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ABSTRACT
The complementary use of graphics processing units (GPUs) and
field programmable gate arrays (FPGAs) is a major topic of inter-
est in the high-performance computing (HPC) field. GPU–FPGA-
accelerated computing is an effective tool for multiphysics simula-
tions, which encompass multiple physical models and simultaneous
physical phenomena. Because the constituent operations in mul-
tiphysics simulations exhibit varying characteristics, accelerating
these operations solely using GPUs is often challenging. Hence, FP-
GAs are frequently implemented for this purpose. The objective of
the present study was to further improve application performance
by employing both GPUs and FPGAs in a complementary manner.
Recently, this approach has been applied to the radiative transfer
simulation code for astrophysics known as ARGOT, with evaluation
results quantitatively demonstrating the resulting improvement
in performance. However, the evaluation results in question came
from the use of a single node equipped with both a GPU and FPGA.
In this study, we extended the GPU–FPGA-accelerated ARGOT code
to operate on multiple nodes using the message passing interface
(MPI) and an FPGA-to-FPGA communication technology scheme
called Communication Integrated Reconfigurable CompUting Sys-
tem (CIRCUS). We evaluated the performance of the ARGOT code
with multiple GPUs and FPGAs under weak scaling conditions, and
found it to achieve up to 12.8x speedup compared to the GPU-only
execution.
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1 INTRODUCTION
Although graphics processing units (GPUs) are widely used in high-
performance computing (HPC) systems as accelerators owing to
their good peak performance and high memory bandwidth, they are
not suitable for all applications, for example, multiphysics. Multi-
physics refers to the coupled processes or systems involving several
simultaneously occurring physical fields, as well as the study of
such processes and systems. Simulations with multiple interact-
ing physical properties and computations may include processes
unsuitable for GPUs. Accordingly, field-programmable gate arrays
(FPGAs) have been implemented to handle any such processes. This
concept, referred to as Cooperative Heterogeneous Acceleration
with Reconfigurable Multidevices (CHARM), was implemented by
[10], who demonstrated its usefulness for radiative transfer simula-
tions in astrophysics. However, the study in question used a single
node equipped with both GPU and FPGA devices, with a single CPU
process invoking and controlling the CUDA and OpenCL kernels
running on the GPU and FPGA, respectively.
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Figure 1: Overview of the ARGOT code and how to accelerate it using the CHARM concept.

In this study, we implemented GPU–FPGA-accelerated comput-
ing among multiple computing nodes using the message passing
interface (MPI) and an FPGA-to-FPGA communication technology
called Communication Integrated Reconfigurable CompUting Sys-
tem (CIRCUS) [3]. Thus, we enabled the parallelization of GPUs
via CUDA and MPI programming, and that of FPGAs via OpenCL
and CIRCUS. We used CUDA and OpenCL programming in the
implementation of GPU–FPGA-accelerated computing primarily
because the majority of existing HPC applications are CUDA-based
implementations, and rewriting their entire code in OpenCL is very
burdensome for developers. Furthermore, most GPUs used in HPC
are manufactured by NVIDIA, making maximizing their perfor-
mance using CUDA, a programming model that follows the GPU
architecture, simple.

We applied our proposed approach to the same astrophysics
application examined in [10], and quantitatively evaluated its use-
fulness. The evaluation results show that under weak scaling con-
ditions, the use of FPGAs on one node achieves 6.8x speedup com-
pared to GPU-only execution, whereas the use of FPGAs on two
nodes achieves 12.8x speedup compared to GPU-only execution.

Our contributions in this study are as follows:
• Wepropose amethodology for runningGPU–FPGA-accelerated
computing on multiple nodes in practical applications.

• We describe our proposed method’s implementation with
CUDA and OpenCL, as well as its node-parallelization with
MPI and inter-FPGA communication technology.

• We demonstrate the proposed method’s performance on an
HPC cluster equipped with GPUs and FPGAs, and quan-
titatively show the advantages of GPU–FPGA-accelerated
computing over GPU-only execution.

The remainder of this paper is organized as follows. In Section
2, we describe our target astrophysics application for this study.
Details pertaining to the computational kernel and FPGA-to-FPGA
communication technology for astrophysics applications are de-
scribed in Section 3. An overview of multi-node parallelization of
GPU–FPGA-accelerated ARGOT code is provided in Section 4, and
the evaluation results are presented in Section 5. We introduce
several related studies in Section 6, and present our conclusions in
Section 7.

2 ARGOT: RADIATIVE TRANSFER
SIMULATION CODE FOR ASTROPHYSICS

ARGOT is an astrophysics simulation code developed at the Center
for Computational Sciences, University of Tsukuba to examine how

the first celestial objects were generated in the early stages of the
universe. As shown in Figure 1, two methods were combined to
solve radiative transfer problems: the ARGOT method [13], which
computes the radiative transfer from point sources, and the ART
method [15], which computes the radiative transfer from sources
spreading out within the target space. Using CHARM, the ARGOT
method’s execution is offloaded to GPUs, whereas that of ART is
offloaded to FPGAs, thereby improving overall application perfor-
mance. The following subsections provide brief descriptions of both
methods.

2.1 ARGOT Method
TheARGOTmethod performs a computation of the optical depth be-
tween each point radiation source and corresponding target mesh
grid, which represents the end point of a light ray. Assuming a
constant number of mesh grids, the computational complexity is
proportional to the number of point radiation sources. To improve
this, ARGOT builds an octree representing the distribution of ra-
diation sources, as shown in Figure 1. Although the figure is two-
dimensional, the computational space is three-dimensional and
hierarchically subdivided into eight cubic cells, until each cell con-
tains a single radiation source or is sufficiently small relative to
the computational domain. Consequently, the sources of a distant
tree node can be treated as a single luminous source, and the effec-
tive number of point radiation sources is reduced from 𝑁 to 𝑙𝑜𝑔𝑁 .
When targeting a mesh grid, such as that illustrated in Figure 1, the
photon flux originating from each radiation source at the target
mesh grid is given by

𝑓 (a) = 𝐿(a)𝑒−𝜏 (a )
4𝜋𝑟2

(1)

where 𝐿(a) and 𝜏 (a) represent the intrinsic luminosity and optical
depth for a given frequency a , respectively. In addition, 𝜏 (a) is given
by

𝜏 (a) = 𝜎 (a)
∫

𝑛(𝒙)𝑑𝑙 ≃ 𝜎 (a)
∑︁
𝑖

𝑛(𝒙𝑖 )Δ𝑙, (2)

where 𝑛(𝑥) is the number density of the gas molecules that absorb
light.

The tree data structure is commonly employed in the field of
computational astrophysics, with the tree method in the N-body
problem being a typical example of this approach [12]. Because
this method is highly compatible with GPU implementations, we
offloaded ARGOT to GPUs in accordance with the tree method
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reported in [14]. A ray is assigned to each CUDA thread, and the
corresponding computations are executed in parallel.

2.2 ART Method
The ART method is based on ray-tracing in a three-dimensional
space split into meshes. Because the computation phase of ART
accounts for more than 90% of the ARGOT code, its acceleration
directly improves overall ARGOT performance. As shown in Figure
1, multiple incident rays originate from a single boundary and move
in mutually parallel linear paths without reflection or refraction.
The ART method solves a radiation transfer equation along parallel
light rays spanning the computational volume using the following
equation:

𝐼𝑜𝑢𝑡a (�̂�) = 𝐼 𝑖𝑛a (�̂�)𝑒−Δ𝜏a + 𝑆a (1 − 𝑒−Δ𝜏a ) (3)

This calculation is performedwhenever a ray passes through amesh
grid. For a given incoming radiation intensity 𝐼 𝑖𝑛a along the �̂� di-
rection, the outgoing radiation intensity 𝐼𝑜𝑢𝑡a after passing through
a path length Δ𝐿 of a single mesh is computed by the above inte-
grating equation, where Δ𝜏 is the optical depth of the path length
Δ𝐿 (i.e., Δ𝜏 = ^aΔ𝜏), and 𝑆a and ^a are the source function and
absorption coefficient of the mesh grid, respectively. The number
of meshes depends on the configuration of the target problem. Our
target problems range from 1003 to 10003 meshes. The direction
(angle of incidence) of the ray is computed using the HEALPix
algorithm [6]. The number of ray angles also varies with respect to
problem size. In the present study, this number is always at least 768,
corresponding to the resolution parameter 𝑁𝑠𝑖𝑑𝑒 = 8 in HEALPix.

Because the ART method uses ray tracing, the computational
order within each ray must be sequential, whereas computations for
different rays can be conducted in parallel because no two rays are
computationally dependent on each other. However, implementing
ART on a SIMD-like architecture presents two challenges [10].

First, because the memory access pattern of the mesh data varies
with respect to ray direction, hundreds or thousands of different
patterns are possible. In some cases, the computation of multiple
ray interactions in a SIMD manner requires the mesh data to be
accessed in non-continuous memory locations, which incurs a low
cache hit ratio on the CPU and a long latency in the GPU.

Second, the integration of mesh data resulting from two rays in
close proximity to each other will cause a conflict. When multiple
rays pass through shaded mesh grids, as shown in Figure 1, the
physical quantities in those mesh grids must be incremented in an
atomic manner. However, the atomic operation itself has a certain
overhead. If a large number of threads conduct atomic operations
simultaneously, many contentions may occur, and processing may
significantly slow down. The number of atomic operations is cu-
bically proportional to the size N of one side of the mesh; that is,
O(𝑁 3). To avoid this atomic operation, the method proposed in [15]
does not compute neighboring rays simultaneously. Tracing along
the red and blue light rays is separately performed, as illustrated in
Figure 1. However, this method further exacerbates memory access
problems by scattering the memory access patterns. This overhead
is expected to be nearly cubically proportional, and close to the
number of atomic operations.

Although the ARTmethod is based on ray tracing, it is inherently
different from computer graphics (CG) algorithms, which can be
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accelerated by GPUs based on the NVIDIA Turing architecture.
Whereas ray tracing in CG retroactively calculates the reflection
and transmission of light on object surfaces from the observer’s
perspective, ART calculates the average radiant intensity in all
directions whenever a ray passes through a mesh grid. In other
words, the term "ray tracing" is the only thing the two approaches
have in common.

Given the ART method’s characteristics, we consider SIMD-style
processors such as CPUs and GPUs to be unsuitable for accelera-
tion. By contrast, FPGAs can access on-chip internal memory with
low latency and high bandwidth for random access. Furthermore,
FPGA hardware enables the programming of memory access pat-
terns, making it a viable option to accelerate the ART method. As
a demonstration experiment, the authors of [4] implemented an
FPGA-based ART method accelerator using OpenCL and quanti-
tatively evaluated its usefulness. We used their accelerator as a
foundation for our own FPGA implementation, as described in the
following section.

3 PARALLELIZATION OF ART METHOD
USING MULTI-FPGA

3.1 FPGA Implementation of the ART Method
Figure 2 illustrates the FPGA implementation of the ART method
with Intel FPGA SDK for OpenCL [4, 9]. This implementation
consists of processing elements (PEs)—arithmetic cores written
in OpenCL—connected in three dimensions (2 × 2 × 2) using Chan-
nel, a proprietary extension of the Intel FPGA SDK for OpenCL.
The PEs mutually transmit ray data via the Channel, and execute
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#pragma OPENCL EXTENSION cl_intel_channels : enable

channel int ch;

__kernel void send(__global int* restrict data, int n) {

for (int i = 0; i < n; i++) {

int v = data[i];

write_channel_intel(ch, v);

}

}

__kernel void recv(__global int* restrict data, int n) {

for (int i = 0; i < n; i++) {

int v = read_channel_intel(ch);

v = v + 1;

data[i] = v;

}

}

Figure 4: Pipelined hardware generated by the offline com-
piler of Intel FPGA SDK for OpenCL. The figure on the right
was generated using the Graph Viewer included in the com-
pilation report generated by the offline compiler.
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Figure 5: Pipelined hardware built on two FPGAs using CIR-
CUS.

Equation (3) upon data reception. Subsequently, the ray data reflect-
ing the result of Equation (3) is sent to the PE responsible for the
next problem space located in the ray’s direction, thereby realizing
the ART method on an FPGA. Because all PEs are pipelined at the
clock-cycle level simultaneously, the ART accelerator implemented
in a single FPGA can take advantage of temporal (pipeline) and
spatial parallelism to maximize performance.

The multi-FPGA implementation of the ART method extends the
channel connections between PEs to different FPGAs using CIRCUS,
an inter-FPGA communication technology [3]. It can therefore be
said that a massive PE cluster is constructed by combining multiple
FPGAs. Figure 3 presents a schematic diagram of the ART method’s
accelerator implemented with two FPGAs. The black and red ar-
rows represent channel and FPGA-to-FPGA connections realized
by CIRCUS, respectively.

3.2 CIRCUS: Inter-FPGA Communication
CIRCUS is a framework that enables inter-FPGA communication at
the level of OpenCL abstraction, with a communication system built
upon the assumption of pipeline communication [5]. Pipelining
is a fundamental processing structure for FPGAs, and OpenCL
compilers build pipelines from loop structures (for-loops, while-
loops, etc.) in the code. Figure 4 shows an example.

The code snippet has a send kernel that reads a value from
memory, and a recv kernel that writes the value to memory after
incrementing it by 1, with the two connected by a channel. The LD,
ST, RD, and WR labels denote read from memory, write to memory,
read from channel, and write to channel operations, respectively.
Although each loop is implemented as a different kernel and runs
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asynchronously, the data dependencies with respect to channel
imply that a large overall pipeline has been constructed. The under-
lying concept of CIRCUS is to realize that feature across multiple
FPGAs, as shown in Figure 5. By incorporating a mechanism for
pipeline communication into the OpenCL environment, Channel
communication is enabled between different FPGAs, and a pipeline
that integrates communication and computation is constructed.

Figure 6 and Figure 7 present the latency and throughput mea-
surements reported in [5], respectively, obtained by ping-ponging
messages ranging in size from 64 Bytes to 1 MB from 1 hop to 7
hops. In this context, hops were used to measure the distance from
the source to the destination. For example, "1-hop" corresponds to
the neighboring FPGA, whereas "2-hop" refers to the FPGA next
to it. The minimum and maximum latency were 0.5 `s and 1.87
`s, respectively, with the additional latency per hop being approxi-
mately 0.25 `s. The maximum throughput was 90.2 Gbps for one
hop and 88.7 Gbps for seven hops. Throughput degradation was
observed with an increasing number of hops, particularly for small
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to medium message lengths, because the ratio between latency and
total communication time increased with communication latency.
However, as message size increased, the ratio decreased, with data
being eventually transferred at a throughput close to 90% of the
theoretical peak bandwidth of 100 Gbps.

4 MULTI-NODE PARALLELIZATION OF
GPU–FPGA-ACCELERATED ARGOT CODE

4.1 Overview
Figure 8 presents an overview of the multi-node parallelization
of GPU–FPGA-accelerated ARGOT code. All compute nodes are
equipped with GPUs and FPGAs, and both types of devices are
controlled by MPI processes assigned to each node. Similar to [10],
the FPGA on each node runs the ART method and the GPU runs all
remaining computation, including the ARGOT method. Transfers
of initial data and ART output occur between both devices on each
computation node. Although it is possible to perform data transfers
using PCIe DMA between GPU and FPGA [11], results obtained
by [10] make it clear that the resulting benefit is insufficient, and
therefore not applied within this study.

Figure 10: Overview of node parallelization for ART method
with Multiple Wave Front [15].
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Figure 11: Code snippet of multi-FPGA implementation of
ART method with CIRCUS.

4.2 Node Parallelization of the ARGOT Method
Node parallelization is already implemented in the original ARGOT
code, which uses the general CUDA and MPI programming model.
Figure 9 represents an overview of node parallelization for AR-
GOT method. Here, the simulation space is equally divided among
all dimensions (4 × 4 domain decomposition in the figure). Rays
spanning multiple nodes are divided into "ray segments" at the
boundaries between nodes, and each segment’s computation is
performed on each node in parallel. Because the segments corre-
sponding to each node are mutually independent, each segment
is assigned to a thread and processed in parallel. The cumulative
computation result is obtained by summing the optical thickness
results for each segment. If only one MPI process is used, four ray
segments – source 1→ target 1, source 1→ target 2, source 2→
target 1, and source 2 → target 2 – are considered "ray segments,"
wherein each ray is assigned to a thread and processed in parallel.

4.3 Node Parallelization of the ART Method
Figure 10 presents an overview of node parallelization for the ART
method with Multiple Wave Front [15]. Multiple Wave Front is
the method used in the CPU/GPU implementation of the original
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Table 1: Our experimental environment.

Hardware specifications
CPU Intel® Xeon® E5-2690 v4 × 2

Host Memory DDR4-2400 8GB x8
GPU NVIDIA Tesla P100

(PCIe Gen3 x16 card version)
GPU Memory 16 GiB CoWoS HBM2

@ 720 GB/s with ECC
FPGA BittWare 520N

(Intel Stratix 10 GX2800)
FPGA Memory DDR4 2400MHz 32 GB (8GB × 4)
InfiniBand Mellanox ConnectX-4 Single-port EDR

MCX455A-ECAT
Software specifications

Host OS CentOS 7.9
Linux Kernel Version 3.10.0-1160.62.1.el7.el7.x86_64

Host Compiler gcc 4.8.5
GPU Compiler CUDA 11.2.152

MPI Open MPI 3.1.0
OpenCL SDK Intel FPGA SDK for OpenCL 19.4.0

Build 64 Pro Edition

ARGOT code, and achieves pipelined node parallelization while
restricting the firing order for each ray direction. The ART method
on multiple nodes is realized by receiving rays sent out from one
problem space using the MPI process of the following program
space according to ray direction, thereby executing a radiative
transfer simulation.

Parallelization of ART methods with multiple FPGAs employs an
equivalent approach, wherein the MPI processes in the CPU/GPU
implementation correspond to the PEs in the FPGA implementation.
CIRCUS allows for a massive cluster of PEs across multiple FPGAs.
Here, communication between PEs within an FPGA is achieved
using the Intel Channel, whereas that between PEs across different
FPGAs is achieved using the CIRCUS Channel, which sends and
receives ray data for the ARTmethod through the direct inter-FPGA
network.

Figure 11 presents a code snippet from a multi-FPGA imple-
mentation of the ART method with CIRCUS. In this example, the
problem space is split along the x-axis. The code snippet is a PE
pseudo code located at (x, y, z) = (0, 0, 0), with access in the x-
(x_neg) direction via CIRCUS, and all other dimensions to the in-
ternal Channel. The PE calculation requires three components—ray
input, radiation intensity, and ray output—that are implemented as
hardware running in a pipeline within the FPGA. This calculation
is performed after all required data are stored in the FPGA’s block
RAM, thereby avoiding performance degradation due to memory
access operations.

5 EVALUATION
5.1 Experimental Settings
Table 1 illustrates our experimental machine configuration. This is
a heterogeneous cluster, wherein each node is composed of three
types of devices: two Intel® Xeon® E5-2690 v4 CPUs, a single
NVIDIA P100 GPU for PCIe-based servers (Gen3 x16), and a single

art.cl

Intel
Offline

Compiler
art.v aocx

Source file

For CPU + GPU

For FPGA

clhost.cc

argot.cu nvcc

g++

Header files
for OpenCL

(*.h)

Header files
for CUDA

(*.h)

Source files

argot.o

clhost.o

nvcc

include

include

compile

CUDA 
Library
(*.a, *.so)

OpenCL 
Library
(*.a, *.so)

a.out

link

Figure 12: Compilation flow of GPU–FPGA-accelerated AR-
GOT code [10].

BittWare 520N FPGA board equipped with 100 Gbps Ethernet × 4
channels. In this evaluation, we employed a single CPU, GPU, and
FPGA located on the same CPU socket to avoid performance degra-
dation caused by PCIe access over the Intel Quick Path Interconnect
(QPI). Although the FPGA board physically connects to the CPU
through a PCIe Gen3 x16 interface, the PCIe IP core implemented
in the FPGA supports up to PCIe Gen3 x8 data transfer. Therefore,
the maximum data transfer capability between GPU and FPGA is
5.33 GB/s, which is the harmonic mean of PCIe Gen3 x16 (16 GB/s:
CPU-GPU) and PCIe Gen3 x8 (8 GB/s: CPU-FPGA) data transfer.
However, the analysis in [10] indicates that GPU-FPGA communi-
cation does not significantly affect performance, as it accounts for
approximately 1% of the total execution time.

Our experiments were conducted on the CentOS 7.9 operating
system. GPU–FPGA-accelerated ARGOT code was compiled sep-
arately using nvcc and g++, as in [10]. Figure 12 illustrates the
corresponding compilation flow. We employed CUDA ver. 11.2.152
and GCC ver. 4.8.5. The FPGA-based ART accelerator with CIRCUS
was implemented in OpenCL kernel code, compiled with the offline
compiler provided by the Intel FPGA SDK for OpenCL (ver. 19.4.0
Build 64 Pro Edition). We used OpenMPI 3.1.0 to enable node paral-
lelization and allocate one process per node, from which the GPU
and FPGA kernels are invoked.

Due to time constraints, the current FPGA implementation of
ART is not equipped with the feature [10] that divides a large prob-
lem stored in DDR memory into small blocks that can be stored
in BRAM and executes the ART calculation via time division mul-
tiplexing in each block by FPGA. Our FPGA implementation of
ART encompasses eight PEs (23), each having BRAMs for 163 prob-
lem space. Consequently, the FPGAs can be assigned a problem
size of 323. In this paper, we kept the problem size assigned to
FPGAs fixed at 323 and quantitatively evaluated the improvement
in performance with an increasing number of FPGAs, which means
parallel efficiency under weak scaling conditions. Nside, which is a
parameter used to determine the resolution in HEALpix, was set to
8, generating 768 different ray angles.
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Table 2: Resource usage and clock frequency in FPGA imple-
mentation of ART method with CIRCUS.

ALMs Registers M20Ks DSPs fmax [MHz]
691,082 1,473,614 5,076 1,916 216.96
(74%) (39%) (43%) (33%)

In this evaluation, the CPU computation time, including the
costs of launching and synchronizing the device, was measured
for both FPGA and GPU implementations. The time required to
transfer data between the nodes was also accounted for using the
MPI_Barrier() and gettimeofday() functions.

5.2 Resource Consumption
Table 2 illustrates the FPGA resource utilization. The Adaptive
Logic Module (ALM) is a logic component that includes a logically
partitionable lookup table (LUT) and several registers (flip-flops).
ALM utilization is a metric used to estimate the size of the hardware
components implemented in the FPGA. The M20K memory block
is an internal memory of the FPGA, referred to as a block RAM.
All internal buffers such as FIFOs are implemented using memory
blocks. The Digital Signal Processor (DSP) is a built-in hardware
component that enables faster and more compact implementations
of integer multiplications and floating-point operations than pro-
grammable logic components. Here, "fmax" denotes the maximum
operating frequency in the clock domain for OpenCL kernels.

As listed in the table, the ALMs are the most resource-intensive
components in this design, with more than half of the total ALMs
used. Of the 74% ALM utilization, 12.5% encompasses the hard-
ware overhead of CIRCUS. Even omitting this overhead, the ALM
utilization still incurs a bottleneck when attempting to increase
performance. From the perspective of resource utilization, the use
of all DSPs is the optimization objective, as they implement float-
ing additions and multiplications. However, we cannot double the
number of PEs to increase DPS utilization, as this would incur an
ALM overutilization.

We therefore referred to the analysis in [9], and considered the
number of possible PEs to be 16 (2 × 2 × 4). Because each PE has
a working memory with 163 meshes, the number of PEs for each
dimension should be a power of 2. In general, as resource usage per
PE decreases, the operating frequency increases because place-and-
routing becomes easy to apply. This also improves the performance
of the ART method.

5.3 Performance Evaluation of
GPU–FPGA-accelerated ARGOT Code on
Multiple Nodes

Because the current FPGA implementation can only handle problem
sizes of up to 323, we allocated a problem size of 323 per node and
compared the performance of the GPU–FPGA-accelerated ARGOT
code compared to that of the GPU implementation under weak
scaling conditions. Figure 13 presents our evaluation results. We
employed up to two nodes throughout the evaluation, with the total
problem size at two nodes being 64 × 32 × 32.
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Figure 13: Evaluation result of ARGOT code using 2 GPUs
with InfiniBand and 2 FPGAs with CIRCUS.

We first focused on the ARGOT code’s performance at one node.
The GPU implementation shows that the ART method’s execution
time dominates the entire ARGOT code. Therefore, as previously
described in Section 2, the direct acceleration of ART significantly
improves overall ARGOT performance, which we have achieved by
offloading the ART method to an FPGA. Consequently, the ARGOT
execution time was reduced from 0.89 to 0.13 seconds, representing
a 6.8x speedup over the GPU-only execution. The ART accelera-
tor implemented in FPGAs is a hardware that takes advantage of
temporal (pipeline) and spatial parallelism to maximize the effec-
tive performance of the ART method. Furthermore, the problem
sizes reported in [9] are too small to sufficiently exploit the 3,584
CUDA cores of the GPU, which means that the requisite paral-
lelism is not achievable. The GPU kernel activation and CPU-GPU
communication may also reduce performance.

Examining the ARGOT code performance on two nodes, it is
apparent that the GPU implementation increased the ARTmethod’s
computation time by 5.4% over the single-node execution. How-
ever, the computation time incurred by each node was almost the
same because performance was evaluated under the weak scaling
condition. As shown in Figure 10, MPI communication enables the
transfer of ray data generated by the ART method, with the time
required indicated as "ART comm." in Figure 13. The communica-
tion overhead accounts for half the total ARGOT execution time,
as the communication overhead is manifested by the smaller ratio
of operations to communication owing to the small problem size in
the GPU.

Conversely, when the ART method is executed on a multi-FPGA
with two nodes, the total ARGOT execution time is reduced to
0.16 seconds, as the pipeline that integrates communication and
computation is built by CIRCUS. That is, all ART operations – i.e.,
Equation (3) and inter-FPGA communication in FPGAs on both
nodes – are executed completely simultaneously. Therefore, once
the pipeline is filled, the ART method targeting a 64 × 32 × 32 prob-
lem size executes with almost 100% efficiency. The initial overhead
associated with filling the pipeline is expressed as a 13% increase
in the ART method’s run time. However, the results for two nodes
exhibit a relative error of up to 10−1, the cause of which is currently
under investigation.
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6 RELATEDWORK
To the best of our knowledge, research on accelerated comput-
ing using GPUs and FPGAs has been conducted for more than a
decade. KH Tsoi et al. [17] proposed a heterogeneous computer
cluster called Axel that encompasses a collection of nodes – each of
which can include multiple types of accelerators such as FPGAs and
GPUs – and demonstrated that FPGAs, GPUs, and CPUs can run
collaboratively for an N-body simulation. At that time, there were
no commercial or open-source frameworks that could comprehen-
sively handle CPUs, GPUs, and FPGAs simultaneously. Therefore,
the authors developed their own framework for the Axel cluster
based on MapReduce. The study demonstrated that the simulta-
neous use of FPGAs, GPUs, and CPUs for an N-body simulation
yields a 4.4x increase in the execution speed of 16 compute nodes
compared to CPU-only execution. However, this improvement in
performance is largely a result of decreased CPU performance, and
the performance gain from the addition of FPGAs based on the GPU
implementation is approximately 2x at most (on a single node).

Our current implementation of GPU–FPGA-accelerated compu-
tation is a combination of CUDA and OpenCL programming, as
the computation kernels running on GPUs are written in CUDA,
whereas those running on FPGAs are written in OpenCL. However,
such mixed-programming implementations place a heavy burden
on application developers, and research is being conducted into pro-
gramming environments that enable the comprehensive control of
GPUs, CPUs, and FPGAs in a single language.María Angélica Dávila
Guzmán et al. [7] developed one such framework by extending En-
gineCL, an OpenCL-based framework that provides high-level data
scheduling and management. The collaborative computation of the
CPU, GPU, and FPGA within the enhanced EngineCL improved
energy efficiency in five of the six benchmarks.

The key to parallel computing using multiple FPGAs is the com-
munication infrastructure between FPGAs, with research on the
subject being conducted worldwide. Tiziano et al. developed the
Streaming Message Interface (SMI) [2] on a Noctua supercomputer,
which is a communication framework that enables inter-FPGA
communication. The authors demonstrated SMI to achieve an al-
most equivalent communication performance to that of the theo-
retical peak bandwidth. However, this is only because the FPGA
transceivers in Noctua only support up to 40 Gbps communication,
and the packet routing of the SMI overhead did not become appar-
ent. The experimental results of [8] show that SMI’s performance is
not even half of the theoretical peak bandwidth in an environment
supporting 100 Gbps Ethernet, owing to the packet routing over-
head. We therefore adopted CIRCUS instead of SMI as the platform
for FPGA-to-FPGA communication.

As mentioned above, there are several studies related to this
study, but most of them have demonstrated the usefulness with
benchmarks, and there are few studies of GPU–FPGA-accelerated
computing for real applications. We adopted a policy of offloading
only appropriate computational components to the FPGA, for which
the GPU would yield insufficient performance. As a result, unlike
[17], we confirmed that the combined use of FPGAs can achieve up
to 12.8x performance improvement compared to GPU-only execu-
tion performance. This finding represents a unique contribution of
our study.

7 CONCLUSION
In this paper, we present the implementation and performance eval-
uation of multi-node parallelization of the GPU–FPGA-accelerated
ARGOT code. The ARGOT method was parallelized on multiple
GPUs using CUDA andMPI programming, whereas theARTmethod
was parallelized on multiple FPGAs using OpenCL and an inter-
FPGA communication technology known as CIRCUS. The perfor-
mance of the GPU–FPGA-accelerated ARGOT code was evaluated
under weak scaling with a problem size of 323 per node compared
to the performance of the GPU implementation. Evaluation results
demonstrate that the combined use of FPGAs and GPUs achieves a
6.8x speedup on one node and 12.8x speedup on two nodes. The
ART accelerator implemented in FPGAs takes advantage of pipeline
and spatial parallelism to maximize performance. In addition, CIR-
CUS enables the communication pipeline to integrate with the
computation pipeline of the ART method, which incurs negligible
communication overhead compared to that of GPU implementa-
tions, thereby ensuring high parallel efficiency. However, the results
for the two-node execution exhibited a relative error of up to 10−1,
the cause of which is currently under investigation.

We plan to evaluate the performance of the GPU–FPGA-accelerated
ARGOT with an increased number of nodes. However, because CIR-
CUS lacks flow control, it may not function with a large number
of FPGAs, even if the ART communication patterns are simple. In
that case, we will consider incorporating Kyokko, [16], an open-
source FPGA-to-FPGA communication IP with flow control, into
CIRCUS. Thus, our future studies will examine the cause of the
large relative error, as well as evaluate the performance of GPU–
FPGA-accelerated ARGOT code with an increased number of nodes.
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