
Analysing Static Source Code Features to Determine a Correlation
to Steady State Performance in Java Microbenchmarks
Jared Chad Swanzen

Academy of Computer Science and
Software Engineering, University of

Johannesburg
Johannesburg, Gauteng, South Africa

jaredswanzen@gmail.com

Kyle Thomas Botes
Academy of Computer Science and
Software Engineering, University of

Johannesburg
Johannesburg, Gauteng, South Africa

kylethomasbotes@gmail.com

Husnaa Molvi
Academy of Computer Science and
Software Engineering, University of

Johannesburg
Johannesburg, Gauteng, South Africa

husnaamolvi@gmail.com

Omphile Monchwe
Academy of Computer Science and
Software Engineering, University of

Johannesburg
Johannesburg, Gauteng, South Africa
omphile05monchwe@gmail.com

Dan Phala
Academy of Computer Science and
Software Engineering, University of

Johannesburg
Johannesburg, Gauteng, South Africa

mrphalad@gmail.com

Dustin van der Haar
Academy of Computer Science and
Software Engineering, University of

Johannesburg
Johannesburg, Gauteng, South Africa

dvanderhaar@uj.ac.za

ABSTRACT
Source code analysis is an important aspect of software develop-
ment that provides insight into a program’s quality, security and
performance. There are few methods for consistently predicting
or determining when a written piece of code will end its warm-up
state and proceed to a steady state. In this study, we use the data
gathered by the SEALABQualityGroup at the University of L’Aquila
and Charles University and extend their research of steady state
analysis to determine whether certain source code features could
provide a basis for developers to make more informed predictions
on when a steady state would occur. We explore if there is a direct
correlation between source code features on the time and ability of
a Java microbenchmark to reach a steady state to build a machine
learning-based approach for steady-state prediction. We found that
the correlation between source code features and the probability
of reaching a steady state go as high as 10.9% for Pearson’s cor-
relation coefficient, whereas the correlation between source code
features and the time it takes to reach a steady state go as high as
21.6% for Spearman’s correlation coefficient. Our results also show
that a Random Forest Classifier with features selected with either
Spearman’s or Kendall’s correlation coefficient boasts an accuracy
of 78.6%.

CCS CONCEPTS
• Software and its engineering → Software verification and vali-
dation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0072-9/23/04. . . $15.00
https://doi.org/10.1145/3578245.3584692

KEYWORDS
steady state, machine-learning, static source code analysis, correla-
tion coefficient, Java microbenchmark, ANTLR, correlation study,
Pearson’s r, Spearman’s roh, Kendall’s tau

ACM Reference Format:
Jared Chad Swanzen, Kyle Thomas Botes, HusnaaMolvi, Omphile Monchwe,
Dan Phala, and Dustin van der Haar. 2023. Analysing Static Source Code
Features to Determine a Correlation to Steady State Performance in Java
Microbenchmarks. In Companion of the 2023 ACM/SPEC International Con-
ference on Performance Engineering (ICPE ’23 Companion), April 15–19, 2023,
Coimbra, Portugal. ACM, New York, NY, USA, 5 pages. https://doi.org/10.
1145/3578245.3584692

1 INTRODUCTION
Microbenchmarking is a form of measurement-based software per-
formance engineering that evaluates execution time and software
features such as methods. By using microbenchmarking, developers
can analyse the performance of their written source code to ensure
the timely functioning of the system.

The main goal of this study is to try to find a potential correlation
between the steady state of a program and the source code features
present within the data to derive relevant features that can be used
to train a machine learning model that can predict the ready state.
We show that source code features correlate well with both the
ability of a benchmark and the number of iterations required to
reach a steady state and that these features can successfully be used
to predict if a written piece of code will reach a steady state.

The article starts with a literature review covering the relevant
aspects of automated source code analysis and similar works used
to derive steady state. We then discuss the relevant experiment
details and considerations, followed by the results and discussion
and the study is concluded.

2 LITERATURE REVIEW
Source code analysis is the process of using automatic tools to ex-
tract information about a program from its source code or artefacts,
such as Java byte code or execution traces [3]. Unlike dynamic

89

https://doi.org/10.1145/3578245.3584692
https://doi.org/10.1145/3578245.3584692
https://doi.org/10.1145/3578245.3584692
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3578245.3584692&domain=pdf&date_stamp=2023-04-15

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Jared Chad Swanzen et al.

source code analysis, which evaluates code behaviour during exe-
cution, Static Code Analysis can be performed while the software
is still in production and does not require the code to be running
and this allows for detecting vulnerabilities earlier in the software
development life cycle [11].

Steady-state performance is achieved when the software in exe-
cution is no longer subject to its initial fluctuations in performance.
These fluctuations in Java software occur due to the JVM optimising
frequently executed parts of the code, a phase referred to as the
warm-up phase [16]. Detection of the presence of a steady state
and when it occurs has become important because in JIT compiler
benchmarking methodologies, the data gathered during the warm-
up phase is discarded, and steady-state performance measurements
are used to evaluate the performance of the system or program [2].

Although static code analysis and steady-state assessment are
frequently discussed in literature, works that combine the two are
uncommon and hard to come by. Laaber et al. [13] conducted a study
using machine learning to identify unstable software benchmarks,
focusing on benchmarks written in the Go programming language.
Their approach uses the benchmarks’ result variability as its mea-
sure for stability using thresholds proposed in previous works [8]
[6]. They found that for the Random Forest model to predict bench-
mark’s stability accurately, required the combination of all features.
In contrast, the combination of features in the benchmark itself was
found to be less significant. Their research highlighted the potential
use of static code analysis to predict steady-state performance.

Another study on machine learning-based inspection with static
code features was done by Tribus in [17] that analyses the source
code instead of considering meta-values. The aim was to identify
at least one minimal set of features to automatically detect faults
within source code where a feature selection model and parser
would translate the source code into compatible instances fed into
the WEKA data mining framework. About 71 classifiers were com-
pared using WEKA, and the six best performers included MultiLay-
erPerceptron, instance-based learner and logistic model tree and
"AdaBoost" on a "BFTree" with an accuracy of over 90%. A second
investigation confirmed their findings, decreasing the accuracy of
"AdaBoost" on a "BFTree". This research validates the efficiency of
machine learning techniques for static source code analysis.

The works of Barrett et al. [2] and, most recently, Traini et al. [16]
have challenged the traditional assumption that all benchmarks will
reach a steady state. This has implications for the current state of the
art and practice in steady-state detection, which commonly require
the execution of a benchmark of the software under evaluation to
gather performance measurements [16]. Using static source code
features to predict the steady-state performance of Java software
could potentially have significant advantages compared to tradi-
tional microbenchmarking methods. The results of benchmarks
that do not reach a steady state do not correctly reflect the "real"
performance of the software under test [13], as such time and re-
sources would be saved if these benchmarks could be identified
before their execution.

3 METHODOLOGY
In the study experiments, a secondary dataset was created to assess
the impact of source code features in a correlation study and derive

the results from steady-state classifications using conventional
machine learning models.

3.1 Data sampling
We used the annotations that Traini et al. [16] produced in their
paper that identified whether (and when) a steady state was reached.
These classifications defined a ‘run’ as either a ‘steady state’ when
all the forks of the particular benchmark reached a steady state
or ‘inconsistent’ when only a few reached a steady state. It was
important to note that no benchmark failed to reach a steady state
on all forks. From ‘steady_state_starts’, we could see the iteration
point where the benchmark reached a steady state.

3.2 Source Code Features
Once the source code was acquired, all the files imported to the
benchmark class within the same package were recursively col-
lected1. This was done to ensure that the source code features used
were representative of the imports the benchmark relied on.

Afterwards, the ANTLR library, a powerful parser generator [14],
was used to walk the Abstract Syntax Tree (AST) for each file. After
a node was visited on the AST, the respective source code feature
count increased. We considered all 127 features that ANTLR was
capable of evaluating2. Finally, once all the nodes were visited, the
results were considered and analysed within the correlation section
of the study.

3.3 Correlation Study
After deriving the source code features, the study continued by
using Pearson’s r [7], Spearman’s rho [20], and Kendall’s tau [12]
to determine if there was a link between the steady state and the
feature under consideration. A correlation coefficient is a number
between -1 and 1 that tells us the strength and direction of a rela-
tionship between variables. For example, a correlation coefficient
of 0.92 describes a 92% positive correlation between the variables.
This leads us to believe that as a variable (x) increases, the other
variable (y) would also increase. A value of -0.92 describes a 92%
negative correlation, leading us to believe that as x decreases, y will
increase.

When a correlation coefficient is less than desirable, we will only
consider features above a certain threshold, allowing for enough
features to be considered. If this value is large enough, we will
increase the threshold sparingly to ensure that we consider the
most significant features. We will also allow for more features since
the correlation coefficients are higher.

3.4 Steady State Prediction
Using the correlation study, all the features that could not make a
significant contribution towards the steady state of a benchmark
will be filtered out. These features are then fed into machine learn-
ing models for training and testing with a 90/10 split. To predict

1We were unable to acquire any of the benchmarks tested for apache-tinkerpop within
their source code files and therefore apache-tinkerpop was not considered as part of
the study
2A full list of these features can be found in the project files [15]

90

Correlating Source Code Features to Steady State Performance ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

Table 1: Parameters Used for Machine Learning Models

Module Parameter Values
Logistic Regression C 0.01, 0.1, 1, 10

Decision Tree Criterion gini, entropy
Random Forest Criterion gini, entropy

K Nearest Neighbours n_neighbours 3, 5
Naive Bayes - -

Support Vector Machine C 0.01, 0.1, 1, 10

whether a benchmark would reach either a consistent or inconsis-
tent steady state, the following binary classifiers were used: (See
Table 1 for parameters)

(1) Logistic Regression: A binary predictor that estimates the
probability of an event’s occurrence given a dataset of inde-
pendent variables [5].

(2) Random Forest: A two-group classification algorithm that
yields a single result by combining multiple decision trees
[10].

(3) Support Vector Machine : Another two-group classification
for limited samples [4].

(4) K Nearest Neighbours: A non-parametric classifier that aids
in the grouping of individual data points using proximity
[1].

(5) Decision Tree: A non-parametric algorithm used for clas-
sification and regression with a hierarchical tree structure
[19].

(6) Naive Bayes: A binary and multiclass classification where
the training data is already labelled with a class [18].

4 RESULTS
Results and source code to replicate findings can be found in the
project files [15].

According to the methodology we defined, we could derive the
following results.

Figure 1: Significant Pearson Correlations on Steady State

In Figure 1 the highest correlations we observed are:
(1) FinallyBlock: 10.9% positive correlation
(2) EnumConstant: 9% positive correlation

Figure 2: Significant Pearson Correlations on Iterations

Figure 3: Significant Spearman Correlations on Steady State

(3) GenericInterfaceMethodDeclaration: 8.4% negative correla-
tion

In Figure 2 the highest correlations we observed are:
(1) VariableModifier: 14% positive correlation
(2) ConstDeclaration and ConstantDeclarator: 11.4% positive

correlation
(3) LastFormalParameter: 9.6% positive correlation
In Figure 33 the highest correlations we observe are:
(1) ArrayCreatorRest: 9.9% positive correlation
(2) QualifiedNameList: 9.7% positive correlation
(3) AnnotationTypeBody: 8.7% positive correlation
In the Figure for Spearman’s correlation to iterations 4 the high-

est correlations we observe are:
(1) AnnotationConstantRest: 21.6% positive correlation
(2) LastFormalParameter: 20% positive correlation
(3) SuperSuffix: 19.1% positive correlation
Similarly, in the Figure for Kendall’s correlation to iterations 5:
(1) AnnotationConstantRest: 18.1% positive correlation
(2) SuperSuffix: 16.1% positive correlation
(3) LastFormalParameter: 15.2% positive correlation

3Spearman’s rho in Figure 3 had identical results to that of Kendall’s tau and was
therefore omitted
4Due to space constraints some images were omitted. These can be found in the project
files [15] under /correlation-study/graphs/
5See footnote 4

91

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Jared Chad Swanzen et al.

Table 2: Results for predicting whether a benchmark will reach steady state or not

Model Parameters Unfiltered Pearson Spearman Kendall

Logistic Regression C=0.01 42.9% 46.4% 50% 51.8%
C=0.1 42.9% 46.4% 50% 51.8%
C=1 50% 44.6% 50% 51.8%
C=10 42.9% 46.4% 50% 51.8%

Decision Tree criterion=gini 73.2% 71.4% 67.9% 67.9%
criterion=entropy 69.6% 69.6% 71.4% 71.4%

Random Forest criterion=gini 73.2% 66.1% 73.24% 69.6%
criterion=entropy 75% 67.9% 73.2% 69.6%

K Nearest Neighbour n_neighbours=3 66.1% 67.9% 78.6% 78.6%
n_neighbours=5 67.9% 67.9% 62.5% 62.5%

Naive Bayes - 48.2% 50% 48.2% 48.2%
Support Vector Machine C=0.01 55.4% 55.4% 55.4% 55.4%

C=0.1 55.4% 55.4% 55.4% 55.4%
C=1 53.6% 53.6% 51.9% 51.9%
C=10 53.6% 53.6% 55.4% 55.4%

5 REMARKS
When considering features and the ability of a benchmark to reach
a consistent steady state, we found that the correlation reaches a
maximum of 10.9% for Pearson’s correlation coefficient. This leads
us to believe that source code features could help in predicting the
ability of a benchmark to reach a consistent steady state.

When considering benchmarks that consistently reach a steady
state, we found that the correlation of a feature to the number of
iterations it takes to reach a steady state is generally much higher
at a maximum of 21.6% for Spearman’s correlation coefficient. This
could indicate that there is a stronger influence of source code
features on the time it takes to reach a steady state.

It is interesting to note the commonalities between the three
techniques to acquire a correlation coefficient. LastFormalParame-
ter seems to have a consistently high influence on the iterations it
takes to reach a steady state, while other features tend to appear
in at least two techniques. Kendall and Spearman also have similar
distributions across all their coefficients.

Table 2 contains the results of our machine learning models. In
most cases, results on the models matched the performance on
unfiltered features. After filtering the correlating features from
Spearman’s and Kendall’s correlation coefficients on a K Nearest
Neighbours classifier with 3 neighbours, we can observe an impres-
sive 12.5% increase in accuracy. The largest decrease in accuracy
with filtering features is 7.1% when considering Random Forest
with an entropy criterion and Pearson’s correlation coefficient.

Figure 4 shows the confusion matrix for one of the two highest-
performing models. Both models had an identical accuracy (78.6%),
f1 score (77% for inconsistent and 80% for steady state) and confu-
sion matrix. This is likely due to the similarity in the correlation
coefficients from Kendall’s tau and Spearman’s rho. The distribu-
tion of the confusion matrix in Figure 4 assures us that the model
provides accurate predictions based on source code features.

This proves that source code features correlate with steady-state
performance. To our knowledge, we could not find similar papers
to compare our results, making this the current state of the art.

Figure 4: Confusion Matrix for KNearestNeighbours() and
n_neigbours=3 with Spearman’s Significant Features

6 CONCLUSION
For this research paper, we used the data gathered by Traini et al.
[16] to extend their research of steady state analysis to determine
whether certain source code features could provide a basis for
developers to make more informed predictions on when a steady
state would occur.

We found some correlation between source code features and
their ability to reach a consistent, steady state and a good correlation
between source code features and how long it would take for a
benchmark to reach a steady state. Using the K Nearest Neighbour
Classifier with features selected with either Spearman’s or Kendall’s
correlation coefficient, we can obtain an accuracy of 78.6%.

As is the problem with most machine learning applications, we
could always do with more data [9]. Replicating the study across
larger benchmarks might yield better correlations and machine
learning results. We aim to have this paper be another milestone
in improving the assessment of Java software’s steady state perfor-
mance that Traini et al. proposed in their paper.

92

Correlating Source Code Features to Steady State Performance ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

REFERENCES
[1] Naomi S Altman. 1992. An introduction to kernel and nearest-neighbor nonpara-

metric regression. The American Statistician 46, 3 (1992), 175–185.
[2] Edd Barrett, Carl Friedrich Bolz-Tereick, Rebecca Killick, Sarah Mount, and

Laurence Tratt. 2017. Virtual machine warmup blows hot and cold. Proceedings
of the ACM on Programming Languages 1, OOPSLA (2017), 1–27.

[3] David Binkley. 2007. Source code analysis: A road map. Future of Software
Engineering (FOSE’07) (2007), 104–119.

[4] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine
learning 20, 3 (1995), 273–297.

[5] David R Cox. 1958. The regression analysis of binary sequences. Journal of the
Royal Statistical Society: Series B (Methodological) 20, 2 (1958), 215–232.

[6] Charlie Curtsinger and Emery D Berger. 2013. Stabilizer: Statistically sound
performance evaluation. ACM SIGARCH Computer Architecture News 41, 1 (2013),
219–228.

[7] David Freedman, Robert Pisani, and Roger Purves. 2007. Statistics (international
student edition). Pisani, R. Purves, 4th edn. WW Norton & Company, New York
(2007).

[8] Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statistically rigorous
java performance evaluation. ACM SIGPLAN Notices 42, 10 (2007), 57–76.

[9] Wilhelmiina Hämäläinen and Mikko Vinni. 2006. Comparison of Machine Learn-
ing Methods for Intelligent Tutoring Systems. In Intelligent Tutoring Systems,
Mitsuru Ikeda, Kevin D. Ashley, and Tak-Wai Chan (Eds.). Springer Berlin Hei-
delberg, Berlin, Heidelberg, 525–534.

[10] Tin Kam Ho. 1995. Random decision forests. In Proceedings of 3rd international
conference on document analysis and recognition, Vol. 1. IEEE, 278–282.

[11] Arvinder Kaur and Ruchikaa Nayyar. 2020. A comparative study of static code
analysis tools for vulnerability detection in C/C++ and JAVA source code. Procedia
Computer Science 171 (2020), 2023–2029.

[12] M. G. Kendall. 1938. A New Measure of Rank Correlation. Biometrika 30, 1-2
(June 1938), 81–93. https://doi.org/10.1093/biomet/30.1-2.81

[13] Christoph Laaber, Mikael Basmaci, and Pasquale Salza. 2021. Predicting unstable
software benchmarks using static source code features. Empirical Software
Engineering 26, 6 (2021), 1–53.

[14] Terence J. Parr and Russell W. Quong. 1995. ANTLR: A predicated-LL (k) parser
generator. Software: Practice and Experience 25, 7 (1995), 789–810.

[15] Jared Chad Swanzen. 2023. Reproduce - Analysing Static Source Code Features to
Determine a Correlation to Steady State Performance in Java Microbenchmarks.
https://doi.org/10.5281/zenodo.7646968

[16] Luca Traini, Vittorio Cortellessa, Daniele Di Pompeo, and Michele Tucci. 2023.
Towards effective assessment of steady state performance in Java software: are
we there yet? Empirical Software Engineering 28, 1 (2023), 1–57.

[17] Hannes Tribus. 2010. Static Code Features for a Machine Learning based Inspec-
tion: An approach for C.

[18] Geoffrey I Webb, Eamonn Keogh, and Risto Miikkulainen. 2010. Na"ıve Bayes.
Encyclopedia of machine learning 15 (2010), 713–714.

[19] Xindong Wu, Vipin Kumar, J Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi
Motoda, Geoffrey J McLachlan, Angus Ng, Bing Liu, S Yu Philip, et al. 2008. Top
10 algorithms in data mining. Knowledge and information systems 14, 1 (2008),
1–37.

[20] Jerrold H Zar. 2005. Spearman rank correlation. Encyclopedia of Biostatistics 7
(2005).

93

https://doi.org/10.1093/biomet/30.1-2.81
https://doi.org/10.5281/zenodo.7646968

	Abstract
	1 Introduction
	2 Literature review
	3 Methodology
	3.1 Data sampling
	3.2 Source Code Features
	3.3 Correlation Study
	3.4 Steady State Prediction

	4 Results
	5 Remarks
	6 Conclusion
	References

