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Abstract
Matrix-matrix multiplication is used for various linear al-
gebra algorithms such as matrix decomposition and ten-
sor contraction. NVIDIA Tensor Core is a mixed-precision
matrix-matrix multiplication and addition computing unit,
where the theoretical peak performance is more than 300
TFlop/s on NVIDIA A100 GPU. NVIDIA provides WMMA
API for using Tensor Cores in custom kernel functions. The
most common way to use Tensor Core is to supply the input
matrices from shared memory, which has higher bandwidth
than global memory. However, the Bytes-per-Flops (B/F) ra-
tio of the shared memory and Tensor Cores is small since the
performance of Tensor Cores is high. Thus, it is important
to reduce the shared memory footprint for efficient Tensor
Cores usage. In this paper, we analyze the simple matrix-
matrix multiplication on Tensor Cores by the roofline model
and figure out that the bandwidth of shared memory might
be a limitation of the performance when using WMMA API.
To alleviate this issue, we provide a WMMA API extension
library to boost the throughput of the computation, which
has two components. The first one allows for manipulat-
ing the array of registers input to Tensor Cores flexibly. We
evaluate the performance improvement of this library. The
outcome of our evaluation shows that our library reduces the
shared memory footprint and speeds up the computation us-
ing Tensor Cores. The second one is an API for the SGEMM
emulation on Tensor Cores without additional shared mem-
ory usage. We have demonstrated that the single-precision
emulating batch SGEMM implementation on Tensor Cores
using this library achieves 54.2 TFlop/s on A100 GPU, which
outperforms the theoretical peak performance of FP32 SIMT
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Cores while achieving the same level of accuracy as cuBLAS.
The achieved throughput can not be achieved without reduc-
ing the shared memory footprint done by our library with
the same amount of register usage.
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1 Introduction
NVIDIA Tensor Core is a mixed-precision matrix multipli-
cation and addition computing unit with up to 312 TFlop/s on
NVIDIAA100GPU [2]. From the demand for high-throughput
matrix multiplication from deep learning, several computing
units specialized for matrix multiplication are developed,
such as Google TPU [7], AMD Matrix Core, Intel Ponte Vec-
chio, and Preferred NetworksMN-Core [9]. Tensor Core com-
putes the multiplication of two matrices where the data type
is low-precision in high throughput and high-precision. Al-
though Tensor Core is developed for deep learning, especially
fully-connected layer and convolution layer computations,
it is applied to other fields of computations and fundamental
linear algebra algorithms leveraging the low- and mixed-
precision feature [3–5, 8, 10, 11]. NVIDIA provides highly
optimized libraries for using Tensor Cores which can be
called from a host, such as cuBLAS and cuDNN.We can lever-
age the high throughput of Tensor Core using these libraries
without special knowledge of it. Furthermore, NVIDIA also
provides an API for use inside a CUDA kernel function called
WMMA (Warp Matrix Multiply Accumulate) API. This API
provides basic functionalities such as loading matrix data
from memory, multiplication and addition on Tensor Core,
and storing the resulting matrix data in memory. Using this
API, we load matrix data from the device memory or shared
memory to an array of registers called “fragment” to input
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Tensor Cores. On the other hand, there are some matrices
where each element can be computed on the fly, for instance,
the Householder matrix and Given’s rotation matrix. Even
for these matrices, we have to store them in memory and
load them since the API is too simple and lacks flexibility, and
this can degrade the throughput. Thus, for instance, Dakkak
et al. [3] use Tensor Cores for reduction and scan operation
by generating a fragment of an upper triangular matrix and
a lower triangular matrix without generating the matrices
on the shared memory. Li et al. [8] use Tensor Cores in FFT
operations by generating fragments directly. However, since
NVIDIA does not provide information on fragment mapping,
we need to analyze the structure of the fragment by our-
selves to generate the fragment in these ways. For another
example, the single-precision matrix-matrix multiplication
emulation method on Tensor Cores [11] accesses the shared
memory more than necessary if we only use the WMMA
API. Therefore, the throughput of the emulation method can
degrade if we only use the API.

In this paper, we first show that it is important to reduce
the shared memory footprint to leverage the high Tensor
Cores performance. We analyze a matrix-matrix multipli-
cation on Tensor Cores using the roofline model [12]. As a
result, it is difficult to leverage the high Tensor Cores per-
formance without sufficient register blocking or reducing
the shared memory footprint. However, the number of regis-
ters is limited. To reduce the shared memory footprint, we
implement a WMMA API extension library, which flexibly
manipulates the input register array of Tensor Cores by ana-
lyzing the memory and register array mappings. This library
can generate an arbitrary input register array without an
extra shared memory footprint. Furthermore, we provide
an API for single-precision matrix-matrix multiplication em-
ulation on Tensor Cores, which has the same interface as
WMMA API. Our goals of this work are 1) to reveal that
the shared memory bandwidth can degrade the utilization
efficiency of Tensor Cores in some cases and 2) to provide
a library to reduce such degradation by manipulating the
fragment flexibly for reducing the shared memory footprint.

Our contributions are as follows:

• We show that the shared memory bandwidth might
limit the matrix-matrix multiplication performance on
Tensor Cores by roofline model analysis. Furthermore,
we find it important to reduce the shared memory
footprint on NVIDIA A100 compared to V100 since
the Bytes-per-Flops (B/F) ratio of the Tensor Core per-
formance and shared memory bandwidth on NVIDIA
A100 is smaller than V100.
• We implement a general WMMAAPI extension library
to reduce the shared memory footprint. By using this
library, we can manipulate the fragment elements flex-
ibly. And as a secondary effect, we can reduce the
shared memory usage in some cases since some of the

V100 V100S A100
(SXM2) (PCIe) (SXM4/PCIe)

SMs 80 108
Clock [MHz] 1,380 1,597 1,410

Device memory
Size [GB] 32/16 32 40 80

Bandwidth [GB/s] 900 1,134 1,555 2,039

Shared memory
Size [KB/SM] ∼96 ∼164

Bandwidth [GB/s] 14,131 16,353 19,491

Performance
FP32 [TFlop/s] 15.7 16.4 19.5
FP16 [TFlop/s] 31.4 32.8 39.0

FP16-TC [TFlop/s] 112 125 312
TF32-TC [TFlop/s] - - 156

Table 1. Specifications of NVIDIA GPUs A100 and V100.

temporary shared memory areas for generating matri-
ces that are loaded as fragments become unnecessary.
We investigate the availability of this library and find
the condition to speed up the fragment generation.
The library is available on GitHub1.
• We figure out that by the inflexibility of WMMA API,
sharedmemory bandwidth bounds the theoretical peak
performance of single-precision matrix-matrix multi-
plication emulation on Tensor Cores. By using our
extension library, we improve its theoretical peak per-
formance. Furthermore, we provide functionality for
that which has the same interface as WMMA API. To
demonstrate the usability of the functionality, we im-
plement batched matrix-matrix multiplication using
the functionality. We show that our implementation
outperforms the FP32 theoretical peak performance
on NVIDIA A100 while the accuracy is the same level
as cuBLAS SGEMM.

2 Background
2.1 Shared memory
2.1.1 The bandwidth of shared memory. The shared
memory is a high bandwidth, low latency, and small size
compared to the device memory. This memory is located
on each Streaming Multiprocessor (SM) and shared by all
threads in a thread block. The shared memory is divided into
the same size memory modules called banks. In CUDA, a
cluster of threads consisting of 32 threads is called a warp,
and when multiple threads in a warp access the same bank
and different addresses, it is called bank conflict. Since bank
conflict degrades read/write performance, there are known
1https://github.com/wmmae/wmma_extension

https://github.com/wmmae/wmma_extension
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workarounds, such as shifting the boundaries of shared mem-
ory. We show the specifications of NVIDIA Tesla V100 and
A100 in Table 1. The shared memory bandwidth is calculated
assuming it is accessed without bank conflict in all SMs in
one clock. The shared memory has 12 ∼ 15 times faster
bandwidth than device memory.

2.1.2 The advantage of fewer shared memory usage.
The shared memory size that one thread block uses is one
of the determining factors of occupancy, which is the max
thread block size that one SM executes simultaneously. Fewer
shared memory usage means higher occupancy, which ef-
fectively hides instruction latency. Furthermore, reducing
shared memory usage can improve the L1 cache hit rate since
shared memory and L1 cache resides in the same part of the
chip.

2.2 Blocking for matrix-matrix multiplication
The number of operations of matrix-matrix multiplication
C ← A · B for A ∈ R𝑚×𝑘 ,B ∈ R𝑘×𝑛 is 2𝑚𝑛𝑘 . On the other
hand, the sum of the number of elements in A and B is
(𝑚 + 𝑛) × 𝑘 . It follows 2𝑚𝑛𝑘 > (𝑚 + 𝑛) × 𝑘 in general (𝑚 ≥
2, 𝑛 ≥ 2, 𝑘 ≥ 1), which means that the number of operations
is larger than the number of data. Thus, data can be reused
during the computation. When computing the matrix-matrix
multiplication on device memory, we copy the sub-matrices
of each input matrix from device memory to shared memory.
Then compute the matrix-matrix multiplication of these sub-
matrices on shared memory to reduce the device memory
footprint using data reusability. This method of reducing the
low-bandwidth memory footprint by utilizing the memory
hierarchy is called “blocking”. The registers are also used
for blocking the shared memory. In this paper, we denote
the blocking size (𝑚𝑏, 𝑛𝑏, 𝑘𝑏) as the size of blocking size for
sub-matrices matrix-matrix multiplication A𝑏 · B𝑏 where the
sizes of matrixA𝑏 and B𝑏 are𝑚𝑏×𝑘𝑏 and 𝑘𝑏×𝑛𝑏 respectively.

2.3 Tensor Cores
Tensor Cores are specialized computing units for mixed-
precision matrix-matrix multiplication and addition, with
higher computing performance than FP16 and FP32 comput-
ing units shown in Table 1. We show the supported input
and output data types of Tensor Core in Figure 1. We can use
the TF32 (Tensor Float) data type, 8 bits of exponent and 10
bits of mantissa, and Bfloat16, 8 bits of exponent and 7 bits of
mantissa, as inputs to Tensor Cores in Ampere architectures.
While TF32 has 19 bits in total, it occupies a 32-bit register
and memory. Thus, it can not be used for data compression.

2.3.1 Programming interface. To use Tensor Cores in
custom functions, NVIDIA providesWMMAAPI for C++ and
Parallel Thread Execution (PTX). When computing matrix-
matrix multiplication and addition D← A · B + C on Tensor
Cores using WMMA API for C++, first, we copy the input
matrices A,B and, C from memory to an array of registers

A

B

C

D
A/B C/D
FP16 FP32
TF32 FP32
Bfloat16 FP32

23

10

105

8

8FP32
TF32

FP16

exponent mantissa

Tensor Core

sign

78Bfloat16
FP32

Figure 1. The input and output types of Tensor Cores on
NVIDIA A100.

called “fragment”. Then, we compute Matrix-Multiplication-
and-Add (MMA) on the Tensor Cores and obtain the re-
sulting D fragment. The 32 threads in a warp cooperate to
perform MMA operations on Tensor Cores. Finally, we store
the D fragment in memory. The WMMA API provides the
fragment and functions for these operations. The fragment
is a C language structure that has an array of registers
x[num_elements] as a member. We show the pseudocode
of simple matrix-matrix multiplication using WMMA API in
Code 1.

1 __dev i c e__
2 vo id matmul ( f l o a t ∗ mem_c , h a l f ∗ mem_a , h a l f ∗ mem_b

) {
3 us ing namespace nvcuda : : wmma;
4 f ragment <matr ix_a , 1 6 , 1 6 , 1 6 , h a l f , co l_ma jor >

f r a g _ a ;
5 f ragment <matr ix_b , 16 , 1 6 , 1 6 , h a l f , co l_ma jor >

f r a g_b ;
6 f ragment < accumula tor , 1 6 , 1 6 , 1 6 , f l o a t > f r a g _ c ;
7 / / I n i t i a l i z e an accumula to r f ragment
8 f i l l _ f r a gm e n t ( f r ag_c , 0 . f ) ;
9 / / Load ma t r i c e s to f r agment s
10 l o ad_ma t r i x _ sync ( f r ag_a , mem_a , . . . ) ;
11 l o ad_ma t r i x _ sync ( f r ag_b , mem_b , . . . ) ;
12 / / Compute matr ix −mat r i x m u l t i p l i c a t i o n
13 / / and accumu la t i on on Tensor Cores
14 mma_sync ( f r ag_c , f r ag_a , f r ag_b , f r a g _ c ) ;
15 / / S t o r e r e s u l t t o memory
16 s t o r e _ma t r i x _ s yn c (mem_c , f r ag_c , . . . ) ;
17 }

Code 1. A simple matrix-matrix multiplication on Tensor
Cores using WMMA API.

Although the load_matrix_sync function in WMMA API
can generate a fragment from the device and shared memory,
we consider that the shared memory is used in most cases
for the following reasons:
• The shared memory is used for memory blocking in
matrix-matrix multiplication.
• The load_matrix_sync function has a 128-bit align-
ment restriction and leading dimension size restriction.
It is difficult to satisfy the restriction on device mem-
ory.

The fragment is regarded as a register blocking. WMMA
API specifies the blocking size of one fragment. For instance,
in the case of FP16-Tensor Core, the blocking size (𝑚𝑏, 𝑛𝑏, 𝑘𝑏)
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0 16 8 24 128144136152 0 16 8 24 128144136152
32 48 40 56 16017616818432 48 40 56 160176168184
64 80 72 88 19220820021664 80 72 88 192208200216
96 11210412022424023224896 112104120224240232248
1 17 9 25 129145137153 1 17 9 25 129145137153
33 49 41 57 16117716918533 49 41 57 161177169185
65 81 73 89 19320920121765 81 73 89 193209201217
97 11310512122524123324997 113105121225241233249

0 16 32 48 64 80 96 112128144160176192208224240 2 18 10 26 130146138154 2 18 10 26 130146138154
1 17 33 49 65 81 97 113129145161177193209225241 34 50 42 58 16217817018634 50 42 58 162178170186
2 18 34 50 66 82 98 114130146162178194210226242 66 82 74 90 19421020221866 82 74 90 194210202218
3 19 35 51 67 83 99 115131147163179195211227243 98 11410612222624223425098 114106122226242234250
4 20 36 52 68 84 100116132148164180196212228244 3 19 11 27 131147139155 3 19 11 27 131147139155
5 21 37 53 69 85 101117133149165181197213229245 35 51 43 59 16317917118735 51 43 59 163179171187
6 22 38 54 70 86 102118134150166182198214230246 67 83 75 91 19521120321967 83 75 91 195211203219
7 23 39 55 71 87 103119135151167183199215231247 99 11510712322724323525199 115107123227243235251
8 24 40 56 72 88 104120136152168184200216232248 4 20 12 28 132148140156 4 20 12 28 132148140156
9 25 41 57 73 89 105121137153169185201217233249 36 52 44 60 16418017218836 52 44 60 164180172188
10 26 42 58 74 90 106122138154170186202218234250 68 84 76 92 19621220422068 84 76 92 196212204220
11 27 43 59 75 91 107123139155171187203219235251 100116108124228244236252100116108124228244236252
12 28 44 60 76 92 108124140156172188204220236252 5 21 13 29 133149141157 5 21 13 29 133149141157
13 29 45 61 77 93 109125141157173189205221237253 37 53 45 61 16518117318937 53 45 61 165181173189
14 30 46 62 78 94 110126142158174190206222238254 69 85 77 93 19721320522169 85 77 93 197213205221
15 31 47 63 79 95 111127143159175191207223239255 101117109125229245237253101117109125229245237253

6 22 14 30 134150142158 6 22 14 30 134150142158
38 54 46 62 16618217419038 54 46 62 166182174190
70 86 78 94 19821420622270 86 78 94 198214206222
102118110126230246238254102118110126230246238254
7 23 15 31 135151143159 7 23 15 31 135151143159
39 55 47 63 16718317519139 55 47 63 167183175191
71 87 79 95 19921520722371 87 79 95 199215207223
103119111127231247239255103119111127231247239255

load_matrix_sync

fragment elements

lane id = 0

lane id = 31

Matrix on memory

lane id = 26, 3rd element

lane id = 26, 11th element

Figure 2. An example of memory-fragment mapping. The
lane id is a thread number in a warp which is calculated
by (threadIdx.x & 0x1f).

is one of the (16, 16, 16), (32, 8, 16) or (8, 32, 16). We can use
the array of fragments to increase the blocking size.

2.3.2 Mapping between memory and fragment. Each
matrix element in memory is stored as an element of a frag-
ment of some thread. Although the mapping between mem-
ory and fragment elements is not public, we can investigate it
[3, 6, 8]. This mapping depends on the type, memory layout,
etc, of the matrix. We use Code 2 to investigate the mapping
and show an example of the mapping in Figure 2.

1 t emp l a t e < c l a s s Use , c l a s s Layout , c l a s s T>
2 __g l o b a l _ _ vo id i n v e s t i g a t e _mapp i ng ( ) {
3 __shared__ T smem [ ] ;
4 / / i n i t i a l i z e smem
5 f o r ( i = 0 ; i < 16 ∗ 1 6 ; i ++) smem[ i ] = i ;
6 f ragment <Use , 16 , 1 6 , 1 6 , T , Layout > f r a g ;
7 l o ad_ma t r i x _ sync ( f r ag , smem , . . . ) ; / / WMMA API
8 f o r ( i = 0 ; i < 3 2 ; i ++) {
9 i f ( t h r e a d I d x . x == i ) {
10 f o r ( j = 0 ; j < f r a g . num_elements ; j ++) {
11 / / P r i n t the mapping
12 p r i n t f ( "%d , " , ( i n t ) f r a g . x [ j ] ) ; }
13 p r i n t f ( " \ n " ) ; }
14 __syncwarp ( ) ; } }

Code 2. A kernel function to investigate the memory-
fragment mappings.

2.3.3 WMMA API for PTX. The WMMA API for PTX
provides two types of instructions: 1) wmma instructions
and 2) mma instruction. The WMMA API for C++ func-
tions calls wmma instructions using inline assembly. The
wmma instructions include functionality for loading and
storing fragments and MMA operation. On the other hand,
mma instruction only includes MMA operation. Thus, when
using mma instruction, we must manually load fragments
from memory. The mapping is available on CUDA developer

documentation. There is a difference between the wmma in-
structions and the mma instruction regarding register usage.
When using wmma instructions, one element in a matrix is
kept by two elements in a fragment in 32 threads in a warp.
On the other hand, when using mma instruction, one ele-
ment in a matrix is kept by only one element in a fragment
in 32 threads in a warp without duplication. Thus, the mma
instruction computes MMA operation using fewer registers
than the wmma instructions.

3 The balance of Tensor Cores performance
and shared memory bandwidth

Although the shared memory bandwidth is higher than de-
vice memory, the computing performance of the Tensor
Cores is high, and its Bytes-per-Flops (B/F) ratio is calculated
to be 0.06 ∼ 0.12 from Table 1. This value is similar to the
ratio between the FP32 computing unit and device memory
(0.06 ∼ 0.10). In the case of the FP32 computing unit and
device memory, the memory blocking using shared memory
reduces global memory access and alleviates the problem of
this small B/F ratio. Similarly, in the case of shared memory
and Tensor Cores, it is important to reduce shared memory
accesses to take advantage of high computational perfor-
mance.

Now, we analyze a matrix-matrix multiplication on Tensor
Cores using the roofline model. The input matrices A and
B are FP16, C and D are FP32 stored in the shared memory.
We load the sub-matrices of each input matrix as fragments
Areg and Breg for register blocking. The register blocking
size is (𝑛, 𝑛, 𝑛). We show the roofline model of computing
Dreg ← Areg ·Breg+Creg in Figure 1. The Arithmetic Intensity
(AI) is calculated as follows:

AI =
2𝑛3

(𝑛2 + 𝑛2)sizeof(FP16) + (𝑛2 + 𝑛2)sizeof(FP32) =
𝑛

5
.

(1)
As the size of register blocking size increases, we can uti-
lize the performance of Tensor Cores more. However, the
number of registers is finite, and the registers spill to local
memory when using more than 256 registers per thread. The
number of 32-bit registers required for the blocking is calcu-
lated as follows assuming the mma instruction is used and
each element in a matrix is stored by only one element of a
fragment without duplication.

nRegs = (( 𝑛2︸︷︷︸
Areg

+ 𝑛2︸︷︷︸
Breg

) × 1
2
+ 𝑛2︸︷︷︸

Creg

)/warpSize = 1
16

𝑛2.

(2)
For instance, in the case of 𝑛 = 64, the number of required
registers is 256, and the registers spill to local memory. There-
fore, we need to reduce the shared memory access not by
increasing the register blocking size. Furthermore, the Ten-
sor Cores performance has been improved more than the
shared memory bandwidth on NVIDIA A100 compared to
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Figure 3. The arithmetic intensity of matrix-matrix multi-
plication for each size of register blocking blocking-(𝑛, 𝑛, 𝑛).

V100. This can be seen from the fact that the AI value at
the boundary between the memory bandwidth and the com-
putational performance bound is smaller for A100 than for
V100.

4 WMMA API extension library
To leverage the high Tensor Cores performance, it is nec-
essary to supply matrix data to Tensor Core with sufficient
throughput. However, due to the limited functionality of
the WMMA API, the throughput improvements that can be
made using only the WMMA API are limited. Therefore, we
implement a WMMA API Extension library (WMMAe) to
reinforce the functionality of WMMA API. The WMMAe
consists of the following two components:

1. Primitive functions
2. SGEMM emulation on Tensor Cores using Error Cor-

rection method (WMMAe-TCEC)
In this section, we show the functionality of these compo-
nents and evaluate the performance improvement compared
to only usingWMMAAPI.We use NVIDIAA100 40GB SXM4
and NVIDIA V100 16GB PCIe GPUs for the evaluations.

4.1 Primitive functions
We can generate a fragment of a matrix in which all elements
are the same value without shared memory access using
fill_fragment function in WMMA API. On the other hand,
to generate fragments of other matrices, it is necessary to
explicitly store the matrix in shared memory and load it
using load_matrix_sync function in WMMA API. Now, we
consider the matrices that have some structural rules. For
instance, when performing scan operations using matrix-
vector multiplication, we need an upper triangular matrix U
in which all non-zero elements are one. Then, we perform a
scan operation to an array

[
𝑎0 𝑎1 · · · 𝑎𝑛−1

]
using 𝑛 ×𝑛

matrix U as follows:


𝑎0
𝑎1
...

𝑎𝑛−1


⊤

· U =


𝑎0
𝑎1
...

𝑎𝑛−1


⊤

·



1 1 1 · · · 1
0 1 1 · · · 1
0 0 1 · · · 1
...

...
...

. . .
...

0 0 0 · · · 1


=


𝑎0∑1
𝑖=0 𝑎𝑖
...∑𝑛−1

𝑖=0 𝑎𝑖


⊤

.

The structural rule for the (𝑖, 𝑗) element of the matrix U is
as follows:

𝑢𝑖, 𝑗 =

{
1 𝑖 ≤ 𝑗

0 Otherwise (3)

Dokkak et al. utilize the rule for generating the fragment of
the matrix without storing it explicitly in shared memory.
We generalize the functionality and provide functions for
generating a fragment of any matrix from its structural rule:
foreach_ij and map.

4.2 Primitive function : foreach_ij
The foreach_ij function calculates the mapping between
matrix element position (𝑖, 𝑗) and fragment indices and gives
them to a given lambda function. In the lambda function, we
calculate the value of the (𝑖, 𝑗) element of the matrix and set
it to the fragment using the given mapping information. For
instance, we show a pseudocode for generating the matrix
U fragment by the rule in Eq (3) in Code 3. Strictly speak-
ing, since one element in a matrix is kept by two fragment
elements when using WMMA API for C++, foreach_ij
function gives the list of fragment element indices to the
lambda function. However, in this pseudocode, we simplify
the argument of the lambda function as only one fragment
index is given. By using this function, we can generate a frag-
ment of any matrix from its structural rule without storing
it in shared memory.

1 f ragment <16 , 16 , 16> f r a g ;
2 f o r e a c h _ i j < d e c l t y p e ( f r a g ) >(
3 / / The lambda f un c t i o n to s e t each f ragment

e l emen t s
4 [& ] ( f i d , i , j ) {
5 i f ( i <= j ) f r a g . x [ f i d ] = 1 ;
6 e l s e f r a g . x [ f i d ] = 0 ;
7 } ) ;

Code 3.Generating thematrixU fragment from the structual
rule in Eq. (3) using WMMAe foreach_ij function.

4.2.1 Performance evaluation. We use a batched House-
holder transformation benchmark for evaluating the perfor-
mance improvement by foreach_ij function. The House-
holder transformation is one of the orthogonal transforma-
tions used for QR factorization etc. This transformation is
calculated as follows for a 𝑛×𝑛 Householder matrix H,𝑚×𝑘
input matrix A:

H · A =
(
I𝑚 − 2v⊤v

)
· A, (4)
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Figure 4. The performance evaluation of foreach_ij func-
tion using batched Householder benchmark, where we mul-
tiply a𝑚 ×𝑚 Householder matrix H with an input matrix A
using Tensor Cores.

where v is a𝑚-dimensional identity vector and I𝑚 is a𝑚×𝑚
identity matrix. In this benchmark, we explicitly compute the
Householder matrixH from v and multiply it byA. This com-
putation is performed for 𝑏 (batch size) FP16 input matrices
A𝑖 and FP16 vectors v𝑖 . To obtain the baseline performance,
we implemented the batched Householder transformation,
which stores the Householder matrix in shared memory and
loads it using the WMMA API function. Then the multipli-
cation of A and H is performed on Tensor Cores. We show a
speed-up ratio using WMMAe in Figure 4. We can see that
the performance is improved using foreach_ij on V100
GPU in both cases. On the other hand, for𝑚 = 16 on A100,
the implementation using foreach_ij has a lower perfor-
mance compared to the baseline. In this case, the pseudocode
of the implementation is shown in Code 4.

1 f ragment <16 , 16 , 16> f r a g ;
2 f o r e a c h _ i j < d e c l t y p e ( f r a g ) >(
3 [& ] ( f i d , i , j ) {
4 auto elm = v [ i ] ∗ v [ j ] ∗ ( − 2 ) ;
5 i f ( i == j ) elm += 1
6 f r a g . x [ f i d ] = elm ;
7 } ) ;

Code 4. Generating a 16 × 16 Householder matrix fragment
using foreach_ij.

In this code, the cost of the mapping calculation is higher
than the cost of storing the matrix explicitly in shared mem-
ory, which might be the reason for the low performance.
Whereas, for 𝑚 = 32 on A100, the implementation using
foreach_ij has higher performance than the baseline. In
this case, the pseudocode of the implementation is shown in
Code 5.

1 f ragment <16 , 16 , 16> f r a g [2 ∗ 2 ] ; / / 32 x32 ma t r i x
2 f o r e a c h _ i j < d e c l t y p e ( ∗ f r a g ) >(
3 [& ] ( f i d , i , j ) {
4 f o r ( uns igned b i = 0 ; b i < 2 ; b i ++) {
5 f o r ( uns igned b i = 0 ; b i < 2 ; b i ++) {
6 auto elm = v [ i + b i ∗ 1 6 ] ∗ v [ j + b j ∗ 1 6 ] ∗ ( − 2 ) ;
7 i f ( i == j ) elm += 1
8 f r a g [ b i + b j ∗ 2 ] . x [ f i d ] = elm ;

214 216 218 220 222

Batch size

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

Se
ed

 u
p

[Baseline] Using SMEM & WMMA API

Tesla V100

214 216 218 220 222

Batch size

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

Se
ed

 u
p

[Baseline] Using SMEM & WMMA API

A100
Using WMMAe map, Argument input (i,j) Using WMMAe map, Embedded (i,j)

Figure 5. The performance evaluation of map function using
batched Given’s rotation benchmark. The “Argument input
(i,j)" means that the parameter (i, j) for Given’s rotation ma-
trix is set through kernel function arguments, and “Embed-
ded (i,j)" means that these parameters are set in compile-time.

9 } } } ) ;

Code 5. Generating an array of fragments for 32 × 32
Householder matrix using foreach_ij.

For the 32×32 matrix fragment, we used a 2×2 array of frag-
ments holding matrices of size 16 × 16. The elements of all
the fragments are set in a single foreach_ij function. This
means that four fragments are generated in one mapping cal-
culation, and the cost of the mapping calculation is relatively
lower than that of the𝑚 = 16 case. Thus, we consider that
reusing the mapping calculation among several fragments is
important to speed up the use of the foreach_ij function.

4.3 Primitive function : map
The map function takes the position (𝑖, 𝑗) of an element of
the matrix as an argument and returns a pair (lid, fid) of
the thread number (lane id; lid) in a warp and the element
number of the fragment holding this element. Using this
function, we can manipulate any (𝑖, 𝑗) element of the matrix
as a fragment. For instance, Code 6 sets the (𝑖, 𝑗) element of
a matrix A, which is held as a fragment, to 1.

1 f ragment f r a g _ a ;
2 uns igned l i d , f i d ;
3 / / C a l c u l a t e l i d and f i d from mat r i x p o s i t i o n ( i ,

j )
4 map< d e c l t y p e ( f r a g ) >( l i d , f i d / ∗ =2 ∗ / , i , j ) ;
5 / / S e t 1
6 i f ( ( t h r e a d I d x . x & 0 x1 f ) == l i d ) {
7 f r a g _ a . x [ f i d ] = 1 ;
8 }

Code 6. Setting (𝑖, 𝑗)-element of a matrix held as fragment
using WMMAe map function.

4.3.1 Performance evaluation. Wedefine a batchedGiven’s
rotation benchmark to evaluate the performance improve-
ment by the map function. The Given’s rotation is a rotation
operation for a vector and matrix and is used for QR factor-
ization etc. The definition of Given’s rotation for a matrix A
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is as follows:
G(𝑖, 𝑗, 𝜃 ) · A, (5)

where 



1
. . .

𝑐 · · · −𝑠 · · · 𝑖-th

G(𝑖, 𝑗, 𝜃 ) =
...

. . .
...

𝑠 · · · 𝑐 · · · 𝑗-th
...

...
. . .

1
𝑖-th 𝑗-th

,

𝑐 = cos𝜃 and 𝑠 = sin𝜃 . In this benchmark, Given’s rotation
operations for 𝑏 FP16 input matrices A𝑘 are performed by
multiplying by G(𝑖, 𝑗, 𝜃𝑘 ) in parallel. The 𝑖 and 𝑗 are fixed
in all calculations, and there are two ways to fix them as
follows: 1) Specify them as arguments of the kernel function.
2) Embed them in the kernel function. When generating
a fragment of matrix G using the map function, first, all
elements in the fragment are filled with zeros by WMMA
API fill_fragment function. Then set 1, 𝑠 , and 𝑐 at each
position using the map function. To obtain the baseline per-
formance, the matrixG is explicitly stored in shared memory
and loaded using a WMMA API function. We show a speed-
up ratio by the mapping function in Figure 5. When 𝑖 and 𝑗

are given as arguments of the kernel function, it is slower
than the baseline implementation. On the other hand, when
𝑖 and 𝑗 are embedded in the kernel function, then the base-
line implementation. When 𝑖 and 𝑗 are embedded in the
kernel function, compiler optimization reduces the comput-
ing amount of mapping calculation and required registers at
runtime.

4.4 WMMAe-TCEC
When computing single-precision matrix-matrix multipli-
cation on Tensor Cores, we need to convert input matri-
ces to FP16 ones. This conversion results in a loss of accu-
racy in the resulting matrix. Markidis et al. [10] proposed
a method for single-precision matrix multiplication using
Tensor Cores with error correction. However, the accuracy
of their method does not match the single-precision. In our
previous research, we improve the accuracy and reduce the
computation complexity of their method [11]. In our method,
they compute the single-precision matrix-matrix multiplica-
tion CF32 = AF32BF32 as follows:

AF16 ← toFP16 (AF32) (6)
ΔAF16 ← toFP16

(
(AF32 − toFP32 (AF16)) × 211

)
BF16 ← toFP16 (BF32) (7)

ΔBF16 ← toFP16
(
(BF32 − toFP32 (BF16)) × 211

)
CF32 ← AF16BF16 + (ΔAF16BF16 + AF16ΔBF16) /211,

Shared memory access

load_matrix_sync

Using WMMAe-TCEC Using WMMA API

Register

Shared memory

Register

Shared memory

fragment fragment

FP16

FP32

foreach_ij

Eq.(7)
Eq.(8)

Eq.(7)
Eq.(8)

Figure 6. The comparison of data flow between using
WMMA API and WMMAe. Here we load fragments for
SGEMM emulation on Tensor Cores using error correction
without additional shared memories AF16 and ΔAF16, that
are required when using WMMA API.

where toFP16 and toFP32 are the conversion to FP16 and
FP32, respectively. We improve the matrix-matrix multiplica-
tion accuracy by avoiding the rounding inside Tensor Cores,
RZ, and achieve the same accuracywith FP32 SIMTCore com-
putation. Although we have included our method in NVIDIA
CUTLASS and evaluated the accuracy, performance, and
power consumption in the previous paper, the matrix-matrix
multiplication is inside various linear algebra algorithms,
and we would like to use the computation inside custom ker-
nel functions. Therefore, we provide functionality for using
this method inside a custom kernel function.

To compute the Eqs. (6)-(8) usingWMMAAPI for C++, we
need to store the matrices AF16,ΔAF16 in the shared memory
explicitly since the mapping function load_matrix_sync
in WMMA API only makes the fragment from memory as
shown in the top of Figure 6. On the other hand, we can avoid
the explicit storing by foreach_ij function in WMMAe.
Using this function, we implement WMMAe-TCEC, which
reduces the memory footprint and provides the error correc-
tion computation with the same interface as WMMA API.
The WMMAe-TCEC includes a function for generating the
fragments of AF16 and ΔAF16 directly from the input matrix
AF32 shown in the bottom of Figure 6. We can use WMMAe-
TCEC just by changing the matrix data types and the names-
pace in Code 1 from nvcuda::wmma to mtk::wmma::tcec.

Moreover, since the WMMAe-TCEC adopts a policy-based
design, we can change the following backward computation
by only changing the policy, which is specified as an optional
template parameter of the fragment.
• Tensor Core instruction: Use the wmma instructions
or mma instruction.
• Error correction: Enable or disable.
• Use Tensor Core or software systolic array [1].

Using this feature, we can evaluate the effect of the error
correction method easily.

4.4.1 Theoretical performance analysis. We show the
AI of matrix-matrix multiplication with error correction that
we used for the performance evaluation in Figure 7. By using
WMMAe-TCEC, we can increase the AI and improve the
theoretical computing performance bounded by the shared
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memory bandwidth. Although we can increase the AI by
increasing the size of register blocking, the number of regis-
ters that one thread can use is limited by the hardware. For
instance, in the case of (𝑚,𝑛, 𝑘) = (32, 32, 32), which is used
in our benchmark evaluation, we need 128 32-bit registers
to keep the fragments, which amounts to 50% of registers
that one thread can use. The registers are used not only for
fragments but also for memory access offset calculations
and other floating-point value operations such as eq. (7). Re-
ducing the number of required registers can improve the
throughput since it can improve occupancy. And when the
number of required registers exceeds the hardware limita-
tion, the device memory is used instead, which results in
performance degradation. Therefore, increasing the AI with-
out increasing the register blocking size is advantageous.

4.4.2 Performance evaluation. We use a batched matrix-
matrix multiplication benchmark to evaluate the perfor-
mance and accuracy of the WMMAe-TCEC. In this bench-
mark, we compute 256 matrix-matrix multiplications A𝑖 · B𝑖

where each A𝑖 and B𝑖 are 1024 × 𝑘 and 𝑘 × 1024 FP32 ma-
trices. Then, we calculate the computing performance from

the computing time 𝑡 [s] as (2 × 1024 × 1024 × 𝑘/𝑡) [Flop/s],
and a max relative error for the accuracy. We show the per-
formance and accuracy comparison between our implemen-
tation using WMMAe-TCEC and cuBLAS batched SGEMM
function in Figure 8. In our implementation, we use the mma
instruction, and the shared memory and register blocking
sizes are (128, 128, 32) and (32, 32, 32), respectively.We found
this blocking size using a grid search that experimentally
maximizes the throughput on NVIDIA A100 (40GB, SXM4)
GPU. The outcome of our evaluation shows that our im-
plementation achieves 54.2 [TFlop/s], which outperforms
the theoretical peak performance of FP32 on NVIDIA A100,
while the accuracy remains the same with cuBLAS SGEMM.
The achieved throughput is larger than the throughput of
SGEMM emulation that we have achieved using the NVIDIA
CUTLASS library (51 TFlop/s) in our previous paper [11].
According to the roofline model, when we only use WMMA
API, the theoretical peak performance for our chosen register
blocking size is limited to 52.0 TFlop/s bounded by the shared
memory bandwidth. Therefore, the achieved throughput can
not be achieved without reducing the shared memory foot-
print that our library does. However, by using WMMAe, we
improved the theoretical peak performance of this method
to 104.0 TFlop/s by reducing the shared memory footprint.
Since the achieved efficiency is only 52% of the theoretical
peak performance, we believe there is room for improving
the throughput.
We summarize the advantages of WMMAe-TCEC as fol-

lows:

• It provides an interface for the single-precision emu-
lation method on Tensor Cores, which has the same
interface as NVIDIA WMMA API.
• It improves the theoretical peak performance ofmatrix-
matrix multiplication with error correction by reduc-
ing shared memory footprint without increasing reg-
ister usage.
• It reduces the shared memory usage required to store
the fragments of FP16matriceswhen using onlyWMMA
API.
• It is proved to outperform the FP32 theoretical peak
performance on NVIDIA A100 experimentally while
the accuracy remains the same with FP32 computation.

5 Conclusion
We have investigated a simple matrix-matrix multiplication
on Tensor Cores by roofline model and found that reducing
the shared memory footprint is necessary to fully exploit
the high throughput of Tensor Cores. To reduce the foot-
print, we implement a WMMA API extension library which
allows us to generate fragments flexibly. This library is open-
source and available on GitHub. We show that this library
can improve the computing throughput on Tensor Cores.
Furthermore, we improve the theoretical peak performance
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of single precision matrix-matrix multiplication emulation
on Tensor Cores, which is bounded by the shared memory
bandwidth when using only WMMA API. Then, we provide
this functionality with the same interface asWMMAAPI.We
also show that this functionality can outperform the FP32
theoretical peak performance on NVIDIA A100 GPU. We
believe such a faster data supply is necessary to maximize
the use of high-speed matrix multiplication units in future
architectures.
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