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ABSTRACT
With the emergence of new computer architectures, portability and
performance-portability become significant concerns for develop-
ing HPC applications. This work reports our experience and lessons
learned using DaCe to create and optimize batched Discrete Fourier
Transform (DFT) calculations on different single node computer
systems. The batched DFT calculation is an essential component in
FFT algorithms and is widely used in computer science, numerical
analysis, and signal processing. We implement the batched DFT
with three complex-value array data layouts and compare them
with the native complex type implementation. We use DaCe, which
relies on Stateful DataFlow multiGraphs (SDFG) as an intermediate
representation (IR) which can be optimized through transforms
and then generates code for different architectures. We present
several performance results showcasing the potential of DaCe for
expressing HPC applications on different computer systems.
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• Computing methodologies → Parallel programming lan-
guages; Shared memory algorithms.
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1 INTRODUCTION
In the last decade, we assisted in the golden age of computer archi-
tecture [14] with the development and adoption of new computer
architectures, ranging from accelerators from different vendors
to matrix engines [19] and processors designed for deep-learning
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workload [16]. Given the current trend with more companies invest-
ing in processor design and the emerging computational paradigms,
such as quantum computing, it is likely that more and more new
computer systems will be available for the HPC programmer who is
tasked to design applications that can run efficiently on a large spec-
trum of computer systems. Most of these new computer hardware
come with a set of programming interfaces and abstractions that
are typically specific to computer systems. This diversity of the sys-
tems and programming interfaces puts a significant burden on the
programmers who must target several systems and programming
frameworks to develop the application.

Ideally, there exists a programming framework that allows to
write the application code once and run on different architectures
without code rewriting. Such a framework is portable. The key for
portability is the establishment of common abstractions that can
generally express data movement, operations and parallelism on
diverse hardware [23].

Ideally also, the programming framework would be performance-
portable [5, 21], guaranteeing a minor performance degradation
when compared to the performance of a programming interface
specifically designed for a given architecture. For instance, if a
code has been written in CUDA to run on NVIDIA GPUs, the ideal
portable framework should guarantee that performance degrada-
tion is not larger than a small fraction of the performance achieved
with CUDA. Given the burning importance of writing portable and
performance-portable code, scientists developed several approaches
to provide a unified approach for programming efficient code on
diverse computer systems. Among the most notable examples in the
HPC ecosystems, there are Kokkos [8], RAJA [15], Mamba [7] and
DaCe [3]. In particular, an application, called OMEN and fully devel-
oped with DaCe [27], won the Gordon Bell award in 2019, making
DaCe one of most promising approaches for developing portable ap-
plication on exascale supercomputers and heterogeneous systems.
In this work, we report our experience in using DaCe for designing
portable code for solving batched Discrete Fourier Transform (DFT)
kernel. Such a computational kernel is not trivial and allow us to
experiments different design choices, such as data layout for the
complex number, data reduction and parallelization. In addition, to
have a high performance implementation of batched DFT is criti-
cal for the development of fast high-radix multi-dimensional Fast
Fourier Transforms (FFTs) that rely on optimized DFTs. Further-
more it is a growing trend in HPC to run batched computations of
small kernels [6].
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In this work, we use theDaCe framework to design high-performance
portable Batched DFTs. The main contributions of this work are
the following:

(1) We present our experience and lesson learned in developing
a non-trivial kernel, such as the DFT, using DaCe.

(2) We port our DaCe batched DFT to multi-core CPUs and
Nvidia GPUs using the DaCe’s Intermediate Representation
(IR) and code generation.

(3) For the DFT calculation, we design and implement three data
layouts for complex arrays: Array of Structures (AoS), Split
Data Layout, and Structure of Arrays (SoA).

(4) During our usage of DaCe, we extend the framework with
optimized reductions to include complex128 and complex64
types natively in DaCe.

(5) We apply DaCe optimization techniques, specific to different
backend hardware.

The paper is structured as follows. First, we provide a brief
overview of the DaCe programming model and of the Batched DFT
kernel in Section 2. We describe our methodology in using DaCe for
developing batched DFT in Section 3. The experimental setup and
performance results are described in Sections 4 and 5, respectively.
Previous work is briefly reported in Section 6. Finally, we conclude
the paper summarizing and discussing the results with Section 7.

2 BACKGROUND
2.1 The DaCe Framework
DaCe is a framework for developing high-performance portable
scientific code with restricted Python. The main strengths of the
DaCe approach are its Intermediate Representation (IR) and the
code generation: these two components allow for performance op-
timization and portability. There are multiple supported front-ends
for creating IR including MATLAB/Octave and Python frontend.
The Python frontend is the most used one and the one used in this
paper.

The IR can be manipulated by transforms through the command-
line or with a GUI. There are two graphical methods: Diode, an
IDE run through the Internet browser or with a plugin for Visual
Studio Code (VS Code). Although there are multiple front ends the
IR can easiest be generated by adding the @dace decorator to a
Python function written in restrictive Python and then calling the
IR creating function to_sdfg(). The computation can then be run
Just-in-Time (JiT) by simply calling the IR-object as a function.

DaCe’s code generator produces C++ code based on the IR and
then lets the C++ compiler (g++ as default) compile it. The user can
also create the IR, apply performance and portability transforms
and then compile the code ahead-of-time.

The IR in DaCe is based on a data-centric model which aims
to compartmentalize computation and data-movement. This is en-
forced by the design of the IR which is called Stateful DataFlow
multiGraph (SDFG). To enable the key concept of compartmental-
ization, SDFG is focused on dataflow, and the ability to move data
from a storage container to another or to a computation without
performing any computation.

The Data-Centric model is built up of a collection of program-
ming primitives, summarized in Fig. 2 and described in detail in

Ref. [3]. In Fig. 2, the graph’s edges are called Memlets and cor-
respond to the data movement between data containers (Data) or
computation (Tasklet). The data-container is an N-dimensional
array. The fine-grained computation in tasklets is immutable from
data-centric transforms and can be written in any language sup-
ported by the target platform. To support Python there is an im-
plementation of a Python-to-C++ converter. It is important when
writing custom code to not allow any data access without memlets.
The multigraphs of the data movement between containers and
computation are confined within States which allow the repre-
sentation of cyclic data dependencies and control flow, after the
execution of a state, the state transition edges can specify condi-
tions and assignments whilst connecting states forming a state
machine. This representation allows for a description of data-flow
and parallelisms with any granularity, and is therefore a viable IR
for portable high-performance programs.

DaCe provides an easy way to express parallelism. For instance,
Map is parallel scope in which nodes can reside. Coarsening allows
a hierarchical view of parallelism.

The performance and the portability of the generated code (and
therefore SDFGs and DaCe) are heavily dependent on the DaCe li-
brary, where backend specific code for primitives such as reductions
and write-conflict handling is done. The backend library makes a
large use of C++ templates to enable the use of generic types for
multiple types of hardware.

2.2 Batched Discrete Fourier Transform
In this work, we focus on usingDaCe for implementing batchedDFT
on different architectures. The DFT can be simply formulated as a
complex-valuedmatrix-vector product. Instead of implementing the
batched DFT as several matrix-vector products, we implement it as a
matrix-matrix product, where each column is an independent vector.
We do this to highlight the data-movement aspect of DaCe and the
algorithm. A complex number is an expression on the form 𝑎 + 𝑖𝑏
where 𝑖2 = −1. The common algebraic properties (commutativity,
associativity, etc.) hold.

We see that the book-keeping is limited to a few number of
operations. This allows for the idea of manually handling the data-
layout of the complex number. The DFT matrix used for the matrix-
vector multiplication is constructed as follows:

DFT𝑁𝑚,𝑛
= (𝜔𝑁 )𝑚𝑛, where 𝜔𝑁 = 𝑒−2𝜋𝑖/𝑁 for 0 ≤ 𝑚,𝑛 < 𝑁 .

𝑁 is the size of the input vector. The real and imaginary matrices
are symmetric. However, we do not use of this property in the
implementation.

Batched DFTs are widely used in developing FFT implementa-
tions. For instance, we can find the batched DFT in the Pease FFT
algorithm [24], a modification of the classic Cooley-Tukey algo-
rithm.

There are generally two types of implementations of complex
matrix-matrix multiplication. The first type is by using an im-
plemented complex type that supports "native" complex calcula-
tions. In this case, DaCe relies on the fact that the destination lan-
guage/programming model has a native implementation of complex
such as C++’s std::complex or CUDA’s cuda::std::complex.
This is in DaCemanaged through theDaCe equivalent dace::complex.
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Reduce Reduction
Invoke Call a SDFG in a nested fashion.

Figure 1: An SDFG representation of a GEMM and the primi-
tives used in DaCe’s SDFG

The second method is to transform the problem to use only
real-valued variables, e.g., by treating the real and complex com-
ponents individually - induced complex calculations, among these
you can find several implementations such as 1M, 3M, 4M and so
on presented in [25, 26], where the name represents the number of
real-valued matrix multiplications used to induce a complex-valued
matrix multiplication.

A native complex type is probably most appreciated by pro-
grammers and would score high on a productivity score, but needs
hardware-specific support which might not be met, it is also theo-
retically a hindrance for performance as there are multiple ways of
ordering the data-type, some potentially more efficient than others.
To allow for more data-movement optimizations we will investigate
the use of different hand-implemented structures.

3 METHODOLOGY
In this section, we start by presenting the high-level implementation
of the different data-layouts for complex numbers matrices and
arrays in DaCe. We then present the baseline comparisons we use
to evaluate the performance.

After that, we describe the DaCe implementation of the different
batched DFT algorithms and present the performance transforms
that are applied to the SDFGs of the different implementations.

We then investigate the portability by evaluating theGPU-transformed
SDFG, some performance transforms, and compiled code. Finally,
we show some necessary changes to the DaCe library that have
been made to obtain the expected behavior from the code genera-
tion on GPU.

We define the baseline algorithm implementations as a standard
and batched complex GEMM (CEMM for complex numbers in dou-
ble precision and ZEMM for complex numbers in single precision).
We choose to use DaCe library expansions of CEMM as the baseline.
DaCe has a pure expansion which can be used when there is no
BLAS libarary available, included for completeness and will view it
as a benchmark for the implementation. However, the main compar-
ison is with MKL’s BLAS implementation on both AMD and Intel
and cuBLAS on Nvidia GPUs. Note that parts of the implementation
of node-expansion of batched CEMM on multi-core CPU is handled
by the DaCe library in comparison with suggested batched BLAS
designs [6].

3.1 Implementation
The batched DFT calculation is in essence a matrix-matrix product
between a square matrix with the twiddle factors and a rectangular
matrix with the input vectors. We assume the DFT matrix to be a
constant and the matrix-values are stored as a dace.constant 1

which in the generated code as a C++ contsexpr. There is no
complex constant so we separate the real and imaginary part into
individual constants. The DFT computation is made up of a map
over three variables, a temporary array, that is later reduced. The
naive algorithm is written with DaCe’s Python-frontend Listing 1
which results in the SDFG seen in Fig. 2. For this study we have the
same data layout for the input and output.

1 @dace.program

2 def DFT128(x : dace.complex128[N M]):

3 tmp = np.empty((N, M, N), dtype=dace.complex128)

4 for j, k, i in dace.map ([0:N,0:M,0:N]):

5 tmp[i,j,k] = DFT[i,j]*x[j,k]

6 dace.reduce(lambda a,b:a + b,tmp ,x,axis =[2])

Listing 1: Naive skeleton code implementation of the
DFT based on the GEMM example provided by the DaCe
repository. N is the size of the input vectors and M is the size
of the batch.

We implement three different approaches:
(1) A traditional Interleaved Data Layout, where the pairs of real

and imaginary values are stored in an alternating fashion.
We call this data layout AoS. This is similar to the native
complex type we compare with.

(2) An easy-to-implement SoA data-layout, where the real part
is stored first and the imaginary part is stored after.

(3) A Split Data Layout where the two are separated into two
independent arrays.

We implement the same SDFG with the SDFG backend on the
following form.Wherewe easily canmanipulate the taskletwhich

1since DaCe 0.14.0 deprecated and replaced by dace.compiletime
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Figure 2: To the left: The inital SDFG of the AoS implementation of the batched DFT. To the right: transformed with a tiling
strategy. We note that the main difference between the graphs is that the reduction node has been transformed and that Write
Conflict Resolution (WCR) memlets have been introduced together with multiple nested sequential and parallel maps.

AoS : [𝑎0, 𝑏0, 𝑎1, 𝑏1, · · ·𝑎𝑁 , 𝑏𝑁 ]
SoA : [𝑎0, 𝑎1, · · ·𝑏0, 𝑏1, · · · ]
SP : [𝑎0, 𝑎1, · · · ], [𝑏0, 𝑏1 · · · ]

Figure 3: How the data-structures are designed for a single
complex-valued vector, at the top AoS, in the middle the
SoA and at the bottom the split data layout where the color
represents different arrays that the element belongs to.

can be seen as a micro-kernel. We do this to get better control
working with unsupported features.

At the current state some combinations of the tasklet imple-
mentation languages and transforms are incompatible. The native
complex tasklets written in Python work only for complex128 not
for complex64. However, if we write the tasklet in C++, this can be
worked around but with the risk of performance transforms failing
to be correct.

For the performance portability, we evaluate the auto_optimize-
function from dace.transformation.auto for both GPU and CPU.
This function is described in Ref. [28] and employs a simple op-
timization heuristic depending on the intended hardware, which
we test on similar SDFGs. We also apply the tiling optimization
strategy described in Ref. [3], the transforms here are based on
the GEMM optimizations in the repository. Tiling is a common
optimization strategy for improving cache performance by better
exploiting temporal locality. We also employ the LocalStorage-
transform to leverage caching within the tiles.

For each implementation, we mimic the performance transforms
describe above. There should be a very similar possible optimization
for each implementation ending with a main state depicted in Fig
2. However, this is not always the case. For SoA the initial step of
fusing the map and the reduction with MapReduceFusion does not
work as expected.

The kernel is based on multiplication with a known constant.
The CUDA performance deteriorates quickly with the size of the
DFT because of DaCe’s handling of constants. Therefore, we choose
to create an SDFG where the constants are changed to standard
arrays. As for the CPU optimization, the basis for this paper is the
GEMM and corresponding SDFG optimization (IR passes) presented
in Ref. [3] and found in the repository.

3.2 DaCe Backend Update
We noticed that the performance for the native complex imple-
mentation underperformed compared with the corresponding real
GEMM. This discrepancy comes from that the original DaCe li-
brary has a specialized method for reductions of float and double
based on omp atomic capture. However, the fall-back method
used for complex relies on omp critical, with a detrimental effect
on multi-core CPU performance.

We implemented an extension of _wcr_fixed for complex64 (2
x single) and for complex128 (2 x double), by reusing the optimized
methods for float and double, we do this by unrolling each complex
pair and handling them separately as presented in Ref. [4]. However,
we have to be careful when adding this to the backend. It is very
beneficial for some reductions, but can be detrimental in others. The
code generated from the MapReduceFusion transform the generic
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optimization is much faster than this type-specific one and should
not be overrided.

An example of the reduction with a sum can be seen in Listing 2.
1 template <>

2 struct _wcr_fixed <ReductionType ::Sum , dace::complex64 >

3 {

4 static DACE_HDFI void reduce_atomic(dace:: complex64 *

ptr , const dace:: complex64 &value)

5 {

6 single *real_ptr = reinterpret_cast <single *>(ptr

);

7 single *imag_ptr = real_ptr + 1;

8

9 _wcr_fixed <ReductionType ::Sum , single >::

reduce_atomic(real_ptr , value.real());

10 _wcr_fixed <ReductionType ::Sum , single >::

reduce_atomic(imag_ptr , value.imag());

11 }

12

13 DACE_HDFI dace:: complex64 operator ()(const dace::

complex64 &a, const dace:: complex64 &b) const

14 {

15 return _wcr_fixed <ReductionType ::Sum , dace::

complex64 >()(a, b);

16 }

17 };

Listing 2: In this extension of fast summing reduction for
std::complex<float> we see how
a typical "primitives" back-end look, utilizing the already
implemented _wcr_fixed<ReductionType::Sum, single>.

4 EXPERIMENTAL SET-UP
The performance experiments in this study are carried out on the
following systems:

Dardel is an HPE Cray EX supercomputer at KTH in Stock-
holm, Sweden. We use the main partition on Dardel where
each node has two AMD EPYC 7742 3.2GHz CPUs with 64
cores each and with 256 GB RAM in total.
DEEP-System is a supercomputer at Jülich Supercomputing
Centre (JSC) in Jülich, Germany.We use the CN-nodeswhich
has two Intel Xeon ’Skylake’ Gold 6146 3.2GHz with 12 cores
(24 threads). 192 GB RAM.
GPU-system: This system has a consumer grade Nvidia
RTX3060 mobile with a AMD Ryzen 9 5900hs CPU and 32GB
DDR4 RAM.

We perform the timings through theDaCe profiling and timing tools,
using the standard configuration for DaCe-0.13.3. We compile our
codes usingGCC 11.2.0 on both systems for themulti-core CPU code
(since it is the suggested compiler in the library dependencies). We
note that the code generated with the aopt automatic optimization
for complex could not be compiled with GCC but with icpx/clang.
CUDA 11.5.0 for the CUDA code on the GPU machine.

For each test-case we run random input vectors. The test-cases
we run are the native, SoA, AoS, and BLAS with complex128.

The use-casewe aremostly interested in are large radix-computations
in FFT algorithms, as it is common to use radices from two to 32-64
it is therefore useful with a batched DFT kernel when developing
FFT [10, 11]. The size of an input array to a FFT can vary from
two to three orders in Molecular Dynamics (MD) [2] to several

of million elements in Cosmology and Medical Imaging [1]. The
input array for a one-dimensional FFT corresponds to the radix
size (N) multiplied with the batch size (M). For a three-dimensional
FFT a batch of one-dimensional FFTs must be performed, which
essentially just increases the batch size M. We first test an input of
𝑁 = 64 and𝑀 = 128, corresponding to a input vector length of 64
(or radix of 64 in an FFT) and a batch size of 128. This is equal to
an one-dimensional FFT of 8192 elements or a batch of smaller FFT,
which we consider an interesting size of FFT. For the GPU test we
increase the range of inputs to capture the architecture strengths.

The first test case shows the strong scaling of the naive imple-
mentation on the two test systems on a input of 64 × 128, this is
followed by the evaluation of the automatic optimization and then
the user optimized version.

We do not utilize the integration of CuPy on device arrays to
measure only the kernel timings without communication to GPU.
However, this needs to be done in the code before generating the
SDFG by annotating the expected type of the input variables to be
a GPU array, therefore any performance measurement is including
communication of data.

We assume all algorithms to scale as 8𝑀𝑁 2 which is the basis
for the FLOPS calculations.

5 RESULTS
In Fig. 4 shows two examples of the scaling before and after applying
the reduce extension describe in 3.2. For the problem size of this
task, it is necessary to apply this extension when running the naive
implementation Fig. 4a, where the standard DaCe library clearly
dose not scale. It is however not clear to a DaCe-coder what code-
paths will be taken, so one must be careful with the implementation,
this is seen by the Fig. 4b where a transformed SDFG produces code
with less performance.

Now, we present the performance results in GFLOPS for multi-
threaded code, generated by DaCe performing the naive implemen-
tation without any performance transformations. Fig. 5a shows the
strong scaling result for our DaCe batched DFT varying the number
of threads on the AMD EPYC 7742. The different color represents
different data layouts and implementation complex arrays in DaCe.
We can observe that strong scaling increases linearly until eight
threads and saturates approximately at 3 GFLOPS for the complex
native implementation and at 2.8 GFLOPS for the AoS and SoA
data layouts. After saturation, we note erratic behavior from the
AoS and SoA implementations whereas the native dies out. In Fig.
5b, we present the strong scaling results for the batched DFT on
the DEEP cluster for the naive implementation without any perfor-
mance transformations. On the DEEP system, we also note a clear
linear dependency for low core counts up to approximately eight
and then a gradual decline from there on. We also see that all of
the data structures follow a type of staircase pattern not seen on
the Dardel system. We see that it also scales better and achieves a
higher peak performance at around 4.4 GLOPS for SoA and around
3.7 GFLOPS for AoS.

For the auto-optimized code, gcc fails to compile the native
complex code. In Fig. 6a we also see that the auto-optimization does
not improve performance compared with the naive implementation,
in fact, it is significantly slower than the naive implementations.
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(a) DEEP-system

(b) DEEP-System

Figure 4: The scaling with and without the reduction pre-
sented in 3.2. for (a) the naive implementation and (b) after
applying a MapReduceFusion in the user optimized case.

In Fig. 6b it is clear that the auto-optimization is slower than the
naive implementation on the DEEP-system even before saturation.
We can see no significant difference between the data layouts.

We also included the DaCe pure expansion, which can be seen
as an optimization or a reference solution as it is always available
through DaCe, we can see that it performs as well as the naive
implementations in the DEEP-system and that it scales better than
the naive implementations on Dardel.

We then perform optimizations as described in the Section 3.
The scaling results using an optimized version of the batched DFTs
on Dardel is shown in Fig. 7a. We note that the optimized versions
of AoS and SoA reach to approximately 30 GFLOPS as peak per-
formance at around 10 threads. When the optimized SoA plateaus
and starts a slow decline, the AoS does a notable dip between 10

(a) Dardel

(b) DEEP-System

Figure 5: Strong scaling for input 64 x 128 for the baseline
algorithms on (a) Dardel cluster with AMD Processors and
(b) the DEEP-System with Intel Processors.

threads and 15 threads. The split data layout (SP) with user opti-
mizations peaks at 70 GFLOPS at the nine threads and stays above
50 GFLOPS. Comparing with DEEP in Fig. 7b we find a notable
difference, instead of finding the maxima at 10 threads the AoS
plateaus but starts scaling again, achieving the same performance
as on Dardel. On the other hand the SoA implementation does not
reach the same level of performance on DEEP as on Dardel. The SP
implementation has almost half the performance compared with
on Dardel, but retains a similar shape. The performance of MKL is
surprisingly low, especially on Dardel it is likely due to the small
problem size and the high single threaded performance, but it is
also possible that it is due to the AMD CPUs on Dardel. The native
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(a) Dardel

(b) DEEP-System

Figure 6: Strong scaling on Dardel (a) and DEEP-System (b)
for 64 x 128 for the auto-optimized (aopt) algorithms com-
pared with the naive implementations and the pure library
extension

complex performs poorly due to the effects shown in Fig. 4b; how-
ever unchanged backend only performs a fraction of the ones we
get from AoS and SoA with its’ seven GFLOPS.

We evaluate the GPU performance by looking at a range of input
vector sizes and batch sizes. In Fig. 8 we have the naive implemen-
tations transformed to GPU SDFGs and compiled to CUDA. The
performance is similar between different data-layouts, and is satu-
rated at a small problem size although the native implementation
seems to perform around 10% better for the largest problem sizes.

In Fig. 9 we compare the auto-optimized methods with the naive
code, all the implemented data layouts performs very well with the

(a) Dardel

(b) DEEP-System

Figure 7: Strong scaling on Dardel (a) and DEEP-system (b)
for input of size 64 x 128 for the optimized algorithms

automatic optimizer on GPU. The automatically optimized AoS im-
plementation performs around six times better than the naive. The
native complex type does not work with the automatic optimizer.

In Fig. 10, we present theweak scaling results of the user-optimized
implementations on the GPU. In these tests, we vary the transform
size and batch size. The implementation with the AoS and the SoA
data layouts performs poorly because of the failure of applying
MapRuduceFusion. The Split-Data layout performs approximately
the same as the native CUDA implementation, both are significantly
slower than the cuBLAS implementation. For a large range of input
sizes, the auto-optimization is faster than the user-optimized one.
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Figure 8: Weak scaling for the GPU transformed naive im-
plementations.

Figure 9:Weak scaling for the GPU transformed implementa-
tions with auto optimization (aopt) compared with the naive
code.

6 RELATEDWORK
Many authors investigated the performance of CEMM/ZEMM ker-
nels using already optimized GEMM kernels, with the portability of
the algorithm as the main motivation on several systems [25, 26].

The impact of different data layouts for CEMM and FFT opti-
mized for vector instructions is evaluated in Ref. [22], showing
promising results by allowing different data layouts at different
stages of the algorithm, including the split data layout used in this
paper.

Data layout optimization and transformations are important in
compiler technology. A plethora of work has been produced over
the years about this topic. One compelling approach is to employ

Figure 10: GPU with user optimization compared with
cuBLAS and the automatic optimization.

transformable graph-based IR with language and platform indepen-
dent optimization passes similar to the SDFGs in DaCe. The most
notable example is the LLVM IR [17], which has gained significant
traction within the research community. Multi-Level Intermediate
Representation (MLIR) [18] combines domain- and backend-specific
dialects such as the FFT-specific implementation [13] and the GPU
implementation found in Ref. [12].

Automatic tuning has a history of use in the design of FFT li-
braries such as FFTW [11], SPIRAL [9] and UHFFT [20].

There are multiple approaches for high-level libraries for perfor-
mance portability in scientific software, such as DaCe: examples
are Kokkos [8], RAJA [15], and Mamba [7].

7 DISCUSSION AND CONCLUSION
In this paper, we described the process of implementing a batched
DFT with the framework DaCe to make a portable kernel with the
possibility to achieve high performance. We investigated the data-
centric programming style of DaCe together with three different
data-layouts and compared it with the native C++ implementation
and the corresponding BLAS operation. We investigated the per-
formance of the code generated by the naive implementations, the
auto-optimizing tool, and the hand-optimized.

The different data-layouts perform somewhat differently on the
different vendors’ CPUs. On Dardel (AMD) there seems to be an
edge for the native implementation, whereas on DEEP (Intel) the
higher-level handwritten AoS seems to be more performant for
each of the optimization levels.

We note that it might be challenging to use standard optimization
techniques developed for use on SDFGs with tasklets with only
one input and output per array. For example, we did not manage to
get the MapReduce to work with the AoS and SoA implementations
written with the DaCe front-end (the one AoS created directly
with the SDFG API worked well). This led to particularly poor
performance of the AoS and SoAGPU ports. On the other hand there
is a lack of support for the native complex which requires updates
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in the DaCe code generation to even get a running GPU code which.
However, in the end turned out to be the most performant for our
use-case. The split data-layout was most easy to port and run with
reasonable performance on all platforms.

Auto optimization worked poorly for this problem on CPU re-
gardless of the data layout, but on GPU it is promising performing
well above the naive implementation. It was especially the AoS
that benefited from the optimization, even compared with the na-
tive, which also is a AoS, which is encouraging for the data-enteric
programming model, suggests that maybe complex should be imple-
mentedwithin DaCe limit the need for special case implementations
in the backend.

The same template code that was necessary for the GPU code to
run was beneficial as a reduction strategy for CPU too and was even
necessary to make the native naive implementation comparable
with the others. It was however detrimental to leave it in the user-
optimized version, which by itself was slower than the real-valued
implementations and clearly has a different backend.

The study can in the future be extended to a distirbuted setting
with DaCe’s support for MPI and to the other supported backends
such as AMD GPUs and FPGAs, as we see great potential in the
ability to write one code and port it to multiple backends.

To guarantee the success of DaCe an important task is to guaran-
tee that the functions supporting the SDFGs are performant, such
as copy, reduce, for different data-types float32, float64, complex128
and so on. We believe our contributions highlight the difficulty
of achieving true performance-portability on diffrent hardware,
especially for functionality that is dependent not only float64.
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