14: Comparison of tiling speedup on ARM and AMD CPUs.

We first compare the overall training performance between Sim-
pleX and HEAT on the ARM CPU. SimpleX is implemented using
ARMPL-optimized PyTorch, while HEAT is compiled by armclang++
and linked to ARMPL. Figure 13 shows the training epoch time
comparison between SimpleX and HEAT on AmazonBooks, Yelp18,
and Gowalla datasets, HEAT with CCL achieves 50.4×, 42.6×, and
44.1× speedup over SimpleX without aggregation layer (degen-
erated to classic matrix factorization), respectively; HEAT with
ACCL provides 41.7×, 37.9×, and 39.9× speedup over SimpleX with
aggregation layer, respectively.

We then show a comparison of tiling speedup on the ARM CPU
and on the AMD CPU in Figure 14. Specifically, our tiling optimiza-
tion only provides up to 1.5 × speedup on the ARM CPU, whereas
it achieves up to 3.1 × speedup on the AMD CPU. This is because
of three reasons: (1) ARM only has two levels of caches (with a
L2 cache of 32 MB), while AMD has three levels of caches (with a
much larger L3 cache of 256 MB); a smaller cache leads to a higher
cache miss rate. (2) Negative sampling following the uniform distri-
bution leads to irregular memory access, which cannot give fully
leverage the high memory bandwidth of HBM2. (3) The ARM CPU
has fewer physical cores (i.e., 48 cores) than the AMD CPU, and the
computation time takes more than 70% of the total time, resulting
in limited optimization space for tiling.

6 RELATEDWORK
BPR [37] proposes a generic optimization criterion for personal-
ized ranking via maximizing posterior estimator derived from a
Bayesian analysis of the problem [37]. Its core idea behind is to
find suitable Θ to represent parameters of an arbitrary model via
maximizing posterior estimator 𝑝 (Θ| > 𝑢) ∝ 𝑝 (> 𝑢 |Θ)𝑝 (Θ), where
> 𝑢 represents a user’s preference. BPR concentrates on the most
common scenario with implicit feedback (e.g. clicks, purchases).
However, BPR uses only one negative sample, which causes inferior
results for many CF models [31].

SimpleX [31] investigates the impacts of the loss function, and
negative sampling in CF. It demonstrates the importance of select-
ing an appropriate loss function and a proper number of negative
samples. Inspired by contrastive loss [17] in computer vision, Sim-
pleX proposes a cosine contrastive loss (CCL) tailored for CF. How-
ever, SimpleX implemented its algorithm using PyTorch and did
not consider the computational efficiency on either CPU or GPU.

CuMF_SGD [48] utilizes GPU’s massive threads to update em-
beddings in parallel. CuMF_SGD implemented the basic stochastic
gradient descent (SGD) solution using CUDA for MF problems.

However, it cannot create user-specific item ranking using the
concept of positive/negative items and only supports dot-product
similarity, basic mean squared error loss function and requires a
fixed embedding dimension (i.e., 128) to achieve high performance.

MSGD [30] is an MF approach for large-scale CF based recom-
mender systems on GPUs. To parallelize SGD, MSGD removes
dependencies between user and item pairs. It also splits the MF
optimization objective into many separate sub-objectives. However,
the optimizations of MSGD cannot be applied to multi-core CPUs
because MSGD specially optimizes its parallelization approaches
for coalesced memory access in GPUs. Furthermore, similar to
CuMF_SGD, it does not support sampling multiple negative items,
which is crucial to the final training results. Due to the lack of
source code for MSGD, we compare the performance of HEAT with
SimpleX and CuMF_SGD.

7 CONCLUSION AND FUTUREWORK
In this work, we propose an efficient and affordable collaborative
filtering-based recommendation training system that incorporates
features of the multi-level cache and multi-threading paradigms
of modern CPUs. It has a series of optimizations to address the
performance issues of irregular memory accesses, unnecessary
memory copies, and redundant computations. Evaluation on five
widely used datasets with AMD and ARM CPUs shows that HEAT
achieves up to 45.2× and 4.5× speedups over existing CPU and GPU
solutions, respectively, with 7.9× cost reduction.

In the future, we plan to first extend our work to support dis-
tributed training with rating matrix partitioning and efficient com-
munication. Then, we will apply our random tiling strategy to more
recommendation models such as graph neural network based CF.
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