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Newly Released Capabilities in the Distributed-Memory
SuperLU Sparse Direct Solver
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We present the new features available in the recent release of SuperLU_DIST, Version 8.1.1. SuperLU_DISTisa
distributed-memory parallel sparse direct solver. The new features include (1) a 3D communication-avoiding
algorithm framework that trades off inter-process communication for selective memory duplication, (2) multi-
GPU support for both NVIDIA GPUs and AMD GPUs, and (3) mixed-precision routines that perform single-
precision LU factorization and double-precision iterative refinement. Apart from the algorithm improvements,
we also modernized the software build system to use CMake and Spack package installation tools to simplify
the installation procedure. Throughout the article, we describe in detail the pertinent performance-sensitive
parameters associated with each new algorithmic feature, show how they are exposed to the users, and give
general guidance of how to set these parameters. We illustrate that the solver’s performance both in time and
memory can be greatly improved after systematic tuning of the parameters, depending on the input sparse
matrix and underlying hardware.
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1 OVERVIEW OF SUPERLU_DIST

SuperLU_DIST!? is a distributed-memory parallel sparse direct solver library for solving large
sets of linear equations AX = B [6]. Here, A is a square, non-singular, n X n sparse matrix, and
X and B are dense n X nrhs matrices, where nrhs is the number of right-hand sides and solution
vectors. The matrix A needs not be symmetric or definite; indeed, SuperLU_DIST is particularly
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appropriate for unsymmetric matrices, and it respects both the unsymmetric values and the un-
symmetric sparsity pattern. The library uses variations of Gaussian elimination (LU factorization)
optimized to take advantage of the sparsity of the matrix and modern high-performance computer
architectures (specifically memory hierarchy and parallelism). It is implemented in ANSI C, using
MPI for communication, OpenMP for multithreading, and CUDA (or HIP) for NVIDIA (or AMD)
GPUs. The library includes routines to handle both real and complex matrices in single and double
precisions, and some functions with mixed precisions. The distributed-memory parallel algorithm
consists of the following major steps:

(1) Preprocessing

(2) Sparse LU (SpLU) Factorization

(3) Sparse Triangular Solve (SpTRSV)
(4) Iterative Refinement (IR) (optional).

The preprocessing in step (1) transforms the original linear system Ax = b into Ax = b so that
the latter one has more favorable numerical properties and sparsity structures. In SuperLU_DIST,
typically A is first transformed into A = PCPrDrADCPCT .Here, D, and D, are diagonal scaling matri-
ces to equilibrate the system, which tends to reduce the condition number of the matrix and avoid
over/underflow during Gaussian elimination. P, and P, are permutation matrices. The role of P, is
to permute rows of the matrix to make diagonal elements large relative to the off-diagonal elements
(numerical pivoting). The role of P, is to permute rows and columns of the matrix to minimize the
fill-in in the L and U factors (sparsity reordering). Note that we apply P, symmetrically so that the
large diagonal entries remain on the diagonal. With these transformations, the linear system to
be solved is (PCP,DrADCPCT )(P.D;')x = P.P,D,b. In the software configuration, each transforma-
tion can be turned off, or can be achieved with different algorithms. Further algorithm details and
user interfaces can be found in the work of Li et al. [6] and Li and Demmel [8]. After these trans-
formations, the last preprocessing step is symbolic factorization, which computes the distributed
non-zero structures of the L and U factors, and distributes the non-zeros of A into L and U.

In step (2), before the new Version-7 release (2021), the distributed memory code had been largely
built upon the design in the first SuperLU_DIST paper [7]. The main ingredients of the parallel
SpLU algorithm are

supernodal fan-out (right-looking) based on elimination DAGs;

static pivoting with possible half-precision perturbations on the diagonal [7];

2D logical process arrangement for non-uniform block-cyclic mapping, based on the supern-
odal block partition; and

e loosely synchronous scheduling with lookahead pipelining [14].

In step (3), the parallel SpTRSV uses a block-cyclic layout for the L and U matrices as in the re-
sults of SpLU. It also uses a message-driven asynchronous and dynamically scheduled algorithm—
designed to reduce the communication and latency costs.

In step (4), the user can optionally invoke a few steps of IR to improve the solution accuracy.
The computational kernels in the IR are SpTRSV and sparse matrix-vector multiplication. Before
this release, the IR is performed in the same precision as that of SpLU and SpTRSV.

This release paper focuses on the new capabilities in steps (2) through (4). These includes the
new 3D communication-avoiding algorithm framework (Section 2), multi-GPU support (Section 3),
mixed-precision routines (Section 4), and support for new build tools (Appendix C). Throughout
the article, we discuss all of the parameters that may influence the code performance. These param-
eters can be set in a compile-time “options” structure or by environment variables (with capitalized
names), the latter of which take precedence. Section 5 gives a summary of the parameters and some
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(a) Two-level etree partition (b) Matrix view on four process grids

Fig. 1. lllustration of the 3D parallel SpLU algorithm with four process grids. Note that here, A; refers to
Alis, i:].

typedef struct {
MPI_Comm comm; /* MPI communicator */
superlu_scope_t rscp; /* row scope */
superlu_scope_t cscp; /* column scope */
superlu_scope_t zscp; /* scope in third dimension x/

gridinfo_t grid2d; /* for using 2D functions */

int iam; /* my process number in this grid =/

int nprow; /* number of process rows */

int npcol; /* number of process columns */

int npdep; /* number of replication factor in Z-dimension =*/

int rankorder; /* = 0: Z-major ( default )
* = 1: XY-major (need set environment variable: SUPERLU_RANKORDER=XY)
*/

} gridinfo3d_t;

Fig. 2. 3D process grid definition.

tuning results. In particular, we illustrate that the performance can be greatly improved by using
an autotuner GPTune [9] for an optimal parameters setting. Finally, Section 6 summarizes our
contributions and gives perspectives of future developments.

2 3D COMMUNICATION-AVOIDING ROUTINES

We developed a novel 3D algorithm framework for sparse factorization and triangular solutions.
This new approach is motivated by the strong scaling requirement from exascale applications. Our
novel 3D algorithm framework for sparse factorization and triangular solutions alleviates commu-
nication costs by taking advantage of the 3D MPI process grid, the elimination tree parallelism,
and the communication-memory tradeoff—inspired from communication-avoiding algorithms for
dense linear algebra in the past decade.

The 3D processes grid, configured as P = Py X P, X P, (see Figure 3(a)), can be considered as P,
sets of 2D processes layers. The distribution of the sparse matrices is governed by the supernodal
elimination tree-forest (etree-forest): the standard etree is transformed into an etree-forest that
is binary at the top log,(P;) levels and has P, subtree-forests at the leaf level (Figure 1(a)). The
description of the tree partition and mapping algorithm is described in the work of Sao et al. [12,
Section 3.3]. The matrices A, L, and U corresponding to each subtree-forest are assigned to one 2D
process layer. The 2D layers are referred to as Grid-0, Grid-1, . . ., up to (P, — 1) grids. Figure 1(b)
shows the submatrix mapping to the four 2D process grids.

An example for calling the 3D algorithm to solve a sparse linear system is provided by
the sample program EXAMPLE/pddrive3d.c (see https://github.com/xiaoyeli/superlu_dist/blob/
master/EXAMPLE/pddrive3d.c). Figure 2 shows the C structure defining the 3D process grid.
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Fig. 3. Alogical 3D process grid and process configuration for two types of process arrangements.

2.1 The 3D Process Layout and Its Performance Impact

A 3D process grid can be arranged in two formats: XY-major or Z-major (Figure 3). In XY-major
format, processes with the same XY-coordinate and a different Z-coordinate have consecutive
global ranks. Consequently, when spawning multiple processes on a node, the spawned processes
will have the same XY-coordinate (except for cases where P, is not a multiple of the number of
processes spawned on the node). Alternatively, we can arrange the 3D process grid in Z-major
format where processes with the same Z-coordinate have consecutive global ranks. This is the
default ordering in SuperLU_DIST.

The Z-major format can be better for performance as it keeps processes in a 2D grid closer.
Hence, it may provide higher bandwidth for 2D communication, typically the bottleneck in com-
munication. However, the XY-major format can be helpful when using GPU acceleration. This can
happen since the XY-major ordering will keep more GPUs active during ancestor factorizations.
In some cases, such as sparse matrices from non-planar graphs, ancestor factorization can become
compute dominant, and XY-major ordering helps by keeping more GPUs active. For example, on
16 Haswell nodes of the NERSC Cori Cray XC40, the Z-major ordering was 0.85-1.3X faster than
the XY-major ordering. Haswell compute nodes have dual-socket 16-core 2.3-GHz Intel Xeon
E5-2698v3 CPUs. Note that this performance difference is system dependent, depending on the
hardware topology as well as the job scheduler policy of the parallel machine.

The linear solver driver routine is pdgssvx3d, with the calling API explained here: https://portal.
nersc.gov/project/sparse/superlu/superlu_dist_code_html/pdgssvx3d_8c.html.

The SpLU factorization progresses from leaf level [ = log, P, to the root level 0. The two main
phases are local factorization and ancestor-reduction:

(1) Local factorization: In parallel and independently, every 2D process grid performs the 2D
factorization of its locally owned submatrix of A. This is the same algorithm as the one
before Version-7 [14]. The only difference is that each process grid will generate a partial
Schur complement update, which will be summed up with the partial updates from the other
process grids in the next phase.

(2) Ancestor-reduction: After the factorization of level i, we reduce the partial Schur complement
of the ancestor nodes before factorizing the next level. In the i-th level’s reduction, the
receiver is the k2/~"*!-th process grid and the sender is the (2k + 1)2/~-th process grid,
for some integer k. The process in the 2D grid that owns a block A; ; has the same (x,y)-
coordinate in both sender and receiver grids. So communication in the ancestor-reduction
step is point-to-point pairwise and takes places along the z-axis in the 3D process grid.
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We analyzed the asymptotic improvements for planar graphs (e.g., those arising from 2D grid
or mesh discretizations) and certain non-planar graphs (specifically for 3D grids and meshes). For
a planar graph with n vertices, our algorithm reduces communication volume asymptotically in n
by a factor of O(4/log n) and latency by a factor of O(logn). For non-planar cases, our algorithm
can reduce the per-process communication volume by a factor of 3 and latency by a factor of
O(n% ). In all cases, the extra memory needed to achieve these gains is a small constant factor of
the L and U memory. We implemented our algorithm by extending the 2D data structure used
in SuperLU. Our new 3D code achieves empirical speedups up to 27x for planar graphs and up
to 3.3% for non-planar graphs over the baseline 2D SuperLU when run on 24,000 cores of a Cray
XC30 (Edison at NERSC). Please see the work of Sao et al. [12] for comprehensive performance
tests with a variety of real-world sparse matrices.

Remark. The algorithm structure requires that the z-dimension of the 3D process grid P, must
be a power-of-2 integer. There is no restriction on the shape of the 2D grid P, and P,. The rule of
thumb is to define it as square as possible. When a square grid is not possible, it is better to set the
row dimension Py slightly smaller than the column dimension P,. For example, the following are
good options for the 2D grid: 2 X 3,2 x 4,4 X 4,4 X 8.

Inter-Grid Load Balancing in the 3D SpLU Algorithm. The 3D algorithm provides two strate-
gies for partitioning the elimination tree to balance the load between different 2D grids. The
SUPERLU_LBS environment variable specifies which one to use:

o Nested Dissection (ND) strategy uses the partitioning provided by an ND ordering. It
works well for regular grids. The ND strategy can only be used when the elimination tree
is binary, such as when the column order is also ND, and it cannot handle cases where the
separator tree has nodes with more than two children.

e Greedy Heuristic (GD) strategy uses a greedy algorithm to divide one level of the elimina-
tion tree. It seeks to minimize the maximum load imbalance among the children of that node;
if the imbalance in children is higher than 20%, it further subdivides the largest child until
the imbalance falls below 20%. The GD strategy works well for arbitrary column ordering
and can handle irregular graphs; however, if it is used on heavily imbalanced trees, it leads
to bigger ancestor sizes and therefore more memory than ND. GD strategy is the default
strategy unless SUPERLU_LBS=ND is specified.

In summary, two parameters are specific to the 3D SpLU algorithm:

e superlu_rankorder (SUPERLU_RANKORDER) defines the arrangement of the 3D process grid
(default is Z-major);

e superlu_lbs (SUPERLU_LBS) defines the inter-grid load-balancing strategy (default
is GD).

3 GPU-ENABLED ROUTINES

In the current release, the SpLU factorization routines can offload certain computations to
GPUs, which is mostly in each Schur complement update step. We support both NVIDIA and
AMD GPUs. We are actively developing code for Intel GPUs. To enable GPU offloading, first
a compile-time CMake variable needs to be defined: -DTPL_ENABLE_CUDALIB=TRUE (for an
NVIDIA GPU with CUDA programming) or -DTPL_ENABLE_HIPLIB=TRUE (for an AMD GPU
with HIP programming). Then, a runtime environment variable SUPERLU_ACC_OFFLOAD is used to
control whether to use GPU or not. By default, SUPERLU_ACC_OFFLOAD=1 is set. (‘ACC’ denotes
ACCelerator.)

ACM Transactions on Mathematical Software, Vol. 49, No. 1, Article 10. Publication date: March 2023.



10:6 X.S. Lietal

3.1 2D SpLU GPU Algorithm and Tuning Parameters

The first SpLU factorization algorithm capable of offloading the matrix-matrix multiplication to the
GPU was published in the work of Sao et al. [11]. The panel factorization and the Gather/Scatter
operations are performed on the CPU. This algorithm has been available since SuperLU_DIST
version 4.0 of the code (October 2014); however, many users are uncertain about using it correctly
due to limited documentation. This section provides a gentle introduction to GPU acceleration in
SuperLU_DIST and its performance tuning.

Performing the Schur complement update requires some temporary storage to hold dense blocks.
In an earlier algorithm, at each elimination step, the Schur complement update is performed block
by block. After performing updates on a block, the temporary storage can be reused for the next
block. A conspicuous advantage of this approach is its memory efficiency, since the temporary
storage required is bounded by maximum block size. The maximum block size is a tunable param-
eter that trades off local performance of matrix-matrix multiplication (GEMM) with inter-process
parallelism. A typical setting for the maximum block size is 512 (or smaller). However, a notice-
able disadvantage of this approach is that it fails to fully utilize the abundance of local fine-grained
parallelism provided by GPUs because each GEMM is too small.

In an earlier study [11], we modified the algorithm in the Schur complement update step. At
each step k, we first copy the individual blocks (in skyline storage) in the k-th block row of U into
a consecutive buffer U(k, :). The L(:, k) is already in consecutive storage thanks to the supernodal
structure. We then perform a single GEMM call to compute V' « L(:, k) x U(k,:). The matrix V
is preallocated and the size of V needs to be sufficiently large to achieve close to peak GEMM
performance. If the size of L(:,k) X U(k,:) is larger than V, then we partition the product into
several large chunks such that each chunk requires temporary storage smaller than V. Given that
modern GPUs have considerably more memory than earlier generations, this extra memory can
enable a much faster runtime.

Now, each step of the Schur complement update consists of the following substeps:

(1) Gather sparse blocks U(k, :) into a dense BLAS compliant buffer U(k, :).
(2) Call dense GEMM V « L(:, k) x U(k, :) (leading part on CPU, trailing part on GPU).
(3) Scatter V into the remaining (k + 1: N,k + 1 : N) sparse L and U blocks.

It should be noted that the Scatter operation can require indirect memory access, and therefore it
can be as expensive as the GEMM cost. The Gather operation, however, has a relatively low over-
head compared to other steps involved. The GEMM offload algorithm tries to hide the overhead
of Scatter and data transfer between the CPU and GPU via software pipelining. Here, we discuss
the key algorithmic aspects of the GEMM offload algorithm:

e To keep both the CPU and GPU busy, we divide the U(k, :) into a CPU part and GPU part so
that the GEMM call is split into [ cpu: gpu ] parts: L(:, k) X U(k, [cpu]) and L(:, k) X U(k, [gpu]).
To hide the data transfer cost, the algorithm further divides the GEMM into multiple streams.
Each stream performs its own sequence of operations: CPU-to-GPU transfer, GEMM, and
GPU-to-CPU transfer. Between these streams, these operations are asynchronous. The GPU
matrix multiplication is also pipelined with the Scatter operation performed on the CPU.

e To offset the memory limitation on the GPU, we devised an algorithm to divide the Schur
complement update into smaller chunks as {[cpu : gpu]s | [cpu : gpu]z | ... }. These chunks
depend on the available memory on the GPU and can be sized by the user. A smaller chunk
size will result in many iterations of the loop.

There are three environment variables that can be used to control the memory usage and
performance in the GEMM offload algorithm:

ACM Transactions on Mathematical Software, Vol. 49, No. 1, Article 10. Publication date: March 2023.
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e superlu_n_gemm (SUPERLU_N_GEMM) is the minimum value of the product mnk for a GEMM
call to be worth offloading to the GPU (default is 5000).

e superlu_num_gpu_streams (SUPERLU_NUM_GPU_STREAMS) defines the number of GPU
streams to use (default is 8).

e superlu_max_buffer_size (SUPERLU_MAX_BUFFER_SIZE) defines the maximum buffer size
on GPU that can hold the GEMM output matrix V (default is 256M in floating-point words).

This simple GEMM offload algorithm has limited performance gains. We observed a roughly 2
to 3 speedup over the CPU-only code for a range of sparse matrices.

3.2 3D SpLU GPU Algorithm and Tuning Parameters

We extend the 3D algorithm for heterogeneous architectures by adding the Highly Asynchronous
Lazy Offload (Haro) algorithm for co-processor offload [10]. Compared to the GPU algorithm in the
2D code (Section 3.1), this algorithm also offloads the Scatter operations of each Schur complement
update step to the GPU (in addition to the GEMM call).

On 4,096 nodes of a Cray XK7 (Titan at ORNL) with 32,768 CPU cores and 4,096 Nvidia K20x
GPUs, the 3D algorithm achieves empirical speedups up to 24x for planar graphs and 3.5Xx for
non-planar graphs over the baseline 2D SuperLU with co-processor acceleration.

The performance related parameters are as follows:

e superlu_num_lookaheads (SUPERLU_NUM_LOOKAHEADS), number of lookahead levels in the
Schur-complement update (default is 10).

To reduce the critical path of the sequence of panel factorizations, we devised a software
pipelining method to overlap the panel factorization of the processes at step k + 1 with
the Schur complement update of the other processes at step k. When there are multiple
remaining supernodes in the Schur complement, the lookahead window (i.e., pipeline depth)
can be greater than 1 [14]. This environment variable defines the width of the lookahead
window.

e superlu_mpi_process_per_gpu (MPI_PROCESS_PER_GPU) (default is 1).

The Havo algorithm uses GPU memory based on its availability. To do this correctly, the
algorithm needs to know how many MPI processes are running on a GPU, which can be
difficult to determine on some systems. This environment variable can be set to inform
SuperLU_DIST that there are N ranks on each GPU so that it can limit its memory usage
of each GPU to 90% of available memory shared among all MPI processes, which will, in
turn, limit the amount of memory used by each rank.

3.3 2D SpTRSV GPU Algorithm

When the 2D grid has one MPI rank, SpTRSV in SuperLU_DIST is parallelized using OpenMP for
shared-memory processors and CUDA or HIP for GPUs. Both versions of the implementations are
based on an asynchronous level-set traversal algorithm that distributes the computation workload
across CPU threads and GPU threads/blocks [4]. The CPU implementation uses OpenMP taskloops
and tasks for dynamic scheduling, whereas the GPU implementation relies on static scheduling.
Figure 4(a) shows the performance of SpTRSV (L and U solves) on one Cori Haswell node with
one and eight OpenMP threads for a number of matrices. The speedup ranges between 1.4 and 4.3.

Figure 4(b) shows the performance of L solve using SuperLU_DIST (eight ORNL Summit IBM
POWERY CPU cores or one Summit V100 GPU) and cuSPARSE (one Summit V100 GPU). The GPU
SpTRSV in SuperLU_DIST consistently outperforms cuSPARSE and is comparable to the eight-core
CPU results. Here, we choose eight CPU cores, as there are on average seven CPU cores per GPU
on Summit, and eight is the closest power of 2 number. Note that GPU performance of the U solve
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Fig. 4. Performance of SpTRSV with one MPI rank for a variety of sparse matrices.

Table 1. Speedup of GPU SpTRSV Compared with Sequential CPU SpTRSV

copter2|epb3|gridgena|vanbody |shipsecl|dawson5
GPU vs. Baseline 1.6 | 17 1.6 1.6 1.54 1.6
GPU+OpenMP vs. Baseline| 5.3 | 5.7 5.3 4.4 4.1 5.2

requires major improvements and is not available in the current release. That said, we compare
the performance of SpTRSV (both L and U solves) on one Summit node using three configurations:
(1) baseline (one-core L solve and one-core U solve), (2) GPU (one-GPU L solve and one-core U
solve), and (3) GPU+OpenMP(one-GPU L solve and eight-core U solve). The speedups comparing
to the baseline configuration are shown in Table 1.

When the 2D grid has more than one MPI rank, SpTRSV also supports OpenMP parallelism with
less speedups. In addition, the multi-GPU SpTRSV in SuperLU_DIST is under active development
and will be available in future releases.

The number of OpenMP threads can be controlled by the environment variable
OMP_NUM_THREADS, and the GPU SpTRSV can be turned on with the -DGPU_SOLVE
compiler flag. The user needs to make sure that only one MPI rank is used for the 2D grid when GPU
SpTRSV is employed.

4 MIXED-PRECISION ROUTINES

SuperLU_DIST has long supported four distinct floating-point types: IEEE FP32 real and complex,
and IEEE FP64 real and complex. Furthermore, the library allows all four datatypes to be used
together in the same application. Recent hardware trends have motivated increased development
of mixed-precision numerical libraries, mainly because hardware vendors have started designing
special-purpose units for low-precision arithmetic with higher speed. For direct linear solvers, a
well-understood method is to use lower precision to perform factorization (expensive) and higher
precision to perform IR to recover accuracy (cheap). For a typical sparse matrix resulting from the
3D finite difference discretization of a regular mesh, the SpLU needs O (n?) flops while each IR step
needs only O(n*/?) flops (including SpTRSV and sparse matrix-vector multiplication).

For dense LU and QR factorizations, the benefit of a lower-precision format comes mainly from
accelerated GEMM speed. But in the sparse case, the dimensions of the GEMM are generally
smaller and of non-uniform size throughout factorization. Therefore, the speed gain from GEMM
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alone is limited. In addition to GEMM, a non-trivial cost is the Scatter operation. From our
tests, we found that the fraction of time in GEMM usually is less than 50%. Because of this, the
TensorCore version of GEMM calls led to a less than 5% time reduction for the whole SpLU. When
comparing FP32 with the FP64 versions of SpLU, we observed about 1.5X speedup with the FP32
version.

We recall the IR algorithm using three precisions in Algorithm 1 [2, 3]. This algorithm is already
available as xGERFSX functions in LAPACK, where the input matrix is dense and so is LU. The
following three precisions may be used:

e ¢,, is the working precision; it is used for the input data A and b, and output x.

e ¢, is the precision for the computed solution x(). We require e, < e,,, possibly e, < &, if
necessary for componentwise convergence.

e ¢, is the precision for the residuals r(!). We usually have ¢, < ¢ —that is, at least twice the
working precision.

ALGORITHM 1: Three-Precision IR for Direct Linear Solvers

1: Solve Ax(D) = b using the basic solution method (e.g., LU or QR) > (€y)
2:1=1

3: repeat

4 r® — b — Ax® > (&)
5: Solve Adx(*) = r() ysing the basic solution method > (1)
6 Update x(+1) « x4 dx(i+1) > (ex)
7 ie—i+1

s: until x(¥) is “accurate enough”

9: return x) and error bounds

Algorithm 1 converges with small normwise (or componentwise) error and error bound if

the normwise (or componentwise) condition number of A does not exceed 1/(ye,,), where y «

\/maxi(nnz(A(i, :))). Moreover, this IR procedure can return to the user both normwise and com-
ponentwise reliable error bounds. The error analysis in the work of Demmel et al. [2] should carry
through to the sparse cases.

We implemented Algorithm 1 in SuperLU_DIST using two precisions in IR:

e ¢, = 2724 (IEEE-754 single precision), &; = &, = 27> (IEEE-754 double precision).

In Figure 5, the left two plots show the convergence history of two systems, in both normwise
forward and backward errors, F,,, and Be,,, respectively (defined in the following). We perform
two experiments: one using single-precision IR and the other using double-precision IR. As can
be seen, single-precision IR does not reduce F,,, much, whereas double-precision IR delivers F,
close to ¢,,. The IR time is usually under 10% of the factorization time. Overall, the mixed-precision
speed is still faster than using pure FP64 (Table 2).

The 2D driver routine for this mixed-precision approach is psgssvx_d2, where the suffix “d2”
denotes that the intermediate x vector and r vector internal to the IR routine are carried in double
precision.

The only difference from the one-precision routine psgssvx is the output array err_bounds[]
(error bounds). For each right-hand side, we return the following three quantities:

i+1 i
It )

is the estimate of the convergence rate of x(¥).

~
=~

e err_bounds[@]: Normwise forward error bound: B,o;,m = max(

lldx 1 ||es

1x x|l Hax " o
ldx D) lleo

def
EI where ppax = max;q;
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Fig. 5. Convergence history of Algorithm 1 when applied to two sparse linear systems. The vertical line in
each plot corresponds to the IR steps taken when our stopping criteria are satisfied. Here, the working pre-
cision is &, = 2724 The blue lines are all single. The red lines correspond to ex = & = 2753 but factorization

is single.

Table 2. Parallel Solution Time (in Seconds) (Including SpLU and IR): Purely Double Precision, Purely
Single Precision, and Mixed Precision (FP32 SpLU + FP64 IR)

Matrix Precision | 6 C+G | 24 C+G | 48 C+G || Matrix Precision | 6 C+G | 24 C+G | 48 C+G
audikw_1 | Double 65.9 21.1 18.9 Gal9As19H42 | Double 310.9 62.4 34.3
Single 45.8 13.8 10.5 Single 258.1 48.2 25.8
Mixed 49.2 13.9 11.4 Mixed 262.8 48.8 26.1
ORNL Summit using up to eight nodes, and each node uses six CPU cores (C) and six GPUs (G).
. ~17..(i)
e err_bounds[1]: Componentwise forward error bound: max(”cl_l';l—x”"", Yéw) R
0 )
Xk %k - i 5 _ lcdxU i :
maxy | = |, where C = diag(x), pmax = mMmax;g; CaO 18 the estimate of the
convergence rate of C1x,
. _Ax®
e err_bounds[2]: Componentwise backward error: maxk(m).

5 SUMMARY OF TUNING PARAMETERS AND TUNING RESULTS

Throughout all phases of the solution process, a number of algorithm parameters can influ-
ence the solver’s performance. These parameters can be modified by the user. For each user-
callable routine, the first argument is usually an input “options” argument, which points to the
structure containing a number of algorithm choices. These choices are determined at compile time.
The second column in Table 3 lists the named fields in the options argument. The fourth column
lists all possible values and their corresponding C language enumerated constant names. The user
should call the following routine to set up the default values.

superlu_dist_options_t options;
set_default_options_dist(&options);

After setting the defaults, the user can modify each default, such as follows.
options.RowPerm = LargeDiag_HWPM;

For a subset of these parameters, the user can change them at runtime via environment vari-
ables. These parameters are listed in the third column of Table 3. At various places in the code, an
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Table 3. List of Algorithm Parameters Used in Various Phases of the Linear Solver
Phase options env Variables Values In 2D or 3D Algorithm
‘ ‘ (compile-time) (runtime) (enum constants)
Pre- Equil NO, YES (default) 2D, 3D
process | RowPerm 0: NOROWPERM 2D, 3D
1: LargeDiag_MC64 (default) | 2D, 3D
2: LargeDiag_HWPM 2D, 3D
3: MY_PERMR 2D, 3D
ColPerm 0: NATURAL 2D, 3D
1: MMD_ATA 2D, 3D
2: MMD_AT_PLUS_A 2D, 3D
3: COLAMD 2D, 3D
4: METIS_AT_PLUS_A (default) | 2D, 3D
5: PARMETIS 2D, 3D
6: ZOLTAN 2D, 3D
7: MY_PERMC 2D, 3D
ParSymbFact YES, NO (default) 2D, 3D
SpLU ReplaceTinyPivot YES, NO (default) 2D, 3D
Algo3d YES, NO (default) 3D
Diaglnv YES, NO (default) 2D
num_lookaheads SUPERLU_NUM_LOOKAHEADS Default 10 2D, 3D (Section 3.2)
superlu_maxsup SUPERLU_MAXSUP Default 256 2D, 3D (Section 5)
superlu_relax SUPERLU_RELAX Default 60 2D, 3D
superlu_rankorder SUPERLU_RANKORDER Default Z-major 3D (Section 2.1)
superlu_lbs SUPERLU_LBS Default GD 3D (Section 2.1)
superlu_acc_offload SUPERLU_ACC_OFFLOAD 0, 1 (default) 2D, 3D (Section 3)
superlu_n_gemm SUPERLU_N_GEMM Default 5,000 2D (Section 3.1)
superlu_max_buffer_size SUPERLU_MAX_BUFFER_SIZE Default 250M words 2D, 3D (Section 3.1)
superlu_num_gpu_streams SUPERLU_NUM_GPU_STREAMS Default 8 2D (Section 3.1)
superlu_mpi_process_per_gpu | SUPERLU_MPI_PROCESS_PER_GPU | Default 1 3D (Section 3.2)
OMP_NUM_THREADS Default system dependent 2D, 3D (Section 5.4)
OMP_PLACES Default system dependent 2D, 3D
OMP_PROC_BIND Default system dependent 2D, 3D
OMP_NESTED Default system dependent 2D, 3D
OMP_DYNAMIC Default system dependent 2D, 3D
SpTRSV | IterRefine 0: NOREFINE (default) 2D, 3D
(Section 4) 1: SLU_SINGLE
2: SLU_DOUBLE
Others | PrintStat NO, YES (default) 2D, 3D

The third column lists the environment variables that can be reset at runtime. Parameters must be set in the options{}
structure input to a driver routine.

environment inquiry function SRC/sp_ienv.c is called to retrieve the values of the environment
variables.

Two algorithm blocking parameters can be changed at runtime: SUPERLU_MAXSUP and
SUPERLU_RELAX. SUPERLU_MAXSUP sets the maximum size of a supernode. In other words, if the
number of columns in a supernode exceeds this value, we will split this supernode into two su-
pernodes. Setting this parameter to a large value results in larger blocks and generally better per-
formance for threaded and GPU GEMM. Increasing it limits the number of available parallel tasks
across MPI processes. Figure 6(a) illustrates how performance, as measured in Gflops, varies with
SUPERLU_MAXSUP on a single node of Cori Haswell when using 32 OpenMP threads. For smaller
matrices, such as this one (torso3), performance is near its peak when SUPERLU_MAXSUP equals
128, which is more than 50X faster than when this value is set to 4. However, above this value, the
performance starts to taper off.

SUPERLU_RELAX is a relaxation parameter: if the number of nodes (columns) in a subtree of the
elimination tree is less than this value, this subtree is treated as one supernode, regardless of the
row structures. That means we pad explicit zeros to enforce that all columns within this relaxed
supernode have the same row structure. The advantage of this padding is to mitigate many small
supernodes at the bottom of the elimination tree. However, a large value of SUPERLU_RELAX may

ACM Transactions on Mathematical Software, Vol. 49, No. 1, Article 10. Publication date: March 2023.



10:12 X.S. Lietal

torso3-OMP_NUM_THREADS=32,Intel-Haswell

Mem(L+U) B Mem(iDX) —— Factorization

= N
o © =) N
=] =3 o S}

Performance in GFLOP/sec
»
o

% Memory relative to SUPERLU_RELAX=4
Factorization time in seconds

N
S}

2 4 8 16 32 64 128 256 512 oy 8 16 32 64 128 256
Max Supernode Size SUPERLU_RELAX

(a) (b)

Fig. 6. Impact of maximum supernode size (SUPERLU_MAXSUP) and supernodal relaxation (SU-
PERLU_RELAX) on performance and memory. The machine is a NERSC Cori Haswell node. The matrix is
torso3 from SuiteSparse.

introduce too many zeros that in turn propagate to the ancestors of the elimination tree, resulting
in a large number of fill-ins in the L and U factors. Figure 6(b) shows the impact of this parameter
on the memory use (left axis) and factorization time. A value of 32 or 64 represents a good tradeoff
between memory and time.

The optimal settings of these parameters are matrix dependent and hardware dependent. Ad-
ditionally, several other parameters and environment variables listed in Table 3 are performance
critical for the 2D and 3D, CPU and GPU algorithms described in Sections 2, 3.1, and 3.2. It is a
daunting task for manual tuning to find the optimal setting of these parameters. In Sections 5.1
through 5.3, we show how an autotuner can significantly simplify this task. Here, we leverage an
autotuner called GPTune [9] to tune the performance (time and memory) of SpLU. We consider
two example matrices from the SuiteSparse matrix collection, G3_circuit from circuit simulation,
and H20 from quantum chemistry simulation. For all experiments, we consider a two-objective
tuning scenario and generate a Pareto front from the samples demonstrating the tradeoff between
memory and CPU requirement of SpLU.

5.1 3D CPU SpLU Parameter Tuning

For the 3D CPU SpLU algorithm (2), we use 16 NERSC Cori Haswell nodes and the G3_circuit ma-
trix. The number of OpenMP threads is set to 1, so there are a total of P, Py P, = 512 MPI ranks. We
consider the following tuning parameters [SUPERLU_MAXSUP, SUPERLU_RELAX, num_lookaheads,
Py, P,]. We set up GPTune to generate 100 samples. All samples and the Pareto front are plotted in
Figure 7(a). The samples on the Pareto front and the default one are shown in Table 4, and one can
clearly see that by reducing the computation granularity (SUPERLU_MAXSUP, SUPERLU_RELAX) and
increasing P, one can significantly improve the SpLU time while using slightly more memory.

5.2 2D GPU SpLU Parameter Tuning

For the 2D GPU SpLU algorithm (Section 3.1), we use two NERSC Cray EX Perlmutter GPU
compute nodes with four MPI ranks per node and the H20 matrix. Perlmutter GPU compute nodes
consist of a single 64-core 2.45-GHz AMD EPYC 7763 CPU and four NVIDIA A100 (40-GB HBM2)
GPUs. The number of OpenMP threads is set to 16. We consider the following tuning parameters
[ColPerm, SUPERLU_MAXSUP, SUPERLU_RELAX, SUPERLU_N_GEMM, SUPERLU_MAX_BUFFER_SIZE,
P.]. We set up GPTune to generate 100 samples. All samples and the Pareto front are plotted in
Figure 7(b). The samples on the Pareto front and the default one are shown in Table 5. Compared to
the default configuration, both the time and memory can be significantly improved by increasing
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Fig. 7. Samples generated by GPTune for the three tuning experiments. Only valid samples are plotted.

Table 4. Default and Optimal Samples Returned by GPTune for the 3D CPU SpLU Algorithm

SUPERLU_MAXSUP |[SUPERLU_RELAX |num_lookaheads|Py|P,|Time (s)|Memory (MB)
Default 256 60 10 16| 1 5.6 2,290
Tuned 31 25 17 161 21.9 2,253
Tuned 53 35 7 414 164 2,360

Note that Py is derived by P, = 512/(Px P;), as the total MPI count is fixed at 512.

Table 5. Default and Optimal Samples Returned by GPTune for the 2D GPU SpLU Algorithm

ColPerm | SUPERLU_MAXSUP | SUPERLU_RELAX

SUPERLU_N_GEMM | SUPERLU_MAX_BUFFER_SIZE | P, | Time | Memory
(s) (MB)
Default 4 256 60 1,000 2.5E8 4 | 208 6,393
Tuned 4 154 154 2,048 2.68E8 2 135 6,011
Tuned 4 345 198 262,144 6.7E7 2 13.2 6,813
Tuned 4 124 110 8,192 1.3E8 2 | 146 5,976

Note that P, is derived by P, = 8/ Py, as the total MPI count is fixed at 8.

the computation granularity (larger SUPERLU_MAXSUP, SUPERLU_RELAX). Additionally, less GPU
offload (larger SUPERLU_N_GEMM) leads to better performance.

5.3 3D GPU SpLU Parameter Tuning

For the 3D GPU SpLU algorithm in Section 3.2, we use two NERSC Perlmutter GPU nodes
with four MPI ranks per node and the H20 matrix. The number of OpenMP threads is set to
16, and P,P,P, = 8. We consider the following tuning parameters [ColPerm, SUPERLU_MAXSUP,
SUPERLU_RELAX, SUPERLU_MAX_BUFFER_SIZE, Py, P,]. We set up GPTune to generate 200 samples.
All samples and the Pareto front are plotted in Figure 7(c). The samples on the Pareto front
and the default one are shown in Table 6. Compared to the default configuration, both the time
and memory utilization can be significantly improved by increasing the computation granularity
and decreasing GPU buffer sizes. ColPerm=‘4" (METIS_AT PLUS_A) is always preferable in

terms of memory usage. The effects of P, and P, are insignificant, as only eight MPI ranks
are used.

5.4 Tuning of OpenMP Intra-Node Parallelism

SuperLU_DIST can use shared-memory parallelism on CPUs in two ways. The first is by using
the multithreaded BLAS library for linear-algebraic operations. This is independent of the
implementation of SuperLU_DIST itself. The second is through SuperLU_DIST’s direct use of
OpenMP pragmas for explicit parallelization of some computations.
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Table 6. Default and Optimal Samples Returned by GPTune for the 3D GPU SpLU Algorithm

ColPerm | SUPERLU_MAXSUP | SUPERLU_RELAX | SUPERLU_MAX_BUFFER_SIZE | P, | P, | Time (s) | Memory (MB)
Default 3 256 60 2.5E8 4 |1 25.3 3,520
Tuned s 176 143 1.34E8 2 |1 12.1 3,360
Tuned 3 327 182 1.34E8 4 | 2 7.4 3,752
Tuned s 610 200 3.34E7 8 |1 12.5 3,280
Tuned v 404 187 3.34E7 1| 2 8.76 3,744
Tuned s 232 199 3.34E7 4 | 2 6.7 3,936

Note that Py is calculated from Py and P, as the total MPI count is fixed at 8.

OpenMP is portable across a wide variety of CPU architectures and operating systems. OpenMP
offers a shared-memory programming model, which can be easier to use than a message-passing
programming model. In this section, we discuss the advantages and limitations of using OpenMP,
and offer some performance considerations.

Advantages of OpenMP Parallelism. We have empirically observed that hybrid programming
with MPI+OpenMP often requires less memory than pure MPIL This is because OpenMP does
not require additional memory for message passing buffers. In most cases, correctly tuned hybrid
programming with MPI+OpenMP provides better performance than pure MPL

Limitations of OpenMP Parallelism. Benefits of OpenMP parallelism is often less predictable than
pure MPI parallelism because of non-determinism in the threading layer, CPU hardware, and
thread affinities. Finding the right configuration for OpenMP may take some trial and error be-
cause performance depends on many factors: CPU architecture, number of cores and threads, the
threading library being used, and the operating system. OpenMP threading may cause a signifi-
cant slowdown if parameters are chosen incorrectly. Slowdown can be due to false sharing, NUMA
effects, hyperthreading, incorrect or suboptimal thread affinities, or underlying threading libraries.

OpenMP Performance Tuning. To get the best performance, we recommend tuning the follow-
ing OpenMP variables environment variables. OMP_NUM_THREADS governs the number of OpenMP
threads that SuperLU_DIST can use. To avoid resource over-subscription, the product of MPI pro-
cesses per node and OpenMP threads should be less than or equal to available physical cores.
OMP_PLACES defines where the threads may run. Possible values are cores, threads, or socket.
OMP_PROC_BIND controls the thread migration. When the OMP_PROC_BIND directive is set to TRUE,
OpenMP threads should not be moved; when FALSE, they may move between hardware cores and
sockets. In general, when OMP_PLACES is set, the setting of OMP_PROC_BIND should be set to TRUE.

The other two less commonly used OpenMP environment variables are OMP_NESTED (controls
levels of nested parallelism) and OMP_DYNAMIC (determines whether to change the number of
threads or thread groups dynamically). Both variables are set to FALSE by default, which works
well in most systems. For performance debugging purposes, however, we can explicitly set the two
variables.

In Figure 8, we show the impact of different OpenMP variables and hybrid MPI-OpenMP con-
figurations on the SpLU speed on Cori Haswell nodes at NERSC. Figure 8(a) shows the best per-
formance achieved for different OpenMP and NUMA settings variables for purely threaded config-
urations. Figure 8(b) shows the performance for different MPIXOpenMP threads on four Haswell
nodes of Cori. It should be noted that hybrid configurations (i.e., configurations with more than one
OpenMP thread per MPI process) tends to require far less memory for MPI’s internal buffers [11].
In general, using two to eight OpenMP threads per MPI process gives good performance across a
wide range of matrices.

The OpenMP API allows control of these variables programmatically. This becomes useful when
the application and SuperLU require different OpenMP configurations. For best performance, the
user can use our autotuner GPTune to tune these variables automatically.
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Fig. 8. OpenMP performance tuning for SpLU on Cori Haswell nodes at NERSC. In Figure 8(a), each bar
shows the best performance obtained for a variable-value pair by an exhaustive parametric search for the
other four variables; the test matrix is torso3 and number of threads is 32.

6 CONCLUSION

In this article, we presented the recently added features in the distributed-memory sparse
direct solver SuperLU_DIST. They represent significant algorithmic advances including (1)
communication-avoiding 3D SpLU factorization, (2) support of multi-GPU offloading, and (3)
mixed-precision computations for higher speed and lower memory consumption. Incorporating
these algorithmic changes required solving challenging software engineering problems while
bringing the research prototype code to the production code that is usable by the users. Further-
more, we documented the parameters that may impact the solver’s performance. The parameters
we discussed include those in the SuperLU_DIST library as well as some system parameters related
to OpenMP. Since the sparse solvers performance is sensitive to both sparse matrix structures and
the underlying computer architectures, we show that an autotuner framework, such as GPTune,
provides a powerful tool to help choose the best parameters setting.

We have plans to incorporate several recent fruitful research results into the future releases of
the software. These include (1) communication-avoiding 3D SpTRSV [13] and (2) communication-
hiding SpTRSV via one-sided MPI and NVSHMEM direct GPU-to-GPU communication [4, 5].

APPENDICES
A  NAMING CONVENTION AND CODE DOCUMENTATION

The routines in SuperLU_DIST are divided into driver routines and computational routines. The
routine names are inspired by the LAPACK and ScaLAPACK naming convention. For example,
the 2D linear solver driver is pdgssvx, where ‘p’ means parallel, ‘d’ means double precision,® ‘gs’
means general sparse matrix format, and ‘svx’ means solving a linear system. The following is a
list of double-precision user-callable routines:

e Driver routines: pdgssvx (driver for the old 2D algorithms), pdgssvx3d (driver for the new
3D algorithms in Section 2).

o Computational routines: pdgstrf and pdgstrs are respectively triangular factorization SpLU
and triangular solve in the 2D process grid. pdgstrf3d is triangular factorization SpLU in the
3D process grid. These routines take a preprocessed linear system as an input. An experienced
user can use them directly in the application code, as they can provide greater flexibility. For

3We support four datatypes: ‘s’ (FP32 real), ‘d’ (FP64 double), ‘c’ (FP32 complex), and ‘z’ (FP64 complex). Throughout the
article, we use the ‘d’ version of the routine names.
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a new user, however, using them can be cumbersome and error prone. We recommend using
driver routines, which are easier to use.

e The pddrive and pddrive3d examples in the EXAMPLE/ directory call the respective drivers
pdgssvx and pdgssvx3d to solve linear systems. Other examples in the same directory, such
as pddrivel, pddrive2, and so on, illustrate how to reuse the preprocessing results for a
sequence of linear systems with similar structures.

The Doxygen generated documentation for all of the routines is available at https://portal.nersc.
gov/project/sparse/superlu/superlu_dist_code_html/. Each routine begins with a comment that
breaks down input/output arguments and explains the functions of the routine. Although the orig-
inal User’s Guide contains comprehensive description of various internal data structures and algo-
rithms [6], it does not contain the new features presented here.

B FORTRAN 90 INTERFACE

In the FORTRAN/ directory, there are Fortran 90 module files that implement the wrappers for
Fortran programs to access the full functionality of the C functions in SuperLU_DIST. The design
is based on an object-oriented programming concept: define opaque objects in the C space, which
are accessed via handles from the Fortran space. All SuperLU_DIST objects (e.g., process grid, LU
structure) are opaque from the Fortran side. They are allocated, deallocated, and operated at the C
side. For each C object, we define a Fortran handle in Fortran’s user space, which points to the C
object and implements the access methods to manipulate the object. All handles are 64-bit integer
type. For example, consider creating a 3D process grid. The following code snippet shows what is
involved from the Fortran and C sides:

e Fortran side
/* Declare handle: %/
integer(64)::f_grid3d
/* Call C wrapper routine to create 3D grid pointed to by "f_grid3d": */
call f_superlu_gridinit3d(MPI_COMM_WORLD, nprow, npcol, npdep, f_grid3d)
o Cside

/* Fortran-to-C interface routine: */
void f_superlu_gridinit3d(int *MPIcomm, int *nprow, int *npcol,int *npdep,
int64_t xf_grid3d)

{
/* Actual call to C routine to create grid3d structture in xgrid3d{} */
superlu_gridinit3d(f2c_comm(MPIcomm),*nprow, *npcol, *npdep,
(gridinfo3d_t *) *f_grid3d);

3

Here, the Fortran handle f_grid3d essentially acts as a 64-bit pointer pointing to the inter-
nal 3D grid structure, which is created by the C routine superlu_gridinit3d(). This structure
(see Figure 2) sits in the C space and is invisible from the Fortran side.

For all user-callable C functions, we provide the corresponding Fortran-to-C interface functions
so that the Fortran program can access all of the C functionality. These interface routines are im-
plemented in the files superlu_c2f_wrap.c (precision independent) and superlu_c2f_dwrap.c
(double precision). The Fortran-to-C name mangling is handled by CMake through the header
file SRC/superlu_FCnames.h. The module file superlupara.f90 defines all of the constants
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matching the enum constants defined in the C side (see Table 3). The module file superlu_mod. {90
implements all of the access methods (set/get) for the Fortran side to access the objects created in
the C user space.

C INSTALLATION WITH CMAKE OR SPACK

C.1 Dependent External Libraries

One can have a bare minimum installation of SuperLU_DIST without any external dependen-
cies, although the following external libraries are useful for high performance: BLAS, (Par)METIS
(sparsity-preserving ordering), CombBLAS (parallel numerical pivoting), and LAPACK (for inver-
sion of dense diagonal block).

C.2 CMake Installation

The user will need to create a build tree from which to invoke CMake. The following describes
how to define the external libraries:

BLAS (highly recommended)
If the user has a fast BLAS library on their machine, the user can link it using the following
CMake definition.

-DTPL_BLAS_LIBRARIES="<BLAS library name>"

Otherwise, the CBLAS/ subdirectory contains the part of the C BLAS (single threaded) needed
by SuperLU_DIST, but it is not optimized for performance. The user can compile and use this
internal BLAS with the following CMake definition.

-DTPL_ENABLE_INTERNAL_BLASLIB=0ON

ParMETIS (highly recommended)
http://glaros.dtc.umn.edu/gkhome/fetch/sw/parmetis/parmetis-4.0.3.tar.gz
The user can install ParMETIS and define the two environment variables as follows.

export PARMETIS_ROOT=<Prefix directory of the ParMETIS installation>
export PARMETIS_BUILD_DIR=${PARMETIS_ROOT}/build/Linux-x86_64

Note that by default, we use serial METIS as the sparsity-preserving ordering, which is avail-

able in the ParMETIS package. The user can disable ParMETIS during installation with the

following CMake definition: -DTPL_ENABLE_PARMETISLIB=O0FF. In this case, the default or-

dering is set to be MMD_AT_PLUS_A.

See Table 3 for all possible ColPerm options.

To use parallel symbolic factorization function, the user needs to use ParMETIS ordering.
LAPACK (highly recommended)

In the triangular solve routine, we may use LAPACK to explicitly invert the dense diagonal

block to improve the performance. The user can use it with the following CMake option.

-DTPL_ENABLE_LAPACKLIB=0N

CombBLAS (optional)
https://people.eecs.berkeley.edu/~aydin/CombBLAS/html/index.html
To use parallel weighted matching HWPM (Heavy Weight Perfect Matching) for numerical
pre-pivoting [1], the user needs to install CombBLAS and define the environment variables.

export COMBBLAS_ROOT=<Prefix directory of the CombBLAS installation>
export COMBBLAS_BUILD_DIR=${COMBBLAS_ROOT}/_build
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Then, install with the CMake option.
-DTPL_ENABLE_COMBBLASLIB=0ON

Use GPU
The user can enable (NVIDIA) GPU with CUDA with the following CMake option.

-DTPL_ENABLE_CUDALIB=TRUE
The user can enable (AMD) GPU with HIP with the following CMake option.
-DTPL_ENABLE_HIPLIB=TRUE
For a simple installation with default settings, we have the following.

mkdir build ; cd build;
cmake .. \
-DTPL_PARMETIS_INCLUDE_DIRS="${PARMETIS_ROOT}/include;\
${PARMETIS_ROOT}/metis/include" \
-DTPL_PARMETIS_LIBRARIES="${PARMETIS_BUILD_DIR}/libparmetis/libparmetis.a;\
${PARMETIS_BUILD_DIR}/libmetis/libmetis.a" \

There are a number of example build scripts in the example_script/ directory, with filenames
run_cmake_build_x.sh that target various machines.

To actually build (compile), type: ‘make’.

To install the libraries, type: ‘make install’.

To run the installation tests, type: ‘test’ (the outputs are in the following file:
‘build/Testing/Temporary/LastTest.log’) or, ‘ctest -D Experimental’, or, ‘ctest -D Nightly’.

Note that the parallel execution in ctest is invoked by the “mpiexec” command, which is from
the MPICH environment. If the MPI is not MPICH/mpiexec based, the test execution may fail. The
user can pass the definition option ~-DMPIEXEC_EXECUTABLE to CMake. For example, on Cori at
NERSC, the user will need the following: cmake .. -DMPIEXEC_EXECUTABLE=/usr/bin/srun

Or, the user can always go to TEST/ directory to perform testing manually.

The following list summarizes the commonly used CMake definitions. In each case, the first
choice is the default setting. After running a ‘cmake’ installation, a configuration header file is gen-
erated in SRC/superlu_dist_config.h, which contains the key CPP definitions used throughout
the code.

-DTPL_ENABLE_INTERNAL_BLASLIB=OFF | ON
-DTPL_ENABLE_PARMETISLIB=ON | OFF
-DTPL_ENABLE_LAPACKLIB=OFF | ON
-DTPL_ENABLE_COMBBLASLIB=0FF | ON
-DTPL_ENABLE_CUDALIB=OFF | ON
-DCMAKE_CUDA_FLAGS=<...>
-DTPL_ENABLE_HIPLIB=OFF | ON
-DHIP_HIPCC_FLAGS=<...>

-Denable_complex16=0FF | ON (double-complex datatype)
-Denable_single=0FF | ON (single precision real datatype)
-DXSDK_INDEX_SIZE=32 | 64 (integer size for indexing)

-DBUILD_SHARED_LIBS= OFF | ON
-DCMAKE_INSTALL_PREFIX=<...>
-DCMAKE_C_COMPILER=<MPI C compiler>
-DCMAKE_C_FLAGS=<...>
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-DCMAKE_CXX_COMPILER=<MPI C++ compiler>
-DCMAKE_CXX_FLAGS=<...>
-DXSDK_ENABLE_Fortran=0FF | ON
-DCMAKE_Fortran_COMPILER=<MPI F9@ compiler>

C.3 Spack Installation

Spack installation of SuperLU_DIST is a fully automated process. Assume that the develop branch
of Spack (https://github.com/spack/spack) is used. The user can find available compilers via spack
compilers. In the following, let us assume the available compiler is gcc@9.1.0. The installation
supports the following variants:

Use 64-bit integer
The user can enable 64-bit integer with the following.

spack install superlu-dist@master+int64%gcc@9.1.0

Use GPU
The user can enable (NVIDIA or AMD) GPUs with the following.

spack install superlu-dist@master+cuda%gcc@9.1.0
spack install superlu-dist@master+rocm%gcc@9.1.0

Test installation
The user can run a few smoke tests of the spack installation via the following.

spack test run superlu-dist@master (pick the appropriate installation
if multiple variants available)
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