
DStore: A Lightweight Scalable Learning Model Repository
with Fine-Grained Tensor-Level Access

Meghana Madhyastha
mmadhya1@jh.edu

Johns Hopkins University
Baltimore, Maryland, USA

Robert Underwood
runderwood@anl.gov

Argonne Nat. Laboratory
Lemont, Illinois, USA

Randal Burns
randal@cs.jhu.edu

Johns Hopkins University
Baltimore, Maryland, USA

Bogdan Nicolae
bnicolae@anl.gov

Argonne Nat. Laboratory
Lemont, Illinois, USA

ABSTRACT
The ability to share and reuse deep learning (DL) models is a key
driver that facilitates the rapid adoption of artificial intelligence
(AI) in both industrial and scientific applications. However, state-
of-the-art approaches to store and access DL models efficiently at
scale lag behind. Most often, DL models are serialized by using var-
ious formats (e.g., HDF5, SavedModel) and stored as files on POSIX
file systems. While simple and portable, such an approach exhibits
high serialization and I/O overheads, especially under concurrency.
Additionally, the emergence of advanced AI techniques (transfer
learning, sensitivity analysis, explainability, etc.) introduces the
need for fine-grained access to tensors to facilitate the extraction
and reuse of individual or subsets of tensors. Such patterns are un-
derserved by state-of-the-art approaches. Requiring tensors to be
read in bulk incurs suboptimal performance, scales poorly, and/or
overutilizes network bandwidth. In this paper we propose a light-
weight, distributed, RDMA-enabled learning model repository that
addresses these challenges. Specifically we introduce several ideas:
compact architecture graph representation with stable hashing and
client-side metadata caching, scalable load balancing on multiple
providers, RDMA-optimized data staging, and direct access to raw
tensor data. We evaluate our proposal in extensive experiments that
involve different access patterns using learning models of diverse
shapes and sizes. Our evaluations show a significant improvement
(between 2 and 30× over a variety of state-of-the-art model storage
approaches while scaling to half the Cooley cluster at the Argonne
Leadership Computing Facility.

CCS CONCEPTS
•Computingmethodologies→ Search methodologies;Distributed
computing methodologies; • Information systems→ Parallel and
distributed DBMSs.

KEYWORDS
DL model repository, fine-grained tensor storage and access, bench-
marking

ACM Reference Format:
Meghana Madhyastha, Robert Underwood, Randal Burns, and Bogdan Nico-
lae. 2023. DStore: A Lightweight Scalable Learning Model Repository with

ICS ’23, June 21–23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0056-9/23/06.
https://doi.org/10.1145/3577193.3593730

Fine-Grained Tensor-Level Access. In 2023 International Conference on Su-
percomputing (ICS ’23), June 21–23, 2023, Orlando, FL, USA. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3577193.3593730

1 INTRODUCTION
Deep learning (DL) models are widely used both in industry and
in scientific computing: speech and vision [8], fusion energy sci-
ence [17], computational fluid dynamics [18], cancer research [9],
and pandemics [34].

In this context, the unprecedented accumulation of big data
and the development of computational capabilities expose plenti-
ful learning opportunities thanks to the data’s massive size and
variety [19, 27]. In a quest to take advantage of the complex pat-
terns in the data, DL models are becoming complex themselves
from many perspectives [39]: size (number of parameters), depth
(number of layers/tensors), and structure (layers with multiple in-
puts/outputs interconnected using directed graphs that feature di-
vergent branches, fork-join, etc.). Under such circumstances, model
training is time-consuming and resource-intensive, which is why
artificial intelligence (AI) workflows try to avoid retraining DL
models from scratch as much as possible and instead serialize them
to a repository, in anticipation of opportunities to reuse them later.
However, by interacting with the repository frequently and under
concurrency, the repository becomes a bottleneck in AI workflows.
Thus, the problem of how to design scalable, high-performance
repositories for DL models is important but challenging for several
reasons.

High-frequency access to the repository under concur-
rency at scale: Storing and loading DL models to/from a repository
are frequent operations that may cause an I/O bottleneck for AI
workflows. For example, unexpected interruptions prompt the need
to checkpoint DL models more frequently than an epoch boundary,
potentially at an individual iteration [26]. The study of sensitivity
analysis, which considers the robustness of inference to training
data, involves numerous comparisons with variations of DL mod-
els checkpointed during the training with different subsets of the
data [42]. Ensemble learning [43] also relies on training and storing
a large number of alternative DL models, which are used later to
improve the accuracy and/or generality of the inferences. Further-
more, AI workflows typically run on high-performance computing
(HPC) platforms at scale, leveraging multiple compute nodes and
graphics processing units (GPUs) simultaneously. In this context,
the store and load operations are issued to the model repository
with both high frequency and concurrency.

Fine-grained access to the tensors of the DLmodel: In a ma-
jority of applications where DL models can be reused, the original
context is slightly different, prompting the need for adjustments af-
ter adopting transfer learning [36]. This typically involves multiple

133

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3577193.3593730
https://doi.org/10.1145/3577193.3593730
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3577193.3593730&domain=pdf&date_stamp=2023-06-21

ICS ’23, June 21–23, 2023, Orlando, FL, USA Meghana Madhyastha, Robert Underwood, Randal Burns, and Bogdan Nicolae

steps: (1) load the content of reusable layers from a related model
from the repository into the newDLmodel; (2) freeze the reused lay-
ers and train the rest of the layers with additional data; and (3) store
the new DL model in the repository. In this case, loading the whole
DL model from the repository and extracting individual tensors
from the local copy are inefficient. Instead, the repository should
provide the capability to directly access tensors at fine granularity.
Furthermore, transfer learning is not an occasional pattern. For ex-
ample, network architecture search (NAS) is a notoriously difficult
AI workflow that automatically generates, trains, and evaluates a
large number of related DL model variations [9]. NAS can scale
to a large number of workers and has been shown to benefit from
transfer learning [22], because the DL models are related. Thus,
fine-grained access to the tensors is often needed together with
high-frequency access under concurrency.

Limitations of state-of-the-art: Open repositories for expert-
or user-designed DL models are typically implemented as web-
enabled services that enable users to upload, classify, curate, and
search for DL models (e.g., Tensorflow Hub, Caffe’s Model Zoo,
DLHub [21]). In this case, the emphasis is on providing rich features
and ease of use, rather than high performance and scalability. Even
on HPC platforms, typical approaches to store and load DL models
involve significant overheads: the tensors in the composition of the
DL models are serialized into custom formats (e.g., HDF5 [37]) or
SavedModel [7]), which are then written to a parallel file system
(PFS) acting as a repository shared by the compute nodes. These
overheads have multiple causes, both related to the serialization
(bloatedmetadata, toomany files) and due to the PFS itself becoming
a bottleneck (limited I/O bandwidth under concurrency and poor
support for small, noncontiguous I/O operations).

Contributions: We focus on the design on a distributed DL
model repository that delivers high performance and scalability for
high-frequency, concurrent load/store operations that may involve
fine-grained access to individual tensors. In order to overcome
the limitations of state-of-the-art approaches, our key idea is to
decompose the DL models into lightweight collections of tensors
and their associated metadata, which are organized using novel data
structures, indexing, and caching techniques specifically optimized
for direct manipulation using distributed, RDMA-enabled key-value
stores. We summarize our contributions as follows.

First, we propose a series of design principles: compact repre-
sentation of the DL model architecture, stable hashing of layer
configurations with client-side metadata caching, low-overhead
memory management based on preallocated and pre-pinned buffers,
and tensor storage layout optimized for bulk transfers (Section 3).
Second, we implement these design principles and techniques as a
research prototype that makes use of state-of-the-art technologies
to interface with popular AI runtimes (such as TensorFlow) in order
to obtain direct access to the tensors, as well as state-of-the-art com-
munication libraries that provide RDMA-enabled RPC abstractions
suited for the development of services on HPC systems (Section 5).
Third, we evaluate our proposal in a series of extensive experiments
conducted on the Cooley HPC system at the Argonne Leadership
Computing Facility. We focus on the performance and scalability
of loading and storing a variety of DL models (different number
of layers, uniform vs. variable sizes of layers, different total size,
etc.) both individually and under concurrency. The results show

significant improvement over several state-of-the-art approaches
that leverage either a parallel file system or in-memory storage
(Section 6).

2 RELATEDWORK
DL model checkpointing: Popular runtimes such as TensorFlow
and PyTorch serialize the tensors of DL models into custom formats
(e.g., HDF5 [37] or SavedModel [7]), which are then written as files
to a parallel file system (PFS). This process incurs high serializa-
tion and I/O overheads. Optimized checkpointing approaches exist
for data-parallel training [29]. They take advantage of multiple
identical model replicas to parallelize the writes to different shards.
Other checkpointing efforts such as [26] focus on determining the
optimal checkpointing interval through systematic online profiling
of the overhead. FlameStore [1] is an effort that aims to reduce the
serialization overheads by directly capturing tensors and storing
them into configurable providers (in-memory, local file system).
Such approaches either suffer from I/O performance and scalabil-
ity bottlenecks due to relying on a parallel file system or are not
optimized for fine-grained access to subsets of tensors.

Web-enabled DL model repositories: These repositories are
optimized for collaborative rapid application development. They
enable users to upload, classify, curate, and search for DL models.
Prominent examples include open repositories such as Tensorflow
Hub [6], PyTorch Hub [5], and Caffe’s Model Zoo [3]. Some efforts,
such as DLHub [21], target scientific applications specifically. For
web-enabled repositories, the emphasis is on providing rich features
and ease of use, rather than high performance and scalability. One
notable feature is versioning of DL models. For example, Data
Version Control [12] relies on Git’s version control capabilities to
store metadata references to large binary and textual objects that
represent training data and DL model checkpoints. However, the
serialization method and actual storage of the objects are outside
of the purview of the repository, which it delegates to either web-
based data transfers to/from remote servers or parallel file systems
that are not optimized for the storage of many small, scattered
tensors that compose a DL model.

Key-value and object stores: Hash tables, key-value stores,
and remote dictionaries [13] are fundamental building blocks to
store both ephemeral and durable data at fine granularity. They
feature a multitude of backends (in-memory storage, flash and
persistent memory, file systems) and advanced features such as
multi-versioning [28]. In the same spirit, object storage systems
such as DAOS [24] and RADOS [40] also aim to alleviate the lim-
itations of the aging POSIX semantics employed by parallel file
systems such as Lustre [2] and GPFS [38]. Some optimizations such
as leveraging foreknowledge about the read access pattern of train-
ing samples can be used to accelerate AI workloads [23]. However,
such building blocks cannot be leveraged out of the box to manipu-
late DL models, because it is nontrivial to serialize and consistently
store models as a collection of tensors mapped to key-value pairs.
Additionally, the key-value pairs cannot be simply scattered across
a large number of providers, because the overhead of assembling a
DL model from a large number individual tensors would involve
large communication overheads due to the need to contact a large
number of providers concurrently.

134

DStore: A Lightweight Scalable Learning Model Repository
with Fine-Grained Tensor-Level Access ICS ’23, June 21–23, 2023, Orlando, FL, USA

Remote data access: Web-enabled services often expose REST-
ful APIs that enable clients to access data on servers. However, such
approaches involve expensive encoding of parameters and states
into text representations (JSON, XML) tomaximize portability at the
expense of performance/latency. RDMA is a well-established back-
bone of communication libraries with low-latency, high-throughput
message-passing requirements. It is used extensively in HPC data
centers and storage systems [44]. In this context, MPI proposes the
notion of single-sided communication [16] that involves memory
windows declared by each rank as the target for put/get operations.
Unfortunately, such a model is not flexible enough for client-server
use cases, since it involves collective operations (initialize memory
windows, synchronization based on fences, etc.). Recently, HPC-
oriented communication libraries based on RPCs are gaining in-
creasing traction [33], thanks to higher flexibility compared with
MPI. Such approaches can be used as a backbone for DL model
repositories.

To the best of our knowledge, this is the first work that explores
the problem of building a DL model repository suitable for HPC
systems that addresses the needs of AI workflows interacting with
the repository frequently under concurrency while enabling fine-
grained tensor-level access.

3 SYSTEM DESIGN AND DESCRIPTION
Compact representation of the DL model architecture graph:
DL model architectures have evolved from simple sequential ar-
rangements of the layers to complex arrangements that involve, for
example, branching, repetitive structures, and fork-join patterns.
In the most general form, these arrangements can be expressed as
graphs. In practice, layers are defined in a recursive fashion [14],
forming a graph of sublayers down to leaf layers that are actually
composed of tensors (that hold relevant parameters such as weights
and biases). Thus, to reconstruct a previously stored DL model, we
need the following elements: (1) the graph of the leaf-layers, (2)
mapping of the leaf layers to tensors, and (3) the content of the
tensors. State-of-the-art solutions [1, 37] capture the graph using
a standardized format (e.g., JSON), which is supported by popular
AI libraries (e.g., Keras [14]). Then, based on a label given to each
leaf layer, the tensors can be serialized independently as key-value
pairs using a standard format, such as HDF5 [37]. Metadata for-
mats such as JSON describe each layer using comprehensive and
verbose information: name of the layer’s class, shape, label (a de-
scriptive string), relationship to other leaf layers (provides output
to or needs input from), and so forth. Such solutions, while human-
readable and user friendly, may incur large metadata overheads
during store/load operations, especially for DL models with a large
number of small tensors. Consequently, our first contribution is to
introduce a compact representation of the graph: as we traverse the
recursive definition of the architecture bottom up, we extract for
each leaf layer the list of other leaf layers whose input is a direct
dependency (henceforth referred to as input dependencies). Then,
we assign a unique ID (whose representation fits in a small number
of bits) to each leaf layer and obtain a compact list of its input
dependencies based on their unique IDs. By focusing only on the
leaf layers and using small unique ID references, we both reduce
the metadata size and make the architecture easier to parse.

Stable hashing of layer metadata that retains the features
of the DL model architecture: Obtaining unique IDs for the leaf
layers of the DL model architecture is challenging because layers
of identical type and with identical shape can be reused in different
parts of the graph. Also, we cannot simply rely on the labels given
to the layers because they are assigned in an inconsistent fashion.
For example, during the recursive layer definition, Keras [14] keeps
an internal counter that increases every time the same type of layer
is encountered, then automatically labels it using a string that com-
bines the layer class name and the counter value. Later, if the DL
model architecture is instantiated in a different way or multiple
DL model architectures are instantiated in the same way but in a
different order, the labels of the same leaf layers will not match. To
overcome this challenge, we propose a stable hashing technique
inspired by Merkle trees [25], which is detailed in Section 4. The
key idea is to hash the structurally significant attributes of the layer
together with hashes describing the ancestry of its input dependen-
cies. This enables unique IDs regardless of how many repetitions
of layers or entire substructures exist in the architecture. Note that
we abuse the term unique ID with this approach, because there is a
theoretical chance of hashing collisions. By using a cryptograph-
ically secure hash function, however, this chance is negligible in
practice.

Client-side cached mapping of leaf layer and unique IDs:
To reconstruct the DL model architecture from a compact graph
representation, we need to maintain a mapping between the unique
IDs and the properties of their leaf layers, such that we can create
new layer class instances (or reuse existing ones) as needed. In this
context, large numbers of DL model architectures can be reused
either fully (e.g., checkpointing the same model) or partially (e.g.,
transfer learning). This applies to many of the scenarios mentioned
in Section 1. Therefore, we leverage this observation in order to
maintain a repository of cached layer metadata and their mapping
to unique IDs. For performance considerations, these mappings are
cached locally on the clients. When a new DL model needs to be
stored, only the new layers (different shape or different predecessor
ancestry) need to be hashed to obtain a unique ID, while the rest
can be directly reused. Similarly, when a DL model needs to be
loaded, the cache can be used to directly instantiate leaf layers from
unique IDs. Since we do not overwrite existing metadata, cache
synchronization is not a concern, thus enabling a lightweight and
highly scalable implementation.

Distributed key-value store providers: To achieve scalability,
we store both the compact architecture graph and the collection of
tensors as key-value pairs on a set of distributed providers, which
can be either co-located with the clients on the same set of compute
nodes or hosted by a separate set of dedicated nodes. Two challenges
arise in this context: (1) how to enable the clients to find out what
providers to contact in order to recover the architecture and/or
content of the DL model and (2) how to distribute the requests
of concurrent clients to different providers in order to achieve
load balancing and scalability. We propose to solve both problems
simultaneously by leveraging stable hashing: we require the clients
to assign unique names to the DL model instances. Based on the
unique names, we obtain unique model IDs, which can be mapped
to a deterministic set of providers (e.g., unique model instance ID
modulo the number of providers) that are responsible for them.

135

ICS ’23, June 21–23, 2023, Orlando, FL, USA Meghana Madhyastha, Robert Underwood, Randal Burns, and Bogdan Nicolae

RDMA-enabled distributed tensor grouping and metadata
consolidation: Given the huge number of tensors, it is not feasible
to simply distribute each tensor as a separate key-value to a different
provider, because this will force the clients to issue a large number
of tiny put/get requests to a large number of providers, which results
in degraded I/O performance. Hence, we propose to consolidate
the tensors of a store/load request into a single provider. However,
simply aggregating all tensors as a single block of contiguous data
that is then transferred between clients and providers also incurs a
large overhead. Furthermore, after a store request, we need to retain
efficient fine-grained access to the tensors for future read requests.
To address these issues, we leverage bulk RDMA operations: the
client assembles a set of (offset, size) segments corresponding to the
in-memory tensors, while the provider allocates memory and pulls
these segments locally. This results in a single transfer operation
that collects the tensors as they are scattered in memory directly.
Next, the client stores the compact architecture graph of the DL
model together with the segments corresponding to the tensors
on the same provider. This metadata consolidation step allows the
segments to be reused later during read requests, which reduces
the setup overhead for RDMA bulk operations. Specifically, the
client exposes preallocated memory regions into which the provider
directly pushes the content of the tensors.

Preallocated and pre-pinned staging buffers to accelerate
RDMA transfers: Even if we leverage bulk RMDA operations to
enable low-latency, high-throughput communication between the
clients and the providers, other overheads can negatively impact
the overall performance of load and store operations. In particular,
the memory regions involved in bulk RDMA transfers between a
client and a provider need to be pinned by the operating system.
This operation is needed in order to make sure the corresponding
physical addresses of memory pages remain fixed and can be di-
rectly accessed by the network interfaces. However, pinning a large
number of memory pages is an expensive operation. Therefore,
we propose to use a fixed staging buffer on both the clients and
the providers, which is used for all bulk RDMA-operations and
is preallocated and pre-pinned on initialization of the client and
provider, respectively. Additionally, continuously allocating and
deallocating memory on demand to store tensors are expensive,
and preallocating on initialization removes this overhead. These
staging buffers are nontrivial to manage, however, especially un-
der concurrency: the same client may issue concurrent load/store
requests to different providers, and the same provider may serve
concurrent load/store requests from different clients. To address
this issue, we introduce a custom allocation/deallocation strategy
on the staging buffer specifically optimized for concurrency.

Native tensor operators to obtain direct access to the tensor
content: High-level AI libraries are often implemented in high-
level languages (e.g., Python) and do not have direct access to the
data structures of the underlying low-level implementation. There-
fore, there are restrictions in terms of when and how it is possible
to access such low-level data structures. For example, the Tensor-
Flow implementation of Keras requires a separate execution graph
context in order to extract the value of tensors into separate copies
(e.g., NumPy arrays). Consequently, extracting the raw tensors of
DL models may incur high overheads. These overheads are often
present in state-of-the-art DL model serialization approaches. For

example, DL model serialization into the HDF5 [37] format involves
such expensive copies of tensors into NumPy arrays, which are then
written through the HDF5 Python bindings into a file. The reverse
process applies in the case of reading DL models. We address this
issue by tapping directly into the memory allocated for the tensors
of the DL model, by defining native low-level tensor operators that
have direct access to the raw pointers.

4 ZOOM ON STABLE HASHING
As mentioned in Section 3, we propose an algorithm inspired by
Merkle trees [25] to enable stable hashing of the layer metadata that
retains the features of the DL model architecture. This algorithm is
needed in order to uniquely identify the leaf layers in the compact
architecture graph of the DL model, independently of preassigned
labels and tolerant to repetitions of identical layers types and and/or
substructures. It is listed in Algorithm 1.

Algorithm 1: Assign Unique IDs
Input :Architecture of model𝑀
Output :A map of all leaf-layer→ 𝑢𝑛𝑖𝑞𝑢𝑒_𝑖𝑑

1 Function 𝐿𝑒𝑎𝑓 𝐿𝑎𝑦𝑒𝑟𝐻𝑎𝑠ℎ(𝑙, 𝐿):
2 𝐻 ← 𝐻𝑎𝑠ℎ(𝑙 .𝑐𝑜𝑛𝑓 𝑖𝑔)
3 foreach 𝑙𝑖 ∈ 𝑙 .𝑖𝑛𝑝𝑢𝑡𝑠 do
4 if 𝑙𝑖 ∉ 𝐿 then
5 𝐿 ← 𝐿𝑒𝑎𝑓 𝐿𝑎𝑦𝑒𝑟𝐻𝑎𝑠ℎ(𝑙𝑖 , 𝐿)
6 𝐻 = 𝐻𝑎𝑠ℎ(𝐻, 𝐿[𝑙𝑖])
7 𝐿[𝑙] ← 𝐻

8 return 𝐿

9 𝐿 ← ∅
10 foreach 𝑙 ∈ outputs of𝑀 do
11 𝐿 ← 𝐿𝑒𝑎𝑓 𝐿𝑎𝑦𝑒𝑟𝐻𝑎𝑠ℎ(𝑙, 𝐿)
12 return 𝐿

Specifically, starting from the output layers of DL model 𝑀 , we
hash each of the attributes affecting the model structure of each
leaf layer 𝑙 (layer class name, shape, etc. captured by l.get_config)
with the hashes of its direct dependencies (𝑙𝑖 ∈ 𝑙 .𝑖𝑛𝑝𝑢𝑡𝑠) and store
the resulting hash into a memoization table 𝐿. For any direct depen-
dency 𝑙𝑖 that was not hashed yet, the process repeats recursively.
Thanks to the memoization table 𝐿, each leaf layer is hashed only
once.

The complexity of this algorithm is 𝑂 (|𝑉 | + |𝐸 |), where |𝑉 | is
the number of leaf layers and |𝐸 | is the number of input edges in
the architecture graph.

5 IMPLEMENTATION
We implemented a research prototype based on the design prin-
ciples introduced in Section 3. Specifically, the repository follows
a client-server architecture: the clients issue store/load DL model
requests, while the providers collaborate to serve these requests.
An overview is depicted in Figure 1.

The interactions between the clients and the providers leverage
bulk RDMA transfer operations, which are optimized by using HPC-
oriented RPCs, as provided by Mochi [33]. Specifically, we leverage

136

137

ICS ’23, June 21–23, 2023, Orlando, FL, USA Meghana Madhyastha, Robert Underwood, Randal Burns, and Bogdan Nicolae

formats mentioned in Section 2. With the exception of the client-
side cache that retains the mapping between unique IDs and layer
instances, most other aspects are high-performance C++ implemen-
tations that live in a client library, which is interfaced with the
Python-level primitives. The providers are fully implemented in
C++. Thanks to this isolation, our implementation is generic and
can be easily ported to other AI runtimes, notably PyTorch.

6 EXPERIMENTAL EVALUATION
6.1 Setup
We perform our experiments on Cooley, an Argonne Leadership
Computing Facility (ALCF) HPC system comprising 126 compute
nodes. Each node is equipped with two Intel (Haswell) 2.4 GHz
E5-2520 CPUs and an Nvidia Tesla (Kepler) K80 accelerator. The
K80 accelerator is a dual-GPU design that exposes 2 Tesla GK210
GPUs across a PLX switch over a PCI Express connection to the
card (max 15.6 GB/s). Each node features 372 GB DDR4 RAM on
the host side and 24 GB of high bandwidth memory split evenly be-
tween the two GPUs. The nodes are interconnected using a 4xFDR
InfiniBand network (max 7 GB/s). The same network provides ac-
cess to a Lustre parallel file system (10 PB) capable of ≈210 GB/s
in peak bandwidth across 56 object storage targets. Since our ex-
periments do not involve GPU computations and rather focus on
I/O throughputs, this setup is representative of data centers with
newer GPU accelerators as well.

In terms of software ecosystem, the AI runtime we installed is
TensorFlow 2.9. The bulk RDMA-enabled RPC runtime is based
on the following stack: Mercury 2.1.0 (using OFI verbs provider in
libfabric), Argobots 1.1, Margo 0.9.10, and Thallium 0.10.0 [33].

6.2 Compared Approaches
We compare our proposal with state-of-the-art approaches and
with an alternative implementation that includes only a subset of
our design principles (used as a reference in ablation studies to
highlight the impact of individual contributions.

HDF5-PFS:This approach stores and loadsDLmodels asHDF5 [37]
files. It is part of the standard TensorFlow distribution and imple-
mented in Keras. The store primitive first copies the content of the
tensors into NumPy arrays (by launching a separate TensorFlow
execution context), then writes the arrays into an HDF5 file using
the HDF5 Python bindings. The load primitive loads the arrays from
the HDF5 file, then copies their content into the tensors managed
by TensorFlow. We chose a minimalist setup that only stores the
model weights in the HDF5 file, which is the only mode that sup-
ports fine-grained read access to the tensors (by specifying a set of
layer labels to be loaded) and is typically employed for performance
reasons. On HPC systems, AI workflows typically use a parallel file
system to store the resulting HDF5 files. In our case, this is a Lustre
deployment. Overall, this configuration is a typical baseline used
in production on an HPC system.

SavedModel-PFS: this approach is similar to HDF5−PFS in that
it serializes and deserializes the DL models as files on the Lustre
parallel file system. However, there are notable differences due to
a different SavedModel format. Specifically, the internal representa-
tion of the DL model is decomposed into an entire set of files that

hold additional metadata about the DL model (DL model architec-
ture, state of the optimizer, mathematical descriptions of custom
operators). To ensure a fair comparison, we store only the model
architecture and disable the rest of the metadata. Just as in the case
of HDF5−PFS, the overhead of explicit copies between tensors and
intermediate arrays is also present. Unlike HDF5−PFS, however, fine-
grained access to the tensors is not available. Some AI workflows
prefer this format because of the additional information it cap-
tures about the DL models, which makes it another representative
baseline.

FlameStore [1]: This state-of-the-art approach adopts a client-
provider model similar to our approach. Like our approach, it has a
mechanism to capture raw pointers to tensors and uses RDMA to
facilitate the communication between the clients and the providers.
The tensors are stored in an in-memory hash table that delivers the
highest performance and scalability. Unlike our proposal, however,
it does not feature metadata optimizations (it stores the DL model
architecture in full using a JSON format), does not support fine-
grained read access to the tensors, and does not include optimized
caching and memory management.

DStore-Opt: This approach implements all our proposed design
principles described in Section 5 and runs with all optimizations
active. As in the case of FlameStore, the buckets used to store the
tensors are our own version of in-memory hash tables optimized
for concurrent access and subject to the proposed design principles.
DStore−Opt showcases the best peformance and scalability that can
be achieved compared with the state of the art.

DStore-OnDemand: This approach is identical to DStore−Opt
except for deactivating the preallocated and pre-pinned staging
buffer used for memory management. Instead, it simply performs
on-demand allocations/deallocations and pinning of the memory
for RDMA operations. Its purpose is to enable us to isolate and
study the impact of our custom memory management technique.

6.3 Methodology
We evaluate the performance and scalability of the approaches
described in Section 6.2 for a variety of DL model architectures
that feature large vs. small overall DL model size, large vs. small
number of leaf-layers, and various distributions of the tensor sizes
(layers of similar size vs. layers of different sizes). Thanks to this
approach, we cover a large spectrum of the diversity of the DL
models encountered in real-world AI applications.

Our goal is to show that DStore can efficiently (1) store and trans-
fer both small and large models; (2) handle both simple and complex
metadata (metadata complexity is proportional to the number of
leaf-layers); and (3) adapt to the heterogeneity of the leaf-layers
(mix of small and large tensors).

Unless otherwise mentioned, we co-locate providers and clients
launched with the compute job. This is the most commonly encoun-
tered scenario. Note that if the HPC system allows it, the providers
can also be run as a permanent service on a separate set of nodes.
For brevity, we do not explore this configuration.

Synthetic workloads: We designed a DL model architecture
generator that takes three input parameters: (1) total size of the
DL model (in bytes); (2) number of leaf-layers; and (3) maximum
difference between the layer sizes (in bytes).

138

139

ICS ’23, June 21–23, 2023, Orlando, FL, USA Meghana Madhyastha, Robert Underwood, Randal Burns, and Bogdan Nicolae

access: despite loading only 25% of the tensors, the overhead is
almost the same, especially for small sizes. On the other hand, our
approach has much better scalability, since the duration of load
grows proportionally to the total size of the tensors being read
back.

6.5 Results: Low-Level Operation Breakdown
Next, we focus on a breakdown of the overheads of the low-level
operations that are involved in the workflow diagrams of the store
and load primitives (Figures 2 and 3) described in Section 5. The goal
is to study the impact of each low-level operation in the end-to-end
measurements discussed in the preceding sections.

The overhead of obtaining a compact architecture graph using
stable hashing is negligible (below one millisecond) and involves
sizes in the order of a few kilobytes. This demonstrates the high
performance of our metadata management. Compared with the
overheads of the rest of the low-level operations, it can be ignored.
Therefore, for the rest of this section, we will study the latter.

Specifically, we compare DStore−Opt with DStore−OnDemand in
Figure 6.We consider the following low-level operations: on-demand
allocations (measure the duration of regular host-sidemalloc calls in
the case of DStore−OnDemand and custom allocations on the staging
buffer in the case of DStore−Opt), GPU-host transfers (measure the
duration of copying the tensors from the GPU memory to the regu-
lar host memory in the case of DStore−OnDemand and to the staging
buffer in the case of DStore−Opt), RDMA pinning (measures the du-
ration of pinning the host memory in the case ofDStore−OnDemand),
and RDMA transfers (measure the duration of RDMA transfers for
both approaches).

As expected, the GPU-host and RDMA transfer duration is con-
sistent between the two approaches for both load and store oper-
ations. However, DStore−OnDemand exhibits significant overheads
for both on-demand allocations and RDMA pinning, while the cor-
responding overheads are negligible in the case of DStore−Opt. This
demonstrates the importance of our custom memory management.

6.6 Results: Different Number of Layers
Our second set of experiments considers the end-to-end perfor-
mance of a single client that is served by a single provider, in a
setup similar to that described in Section 6.4.

The key difference is that we keep the total size of the DL models
fixed at 4 GB but vary the number of dense layers of equal size
from 100 to 1000. DL models with many layers have much larger
metadata and trigger more difficult I/O patterns for approaches that
rely on serializing the DL models as files, since it involves many
noncontiguous tensors allocated in scattered memory locations that
need to be read/written. These models are common in applications
that use complex residual networks that can be built with 1000+
layers, such as modern large graph neural network models [20].

Similar to the case of variable model size, we first store the DL
model using one client, then read it back using a different client
deployed on a different compute node to avoid caching effects. The
results are depicted in Figure 5.

As can be observed, the duration of the store operation challenges
the SavedModel−PFS approach the most, since it suffers from large
metadata overheads, large overheads to collect the scattered tensors,

and large I/O overheads due to writing the data and metadata into
a large number of files on the parallel file system. This effect is
particularly pronounced as the number of layers increases, which is
an expected future trend of DL models. By comparison, HDF5−PFS
has smaller overheads and scales better. We note, however, that
unlike SavedModel−PFS, it does not store the DL model architecture.
On the other hand, FlameStore performs much better transfer of
many scattered, noncontiguous tensors thanks to its bulk RDMA-
enabled I/O. However, it suffers from high metadata overheads
compared with DStore−OnDemand. The difference grows slightly
higher with increasing number of layers, which demonstrates the
effectiveness of our compact architecture graph. Furthermore, the
advantages of using a preallocated and prepinned staging buffer are
even more pronounced in the case of a large number of layers. In
this case, DStore−Opt is more than 2x faster than DStore−OnDemand
and 3x faster than FlameStore. As in the case of variable DL model
sizes, DStore−Opt is orders of magnitude faster than SavedModel−PFS
and up to 10× faster than HDF5−PFS, despite the fact that it also
saves the DL model architecture.

The load operations involve proportionally more layers com-
pared with the variable DL model size scenario. An interesting
effect is observed when comparing HDF5−PFS with SavedModel−PFS.
In the case of SavedModel−PFS, the load throughput is almost double
the store throughput, yet the opposite is true forHDF5−PFS, in which
case the write throughput is slightly higher. This effect happens be-
cause SavedModel−PFS uses a large number of files while HDF5−PFS
uses only one, allowing the operating system to buffer writes better.
However, just as in the case of variable DL model size, the load
operations are much faster and exhibit better scalability for the
other three approaches. FlameStore behaves virtually identically for
load operations and store operations, which again demonstrates the
effectiveness of our compact metadata and staging buffer. For fine-
grained tensor access, DStore−Opt is again more than 2x faster than
DStore−OnDemand and orders of magnitude faster than HDF5−PFS,
which exhibits poor scalability when less than the full DL model is
being loaded.

6.7 Results: Different Layer Sizes
Our third set of experiments uses the same setup as described previ-
ously, but this time we keep the number of layers and the DL model
size fixed, while changing the distribution of the layers sizes. Such
an imbalance between the layer sizes is frequently encountered in
practice, hence the need to study this aspect separately.

To this end, we configure the generator to randomly create dif-
ferent tensor sizes that can deviate up to 30% from the size used for
uniform tensors. We fix the number of layers to 100 and the total
DL model size to 4 GB.

As can be observed in Figure 7, the advantage of DStore−Opt
against all other approaches remains evident: it is still up to an
order of magnitude faster than HDF5−PFS, especially for partial
loading of DL models that involve fine-grained reads of the tensors.
Furthermore, DStore−Opt is at least 2× faster than FlameStore and
an order of magnitude faster than SavedModel. These results are
consistent with Figure 5, where we also fix 100 layers and 4 GB
total size, but with uniform layer sizes.

140

141

ICS ’23, June 21–23, 2023, Orlando, FL, USA Meghana Madhyastha, Robert Underwood, Randal Burns, and Bogdan Nicolae

(a) Load operations. Lower is better. (b) Store operations. Lower is better.

Figure 9: Weak scalability: Performance of load and store operations for an increasing number of clients (one per node)
synchronized to start simultaneously. Lower is better. DStore−Opt shows perfect scalability and retains its advantage against the
other approaches regardless of the number of concurrent clients.

observations above, we believe that the gap between DStore−Opt
and the rest of the approaches would significantly increase for such
DL models. Nvidia’s Megatron model in particular is constructed
incrementally via transfer learning [30] from BERT, GPT, and other
constituent models, which involves fine-grained reads.

6.9 Results: Scalability of Concurrent Clients
Our last set of experiments focuses on the weak scalability of the
load and store operations under concurrency. We deploy an increas-
ingly larger number of clients on separate compute nodes with
multiple GPUs, then synchronize the clients to simultaneously start
loading or storing their DL models. This experiment underlines the
differences between the compared approaches and potential bottle-
necks under contention at scale, which, as discussed in Section 1,
is increasingly encountered by AI workflows.

In the case of HDF5−PFS and SavedModel−PFS, the parallel file
system is subject to concurrent I/O operations, which may lead to
I/O bottlenecks. The Lustre parallel file system attached to Cooley
has 55 OSTs. Thus, we experiment with up to 64 clients deployed on
64 compute nodes in order to outnumber the OSTs of the parallel
file system and trigger I/O bottlenecks. In the case of FlameStore,
and DStore−Opt, we co-locate a provider with a client. Furthermore,
we enforce a hashing scheme that guarantees that each client will
store/load its DL model to/from a remote provider deployed on dif-
ferent compute node. This maximizes the stress on the networking
infrastructure and represents a worst-case scenario. The DL model
loaded/stored by each client is synthetically generated (4 GB large
and includes 10 uniform layers).

The experiment is performed in two stages. First, all clients start
at the same time and store their DL model, generating write con-
currency to the repository. Then, after all the clients have finished,
they start reading (again simultaneously) a different DL model
previously stored by a different client (to avoid caching effects),
which generates read concurrency to the repository. The results are
depicted in Figure 9. As can be observed, in the case of load opera-
tions (Figure 9a), FlameStore, HDF5−PFS, and SavedModel−PFS scale

well up to 16 concurrent clients, at which point the contention for
network bandwidth and, where applicable, the parallel file system
drives the average duration higher. On the other hand, thanks to the
design principles of our proposal, DStore−Opt shows perfect scala-
bility, which means the gap compared with the other approaches
(previously studied for a single client) is only increasing at scale.

A similar trend is visible in the case of concurrent store op-
erations (Figure 9b): FlameStore is bottlenecked beyond 16 con-
current clients, while DStore−Opt continues to scale as it did in
the case of load operations. However, in the case of HDF5−PFS
and SavedModel−PFS, the I/O bottlenecks of the parallel file system
are less pronounced because the OS is flushing the writes asyn-
chronously. Nevertheless, again DStates−Opt retains a speedup of
an order of magnitude.

7 CONCLUSIONS
In this work we propose a distributed DL model repository that
addresses the needs of HPC AI workflows: high-frequency, concur-
rent load/store operations with support for fine-grained access to
individual tensors. The key novelty of our proposal is a series of
design principles (compact architecture graph representation with
stable hashing and client-side caching, scalable load balancing on
multiple providers, RDMA-optimized data staging, direct access to
raw tensor data) that we implemented in the DStore learning model
repository, which acts as a drop-in replacement of the standard
learning model save/load primitives implemented the Keras library.

Our approach yields considerable speedups over state-of-the-art
approaches that store/load learning models as HDF5 files (up to
20×) or use the SavedModel format (up to 45×) on a parallel file
system, as well as over approaches such as FlameStore that leverage
in-memory storage on the compute nodes (up to 3×). These results
apply to both synthetically generated and real-life DL models. Fur-
thermore, weak scalability experiments on up to half the size of the
ALCF Cooley HPC system (64 nodes) show perfect scalability for
our proposal for an increasing number of nodes, while the gap with
respect to the other approaches is widening (up to 60× speedup).

142

DStore: A Lightweight Scalable Learning Model Repository
with Fine-Grained Tensor-Level Access ICS ’23, June 21–23, 2023, Orlando, FL, USA

In particular, preallocating and pre-pinning a staging buffer is par-
ticularly effective in combination with RDMA and achieves up to
2× speedup compared with the on-demand counterpart.

Encouraged by these preliminary results, we plan to expand
the scope of our experiments to demonstrate the impact of our
proposal for real-life AI workflows, notably network architecture
search scenarios. Furthermore, we plan to explore several other
complementary aspects such as (1) persistency using node-local
storage; (2) incremental storage and lineage management for trans-
fer learning; and (3) multilevel collaborative caching between the
providers based on exploiting the popularity of tensors and the
data/metadata relationships.

ACKNOWLEDGMENTS
This material is based upon work supported by the U.S. Department
of Energy (DOE), Office of Science, Office of Advanced Scientific
Computing Research, under Contract DE-AC02-06CH11357.

REFERENCES
[1] [n. d.]. FlameStore: A Storage System for Deep Learning Models based on Mochi.

https://github.com/mochi-hpc/flamestore.
[2] [n. d.]. Lustre: A parallel file system that supports many requirements of leader-

ship class HPC simulation environments. https://www.lustre.org/.
[3] [n. d.]. Model Zoo. https://caffe.berkeleyvision.org/model_zoo.html.
[4] [n. d.]. NVIDIA NGC Catalog. https://catalog.ngc.nvidia.com/models.
[5] [n. d.]. PyTorch Hub. https://pytorch.org/hub/.
[6] [n. d.]. Tensorflow Hub. https://www.tensorflow.org/hub.
[7] 2022. Tensorflow SavedModel. https://www.tensorflow.org/guide/saved_model.
[8] M. Alam, M.D. Samad, L. Vidyaratne, A. Glandon, and K.M. Iftekharuddin. 2020.

Survey on Deep Neural Networks in Speech and Vision Systems. Neurocomputing
417 (2020), 302–321.

[9] Prasanna Balaprakash, Romain Egele, Misha Salim, Stefan Wild, Venkatram
Vishwanath, Fangfang Xia, Tom Brettin, and Rick Stevens. 2019. Scalable
Reinforcement-Learning-Based Neural Architecture Search for Cancer Deep
Learning Research. In SC’19: The 2019 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. Denver, CO, 37:1–37:33.

[10] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in Neural
Information Processing Systems 33 (2020), 1877–1901.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In NAACL-HLT’19: The 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies. 4171–
4186.

[12] Ruslan Kuprieiev et. al. 2022. DVC: Data Version Control - Git for Data &Models.
[13] Yonatan Gottesman, Joel Nider, Ronen Kat, Yaron Weinsberg, and Michael Factor.

2016. Using Storage Class Memory Efficiently for an In-Memory Database.
In SYSTOR ’16: The 9th ACM International Symposium on Systems and Storage
Conference. Haifa, Israel, Article 21.

[14] Antonio Gulli and Sujit Pal. 2017. Deep Learning with Keras. Packt Publishing.
[15] Lexie Hagen. 2021. Make Every Feature Binary: A 135B Parameter Sparse Neural

Network for Massively Improved Search Relevance.
[16] Nathan Hjelm. 2016. An Evaluation of the One-Sided Performance in Open

MPI. In EuroMPI’16: The 23rd European MPI Users’ Group Meeting. Association for
Computing Machinery, Edinburgh, United Kingdom, 184—-187.

[17] Julian Kates-Harbeck, Alexey Svyatkovskiy, and William Tang. 2019. Predicting
disruptive instabilities in controlled fusion plasmas through deep learning. Nature
568, 7753 (4 2019).

[18] Dmitrii Kochkov, Jamie A. Smith, Ayya Alieva, Qing Wang, Michael P. Bren-
ner, and Stephan Hoyer. 2021. Machine learning-accelerated computational
fluid dynamics. Proceedings of the National Academy of Sciences 118, 21 (2021),
e2101784118.

[19] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper R. R. Uijlings, Ivan Krasin,
Jordi Pont-Tuset, Shahab Kamali, Stefan Popov, Matteo Malloci, Alexander
Kolesnikov, Tom Duerig, and Vittorio Ferrari. 2020. The Open Images Dataset
V4. Int. J. Comput. Vis. 128, 7 (2020), 1956–1981.

[20] Guohao Li, Matthias Müller, Bernard Ghanem, and Vladlen Koltun. 2021. Training
graph neural networks with 1000 layers. In International conference on machine
learning. PMLR, 6437–6449.

[21] Zhuozhao Li, Ryan Chard, Logan Ward, Kyle Chard, Tyler J. Skluzacek, Yadu
Babuji, Anna Woodard, Steven Tuecke, Ben Blaiszik, Michael J. Franklin, and
Ian Foster. 2021. DLHub: Simplifying publication, discovery, and use of machine
learning models in science. J. Parallel and Distrib. Comput. 147 (2021), 64–76.

[22] Hongyuan Liu, Bogdan Nicolae, Sheng Di, Franck Cappello, and Adwait Jog. 2021.
Accelerating DNN Architecture Search at Scale Using Selective Weight Transfer.
In CLUSTER’21: The 2021 IEEE International Conference on Cluster Computing.
Portland, OR.

[23] Jie Liu, Bogdan Nicolae, and Dong Li. 2022. Lobster: Load Balance-Aware I/O
for Distributed DNN Training. In ICPP ’22: The 51st International Conference on
Parallel Processing. Bordeaux, France.

[24] Jay Lofstead, Ivo Jimenez, Carlos Maltzahn, Quincey Koziol, John Bent, and Eric
Barton. 2016. DAOS and Friends: A Proposal for an Exascale Storage System.
In SC ’16: The 2016 International Conference for High Performance Computing,
Networking, Storage and Analysis. Salt Lake City, UT, 50:1–50:12.

[25] Ralph C. Merkle. 1987. A Digital Signature Based on a Conventional Encryption
Function. In CRYPTO ’87: Conference on the Theory and Applications of Crypto-
graphic Techniques. 369–378.

[26] Jayashree Mohan, Amar Phanishayee, and Vijay Chidambaram. 2021. CheckFreq:
Frequent, Fine-Grained DNN Checkpointing. In FAST’21: 19th USENIX Conference
on File and Storage Technologies. 203–216.

[27] Maryam M. Najafabadi, Flavio Villanustre, Taghi M. Khoshgoftaar, Naeem Seliya,
Randall Wald, and Edin Muharemagic. 2015. Deep learning applications and
challenges in big data analytics. J. Big Data 2 (2015), 1.

[28] Bogdan Nicolae. 2022. Scalable Multi-Versioning Ordered Key-Value Stores with
Persistent Memory Support. In IPDPS 2022: The 36th IEEE International Parallel
and Distributed Processing Symposium. Lyon, France, 93–103.

[29] Bogdan Nicolae, Jiali Li, Justin Wozniak, George Bosilca, Matthieu Dorier, and
Franck Cappello. 2020. DeepFreeze: Towards Scalable Asynchronous Check-
pointing of Deep Learning Models. In CGrid’20: 20th IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing. Melbourne, Australia, 172–
181.

[30] NVIDIA. 2023. Megatron-LM. NVIDIA Corporation.
[31] Keren Ouaknine, Oran Agra, and Zvika Guz. 2017. Optimization of RocksDB for

Redis on Flash. In ICCDA ’17: The 2017 International Conference on Compute and
Data Analysis. Association for Computing Machinery, Lakeland, USA, 155—-161.

[32] Ricardo Ribani and Mauricio Marengoni. 2019. A Survey Transfer Learning for
Convolutional Neural Networks. In 2019 32nd SIBGRAPI Conference on Graphics,
Patterns and Images Tutorials (SIBGRAPI-T). 47–57.

[33] Robert B. Ross, George Amvrosiadis, Philip H. Carns, Charles D. Cranor, Matthieu
Dorier, Kevin Harms, Greg Ganger, Garth Gibson, Samuel K. Gutierrez, Robert
Latham, Robert W. Robey, Dana Robinson, Bradley W. Settlemyer, Galen M. Ship-
man, Shane Snyder, Jérome Soumagne, and Qing Zheng. 2020. Mochi: Composing
Data Services for High-Performance Computing Environments. J. Comput. Sci.
Technol. 35, 1 (2020), 121–144.

[34] Connor Shorten, Taghi M. Khoshgoftaar, and Borko Furht. 2021. Deep Learning
applications for COVID-19. J. Big Data 8, 1 (2021), 1–54.

[35] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[36] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chun-
fang Liu. 2018. A Survey on Deep Transfer Learning. In ICANN’18: 27th Interna-
tional Conference on Artificial Neural Networks and Machine Learning, Vol. 11141.
Rhodes, Greece, 270–279.

[37] The HDF Group. 1997-2022. Hierarchical Data Format, version 5.
https://www.hdfgroup.org/HDF5/.

[38] Marc-André Vef, Vasily Tarasov, Dean Hildebrand, and André Brinkmann. 2018.
Challenges and Solutions for Tracing Storage Systems: A Case Study with Spec-
trum Scale. ACM Trans. Storage 14, 2, Article 18 (2018).

[39] Pablo Villalobos, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, Anson Ho, and
Marius Hobbhahn. 2022. Machine Learning Model Sizes and the Parameter Gap.
https://arxiv.org/abs/2207.02852

[40] Sage A. Weil, Andrew W. Leung, Scott A. Brandt, and Carlos Maltzahn. 2007.
RADOS: A Scalable, Reliable Storage Service for Petabyte-Scale Storage Clusters.
In PDSW ’07: The 2nd International Workshop on Petascale Data Storage: Held in
Conjunction with Supercomputing ’07. Reno, Nevada, 35—-44.

[41] Justin Wozniak, Rajeev Jain, Prasanna Balaprakash, et al. 2018. CANDLE/Super-
visor: A workflow framework for machine learning applied to cancer research.
BMC Bioinformatics 19 (2018).

[42] Justin Wozniak, Hyunseung Yoo, Jamaludin Mohd-Yusof, Bogdan Nicolae, Nichol-
son Collier, Jonathan Ozik, Thomas Brettin, and Rick Stevens. 2020. High-bypass
Learning: Automated Detection of Tumor Cells That Significantly Impact Drug
Response. In MLHPC’20: The 2020 IEEE/ACM Workshop on Machine Learning in
High Performance Computing Environments.

[43] Yongquan Yang and Haijun Lv. 2021. Discussion of Ensemble Learning under
the Era of Deep Learning. CoRR abs/2101.08387 (2021).

[44] Chen Youmin, Lu Youyou, Luo Shengmei, and Shu Jiwu. 2019. Survey on RDMA-
Based Distributed Storage Systems. Journal of Computer Research and Develop-
ment 56, 2 (2019), 227.

143

https://github.com/mochi-hpc/flamestore
https://www.lustre.org/
https://caffe.berkeleyvision.org/model_zoo.html
https://catalog.ngc.nvidia.com/models
https://pytorch.org/hub/
https://www.tensorflow.org/hub
https://www.tensorflow.org/guide/saved_model
https://arxiv.org/abs/2207.02852

	Abstract
	1 Introduction
	2 Related Work
	3 System Design and Description
	4 Zoom on Stable Hashing
	5 Implementation
	6 Experimental Evaluation
	6.1 Setup
	6.2 Compared Approaches
	6.3 Methodology
	6.4 Results: Different Model Size
	6.5 Results: Low-Level Operation Breakdown
	6.6 Results: Different Number of Layers
	6.7 Results: Different Layer Sizes
	6.8 Results: Real-Life Models
	6.9 Results: Scalability of Concurrent Clients

	7 Conclusions
	References

