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ABSTRACT
Recent studies have shown that Binary Graph Neural Networks
(GNNs) are promising for saving computations of GNNs through bi-
narized tensors. Prior work, however, mainly focused on algorithm
designs or training techniques, leaving it open to how to materialize
the performance potential on accelerator hardware fully. This work
redesigns the binary GNN inference backend from the efficiency
perspective. It fills the gap by proposing a series of abstractions
and techniques to map binary GNNs and their computations best to
fit the nature of bit manipulations on GPUs. Results on real-world
graphs with GCNs, GraphSAGE, and GraphSAINT show that the
proposed techniques outperform state-of-the-art binary GNN imple-
mentations by 8-22X with the same accuracy maintained. BitGNN
code is publicly available.1.
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1 INTRODUCTION
Recent years have witnessed a rapidly increasing adoption of Graph
Neural Networks (GNNs) in various domains, from social net-
works [1] to bioinformatics [2], computational chemistry [3, 4],
3D computer vision [5, 6], and so on. GNN allows the linear and
non-linear transformations of Neural Networks to work directly
on graphs. By seamlessly integrating both the graph structure and
node/edge features into the modeling, GNN is a natural fit for
graph-based problems. Numerous studies [7–12] on graph-based
classification and prediction have reported significantly better re-
sults achieved through GNNs than traditional methods.

Because real-world graphs are often large, GNN inference is
often time-consuming and space-hungry, frequently exceeding the
capacity of the storage or memory and the desirable latency. In-
spired by the binarization (i.e., quantization to the 1-bit extreme)
for ordinary deep neural networks [13–17], an emerging effort is
to investigate the potential of GNN binarization. By converting
each value in the activation maps, weights, and/or adjacency ma-
trices into a single bit (sometimes through matrix factorizations),
GNN binarization can significantly reduce the space demands and
computation amounts.

The continuous research in the recent several years on GNN
binarization has achieved some remarkable progress [18–21]. For
instance, the accuracy loss caused by binarization has reduced from
16% to less than 5% [18]. These studies show solutions that can con-
trol the loss of accuracywithin a small percentage on various graphs
and architectures while giving significant theoretical reductions
in the number of computations and memory usage. Nevertheless,
how to turn the potential into full speedups and memory savings
on real machines remains an open question. For example, based on
a theoretical analysis, the authors of a recent study [18] on binary
GNNs report ∼47X potential savings of computations and ∼30X
possible memory footprint reduction. Still, their experiments show
no speedups or memory savings over the original non-binarized
GNN.

Existing work on binary GNNs mainly focuses on algorithm-
level improvement on network architectures [18–20] or training
techniques [18, 20, 21]. The immense potential of binary GNN
inference on hardware has not yet been harvested.
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Quantizing tensors into bits and representing and manipulating
them efficiently on word-based architecture involves lots of intrica-
cies. It is even more so for GNNs, for several reasons. First, a GNN
layer typically consists of interleaving dense and sparse operators.
It is not straightforward to reconcile the inconsistency between
dense and sparse bit-level layouts while minimizing the inference
latency and achieving desirable accuracy-speed tradeoffs. Second,
in binary GNNs, the meaning of bits in activations/weights (1/0
means +/-) and graphs (1/0 means connectivity) differ. For these spe-
cial properties, integer intrinsics should be carefully orchestrated
to maximize bit-level and thread-level parallelism. Third, to fully
harness the significant memory reduction brought by bit represen-
tation, it is important to synergize the careful use of registers and
memory hierarchy with the massive parallelism on accelerators.

This work provides the first known systematic exploration to
unlock the performance potential of binary GNNs. The target hard-
ware it focuses on is Graphics Processing Units (GPUs), the most
commonly used device for GNNs and binary GNNs. This work
makes four-fold contributions:
(1) Materializing binary GNNs with a series of bit-level opti-
mized abstraction. To effectively materialize a binary GNNmodel,
there are various possible compositions of bit-level BLAS kernels
with various choices in precisions, eliminations of rebinarization,
and fusions. We propose the first known two-level Binary GNN
abstraction, which hides the complexities from users, offers flexible
support of various scenarios and enables easy drop-in replacements
for converting a GNN into a binary GNN.
(2) Representation of bit tensors. Binary GNN includes binarized
activations, weights, and adjacency matrices. Unlike activations and
weights, adjacency matrices are typically sparse, the representation
of which is subject to a granularity dilemma. We propose a fine-
representing dynamic-coarsening (FRDC) scheme to simultaneously
minimize graph storage cost and maximize kernel efficiency on a
GPU. Additionally, we propose several solutions to reconcile the
1/0 and +/- inconsistency between binary graphs and activations.
(3) Materialization of the BitGNN abstractions.We develop the
BitGNN abstractions into an efficient library through careful bit
manipulations via binary intrinsics and memory and parallelism
optimizations. We devise and materialize the abstractions for differ-
ent precision needs with bit-manipulation intrinsics. We propose a
series of techniques with dedicated treatment on workload decom-
position, bit-tensor load/store with registers and on-chip memory
usage, intra-warp and inter-warp synchronizations, and efficient
binary sparse matrix multiplication (BSpMM) kernels.
(4) Evaluation of BitGNN.We integrate all the techniques into
a full solution, namely BitGNN, in the form of a collection of a
library and tuning utilities. Compared to the state-of-the-art binary
GNN [18] and full-precision GNN [22] implementations, BitGNN
gives up to 26X, 22X, and 19X latency reduction on GCN, Graph-
SAGE and GraphSAINT models. Meanwhile, BitGNN makes GNNs
possible to efficiently process several graphs that are too large to
process by prior solutions.

2 BACKGROUND
2.1 Graph Neural Networks
There are typically two types of operations in a GNN: aggregate
and apply. The aggregate phase collects the information from the
input graph’s geometric structure. The apply phase performs linear
or non-linear operations as in typical Neural Networks. A GNN can
be formulated as follows:

X(𝑙+1)
𝑖

= 𝛾𝜃

(
X(𝑙 )
𝑖

,Ψ𝑗∈N(𝑖 ) 𝜙𝜃
(
X(𝑙 )
𝑖

,X(𝑙 )
𝑗
, E𝑖, 𝑗

))
For node classification tasks, the node representation is the acti-

vation in each GNN layer. The representation of node 𝑖 at layer 𝑙
is denoted as X(𝑙 )

𝑖
. N(𝑖) represents the set of neighbors of node 𝑖 .

In an aggregate phase, Ψ denotes a permutation-invariant function
that performs message aggregation. The commonly used functions
include sum, mean, and max. Before the aggregation, 𝜙𝜃 denotes
any user-defined operators applied to the following: X𝑖 (the repre-
sentation of node 𝑖), X𝑗 (the representation of node 𝑗 , the neighbors
of node 𝑖), or E𝑖, 𝑗 (the representation of edge (𝑖, 𝑗)). After the aggre-
gation, 𝛾𝜃 denotes the operations of the apply phase. Most GNNs
have neural operations (e.g., MLP and ReLU) in this phase. We
briefly explain several popular GNNs.

GCNConv Graph Convolutional Network (GCN) [7] introduces
a semi-supervised learning algorithm that can learn the graph struc-
ture directly. A forward layer of GCNConv can be defined as follows:

X(𝑙+1) = 𝜎 (�̃�X(𝑙 )W(𝑙 ) ),

where, the normalized adjacency matrix �̃� equals �̂�−
1
2𝐴�̂�−

1
2 . The

𝐴 = 𝐴 + 𝐼 is the adjacency matrix plus self-adjacency, and �̂�𝑖𝑖 =∑
𝑗=0𝐴𝑖 𝑗 is its diagonal out-degree matrix. 𝑋 (𝑙 ) ∈ R𝑁×𝑑 denotes

the node feature embedding in the 𝑙-th layer, and𝑊 (𝑙 ) is the learn-
able parameters or weights, and 𝜎 represents a non-linear activation
function (e.g., ReLU). Bi-GCN [18] is composed of two such GCN-
Conv layers.

SAGEConv SAGEConv [23] enhances the graph convolution
layer with a mean aggregator as it is a linear approximation of a
localized spectral convolution [7]. It also extends the layer with a
skip connection to emulate the concatenation of the prior layer’s
node representation in the convolutional aggregator. A SAGEConv
layer is defined as follows:

X(𝑙+1)
𝑖

= X(𝑙 )
𝑖

W(𝑙 )1 +mean𝑗∈N(𝑖 )X
(𝑙 )
𝑗
·W(𝑙 )2

GraphConv GraphConv [24] is similar to SAGEConv except
that it uses a normal sum aggregator:

X(𝑙+1)
𝑖

= X(𝑙 )
𝑖

W(𝑙 )1 +
∑︁

𝑗∈N(𝑖 )
X(𝑙 )
𝑗

W(𝑙 )2

To allow learning on large graphs, GraphSAGE [23] proposes
a neighbor sampling approach to deal with the neighbor explo-
sion problem on large graph training. Bi-GraphSAGE [18] is com-
posed of two such SAGEConv layers. GraphSAINT [25, 26] intro-
duces a graph sampling-based inductive learning approach. The
Bi-GraphSAINT [18] model referred to in this paper comprises two
GraphConv layers and a fully-connected layer.
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2.2 Binary Neural Networks
A bit-dot-product between two 0/1 bit-vectors can be computed as
follows:

𝑐 = 𝑝𝑜𝑝𝑐 (𝑎 (𝑏 ) & 𝑏 (𝑏 ) ),
where & denotes logic AND operation and 𝑝𝑜𝑝𝑐 () is the population
count function that counts the number of 1 bits.

In binary neural networks (BNNs) [13–16], the binarization func-
tion is often defined as follows:

𝑥 (𝑏 ) = 𝑠𝑖𝑔𝑛(𝑥)
{
1, if 𝑥 ≥ 0
−1, otherwise

The bit-dot-product operation of +1/-1 bit-vectors can be com-
puted through:

𝑐 = 𝑛 − 2 × 𝑝𝑜𝑝𝑐 (𝑎 (𝑏 ) ⊕ 𝑏 (𝑏 ) ) = 2 × 𝑝𝑜𝑝𝑐 (𝑎 (𝑏 ) ⊙ 𝑏 (𝑏 ) ) − 𝑛
where ⊕ is exclusive-OR (XOR), ⊙ is exclusive-NOR (XNOR), and 𝑛
is the bit-width of 𝑎 (𝑏 ) and 𝑏 (𝑏 ) .

2.3 Bit-ops Intrinsics
Other than commonly-seen logical AND (&), OR(|), XOR (∧), nega-
tion (¬), bit left-shifting (≪) and right-shifting (≫), GPUs are
equippedwith several integer intrinsics that can be used for efficient
bit operations. __popc() and __popcll() allow fast bit-accumulation
of a single 32-bit or 64-bit unsigned integer. __shfl_sync() is for reg-
ister data exchange between threads in a warp [27]. By indicating
the thread lane to exchange, the intrinsic will receive register data
from the designated thread lane. __ballot_sync() is a warp-voting
intrinsic used for register data exchange between threads in a warp.
Assuming all threads in a warp are active, it will return a bit-masked
32-bit unsigned integer showing the boolean evaluation result of
the predicate-argument in each thread. It is the same as a clockwise
transpose of a bit-column into a bit-row and can be useful for fast
binarizing the full-precision values with a warp of threads. __brev()
and __brevll() reverse the bit-order of a 32-bit and a 64-bit unsigned
integer, respectively. When paired with __ballot_sync(), they can
be helpful in rotating a bit-column 90◦ anti-clockwise into a bit-row
[28]. Our implementation of efficient binary GNN is based on those
intrinsics. As similar intrinsics can be found in other vendors’ GPUs
[29], our BitGNN is portable to other GPU platforms.

3 BITGNN
Our design of BitGNN aims to achieve (i) efficiency: a GNN using
BitGNN should enjoy a significantly higher speed; (ii) accuracy:
a binary GNN that uses BitGNN should be able to get the same
accuracy as the binary GNNs by prior approaches do; (iii) ease to
use: with BitGNN, users should be able to convert a GNN into a
binary GNN easily; (iv) flexible to tune: Different GNNs may require
a different accuracy-speed objective; with BitGNN, users should be
able to tune the tradeoff easily.

This section presents our design. The design of BitGNN consists
of a set of novel abstractions, representations, algorithms, and op-
timizations. The final materialization is a library and utilities that
users can use to build and tune their efficient binary GNNs easily.

Two key components of a GNN are operations and tensors. Cor-
respondingly, our creation of BitGNN centers around three key

research questions: (R1) What should be the abstractions of com-
mon binary GNN operations? (R2) How should binary tensors be
represented? (R3) How to assemble them into efficient ready-to-use
libraries?

3.1 R1: What should be the abstractions of
common binary GNN operations?

GNNs have many kinds, and their binarized forms may consist
of even more complexities and variations, depending on which
part of the GNN is binarized for good accuracy-speed tradeoffs.
For BitGNN to be easily applicable to various GNNs, it is hence
important to abstract the common binary GNN operations into
some building blocks. The result of such an abstraction must cover
the most important operations of various binary GNNs, and at
the same time, support their different needs in binarization. To
the best of our knowledge, no prior work has studied systematic
abstractions of binary GNN operations.

3.1.1 Complexities. To provide a deeper understanding of the com-
plexities involved in designing binary GraphNeural Network (GNN)
operations, this section takes a closer look at the binarization pro-
cess using the Graph Convolutional Network (GCN) as an example.

The top graph in Figure 1 illustrates the original GCN [7]. A
forward pass of GCN involves two GCNConv layers followed by a
softmax. Each GCNConv layer starts with a matrix-matrix multipli-
cation (MM), where the input activation is multiplied by the weight
matrix. The result at each graph node is then aggregated with its
neighbor nodes’ results, which is carried out by multiplication with
the adjacency matrix of the graph. Because the adjacency matrix is
typically sparse, the second matrix multiplication can use sparse
matrix multiplication (SpMM).

Below the original GCN in Figure 1, three variations of the bina-
rized form of GCN are shown. The first one, Bi-GCN-1, is based on
a previous work [18]. It replaces the first MM with binary matrix
multiplication (BMM) by binarizing the weight matrix offline. It
also includes three extra operations - batch normalization (BN),
a tensor binarization (BIN) before BMM, and a scaling operation
(SCL) after the BMM to recover the scale of the results. The second
MM is also replaced with BMM, and a BIN and an SCL operation
are inserted before and after BMM, respectively.

The binarized form of Bi-GCN-1 focuses solely on the binariza-
tion of the two MM operations in the original GCN. However, other
operations in the GCN could also be binarized, perhaps to varying
degrees. For example, Bi-GCN-2 in Figure 1 demonstrates a variant
in which the two SpMM operations are "half" binarized - that is,
the adjacency matrices are binarized, but the activation maps are
not. In contrast, Bi-GCN-3 in Figure 1 showcases a scenario where
the two SpMM operations are fully binarized, with more auxiliary
operations included. All three variations have their advantages and
disadvantages: as the binarization increases, there is a potential for
greater speedups, but also an increased risk of accuracy loss. It is
evident that, besides these three variants, there can be numerous
other variants, each corresponding to the combination of operations
binarized to a certain degree.

Designing binary GNN operations becomes even more complex
when the GNN contains additional operations, as illustrated by
the original architectures of SAGE and SAINT depicted at the top
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Figure 1: Illustration of the original full-precision GCN [7], and several variants of binary GCN.

of Figure 2. Our analysis of numerous common GNNs and their
binarized forms lead us to several observations:

(i) There can be multiple possible binarized forms for a given
GNN, each involving numerous additional operations.

(ii) A simple one-on-one mapping is insufficient. After various
binarizations, a single operation in the original GNN may be re-
placed with different sequences of operations. Therefore, creating
only one abstraction for the binarized form of a specific original
operation is inadequate.

(iii) There is a set of operations that constitute the core operations
of binary GNNs. The variations depicted in Figure 1, for instance,
are all composed of BN, BIN, BMM, SCL, SpMM, and softmax,
despite their differences in specific connections and architectures.
This pattern also emerges in other GNNs since most GNNs have
MM and SpMM as their core operations.
3.1.2 Two-level BitGNN Abstraction.

Based on our observations, we develop a two-level BitGNN ab-
straction and design them according to the following principles:

(1) Coverage: The abstractionmust cover themost time-consuming
core parts of common GNNs.

(2) Flexibility: The abstraction should support the need for dif-
ferent accuracy-speed tradeoffs.

(3) Efficiency: The abstraction should be mindful of the implica-
tions to computing efficiency.

(4) Ease of application: The abstraction should allow for easy
adoption in GNN development so that a GNN can be easily revised
into a binary GNN. Furthermore, it should support easy tuning
of the binarization process to achieve different accuracy-speed
objectives.

The bottom of Figure 2 displays the core components of the
abstraction. The low-level functions provide the primary building
blocks, while the high-level functions offer options for drop-in re-
placement of the components in GNNs for binarization. The former
offers flexibility, while the latter offers ease of use.

Low-level functions. The low-level functions are grouped into
three categories. The first group focuses on the binarization of ma-
trix multiplication (MM). In prior binary GNN materializations, one
of the performance bottlenecks is the re-binarization of activation
tensors in each layer. Our design of the functions takes this into
consideration. We include seven BMM variants, each corresponding
to a different combination of input activation, weight matrix, and
output precisions, as shown at the bottom of Figure 2. These preci-
sions determine the auxiliary operands required (e.g., full-precision
inputs require BIN before participation in the multiplication). In our
design, these operands are included within the BMM functions to
avoid invocation overhead and the need for complex kernel fusions.

One of our insights is that when BIN immediately follows SCL,
the SCL becomes redundant and can be removed. The reason for this
is that the scaling factor is always positive2, so the element-wise
multiplication of the scaling factor will not affect the binarization
result.

The second group of low-level functions is related to SpMM
operations that are commonly used for multiplications involving
adjacency matrices in GNNs [30]. Our design of binarized forms
includes eight variants, as illustrated at the bottom of Figure 2.
The reasons for these variants include the accuracy-speed tradeoff,
similar to the BMM case, and the special property of adjacency
matrices. In GNN workloads, the connections between two nodes
may or may not carry weights. In the former case, only 0/1 values
are in the adjacency matrix, representing node connectivity. In the
latter case, BSpMM can still be applied using a standard approach
to binarize an adjacency matrix through factorization. Following
the matrix multiplication, there will be a multiplication with a
full-precision factorization vector.

The third group consists of auxiliary operations, such as the add
operations for self-connectivity and concatenation operations. As

2In Bi-GCN [18], for instance, the scaling factors are the row-wise and column-wise
L1 normalization values.
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binary operations may output results of different precisions, this
group includes several variants. However, unlike other operations,
mixed precisions of operands for these two operations are not
meaningful in practice, and our design excludes those variants.
Notation: for convenience, the following discussion uses a three-
letter suffix to distinguish the variants of an operator: For instance,
BSpMM.FBB represents BSpMM that takes in a full-precision (F)
matrix (1st operand) and a binary (B) matrix (2nd operand) as inputs
and produces a binary (B) matrix.

High-level functions. The low-level functions cover the most
essential operations in binary GNNs and provide flexibility in meet-
ing various needs. To facilitate adoption, we also design a set of
high-level functions that enable simple drop-in replacement of
key time-consuming operations in a GNN for binarization. Our
research reveals that despite the wide range of GNNs available,
their most time-consuming core operations are matrix multiplica-
tions (MM) and sparse matrix multiplications (SpMM). As a result,
our high-level functions revolve around these operations and their
combinations.

The high-level functions are organized into two groups, each
combining multiple low-level functions to ease the adoption of
binary GNNs. The first group is designed for a typical case where
BSpMM immediately follows BMM, as seen in GCN illustrated
in Figure 2. The variants are determined by the activation tensor
between the BMM and SpMM operations. It can be either in bina-
rized form (B) or full-precision form (F). Consequently, we have
BMM.FBB+BSpMM.BBB or BMM.FBF+BSpMM.FBB for the first GC-
NConv layer, and BMM.BBF+BSpMM.FBF or BMM.BBB+BSpMM.BBF
for the second GCNConv layer. The second group is designed for
another common case where some auxiliary operations follow MM,
as seen in the architecture of SAGE in Figure 2. The auxiliary op-
erator comes from self-connectivity, for which we can use either
ADD.BBF or ADD.FFF to merge the activation output at the end of
the first SAGEConv layer.

The top of Figure 2 demonstrates how the three GNNs can be
easily converted into binary GNNs by replacing the common op-
eration sequences with the corresponding high-level functions.
Low-level functions with small latency, such as ADD, are fused
with BMMs or BSpMMs, while high-level functions are optimized
through inter-layer fusions between BMMs and BSpMMs using
cooperative kernel launch to improve thread block synchroniza-
tion. Furthermore, the high-level functions enable easy tuning of
binary GNNs for accuracy-speed tradeoffs. For instance, the user
can replace the two MM-SpMMs in GCN.bin shown in Figure 2
with other options in the high-level function set. As long as the
output precision of a predecessor block matches the input precision
of its successor, the correctness of types is guaranteed, while the
accuracy and speed may vary.

To summarize, BitGNN’s design of high-level and low-level ab-
stractions provides comprehensive coverage of the decision space
for binary GNN architecture exploitation. At the low-level, the
design addresses the various precision requirements of the core op-
erations while minimizing invocation overhead. At the high-level,
the design avoids unnecessary rebinarization, offers flexibility for
tuning accuracy-speed tradeoffs, and enables straightforward drop-
in replacement for converting GNNs to binary GNNs.

3.2 R2: How to represent binarized tensors?
The representation of binarized tensors plays a crucial role in de-
termining the efficiency of memory usage and data access speed of
binarized GNNs. However, existing binary GNN implementations
such as those in [13–16] do not truly store activation or weight
tensors in bits, nor do they consider storing the graph in bits.

In conventional DNNs, some work has explored the represen-
tation of binary tensors and proposed various representations, as
seen in [28, 31]. Nevertheless, two special complexities in GNNs
call for innovative solutions. In the following, we will focus on
discussing each of these complexities and the solutions we propose.

3.2.1 Granularity Dilemma. The first complexity is about the gran-
ularity of representations.

Dilemma. There are many representations proposed for sparse
matrices, and one that shows a particularly good fit for adjacency
matrices is block-based representation [30]. In this representation,
the matrix is viewed as a composition of many k-by-k blocks, with
each block’s content stored in a dense format. The block-level
representation uses a sparse format (e.g., CSR) with all-zero blocks
being ignored.

This representation, however, faces a dilemma with block size.
The smaller the block size, the fewer zeros will be included in
the representation, but it also leads to more reduction operations
among blocks. A smaller block is also less friendly to the massive
parallelism of the GPU.

Solution. To address the dilemma of block size, we propose fine-
representing dynamic-coarsening (FRDC). This approach utilizes a
fine-grained representation to achieve high space efficiency and
on-chip coarsening to attain high time efficiency. Specifically, FRDC
uses a 4×4 block size for representation. The choice of 4×4 is mo-
tivated by the need to use a fine-grained representation to store
matrices while using online stitched coarse-grained representation
for computations. This approach saves storage and memory space
while better exploiting bit-level parallelism.

Using larger block sizes such as 4×8 or 8×4 doubles memory
usage, while smaller tiles lead to increased dynamic stitching over-
head. Our empirical results demonstrate that 4×4 is a suitable block
size. During computations, the 4×4 bit-blocks containing 16 bits are
transferred from GPU DRAM to shared memory/registers. The Bit-
GNN kernel then assembles the 4×4 bit-blocks into 32-bit aligned
words on shared memory and efficiently processes them using
word-level bit manipulation intrinsics (see Section 2.3). By using
this approach, we canmaintain the space benefits of the fine-grained
representation while achieving maximal parallelism.

3.2.2 Inconsistent Value Ranges. The second special complexity
arises from the different value ranges of tensors after binarization.

One common situation is the inconsistency between adjacency
matrices and activation maps. While adjacency matrices use 1/0 to
denote edge connectivity, the basic operation is a 0/1 dot-product.
On the other hand, binary neural network activation uses the +1/-1
dot product. This inconsistency presents a challenge when conduct-
ing multiplications between them efficiently. However, previous
studies have not addressed this issue.
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Figure 2: Core components of the two-level BitGNN abstraction (bottom) and its usage examples (top). At the low-level, BitGNN
supports the core kernels in bit-ops, including 1 BMM (Bit-MatMul) 2 BSpMM (Bit-Sparse-Dense-MatMul) 3 4 Auxiliary Ops.
At the high-level, BitGNN provides fused operators for binary or full-precision operand input/output. In the usage examples,
"orig" and "bin" suffixes represent the original and binary forms of the GNNs, respectively.

In this work, we propose three methods to reconcile the incom-
patibility. Let 𝑎 represent a 0/1-based bit-vector of the adjacency
matrix, and 𝑏𝑜𝑟𝑔 be a +1/-1-based bit-vector from the activation
matrix. Both 𝑎 and 𝑏𝑜𝑟𝑔 are represented in 0/1 bits in memory, but
for the sake of explanation, we introduce 𝑏 to represent the in-
memory 0/1 representation of 𝑏𝑜𝑟𝑔 , where 1 corresponds to +1 and
0 corresponds to -1. We now describe the three methods to compute
the dot product between 𝑎 and 𝑏𝑜𝑟𝑔 .

(1) If-else evaluation on 𝑎’s nonzeros: This method examines
each bit of 𝑎. If the value is 1, we add the corresponding bit in 𝑏

(1→ 1, 0→ -1) to the temporary sum; otherwise, we skip the bit
value in 𝑏.

(2) 𝑝𝑜𝑝𝑐 (𝑎&𝑏) − 𝑝𝑜𝑝𝑐 (𝑎&¬𝑏): 𝑝𝑜𝑝𝑐 (𝑎&𝑏) accumulates the total
number of 1s of 𝑎 × 𝑏. 𝑝𝑜𝑝𝑐 (𝑎&¬𝑏) (¬𝑏 represents the complement
of 𝑏) gives the total number of -1s in 𝑏𝑜𝑟𝑔 . Subtracting the two
results provides the dot product of 𝑎 and 𝑏𝑜𝑟𝑔 .

(3) 2 × 𝑝𝑜𝑝𝑐 (𝑎&𝑏) − 𝑝𝑜𝑝𝑐 (𝑎): The transformation from +1/-1 to
1/0 involves adding 1 and then dividing by 2 (i.e., right shift). Thus,
𝑏 = (𝑏𝑜𝑟𝑔 + 1)/2. Consequently, 𝑏𝑜𝑟𝑔 = 2 × 𝑏 − 1. Since 𝑝𝑜𝑝𝑐 (𝑎&𝑏)
is the bit-dot-product of 𝑎 and 𝑏, we can compute the dot-product
of 𝑎 and 𝑏𝑜𝑟𝑔 as 2 × 𝑝𝑜𝑝𝑐 (𝑎&𝑏) − 𝑝𝑜𝑝𝑐 (𝑎).

If the activation values are in bits, Solution-2 and Solution-3 are
more efficient than Solution-1. However, if the activation values
are in other forms, Solution-1 may provide better performance. Sec-
tion 3.4 provides additional discussions on selecting the appropriate
method.

3.3 R3: How to realize the potential in coding?
The third research question pertains to the effective materialization
of BitGNN abstractions to fully leverage the efficiency benefits of
binary representations of tensors.

Previous works on binary graph neural networks, such as [18–
20], have only simulated binarization using the sign() function and
FP32 multiplication, without treating values as bits in the imple-
mented operations.

To address this issue, our proposed solution meticulously ex-
plores the bit manipulation intrinsics offered by modern GPUs to
fully unlock the performance potential of BitGNN. In BitGNN, the
core operations are binary matrix multiplication (BMM) and binary
sparse matrix multiplication (BSpMM), as illustrated in Figure 2.
Both operations have several variants. While previous studies have
examined BMM [28, 31], the ones in BitGNN build upon prior work
while taking into account various precisions and the fusion of auxil-
iary operations. However, BSpMM has not been previously studied.
Thus, the remainder of this discussion focuses on BSpMM.

3.3.1 Design Principles. The BSpMM kernels in BitGNN that use
FRDC-based tensors are designed based on the following principles:

(1)Warp-based workload partition: We partition each workload
unit of a node into one or more warps and utilize fast intra-warp
communication [32] on GPUs to its fullest potential.

(2) Maximizing bit-level parallelism: This addresses the granular-
ity dilemma mentioned earlier and maximizes the edge traversal
throughput (measured in the number of traversed edges per second
(TEPS)). We ensure that the small bit-blocks in sparse graphs are
ultimately manipulated in a word-aligned fashion.

(3) Maximizing bit-tensor load & store efficiency: SpMM is often
memory-bound [33, 34], so we must carefully use the memory hier-
archy for bit-tensor manipulations to ensure maximum efficiency.

3.3.2 Implementations. Following the three principles mentioned
earlier, we implement the BitGNN abstractions using the FRDC
scheme and bit-manipulation intrinsics. We will explain the imple-
mentation of BSpMM.BBB in detail as an example.
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Figure 3: Illustration of the procedure of BSpMM.BBB using FDRC (Fine-Representing Dynamic-Coarsening).

Algorithm 1: BSpMM.BBB
Input: AdjMat: RowPtr, ColInd, BitTiles, Tile-row ID 𝑟 ;

InActMat(𝑏) ;
Output: OutActMat(𝑏)

1 𝑁𝑇 ← RowPtr[𝑟+1]-RowPtr[𝑟 ];𝑇𝑆 ← 𝑆𝐼𝑀𝐷_𝑢𝑛𝑖𝑡
𝑡𝑖𝑙𝑒_𝑑𝑖𝑚

2 for each tile set 𝑡𝑠 where 𝑠 = 1 to ⌈ 𝑁𝑇
𝑇𝑆
⌉ do

3 register A← BitTiles[𝑠] for 𝑠 = 0 to𝑇𝑆-1
4 register B← InActMat(𝑏) [𝑘] for 𝑘 = ColInd[𝑠] × 𝑡𝑖𝑙𝑒𝐷𝑖𝑚 +

{0,1,2,...,𝑡𝑖𝑙𝑒𝐷𝑖𝑚-1} and 𝑠 = 0 to𝑇𝑆-1
5 register a← a | shfl(A, 𝑠×𝑡𝑖𝑙𝑒_𝑑𝑖𝑚+𝑙𝑎𝑛𝑒𝑖𝑑) ≪

(4×(𝑇𝑆-1-𝑠)) for 𝑠 = 0 to𝑇𝑆-1 // do bit-concatenate
6 shared memory b[𝑤𝑎𝑟𝑝𝑖𝑑×⌈ 32

𝑊
⌉+𝑘]←

brev(ballot((B≫(31-𝑘))&0x1)) for 𝑘 = 0 to 𝑆𝐼𝑀𝐷_𝑢𝑛𝑖𝑡 -1
// do bit-transpose

7 register c[𝑛]← popc(shfl(a,𝑛)&b[𝑤𝑎𝑟𝑝𝑖𝑑×⌈ 32
𝑊
⌉+𝑙𝑎𝑛𝑒𝑖𝑑])

- popc(shfl(a,𝑛)&¬b[𝑤𝑎𝑟𝑝𝑖𝑑×⌈ 32
𝑊
⌉+𝑙𝑎𝑛𝑒𝑖𝑑]) for 𝑛 = 0 to

𝑡𝑖𝑙𝑒𝐷𝑖𝑚-1 // compute bit-dot-product

8 register rs[𝑛]← brev(ballot(c[𝑛]≥0)) for 𝑛 = 0 to 𝑡𝑖𝑙𝑒𝐷𝑖𝑚-1
9 OutActMat(𝑏) [𝑟×𝑡𝑖𝑙𝑒𝐷𝑖𝑚+𝑛]← rs[𝑛] for 𝑛 = 0 to 𝑡𝑖𝑙𝑒𝐷𝑖𝑚-1

BSpMM.BBBAlgorithm: In Algorithm 1, we present the implemen-
tation of the BSpMM.BBB kernel using the FRDC technique. The
binary adjacency matrix is represented using RowPtr, ColInd, and
BitTiles (BitBlock)3. The algorithm is parallelized through the tile
(block) row dimension, and we present tile (block) row r’s workload.

In Line 1, each tile-row’s total number of tiles (𝑁𝑇 ) is divided into
several tilesets. The size of a tileset (𝑇𝑆) is defined as the number of
bit-row required to concatenate into a SIMD_unit, which is equal to
𝑆𝐼𝑀𝐷_𝑢𝑛𝑖𝑡

𝑡𝑖𝑙𝑒_𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛
. For example, when the adjacency matrix is stored in

the block-4 × 4 format with 4 × 4 non-empty tiles, a non-empty tile
contains four nibbles (4-bit). When we use 32 as a SIMD_unit, the
tileset size (𝑇𝑆) equals 8. Consequently, in Line 2, the kernel will
process 8 bit-tiles in each iteration. A tileset (𝑇𝑆) is the processing

3We use the terms "tile" and "block" interchangeably in the paragraphs.

unit of an iteration, and the workload of each tile-row requires
⌈𝑁𝑇
𝑇𝑆
⌉ iterations to accomplish.

In this scenario, both the adjacency matrix (𝐴 in Figure 3) and
input activation (𝐵 in Figure 3) are binary, and the resulting output
should also be binary. As shown in Figure 3, the algorithm includes
the following steps:

Step 1 & 2 :Warp-based workload partitioning and loading. To
efficiently utilize the GPU architecture, each warp of 32 threads is
mapped to the computation of a row of 4×4 bit-tiles (i.e., 4 nodes
when representing the graph in bits). Within each warp, the row
of bit-tiles is further partitioned into multiple tile groups, where
each tile group contains 8 bit-blocks. For example, if there are ten
bit-tiles, there will be two tile groups. The first tile group holds the
0th-7th tiles of that 4×4 tile row, and the second tile group holds
the 8th and 9th tiles, with the remaining 8 slots padded with zeros.

Next, each iteration processes a tile group as follows: the 32
threads in the warp cooperatively load the 32 uchars4 from 8 bit-
tiles of the sparse bit matrix 𝐴 from global memory into registers.
Then, the 32 threads load the 8 segments of the input activation
𝐵 corresponding to the loaded tiles of 𝐴 from global memory into
shared memory, forming a consecutive layout, with each word used
as a 32-bit vector.

Step 3 On-the-fly assembly via bit-concatenation. In this step,
dynamic coarsening is performed to ensure that the bit-tiles of 𝐴
are 32-bit aligned. Each of the 0th-3rd threads uses the intra-warp
communication intrinsic (shfl_sync()) and bit shifting to quickly
concatenate the neighbors of each node (in the form of bit-vectors)
into a 32-bit unsigned bit-vector (only 8 bits are shown in our
illustration in Figure 3).

Step 4 Bit-transpose for column-wise coalesced access. This step
involves transposing the column-major packing of𝐵 into row-major.
This way, when computing the bit-dot-product with 𝐴, the bits

4We store 4-bit unit as an uchar (1 byte) in our original implementation. Storing them
in a smaller representation (i.e., int4) is also possible in newer GPU architectures.
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can be fetched as bit-columns, and the bit-level parallelism can be
fully employed. The transpose is accomplished through bit shift-
ing and masking on the bit-vector of 𝐵. The resulting values are
then evaluated and gathered using the intra-warp voting intrinsic,
ballot_sync(). Finally, the transposition is done using the brev()
intrinsic.

Step 5 Trinary-valued bit-dot-product. In this step, the algo-
rithm computes the bit-dot-product between the 0/1 bit-vectors of
A and the +1/-1 bit-vectors of B. (“Trinary” for 0/1/-1.) The loop
iterates 4 times (once for each node), working on a 32-bit bit-vector
from 𝐴. Each of the 32 threads is responsible for computing 1/32
of the bit-dot-product. The products are stored in registers as full-
precision values.

Step 6 Bit-tensor store. In this step, the temporary full-precision
products are packed into the bit format by element-wise evaluation
of whether the product is greater than or equal to 0, which is the
binarization process of binary activation tensor. The 32 threads in
a warp cooperatively evaluate the full-precision values using the
intra-warp voting intrinsic (i.e., ballot_sync()). The result is then
anti-clockwise transposed by the brev() intrinsic to complete the
bit-vector packing. The output produces 32-bit unsigned bit-vectors
of the activation map.
Other variants The implementation of other variants of BSpMM
follows a similar approach, using bit-level intrinsics for most com-
putations with some differences in handling different precisions.
For example, BSpMM.FBB loads the activation tensor differently.
In Step 2 (bit-tensor load), it requires 4 warps to cooperatively
load all the full-precision values. Each thread in a warp is responsi-
ble for loading one of the dimensions of the feature vectors of 32
neighbor nodes. Therefore, Step 4 (Bit-transpose for column-wise
coalesce access) is not required. More details can be found in the
supplementary material [35].

3.4 Tuning Utilities and Other Implementation
Details

To launch our end-to-end model, which contains multiple kernels,
we use cudaLaunchCooperativeKernel() to enable global synchro-
nization between a specific set of thread blocks [36]. We first calcu-
late the maximum number of blocks that fit each streaming mul-
tiprocessor (SM) using cudaOccupancyMaxActiveBlocksPerMul-
tiprocessor() and then use 1024 threads per thread block to allow
the maximum number of warps to execute on each SM. This en-
sures that we fully utilize the parallelism available on the GPU and
achieve optimal performance.

BitGNN’s tuning utilities provide a convenient way to optimize
binary GNNs. As described in the previous sections, BitGNN offers
a range of variants to accommodate the different precision require-
ments of GNN inputs, weights, and outputs. The tuning utilities
allow for an auto-tuning run to replace BitGNN function calls with
other variants and measure their performance. The type correct-
ness is guaranteed by ensuring that the precision of the output of
a predecessor matches that of the input of its successor operation.
Furthermore, the tuning utilities enable easy selection of the best
solution for reconciling the inconsistency of binary value ranges
discussed in Section 3.2.2. Predictors can be developed to anticipate

the optimal variant for a particular GNN and graph. Similar predic-
tors have been extensively studied in other contexts, such as sparse
matrix storage formats [37].

4 EVALUATION
This section reports the performance of BitGNN. We focus on the
following questions: (i) How much speedup can it bring to GNN
inferences? (ii) How much memory space can it same? (iii) What
are the accuracy-speed tradeoffs when using BitGNN?

4.1 Methodology
GPU Environment: We evaluate the performance of BitGNN on
three NVIDIA GPUs of different architecture generations: GTX
1080 (Pascal), Titan V (Volta), and RTX 3060 Ti (Ampere). Their fea-
tures are summarized in Table 1. The CUDA version is 11.0. For all
experiments, we use the average values of 10 repeated executions.
Datasets: Table 2 shows the graphs used for the evaluation. These
graphs are commonly used for existing GNN research [23, 25, 26, 38–
41] and are also the graphs used in prior binary GNN work Bi-
GCN [18], making direct comparisons possible.
Versions to compare:We compare our BitGNN versions (of differ-
ent previsions) with Bi-GCN [18]. As the representative of the state-
of-the-art binary GNNs—which all focus on binarization algorithms
rather than optimized executions, Bi-GCN uses the full-precision
representation of values even though it binarizes the operations in
GNNs. Meanwhile, to provide a reference point, we report the per-
formance and accuracy of the original GNNs without binarization.
Both the original and Bi-GCN versions are in PyG [22].
GNNs:Weuse four GNNs in our experiments: transductive-GCN [7],
inductive-GCN [23], GraphSAGE [23], and GraphSAINT [25, 26].
We choose these GNNs because they are the most popular GNNs,
and are the GNNs used in the prior binary GNN study [18] that we
compare with.

4.2 Results and Analysis
Tables 3, 4, and 5 report the speed (at inference time), accuracy, and
space usage of the baselines and the versions of our BitGNN.

Before diving into the results, it is worth mentioning that GNN
learning is of two kinds: transductive and inductive learning. In
transductive learning, the entire data graph is observed in the learn-
ing process, with some nodes labeled and others not. The GNN
algorithm tries to iteratively refine the labels of those unlabeled
nodes by learning from the entire graph structure and those labeled
nodes. In inductive learning, the GNN algorithm learns from some
sampled graphs and then tries to predict the labels of the nodes on
other sampled graphs.

Among the four GNNs used in prior research [7, 23, 25, 26],
transductive-GCN is for transductive learning, and the other three
GNNs are for inductive learning. The priorwork applies transductive-
GCN to only small datasets (Cora, PubMed, CiteSeer) because
large graphs are difficult to be loaded and processed in memory as
an entirety as required by transductive GNNs. For the large datasets
(Flickr and Reddit), the prior work applies the three inductive
GNNs. To allow head-to-head comparisons, our experiments follow
the same practice.
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Table 1: GPUs used for evaluation. Arch refers to GPU architecture generation. CC refers to compute capability. SMs refer to
the number of streaming multiprocessors in the GPU. Thrds refer to threads. Shared refers to share memory size. Reg refers to
number of registers. Note, "/Block" and "/Thrd" imply the maximum resources per thread block and per thread, respectively.

GPU Arch CC SMs DRAM Memory
Bandwidth

L1 Cache
Size/SM

L2 Cache
Size

Warps
/SM

Blocks
/SM

Thrds
/SM

Shared
/SM

Shared
/Block

Reg
/SM

Reg
/Block

Reg
/Thrd

GTX 1080 Pascal 6.0 20 8GB 320GB/s 48KB 4096KB 64 32 2048 64KB 48KB 64K 64K 255
TITAN V Volta 7.0 80 12GB 653GB/s 96KB 4608KB 64 32 2048 96KB 96KB 64K 64K 255

RTX 3060 Ti Ampere 8.0 38 8GB 448GB/s 128KB 4096KB 64 32 2048 164KB 164KB 64K 64K 255

Table 2: Graph datasets used for evaluation.

Dataset #Nodes #Edges #Features #Classes
Cora 2,708 13,264 1,433 7

Pubmed 19,717 108,356 500 3
Citeseer 3,327 12,431 3,703 6
Flickr 89,250 899,756 500 7
Reddit 232,965 114,615,892 602 41

Table 3: Evaluation results of transductive GCNs. FP32 is the
vanilla GCN [7]. "FP32 (S)" refers to the PyG scatter-gather
abstraction with maximal batch size. "FP32 (T)" refers to the
PyG SpMM tensor abstraction. Bi-GCN [18] is the state-of-
the-art binary GCN implementation.We compare the version
that binarizes both activations and weights in the MM op-
eration. "Ours (full)" refers to the full-precision aggregation.
"Ours (bin)" refers to the binary aggregation version that
uses MM.FBB + BSpMM.BBB for the first layer and MM.BBF +
BSpMM.FBF for the second layer. "Peak Mem" refers to peak
memory usage during inference. "Acc" refers to accuracy in
percentage (%).

Dataset Model Peak
Mem (B)

Acc
(%)

End-to-end Time (ms)
GTX1080 TitanV RTX3060Ti

Cora

FP32 (S) [7] 16.73M 81.4±0.4 1.25±0.01 0.91±0.03 1.00±0.01
FP32 (T) [7] 16.73M 81.4±0.4 1.34±0.02 1.15±0.05 1.16±0.03
Bi-GCN [18] 16.73M 81.2±0.8 1.84±0.04 1.91±0.02 1.57±0.02
Ours (full) 1.37M 81.2±0.8 0.51±0.00 0.37±0.07 0.38±0.02
Ours (bin) 0.73M 81.2±1.0 0.32±0.04 0.28±0.08 0.24±0.04

PubMed

FP32 (S) 48.71M 79.0±0.3 2.86±0.04 1.51±0.02 1.90±0.02
FP32 (T) 48.71M 79.0±0.3 2.26±0.01 1.49±0.02 1.77±0.01
Bi-GCN 48.71M 78.2±1.0 2.81±0.07 2.23±0.09 1.52±0.01

Ours (full) 7.31M 78.2±1.0 2.29±0.05 0.84±0.05 1.14±0.00
Ours (bin) 2.65M 78.1±1.1 0.74±0.04 0.33±0.05 0.44±0.01

CiteSeer

FP32 (S) 49.78M 70.9±0.5 2.60±0.03 1.43±0.04 1.74±0.01
FP32 (T) 49.78M 70.9±0.5 2.70±0.01 1.56±0.01 1.88±0.05
Bi-GCN 49.78M 68.8±0.9 2.44±0.00 2.22±0.04 1.33±0.09

Ours (full) 2.56M 68.8±0.9 0.80±0.04 0.58±0.02 0.50±0.03
Ours (bin) 1.77M 68.7±0.4 0.63±0.03 0.46±0.01 0.42±0.00

The proposed flexible programming abstraction (Section 3.1.2)
can easily facilitate the user’s binary network development. With it,
we tune the various binarization precisions and identify somemodel
variants that perform relatively well: full-precision aggregation (the
same as in Bi-GCN [18]) and binary aggregation (Use MM.FBB +
BSpMM.BBB for the first layer and MM.BBF + BSpMM.FBF for the
second layer). They are represented as Ours (full) and Ours (bin) in
the result tables.
Transductive case: From Table 3, we have the following observa-
tions. (i) Both versions of BitGNN can keep most of the accuracy.

The largest loss of the average accuracy is 0.2%, 0.9%, and 2.2% on
the three datasets, respectively. The largest accuracy loss (2.2%)
happens on CiteSeer, where the normalization of edge weights has
a more significant impact. (ii) Both versions can save memory usage
significantly, 7–19X by Ours (full) and 18-28X by Ours (bin). (iii)
Both versions consistently show significant speedups across GPU
models: 1.2-5X by Ours (full) and 4-7X by Ours (bin). (iv) Because
the previous binarized GNN (Bi-GCN) does not use a single bit but
a word for a binarized value, it does not save space or time com-
pared to the original full-precision GNNs. (v) Our more complete
binarized version (Ours (bin)) achieves 2-3X extra space savings and
1.5-3X extra speedups than our version (Ours (full)) that uses full-
precision aggregation, while the extra accuracy loss is only 0.1%.
(vi) All those benefits are largely consistent across the datasets.
One exception is the performance of Ours (full) on PubMed, where,
Ours (full) shows modest speedups on GTX1080 and RTX3060Ti
over the original version while Ours (bin) still shows substantial
speedups. We attribute this to the relatively larger num_of_nodes
that introduces large performance gaps between BSpMM.BBB and
BSpMM.FBB for the first layer.
Inductive case: Tables 4 and 5 report the results of the three induc-
tive GNNs on the two large datasets. The benefits are also significant
in space and time, but there are some differences from those in the
transductive case. We note the following points. (i) For inductive
learning, the previous work [23] uses the F1-micro score rather
than accuracy to measure the quality of the inferences. The F1-
micro score is a combined metric of precision and recall [23, 42].
The binarization maintains most of the quality again, causing a
0.5–2.1% accuracy loss. (ii) The memory space savings are 1.72-16X.
The savings are not as much as the savings in the transductive case.
The reason is that most of our space savings come from the bit
representation of the values of the adjacency matrices and the node
features. But the sparse representation also consists of indices of the
non-empty tiles. Because most non-empty tiles contain only one
non-zero value, we do not save much on the indexing data struc-
tures compared to the default CSR format. For the small graphs, the
indexing data structures form only a small portion of the overall rep-
resentation; but for large graphs, the portion becomes much larger.
But the savings are still substantial. (iii) The speedups achieved by
our versions are even more significant, ranging from 2X to 125X.
The reason is that as the graphs become larger, the room for time
savings also grows. Another benefit worth mentioning is that as
the memory space usage is reduced substantially, the new method
can load the entire graph into memory and produce the inferences
of all the sampled subgraphs in one run, which can bring extra time
savings than processing the subgraphs one by one.
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Figure 4: The profiling results of the multiplications of two pairs of sparse matrices on Nvidia GTX1080 GPU.
Table 4: Evaluation results of inductive GNNs — inductive GCN and GraphSAGE [23]. F1-micro is the metric to measure the
accuracy of inductive GNNs. The hidden size is 256 for Flicker; 128 for Reddit. To avoid out-of-memory error, FP32 and Bi-GCN
inferences are set to their maximal batch size on different GPUs.

Dataset Model
Inductive GCN Graph SAGE

Peak
Mem (B)

F1-
micro

End-to-end Time (s) Peak
Mem (B)

F1-
micro

End-to-end Time (s)
GTX1080 TitanV RTX3060Ti GTX1080 TitanV RTX3060Ti

Flickr

FP32 (S) [23] 358.07M 50.9±0.3 0.36±0.005 0.33±0.007 0.32±0.009 448.37M 50.9±1.0 0.36±0.006 0.32±0.004 0.32±0.008
FP32 (T) [23] 358.07M 50.9±0.3 0.045±0.000 0.035±0.000 0.03±0.000 448.37M 50.9±1.0 0.045±0.001 0.035±0.000 0.034±0.000
Bi-GCN [18] 358.07M 50.2±0.4 0.36±0.007 0.34±0.010 0.34±0.011 448.37M 50.2±0.4 0.36±0.008 0.33±0.003 0.33±0.002
Ours (full) 107.07M 50.2±0.4 0.023±0.01 0.016±0.000 0.02±0.003 196.9M 50.2±0.4 0.038±0.007 0.027±0.00 0.03±0.006
Ours (bin) 22.38M 49.9±0.3 0.006±0.004 0.002±0.000 0.005±0.000 27.52M 50.8±0.1 0.008±0.008 0.003±0.00 0.006±0.001

Reddit

FP32 (S) 1.67G 93.3±0.0 49.01±0.25 38.19±0.10 38.70±0.28 1.81G 95.3±0.1 49.27±0.18 37.95±0.35 38.29±0.22
FP32 (T) 1.67G 93.3±0.0 0.86±0.02 0.45±0.001 0.52±0.007 1.81G 95.3±0.1 0.92±0.001 0.51±0.001 0.52±0.002
Bi-GCN 1.67G 93.1±0.2 49.30±0.28 38.22±0.10 38.97±0.34 1.81G 95.3±0.1 49.42±0.21 38.05±0.56 39.03±0.11

Ours (full) 1.02G 93.1±0.2 0.82±0.02 0.38±0.08 0.45±0.03 1.17G 95.3±0.1 0.90±0.003 0.45±0.03 0.53±0.04
Ours (bin) 943.77M 92.8±0.1 0.49±0.11 0.15±0.007 0.27±0.12 983.77M 91.2±1.2 0.53±0.05 0.20±0.009 0.29±0.05

Table 5: Evaluation results of inductive GNNs — Graph-
SAINT [25, 26]. The hidden size is 256 for Flicker; 128 for
Reddit.

Dataset Model Peak
Mem (B)

F1-
micro

End-to-end Time (s)

GTX1080 TitanV RTX3060Ti

Flickr

FP32 (S) [25, 26] 623.72M 51.1±0.1 0.39±0.004 0.36±0.003 0.34±0.006
FP32 (T) [25, 26] 623.72M 51.1±0.1 0.05±0.000 0.03±0.000 0.04±0.000
Bi-GCN [18] 623.72M 50.8±0.2 0.05±0.003 0.04±0.000 0.04±0.001
Ours (full) 371.83M 50.8±0.2 0.15±0.004 0.07±0.00 0.09±0.001
Ours (bin) 202.39M 49.6±0.8 0.023±0.007 0.012±0.00 0.016±0.001

Reddit

FP32 (S) 2.04G 96.6±0.1 48.79±0.23 38.41±0.32 39.77±0.22
FP32 (T) 2.04G 96.6±0.1 1.25±0.005 0.60±0.001 0.69±0.003
Bi-GCN 2.04G 95.7±0.1 1.27±0.002 0.61±0.003 0.73±0.011

Ours (full) 1.39G 95.7±0.1 0.92±0.46 0.66±0.08 0.74±0.08
Ours (bin) 1.18G 94.5±0.6 0.45±0.16 0.24±0.003 0.33±0.09

Additionally, Table 4 shows a 4.1% accuracy loss on GraphSAGE-
Reddit. We attribute this to the sensitivity of the originally-trained
binary GraphSAGE and the small hidden size used.While the Reddit
graph is significantly larger than Flickr, it only uses as few as 128
hidden nodes. Increasing the hidden nodes to 256 and 512 results
in a smaller accuracy loss (∼0.67%, ∼0.9%). On Flickr, there is even
an 0.6% accuracy increase. GNN inference accuracy is unstable,
especially on large graphs, which is not unique to GNNs. Studies
have shown that a compressed DNN can sometimes achieve higher

accuracy than the original. Our slight accuracy increase resulted
from the binary aggregation approximation in the first GCN layer.

Table 5 reports the results on GraphSAINT. For this GNN, pat-
terns of the two graphs (only one non-zero in most non-zero tiles)
favor tensor kernel-based implementations. Ours (bin) still achieves
consistently substantial speedups across the architecture and the
datasets. It benefits from our implementation that loads only the
elements corresponding to non-zero elements in the tile. The space
savings are still substantial.
Hardware profiling:Using theGPU vendor’s profiling tool NSight,
we find that the performance gain mainly originates from improved
memory utilization through binarization. Figure 4 shows the profil-
ing results of three of our BSpMMkernels compared to the baseline—
the default SpMM kernel in Torch Sparse when computing the
multiplications of two pairs of representative matrices, measured
on Nvidia GTX1080 GPU. Specifically, we observe significantly en-
hanced global load/store efficiency (from 19% to 80%), and L1/Tex
cache hit rate (from 10% to 53-78%). In addition to that, with the
data request stalls reduced from 53-89% to less than 10%, the warp
execution efficiency surges from 31-46% to almost 100%.
Discussions: Regarding the overall number of operations to be
executed, although BitGNN aggregates the multiply-accumulate
operations of 32 elements into a single bit-dot-product operation
upon one 32-bit operand, the actual reduction in operation count is
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less than 32X due to extra overhead on indexing. Nevertheless, since
SpMM is typically memory-bound, binarization can still contribute
to significant performance improvement.
Potential impact: The reduced space and time brought by Bit-
GNN not only improves the computing efficiency on server GPUs,
but also opens new opportunities for dealing with large graphs
(which cannot fit into memory) and for GNN to be used on resource-
constrained devices. Quantized (non-GNN) deep neural networks
have already been adopted inmany domains on resource-constrained
embedded scenarios, including auto-driving [43], smart agriculture
[44], COVID19 face-cover detection [45], 3D object detection [46]
and image processing [47]. This is mainly due to the simplified
logic [48], low energy cost [49], low hardware requirement, and
robustness [50]. Nevertheless, there are many scenarios the input
data are non-Euclidean or can be better expressed by graphs, such
as molecules [51], traffic flow [52], power-grid [53], etc. In these sce-
narios, the binary graph neural network, as a replacement of BNN,
can play a vital role in feature extraction and real-time prediction.

5 RELATEDWORKS
Binary GraphNeural Network. BinaryGNNs have recently gained

attention as a promising approach for applying quantization to
graph learning workloads in the ML community. Despite several
works proposing GNN binarization techniques and/or binary GNN
models [18–21], none of them have demonstrated the full perfor-
mance advantages that can be achieved through binarization, which
is where BitGNN comes in. Here, we summarize some of the existing
binary GNN studies.

Binary Graph Convolutional Network (Bi-GCN) [18] proposes
a novel binary gradient approximation-based back-propagation
technique for effectively training binary GCNs. It binarizes both
the network parameters and node features with minimal accuracy
loss. Bi-GCN has been applied to both transductive-learning GNNs
(e.g., GCN [7]) and inductive-learning GNNs (e.g., inductive-GCN,
GraphSAGE [23], and GraphSAINT [25, 26]). Alternatively, Bahri et
al. [19] use knowledge distillation and multi-stage training to bina-
rize the EdgeConv in Dynamic Graph CNNs (DGCNN) [5]. Wang et
al. [20] propose a new binarized graph embedding method, named
BGN, to binarize the parameters and pre-activations of Adaptive
Sampling (AS-GCN) [54] and Graph Attention Network (GAT) [55].
In the back-propagation phase, they use two popular unbiased
gradient estimators — the straight-through estimator and REIN-
FORCE estimator [56] — for binary approximation. Aside from
XNOR and population count for +1 and -1 bit calculation, they
involve masked summation and balance functions to improve the
binarization process. Meta-Aggregator [21] introduces two aggre-
gators — the Greedy Gumbel Aggregator (GNA) and Adaptable
Hybrid Aggregator (ANA) — aiming at enhancing the binary train-
ing accuracy during the aggregation phase.

While these binarization techniques for GNNs provide a step-
ping stone in exploring the potential of binary GNNs, they only
"logically" binarize GNN at the algorithm level, and their imple-
mentations still use sign() and mm() in PyTorch, which essentially
adopt full-precision tensors for storage and full-precision opera-
tions for computation at the lower level. As a result, they fail to
showcase the performance potential of binary GNNs.

Bit-Manipulation on GPUs. Previous research has extensively ex-
plored the potential of leveraging bit operations on modern GPUs
across a wide range of application scenarios. These include im-
age classification using CNNs [14, 28, 31, 57, 58], depth-sensing
with stereo vision [43, 59], fraud detection [60], and graph algo-
rithms [30].

Courbariaux et al. [14] first introduce the concept of using XOR
and population-count operations for small MLPs on GPUs. Espresso
[57] builds a binary CNN library with C and CUDA backends, pro-
viding bit-packing and bit matrix multiplication functions. Khan
et al. [58] extend the previous GEMM-based CNNs for real-time
vehicle classification on desktop and embedded GPUs. BSTC [28]
presents bit-block-based kernel designs for BMM and BConv, scal-
ing the significant performance gains to deeper binary AlexNet,
VGGNet, and ResNet. StereoBit [43] and FastFusion [59] develop
BNN-based stereo matching networks with optimized implemen-
tations to reduce GPU on-chip memory footprint. They construct
the network with binary feature descriptors for image pairs and
weights, replacing expensive full-precision arithmetic operations
with XOR and population count operations. Ye et al. [60] lever-
age the GPU intrinsics __ballot_sync(), __match_any_sync(), and
__popc() to construct a Label Propagation (LP) algorithm for the
fraud detection pipeline. Feng et al. [61] decompose quantized neu-
ral network matrix multiplications into batches of BMM operations
and relied on the Ampere tensor cores for acceleration. Finally, Bit-
GraphBLAS [30] proposes a sparse bit storage format and binary
implementation of GraphBLAS operators to accelerate iteration-
based graph algorithms when the graph edges are homogeneous
and can be expressed as binary graphs.

These prior studies demonstrate the performance benefits of uti-
lizing bit manipulations and operations on GPUs. However, they are
not comprehensive enough to address the specific challenges that
arise when dealing with binary GNNs, such as the need for operator
restructuring, appropriate tensor representation, and inconsistent
value multiplications.

6 CONCLUSION
BitGNN is the first work to comprehensively address the design
and challenges of implementing binary GNNs using bit tensors and
manipulations. Our proposed programming abstractions, tensor
representation, and kernel design techniques maximize the per-
formance of binary GNN models end-to-end. The optimizations
and implementations provide a remarkable 8-22X acceleration in
the end-to-end model performance compared to prior binary GNN
implementations.
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