
FLAP - A Federated Learning Framework for
Attribute-based Access Control Policies

Amani Abu Jabal1, Elisa Bertino1, Jorge Lobo2, Dinesh Verma3,
Seraphin Calo3, Alessandra Russo4

1Department of Computer Science, Purdue University, West Lafayette, IN, USA
2ICREA - Universitat Pompeo Fabra, Spain

3IBM TJ Watson Research Center, Yorktown Heights, NY, USA
4Imperial College, London, UK

1{bertino,aabujaba}@purdue.edu, 2jorge.lobo@upf.edu, 3{dverma, scalo}@us.ibm.com, 4arusso@imperial.ac.uk

Abstract

Technology advances in areas such as sensors, IoT, and
robotics, enable new collaborative applications (e.g., au-
tonomous devices). A primary requirement for such collabo-
rations is to have a secure system which enables information
sharing and information flow protection. Policy-based man-
agement system is a key mechanism for secure selective shar-
ing of protected resources. However, policies in each party of
such a collaborative environment cannot be static as they have
to adapt to different contexts and situations. One advantage
of collaborative applications is that each party in the collab-
oration can take advantage of knowledge of the other parties
for learning or enhancing its own policies. We refer to this
learning mechanism as policy transfer. The design of a policy
transfer framework has challenges, including policy conflicts
and privacy issues. Policy conflicts typically arise because
of differences in the obligations of the parties, whereas pri-
vacy issues result because of data sharing constraints for sen-
sitive data. Hence, the policy transfer framework should be
able to tackle such challenges by considering minimal shar-
ing of data and support policy adaptation to address conflict.
In the paper we propose a framework that aims at address-
ing such challenges. We introduce a formal definition of the
policy transfer problem for attribute-based policies. We then
introduce the transfer methodology that consists of three se-
quential steps. Finally we report experimental results.

Introduction
Recent policy-based management systems are attribute-
based (AB). In these systems, policy rules are expressed
as conditions against domain-meaningful properties of sub-
jects, resources, actions, and environments. This approach
simplifies policy administration as policy decisions that au-
tomatically adapt between requests based on changes of at-
tribute values. Such a capability is critical in many collabo-
rative applications to enhance the autonomy of the collabo-
rating parties, such as for example in military multi-domain
operation (MDO) Arm. In coalition MDO, coalition parties
operating in the land, air, sea, or cyber will come together
to achieve collective goals by sharing multiple viewpoints
about emerging situations. Since coalition MDO contains

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

multiple parties and types of resources, approaches to sim-
plify policy specifications and a systematic approach to au-
tonomously adapt policies according to the context will be
critical. A major challenge is the specification of the AB
policies representing the key input for policy enforcement.
Since in MDO, we may typically deal with local contexts
and situations, the needed detailed knowledge may be lack-
ing. Addressing this challenge requires a distributed intelli-
gence approach for policy learning that is able to: (i) com-
bine datasets available at coalition parties (e.g., directories,
organizational charts, logs, and existing local policies); and
(ii) use machine learning (ML) to infer AB policies from
these combined data.

In coalitions, parties can each have their own datasets,
and combining these datasets can enhance the learning out-
comes. In some cases, coalition members may only share
their own local policies but not the data they used to learn
their policies. In practice, a combination of those cases (i.e.,
sharing datasets, sharing policies) may occur. A federated
approach is thus required for learning policies from a broad
variety of data and knowledge, including raw data, policies
expressed as rules, and ML models. It is, therefore, critical
to develop an AB policy learning framework able to learn
from multiple data sources while at the same time assuring
that each party can generate accurate policies. To the best of
our knowledge, there are no existing frameworks address-
ing such requirement. Recently, we have proposed a learn-
ing framework Abu Jabal et al. (2020) to learn policies of
interest to a single party that uses only the data of that party.
Therefore, such a framework needs to be extended in a way
that enables its utilization in such a federated environment.

Towards enabling the learning framework to accommo-
date the differences that might be encountered in a federated
environment, one main issue is the conflicts that might arise
in the process of interchanging the policies between different
coalition parties. Those conflicts are expected as a result of
the regulation differences and security specifications. Thus,
to address this issue, a similarity analysis, as well as qualita-
tive analysis, should be performed by the target party to en-
sure the correctness and accuracy of the learning and transfer
process. Another issue is the timeline and degree of the in-
teraction between the policies of a pair of parties to perform

ar
X

iv
:2

01
0.

09
76

7v
2

 [
cs

.C
R

]
 2

 N
ov

 2
02

0

a better learning and interoperability process. Therefore, we
propose four approaches with different levels of interaction
aiming to find the best learning output.

The paper is organized as follows. We first provide
background information on ABAC policies, and introduce
several definitions underlying the problem of transferring
ABAC policies. We then introduce our proposed method-
ology and approaches, followed by experimental results. We
conclude with a discussion of related work and future work.

Background and Problem Description
In this section, we first introduce background notions about
the attribute-based access control (ABAC) model. We then
briefly describe our approach to learn ABC policies. Finally
we formally introduce the problem addressed in this paper.

ABAC Policies
We assume a formal attribute-based access control (ABAC)
model Xu and Stoller (2014) that includes several finite sets:
users U , resources R, operations O, and rules P . Each user
(i.e., u ∈ U) and resource (i.e., r ∈ R) is represented by
independent sets of attributes (referred to as user attributes
AU and resource attributes AR, respectively). The values
of these attributes are represented by a function which as-
signs to each attribute a value from the value range for the
attribute as shown in expressions 1 and 2. An ABAC pol-
icy consists of a set of rules P where each rule ρ is de-
fined as 〈eU , eR, O, d〉 where eU is a user attribute expres-
sion, eR is a resource attribute expression, O ⊆ O is a
set of operations, and d is the decision of the rule (d ∈
{permit, deny}). An attribute expression comprises a set
of attribute/value pairs. For example, a user ui satisfies eU
(denoted by ui |= eU) iff for every user attribute a not
mapped to ⊥, 〈a, dU (ui, a)〉 ∈ eU , and a resource ri sat-
isfies eR (i.e., it belongs to the set defined by eR, denoted by
ri |= eR) iff for every resource attribute a not mapped to ⊥,
〈a, dR(ri, a)〉 ∈ eR.

dU (ui, aj) = vk | ui ∈ U ∧ aj ∈ AU ∧ vk ∈ VU (aj) (1)
dR(ri, aj) = vk | ri ∈ R ∧ aj ∈ AR ∧ vk ∈ VR(aj) (2)

Policy Learning
With the availability of a log of access requests and their
corresponding control decisions, one can analyze such a log
and generate the specifications of access control policies to
control future requests. This problem is referred to as pol-
icy learning (a.k.a. policy mining) and several approaches
have been proposed to solve this problem Xu and Stoller
(2014) Cotrini, Weghorn, and Basin (2018) Sanders and Yue
(2019). Recently, we introduced Polisma Abu Jabal et al.
(2020), a novel framework which utilizes both examples
of access requests and corresponding access control deci-
sions as well as contextual information obtained from other
data sources, such as organizational charts, user directories
(e.g., directories of Lightweight Directory Access Protocol

(LDAP), workflows, security tracking’s logs (e.g., logs pro-
vided by security information and event management sys-
tems), if available.

In Polisma (see Figure 1), the learning process is per-
formed according to a sequence of steps. A data mining tech-
nique is first used to infer associations between parties and
resources from the set of decision examples, and based on
these associations a set of rules is generated. In the second
step, each constructed rule is generalized based on statisti-
cally significant attributes and context information. In the
third step, policy domains are analyzed to augment the rules
with restrictions as for some application domains (e.g., secu-
rity) generalization can have undesired consequences. Poli-
cies learned by those stages are safe generalizations with
minimal overfitting. To improve the completeness of the
learned set, Polisma applies a ML classifier to decision ex-
amples not covered by the learned rules; it uses the clas-
sification result to generate additional rules in an “ad-hoc”
manner.

Problem Definition
Policy learning algorithms typically analyze past access re-
quests associated with their control decisions (see Defini-
tion 1) and aims at generating a set of ABAC rules to control
any access request.
Definition 1 (Access Control Decisions and Examples (l)).
An access control decision is a tuple 〈u, r, o, d〉 where u is
the user who initiated the access request, r is the resource
target of the access request, o is the operation requested on
the resource, and d is the decision taken for the access re-
quest. A decision example l is a tuple 〈u, eU , r, eR, o, d〉
where eU and eR are a user attribute expression, and a re-
source attribute expression such that u |= eU , and r |= eR,
and the other arguments are interpreted as in an access con-
trol decision.

In a coalition environment, different parties are involved
and each party might encounter different scenarios that en-
rich their experience with respect to control access requests.
However, such expertise might not be similar for all par-
ties. These differences open the opportunity for collabora-
tion among the parties and sharing of their experience and
access control decisions. Therefore, in this work we as-
sume that there are two parties willing to exchange knowl-
edge about access control decisions. In particular, one party,
called source party, has a set of ABAC policies (referred to
source ABAC policies) and another party, called target party,
has a set of access control decision examples, extracted from
a system history of access requests and their corresponding
authorized/denied decisions, together with some context in-
formation. The problem is to generate “local” ABAC poli-
cies at the target party utilizing both a local log as well as
the ABAC policies from the source party. More precisely:
Definition 2 (Transferring ABAC Policies by Local Exam-
ples and Context (TAPEC)). Let S and T be the source
party and T be the target party. Assume that he following
information is given:
• A set of local access control decision examples (i.e., D =
{l1, l2, . . . , ln}) at T .

Figure 1: The Architecture of Polisma Abu Jabal et al. (2020)

• Local context information at T ; namely, the sets U , R,
O, the sets AU and AR, one of which could be empty,
and the functions assigning values to the attributes of the
users and resources.

• A set of ABAC rules (i.e., PS = {ρ1 . . . ρm}) imple-
mented or learned at S.

TAPEC aims at generating a set of ABAC rules (i.e.,PL =
{ρ1 . . . ρw}) that are able to control access requests at T .

Methodology
Transferring ABAC policies from a party to another includes
three operations. First, the rules from the source party are
compared with access request decision examples and the
generated rules at the target party. Second, some rules po-
tentially require adaptation to accommodate the differences
between the domains and context of the target party. Thus
an adaptation process has to be executed. Finally, the orig-
inal rules (from the source party) along with the new rules
generated from the adaptation process, as well as the context
information of the target party, are incorporated to enrich the
target party with the security requirements from the source
party.

Rule Similarity Analysis
The first step for transferring policies from a source party to
a target party is to assess the similarity of each source rule
with respect to the log of access control decision examples
available at the target party. This process includes verify-
ing that an access control decision example satisfies a rule
of interest. Specifically, the verification comprises checking
three conditions (see Definition 3): a) the user of the de-
cision example satisfies the user attribute expression of the
rule; b) the resource of the decision example satisfies the re-
source attribute expression of the rule; and c) the operation
of the decision example is included in the rule operations
set. Moreover, the target party might generate a set of rules
(as we discuss later on the paper). In this case, the policy
transfer procedure requires checking the similarity between
the source and target rules (see Definition 5).

Recognizing rule similarity enables next checking rule
consistency. A rule is consistent with another similar rule if

their corresponding decisions are identical (i.e., both of them
are deny or permit); otherwise they are inconsistent. Simi-
larly, an access control decision example is consistent with a
similar rule if their decisions are identical. The consistency
of a rule with respect to a decision example or another rule
is formally defined in Definitions 4 and 6, respectively.
Definition 3 (Similarity of ABAC Rule and Access Con-
trol Decision Example). Given an ABAC rule ρ =
〈eU , eR, O, d〉 and an access control decision example l =
〈u, eU , r, eR, o, d〉, l is similar to ρ (i.e., l ≈ ρ) if and only
if:
• (l.u |= ρ.eU ∨ l.eU ⊆ ρ.eU),
• (l.r |= ρ.eR ∨ l.eR ⊆ ρ.eR), and
• l.o ⊆ ρ.O.
Definition 4 (Consistency of ABAC Rule and Access Con-
trol Decision Example). An ABAC rule ρ and access control
decision example l are consistent (i.e., ρ ' l) if and only if:
• ρ ≈ l, and
• ρ.d = l.d.
Definition 5 (Similarity of a Pair of ABAC Rules).
Given two ABAC rules ρi = 〈eU , eR, O, d〉 and ρj =
〈eU , eR, O, d〉, ρi and ρj are similar to each other (i.e.,
ρi ≈ ρj) if and only if:
• (ρi.eU ⊆ ρj .eU ∨ ρi.u |= ρj .eU) ∨ (ρj .eU ⊆ ρi.eU ∨
ρj .u |= ρi.eU),

• (ρi.eR ⊆ ρj .eR ∨ ρi.r |= ρj .eR) ∨ (ρj .eR ⊆ ρi.eR ∨
ρj .r |= ρi.eR), and

• (ρi.o ⊆ ρj .O) ∨ (ρj .o ⊆ ρi.O).
Definition 6 (Consistency of a Pair of ABAC Rules). Two
rules ρi and ρj are consistent (i.e., ρi ' ρj) if and only if:
• ρi ≈ ρj , and
• ρi.d = ρj .d.

Rules Adaptation
The second operation for policy transfer is to adapt the rules
that are identified as inconsistent after conducting the sim-
ilarity analysis. A straightforward approach to resolve the
inconsistency between two rules (or a rule and an access

request decision example) is to apply one of the policy-
combining-algorithms used in XACML (e.g., deny over-
rides, permit overrides, and first applicable). However, prior-
itizing one of the rules on the other and ignoring the one with
the least priority may lead to unintended consequences that
increase over-privileged or under-privileged accesses. Thus,
to avoid such scenarios it is safer to adapt the inconsistent
rules in a way that resolves the inconsistency and preserves
the intended privilege at the same time.

Adaptation of Two Inconsistent Rules Resolving the
conflict of two inconsistent rules (ρi, ρj) is performed by
first identifying the mutual and non-mutual rule predicates
(i.e., operation, user, and resource predicates) between the
two rules (see Definition 8), and then deriving new rules
from the original ones based on either the identified mutual
or non-mutual conditions (see Algorithm 1). Therefore, the
first derived rule is generated based on the mutual rule pred-
icates while setting the access control decision as either al-
ways “permit” (i.e., permissive paradigm) or always “deny”
(restrictive paradigm) (see lines 2-3 in Algorithm 1). This
strategy is analogous to the XACML combining algorithms
applied when encountering a conflict. Using either the per-
missive or restrictive paradigm is heuristically decided based
on the number of conflicting decision examples that are re-
solved by each paradigm (see lines 4-10 in Algorithm 1).
Next, new rules are generated by adapting the original rules
using the non-mutual rule predicates. In this case, the adap-
tation is performed by employing the following mechanisms
on both the inconsistent rules.

• user-based rule adaptation: preserve the decision of the
access request for only the subset of non-mutual users
while the rule resource expression and operations remain
the same (see lines 12-13 in Algorithm 1);

• resource-based rule adaptation: preserve the decision of
the access request for only the subset of non-mutual re-
sources while the rule user expression and operations re-
main the same (see lines 15-16 in Algorithm 1); and

• operation-based rule adaptation: preserve the decision of
the access request for only the subset of non-mutual oper-
ations while the rule user and resource expressions remain
the same (see lines 18-19 in Algorithm 1).

Nonetheless, employing only one of these mechanisms may
result in the loss of some authorizations which are spec-
ified in the original rules. Thus, all of these mechanisms
are applied in sequence. Nonetheless, to perform each of
the adaptation mechanisms successfully, the corresponding
non-mutual predicate should be a non-empty predicate (i.e.,
Un 6= φ ∨ Rn 6= φ ∨ On 6= φ). Finally, the original incon-
sistent rules are overridden by the rules derived from both of
mutual and non-mutual rule predicates.

Definition 7 (Mutual Predicates of ABAC Rules). Given
two rules ρi = 〈eU , eR, O, d〉 and ρj = 〈eU , eR, O, d〉, the
mutual predicates comprise:

• the mutual user expression Um: the intersection between
the user expressions of both rules (i.e., Um = {ρi.eU ∩
ρj .eU}).

• the mutual resource expression Rm: the intersection be-
tween the resource expressions of both rules (i.e., Rm =
{ρi.eR ∩ ρj .eR}).

• the mutual operations Om: the subset of operations that
are part of the operations of both rules (i.e., Om =
{ρi.O ∩ ρj .O}).

Such that (Um 6= φ) ∧ (Rm 6= φ) ∧ (Om 6= φ).

Definition 8 (Non-Mutual Predicates of ABAC Rules).
Given two rules ρi = 〈eU , eR, O, d〉 and ρj =
〈eU , eR, O, d〉, the non-mutual predicates comprise:

• the non-mutual user expression Un: the user expression
that is a subset of the user expression of “only one” of the
two rules (i.e., Un = {(ρi.eU \ ρj .eU) ∨ (ρj .eU \ ρi.eU)}.

• the non-mutual resource expression Un: the resource ex-
pression that is a subset of the resource expression of
“only one” of the two rules (i.e.,Rn = {(ρi.eR \ρj .eR)∨
(ρj .eR \ ρi.eR)}.

• the non-mutual operations On: the subset of operations
are part of the operations of “only one” of the two rules
(i.e., On = {(ρi.O \ ρj .O) ∨ (ρj .O \ ρi.O)}.

Algorithm 1 Adaptation of Two Inconsistent ABAC Rules
(Adapt2Rules)

Require: D: Access control decision examples and (ρi, ρj)
a pair of inconsistent ABAC rules

1: P = {}
2: ρk = 〈 ρi.eU ∩ ρj .eU , ρi.eR ∩ ρj .eR, ρi.o ∩ ρj .o,
permit 〉

3: ρ′k = 〈 ρi.eU ∩ ρj .eU , ρi.eR ∩ ρj .eR, ρi.o ∩ ρj .o, deny
〉

4: Dρk = {∀l ∈ D | (l ' ρk }
5: Dρ′k = {∀l ∈ D | (l ' ρ′k }
6: if | Dρk | > | Dρ′k | then
7: P = P ∪ ρk
8: else
9: P = P ∪ ρk′

10: end if
11: ρ′i = 〈 ρi.eU \ ρj .eU , ρi.eR, ρi.O, ρi.d 〉
12: ρ′j = 〈 ρj .eU \ ρi.eU , ρj .eR, ρj .O, ρj .d 〉
13: ρ′′i = 〈 ρi.eU , ρi.eR \ ρj .eR, ρi.O, ρi.d 〉
14: ρ′′j = 〈 ρj .eU , ρj .eR \ ρi.eR, ρj .O, ρj .d 〉
15: ρ′′′i = 〈 ρi.eU , ρi.eR, ρi.O \ ρj .O, ρi.d 〉
16: ρ′′′j = 〈 ρj .eU , ρj .eR, ρj .O \ ρi.O, ρj .d 〉
17: P = P ∪ ρ′i ∪ ρ′j ∪ ρ′′i ∪ ρ′′j ∪ ρ′′′i ∪ ρ′′′j
18: return P

Example: Given two inconsistent rules ρ1 = 〈 {dept id: 9,
10, 11}, {resource id: 1, 2, 3}, {read, write}, permit 〉, ρ2
= 〈 {dept id: 9, 12}, {resource id: 1}, {read}, deny 〉, the
resolution is performed as follows:
For the non-mutual predicates: By the user-based adapta-
tion, the new rules are:

• ρ′1=〈 {dept id: 10,11}, {resource id: 1,2,3}, {read,write},
permit 〉

• ρ′2=〈 {dept id: 12}, {resource id: 1}, {read}, deny 〉

By the resource-based adaptation, the new rules are:

• ρ′′1=〈 {dept id: 9,10,11}, {resource id: 2,3}, {read,write},
permit 〉

By the operation-based adaptation, the new rules are:

• ρ′′′1 =〈 {dept id: 9,10,11}, {resource id: 1,2,3}, {write},
permit 〉.

For the mutual predicates:

• According to the permissive paradigm, the new rule is :
ρ′′2 = 〈 {dept id: 9}, {resource id: 1}, {read}, permit 〉

• According the restrictive paradigm, the new rule is : ρ′′′2
= 〈 {dept id: 9}, {resource id: 1}, {read}, deny 〉
Eventually, when adapting two inconsistent rules, at max-

imum six rules can be generated based on the non-mutual
predicates, while one rule at maximum can be generated
based on the mutual predicates.

Adaptation of Groups of Inconsistent Rules When an
ABAC rule contradicts a set of ABAC rules, one approach is
to execute the resolution algorithm separately for each pair
of inconsistent rules (i.e., Algorithm 1). However, this might
not be as simple as it seems. Applying such an approach
potentially generates additional conflicts because the newly
adapted rules are generated by considering only a pair of
rules but not the other ones. Thus, a recursive adaptation
is performed until no further inconsistency is encountered
within the original group of inconsistent rules and the ones
adapted from them (i.e., the newly generated ones).

Rule Transferability Approaches
In what follows, we first introduce two naı̈ve approaches for
rule transfer and then introduce our proposed approaches.

Naı̈ve Approaches

Policies Transfer using a Local Log (TPLG). A straight-
forward approach for transferring policies is to use the raw
log of historical access control decisions collected at the tar-
get party for adapting the source rules (see Figure 2). In par-
ticular, the rules are tuned using the local log, according to
Algorithm 4, Towards this, first the source rules are enforced
using the historical set of access control requests available.
After the enforcement, the decision of each rule for the cor-
responding examined access requests is compared to the his-
torical access control decisions. Such an inspection can re-
sult in three cases: a) the rule has not been enforced for any
of the historical requests, b) the rule has been enforced with
no inconsistency for any of the historical decisions, c) the
rule has been enforced with inconsistency with respect to the
historical decisions. In the first case, the rule is transferred in
order to be used for handling situations not yet encountered.
For the second case, the rule is also transferred because of
its compliance with the local historical access control deci-
sions. Finally, in the third case, the rule is adapted by re-
stricting its attribute expressions to fit with either only the
corresponding historical decision requests that comply with
or the contradicting set of historical decision requests.

Algorithm 2 Subtract Rules (SubAttrFromRule)

Require: An ABAC rule ρ0 inconsistent with a group of
rules (PC = {ρ1, . . . , ρm}) and P the set of resulted
rules

1: if | PC |= 0 then
2: return ρ0
3: else
4: for ai ∈ (ρ0.aU ∪ ρ0.aR ∪ ρ0.O) do
5: ρ1 = PC \ {∀ρi ∈ PC | i > 1}
6: if ai ∈ ρ0.aU then
7: eUa0 = {(ai, dU (u, ai)) | ∀u |= ρ0.aU}
8: eUa1 = {(ai, dU (u, ai)) | ∀u |= ρ1.aU}
9: a′U = {∀u |= eUa0} \ {∀u |= eUa1}

10: ρ′0 = 〈a′U , ρ0.aR, ρ0.O, ρ0.d〉
11: else if ai ∈ ρ0.aR then
12: eRa0 = {(ai, dR(r, ai)) | ∀r |= ρ0.aR}
13: eRa1 = {(ai, dR(r, ai)) | ∀r |= ρ1.aR}
14: a′R = {∀r |= eRa0} \ {∀r |= eRa1}
15: ρ′0 = 〈ρ0.aU , a′R, ρ0.O, ρ0.d〉
16: else if ai ∈ ρ0.O then
17: a′O = ρ0.O \ ρ1.O
18: ρ′0 = 〈ρ0.aU , ρ0.aR, a′O, ρ0.d〉
19: end if
20: if ρ′0 6= φ then
21: ρ0 = ρ′0
22: PC = {∀ρi ∈ PC | i > 1}
23: P = P ∪ SubAttrFromRule(ρ0,PC ,P)
24: end if
25: end for
26: end if
27: return P

Figure 2: Policies Transfer using Local Logs (TPLG)

Policies Transfer using Local Policies (TPLP). TPLG
is easy to implement; however, its main limitation is that
it utilizes the raw local log for tuning the source policies
directly without analyzing the log. Such an approach as-
sumes that the observation of each historical access con-
trol decision represents a rule; however, each rule is typi-
cally an abstraction of security specifications for multiple
access control decisions. An alternative approach is to uti-
lize the local log for generating ABAC rules referred to
as “local policies” using one of the state-of-the-art policy
learning approaches Abu Jabal et al. (2020) Xu and Stoller
(2014) Cotrini, Weghorn, and Basin (2018).

Such an approach is composed of two main steps (see Al-
gorithm 5 and Figure 3). First, the approach uses a policy
learner to generate local rules using the local log. Thereafter,
a similarity analysis is performed on both local and source
rules. The outcome of such analysis has three cases: a) no lo-

Algorithm 3 Adaptation of a Group of Inconsistent ABAC
Rules (AdaptGRules)

Require: D: Access control decision examples and an
ABAC rule ρ0 inconsistent with a group of rules (PG
= {ρ1, . . . , ρm})

1: PC = {}, P = {}
2: for ρi ∈ PG do
3: PC = PC ∪ (ρ0 ∩ ρi)
4: end for
5: P = SubAttrFromRule(ρ0,PC ,P)
6: for ρi ∈ PG do
7: P = P ∪ SubAttrFromRule(ρi, {ρ0 ∩ ρi},P)
8: end for
9: for ρi ∈ PC do

10: ρk = 〈 ρi.eU , ρi.eR, ρi.o, permit 〉
11: ρ′k = 〈 ρi.eU , ρi.eR, ρi.o, deny 〉
12: Dρk = {∀l ∈ D | (l ' ρk }
13: Dρ′k = {∀l ∈ D | (l ' ρ′k }
14: if | Dρk | > | Dρ′k | then
15: P = P ∪ ρk
16: else
17: P = P ∪ ρk′
18: end if
19: end for
20: return P

Algorithm 4 Policies Transfer using Local Log (TPLG)

Require: D: Access control decision examples, PS :
“Source” access control policies.

1: PL = {}
2: for ρi ∈ PS do
3: Dρi = {∀l ∈ D | l ≈ ρi}
4: Dmρi = {∀l ∈ Dρi | l ' ρi}
5: Dcρi = {∀l ∈ Dρi | l 6' ρi}
6: if Dmρi 6= φ ∧ Dcρi = φ then
7: PL = PL ∪ ρi
8: else if Dcρi 6= φ then
9: Pc′ρi = {}

10: Pc′ρi = AdaptGRules(D, ρi, Dc
′

ρi)
11: PL = PL ∪ Pc

′

ρi
12: else if Dmρi = φ ∧ Dcρi = φ then
13: PL = PL ∪ ρi
14: end if
15: end for
16: return PL

cal rule is similar to a source rule (see lines 11-12); b) all the
local rules, which are similar to a source rule, are consistent
with it (see lines 6-7); and c) some of the local rules, which
are similar to a source rule, are inconsistent with it (see lines
8-10). In the first and the second cases, the source rule is
migrated to the target system. In the third case, the conflicts
between the local and source rules are resolved by perform-
ing the adaptation algorithm such that their corresponding
attribute expressions are tailored either by expanding or re-

stricting their covered scope.

Figure 3: Policies Transfer using Local Policies (TPLP)

Algorithm 5 Policies Transfer using Local Policies
(TPLP)

Require: PS : “Source” access control policies, PL: “Lo-
cal” access control policies.

1: P ′
L = {}

2: for ρi ∈ PS do
3: Pρi = {∀pj ∈ PL | pj ≈ ρi }
4: Pmρi = {∀pk ∈ Pρi | pk ' ρi}
5: Pcρi = {∀pk ∈ Pρi | pk 6' ρi}
6: if Pmρi 6= φ ∧ Pcρi = φ then
7: P ′

L = P ′
L ∪ ρi

8: else if Pcρi 6= φ then
9: Pc′ρi = {}

10: Pc′ρi = AdaptGRules(D, ρi, Pcρi)
11: P ′

L = P ′
L ∪ Pc

′

ρi
12: else if Pmρi = φ ∧ Pcρi = φ then
13: P ′

L = P ′
L ∪ ρi

14: end if
15: end for
16: return P ′

L

Proposed Approaches

Policies Transfer using Local Learning (TPLL.) TPLP
post-processes the generated rules from a policy learner us-
ing the source rules. However, such a mechanism potentially
generates local rules that are inconsistent with the source
rules and also increases the conflicts among the rules learned
throughout the learning stages. One approach to avoid such
a problem is to use the source rules to adapt the intermediate
forms of the local rules. In particular, the rule adaptation is
performed in tandem with policy learning from the local log.

Since a policy learner is typically composed of multiple
learning phases, the intermediate rules generated after each
step are compared with the source rules using a similarity
analysis (see Algorithm 6 and Figure 4). If these intermedi-
ate local rules conflict with the source rules, the local rules
are adapted in the early stages; hence enabling the evolution
of more accurate local rules among the phases of the policy
learner (i.e., reducing error propagation) while filtering the
source policies to exclude the ones that have a conflict with
any of the local rules. Moreover, this mechanism enables ei-
ther increasing or decreasing the significance of intermediate

Figure 4: Policies Transfer using Local Learning Figure 5: Policies Transfer using Hybrid Learning

rules and controlling their evolution. After the local rules are
generated, the remaining source rules are transferred to the
target system.

Algorithm 6 Policies Transfer using Local Learning
(TPLL)

Require: D: Access control decision examples, PS :
“Source” access control policies, Ψ: a policy learner
consisted of n steps {Ω1, Ω2, . . . , Ωn}.

1: P ′
S = PS

2: P ′
L = {}

3: for Ωk ∈ Ψ do
4: PL = Ωk(D, P ′

L)
5: for ρi ∈ P ′

S do
6: Pρi = {∀pj ∈ PL | pj ≈ ρi }
7: Pmρi = {∀pk ∈ Pρi | pk ' ρi}
8: Pcρi = {∀pk ∈ Pρi | pk 6' ρi}
9: if Pρic 6= φ then

10: Pc′ρi = {}
11: Pc′ρi = AdaptGRules(D, ρi, Pcρi)
12: P ′

S = P ′
S − ρi

13: PL = PL − Pcρi
14: PL = PL ∪ Pc

′

ρi
15: end if
16: end for
17: P ′

L = PL
18: end for
19: P ′

L = P ′
L ∪ P ′

S
20: return P ′

L

Policies Transfer using Hybrid Learning (TPHL).
TPLL does not fully exploit the source rules while learning
the local rules from the local log since TPLL only uses the
source rules for controlling the evolution of the intermediate
rules. Therefore, we propose another approach in which the
source rules are in-lined with the intermediate local rules to
allow the next learning phases to exploit the source rules as
well as the local log in the learning stages. Such an approach
allows one to generate correct rules that cover further secu-
rity aspects and requirements of the local system.

As shown in Figure 5, the source rules are used in two
ways in this approach. First, the intermediate local rules are
adapted after each learning phase of the policy learner. Sec-
ond, the filtered source rules (by excluding the ones that have
a conflict with any of the local rules) are used as input for the

subsequent learning phases alongside the intermediate local
rules. The steps of TPHL are illustrated in Algorithm 7.

Algorithm 7 Policies Transfer using Hybrid Learning
(TPHL)

Require: D: Access control decision examples, PS :
“Source” access control policies, Ψ: a policy learner
consisted of n steps {Ω1, Ω2, . . . , Ωn}.

1: P ′
S = PS .

2: P ′
L = {}.

3: for Ωk ∈ Ψ do
4: PL = Ωk(D, P ′

L)
5: for ρi ∈ P ′

S do
6: Pρi = {∀pj ∈ PL | pj ≈ ρi }
7: Pmρi = {∀pk ∈ Pρi | pk ' ρi}
8: Pcρi = {∀pk ∈ Pρi | pk 6' ρi}
9: if Pcρi 6= φ then

10: Pc′ρi = {}
11: Pc′ρi = AdaptGRules(D, ρi, Pcρi)
12: P ′

S = P ′
S − ρi

13: PL = PL − ρi
14: PL = PL − Pρic
15: PL = PL ∪ Pc

′

ρi
16: end if
17: end for
18: PL = PL ∪ P ′

S
19: P ′

L = PL
20: end for
21: return P ′

L

Evaluation
In this section, we summarize the experimental methodol-
ogy and report the evaluation results for FLAP.

Experimental Methodology
Dataset. We conducted experiments using two datasets: a
synthetic dataset (referred to as project management (PM)
dataset Xu and Stoller (2014)) and real dataset (referred to
as Amazon dataset), obtained from Amazon1. This dataset
is an anonymized sample of accesses provisioned within the
Amazon company and it is composed of around 700K de-
cision examples. We used 70% of the dataset as decision

1http://archive.ics.uci.edu/ml/datasets/Amazon+Access+
Samples

http://archive.ics.uci.edu/ml/datasets/Amazon+Access+Samples
http://archive.ics.uci.edu/ml/datasets/Amazon+Access+Samples

Figure 6: Policies Transfer using the PM dataset Figure 7: Policies Transfer using the Amazon dataset

examples of the target party and 30% for the source party.
Evaluation Metrics. To evaluate FLAP, we use three met-
rics: precision, recall, and F1 score. These metrics are able
to assess the correctness of the adapted policies, by check-
ing their responses to the local decision examples, and their
ability to cover new access requests.

Experimental Results
Figures 6 and 7 shows the evaluation results for the four ap-
proaches introduced in the paper, that is, TPLG, TPLP ,
TPLL, and TPHL, on the PM and Amazon datasets,
respectively. In general, both TPLL and TPHL perform
better than TPLG, TPLP in terms of all evaluation met-
rics due to the fact that both TPLL and TPHL utilize the
source policies along with the local log in the learning pro-
cess to filter and adapt the rules including the intermediate
ones; hence reducing the effect of error propagation. On the
other hand, TPLG and TPLP perform the worst because
TPLG uses “only” the local log for adapting the source
policies without analyzing the local log while TPLP uses
the local log to learn local rules for the target system with-
out utilizing the source rules. Moreover, the results on the
Amazon dataset are better than that of the PM dataset be-
cause the Amazon dataset contains more decision examples
in the local log and more source policies compared to the
PM dataset, and thus, such an increase in the input data
positively affects the transfer process. Figures 6 and 7 show
the evaluation results with respect to three metrics: preci-
sion, recall, and F1 score. The recall metric reflects the abil-
ity of the rules generated of the transfer process to correctly
control more scenarios, while the precision metric reflects
the correctness of the decisions produced by the generated
rules2.

Related Work
The problem of ABAC policy transfer has not yet been in-
vestigated. Approaches have been proposed for policy adap-
tation in the context of mobile systems, such as Efstratiou
et al.. However the policies considered in such approaches
are not attribute-based. Work related to ours also includes
work on mining ABAC policies from access control deci-
sion logs Cotrini, Weghorn, and Basin (2018), Abu Jabal et
al. (2020), Sanders and Yue (2019), Mocanu, Turkmen, and
Liotta (2015), Xu and Stoller (2014), and work on ABAC

2F1 score is the harmonic mean of precision and recall.

policy similarity Lin et al. (2010), Lin et al. (2007). However
such approaches do not address policy migration and adap-
tation. More recently approaches have been proposed that
apply transfer learning techniques in the context of intrusion
detection Singla, Bertino, and Verma (b), Singla, Bertino,
and Verma (a), Zhao et al. (2019), Zhao, Shetty, and Pan
(2017), Tzeng et al. (2017). However those approaches have
been designed for transferring neural networks used for clas-
sifying network packets as benign or malicious and thus do
not deal with rule transfer and adaptation.

Conclusion and Future Work

In this paper, we have proposed FLAP, a framework for
policy transfer in a federated environments. It allows one
to transfer attribute-based policies from a source party to a
target party. We have proposed four approaches that vary
in their interaction levels between the source and target re-
sources, as well as the timing of this interaction. Our pre-
liminary evaluation, carried out on a real-world access con-
trol decision dataset and a synthetic one, show the ability of
FLAP to transfer the source policies to a target party to gen-
erate correct policies which can be used in future for unseen
scenarios. As part of future work, we plan to perform experi-
ments to assess the effect of different factors and scenarios in
the transfer process, including data sharing percentage and
types.

Acknowledgments

This research was sponsored by the U.S. Army Research
Laboratory and the U.K. Ministry of Defence under Agree-
ment Number W911NF-16-3-0001. The views and conclu-
sions contained in this document are those of the authors and
should not be interpreted as representing the official poli-
cies, either expressed or implied, of the U.S. Army Research
Laboratory, the U.S. Government, the U.K. Ministry of De-
fence or the U.K. Government. The U.S. and U.K. Gov-
ernments are authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright no-
tation hereon. Jorge Lobo was partially supported by the
Spanish Ministry of Economy and Competitiveness under
Grant Numbers: TIN-2016-81032-P, MDM-2015-052, and
the U.S. Army Research Office under Agreement Number
W911NF1910432.

References
Abu Jabal, A.; Bertino, E.; Lobo, J.; Law, M.; Russo, A.;

Calo, S.; and Verma, D. 2020. Polisma - a framework for
learning attribute-based access control policies. In Pro-
ceedings of ESORICS 2020.

The U.S. army in multi-domain operations 2028. [Online].
Available from: https://www.tradoc.army.mil/Portals/14/
Documents/MDO/TP525-3-1 30Nov2018.pdf.

Cotrini, C.; Weghorn, T.; and Basin, D. 2018. Mining abac
rules from sparse logs. In EuroS&P, 31–46. IEEE.

Efstratiou, C.; Friday, A.; Davies, N.; and Cheverst, K.
Utilising the event calculus for policy driven adaptation
on mobile systems. In 3rd International Workshop on
Policies for Distributed Systems and Networks (POLICY
2002), 5-7 June 2002, Monterey, CA, USA. IEEE Com-
puter Society.

Lin, D.; Rao, P.; Bertino, E.; and Lobo, J. 2007. An approach
to evaluate policy similarity. In SACMAT, 1–10. ACM.

Lin, D.; Rao, P.; Bertino, E.; Li, N.; and Lobo, J. 2010.
EXAM: a comprehensive environment for the analysis of
access control policies. International Journal of Informa-
tion Security 9(4):253–273.

Mocanu, D.; Turkmen, F.; and Liotta, A. 2015. Towards
abac policy mining from logs with deep learning. In IS,
124–128.

Sanders, M. W., and Yue, C. 2019. Mining least privilege
attribute based access control policies. In Proceedings of
the 2019 Annual Computer Security Applications Confer-
ence (ACSAC).

Singla, A.; Bertino, E.; and Verma, D. Overcoming the lack
of labeled data: Training intrusion detection models us-
ing transfer learning. In Proceedings of the IEEE Inter-
national Conference on Smart Computing, SMARTCOMP
2019, Washington, DC, USA, June 12-15, 2019. IEEE.

Singla, A.; Bertino, E.; and Verma, D. Preparing network in-
trusion detection deep learning models with minimal data
using adversarial domain adaptation. In Proceedings of
the 2020 ACM Asia Conference on Computer and Com-
munications Security, AsiaCCS 2020, Taipei, Taiwan, Oc-
tober 05-08, 2020. ACM.

Tzeng, E.; Hoffman, J.; Saenko, K.; and Darrell, T. 2017.
Adversarial discriminative domain adaptation. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 7167–7176.

Xu, Z., and Stoller, S. D. 2014. Mining attribute-based ac-
cess control policies from logs. In IFIP DBSec, 276–291.
Springer.

Zhao, J.; Shetty, S.; Pan, J. W.; Kamhoua, C.; and Kwiat,
K. 2019. Transfer learning for detecting unknown net-
work attacks. EURASIP Journal on Information Security
2019(1):1.

Zhao, J.; Shetty, S.; and Pan, J. W. 2017. Feature-based
transfer learning for network security. In MILCOM 2017-
2017 IEEE Military Communications Conference (MIL-
COM), 17–22. IEEE.

https://www.tradoc.army.mil/Portals/14/Documents/MDO/TP525-3-1_30Nov2018.pdf
https://www.tradoc.army.mil/Portals/14/Documents/MDO/TP525-3-1_30Nov2018.pdf

	Introduction
	Background and Problem Description
	ABAC Policies
	Policy Learning
	Problem Definition

	Methodology
	Rule Similarity Analysis
	Rules Adaptation
	Rule Transferability Approaches

	Evaluation
	Experimental Methodology
	Experimental Results

	Related Work
	Conclusion and Future Work
	Acknowledgments

