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ABSTRACT
Over the last few years, DevOps methodologies have promoted a
more streamlined operationalization of software components in
production environments. Infrastructure as Code (IaC) technolo-
gies play a key role in the lifecycle management of applications, as
they promote the delivery of the infrastructural elements alongside
the application components. This way, IaC technologies aspire to
minimize the problems associated with the environment by provid-
ing a repeatable and traceable process. However, there are a large
variety of IaC frameworks, each of them focusing on a different
phase of the operationalization lifecycle, hence the necessity to
master numerous technologies. In this research, we present the IaC
Execution Manager (IEM), a tool devoted to providing a unified
framework for the operationalization of software components that
encompasses the various stages and technologies involved in the
application lifecycle. We analyze an industrial use case to improve
the current approach and conclude the IEM is a suitable tool for
solving the problem as it promotes automation, while reducing the
learning curve associated with the required IaC technologies.

CCS CONCEPTS
• Information systems→ Computing platforms; Data centers.

KEYWORDS
Infrastructure as Code, IaC, cloud continuum, cloud, edge, DevOps,
DevSecOps

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0072-9/23/04.
https://doi.org/10.1145/3578245.3584938

ACM Reference Format:
Josu Diaz-de-Arcaya, Eneko Osaba, Gorka Benguria, Iñaki Etxaniz, Jesus L.
Lobo, Juncal Alonso, Ana I. Torre-Bastida, and Aitor Almeida. 2023. IEM:
A Unified Lifecycle Orchestrator for Multilingual IaC Deployments. In
Companion of the 2023 ACM/SPEC International Conference on Performance
Engineering (ICPE ’23 Companion), April 15–19, 2023, Coimbra, Portugal.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3578245.3584938

1 INTRODUCTION
Traditionally, industries have relied on their premises for running
their desired workloads. This has the advantage that once the entire
infrastructure is up and running, the cost of executing the compu-
tation is negligible. However, there are some major drawbacks such
us the upfront investment that is required for the acquisition of the
servers, the cumbersome integration with the authentication and
authorization mechanisms already in use, the significant invest-
ment required for a dedicated data center, or the need for having a
qualified professional in charge of the maintenance. Over the last
few years, big technology companies proposed a change in this
paradigm by proposing the cloud computing paradigm, in which
storage, processing, networking, and analytics services are offered
as a service, instead of using the traditional local services. Cloud
computing services are usually offered on the following forms: In-
frastructure as a Service (IaaS), Platform as a Service (PaaS), and
Software as a Service (SaaS) [21]; and the benefits of this paradigm
are: cost savings due to only paying what is consumed, increased
efficiency, and unparalleled scalability. On the other hand, the rise
of more powerful and feature rich infrastructural devices, including
Internet of Things (IoT) devices, has led to the conception of the
edge computing paradigm. It promotes moving parts of the compu-
tation to the edge of the network, where data can be processed and
analyzed reducing this way the amount of data that needs to trans-
mit and persisted over the network. This paradigm benefits from the
lower latencies of edge devices, hence improving the performance

195

https://orcid.org/0000-0003-0900-1643
https://orcid.org/0000-0001-7863-9910
https://orcid.org/0000-0003-1375-6731
https://orcid.org/0000-0001-5863-9083
https://orcid.org/0000-0002-6283-5148
https://orcid.org/0000-0002-9244-2652
https://orcid.org/0000-0003-3005-1100
https://orcid.org/0000-0002-1585-4717
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3578245.3584938
https://doi.org/10.1145/3578245.3584938
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3578245.3584938&domain=pdf&date_stamp=2023-04-15


ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Josu Diaz-de-Arcaya et al.

Provisioning
Configuration 
Management

Application 
Deployment

Figure 1: The application lifecycle supported by Infrastruc-
ture as Code technologies.

and responsiveness of the applications. In addition, it emphasizes
the reliability and security of the architecture by keeping the pro-
cessing closer to the data source. In this regard, microservices and
containerization technologies, which promote the development and
management of large applications in self-contained, loosely coupled
elements, have come a long way in facilitating the ubiquitous opera-
tionalization of such services. This extension of the cloud entities to
the edge of the network that provide analysis, processing, storage,
and data generation has been coined as the cloud continuum [4].

In this context, methodologies such as DevOps aspire to narrow
the existing gap between the development and IT operations teams
and improve their communication and collaboration. To do this, it
emphasizes the necessity to automatize the various stages of soft-
ware development and operationalization and release the product
in the production environment more often, and with fewer errors.
The enormous success of this methodology has led to organizations
wanting to replicate this with other methodologies such as Machine
Learning Operations (MLOps) [16], Artificial Intelligence for IT Op-
erations (AIOps) [29], and DevSecOps, which aspires to integrate
modernized security methods in DevOps [23]. On the other hand,
there are various domain specific languages that can be beneficial
for the implementation of the cloud continuum such as DOML [9],
TOSCA [3], or PADL [10].

The main goal of this manuscript is to present the IEM tool,
which aspires to provide a unified interface for the deployment of
multilingual IaC projects for the provisioning, configuration man-
agement, and application lifecycle of DevSecOps projects. The rest
of this paper is structured as follows: Section 2 covers the back-
ground that has led to the development of this tool. The IEM itself is
described in detail in Section 3. In Section 4, the importance of the
IEM in an industrial use case is showcased. Finally, the conclusions
and future work are summarized in Section 5.

2 BACKGROUND
Infrastructure as Code (IaC) is the practice to provision local and
remote infrastructural devices and configure their system depen-
dencies [27]. As opposed to low-code development platforms, which
promote the use of visual environments by stakeholders with little
or lack of programming background [31], IaC technologies benefit
from applications and methodologies widely used in the DevOps
community such as source code management tools [17], continuous
integration and deployment pipelines [19], or quality metrics [8].
This upsurge in IaC tools enables an increased coverage of the
application lifecycle, which is depicted in Figure 1.

Firstly, the provisioning of the infrastructural devices refers to
the process of bringing up the required instances in private or pub-
lic cloud providers. Each of the major cloud providers have aired
their particular IaC solutions for interacting with their services. For
instance, AWS CloudFormation [2], Azure Resource Manager [28],

and Google Cloud Deployment Manager [30] enable developers
and operations engineers to create cloud resources in an orderly
manner. Even though they all are appropriate solutions for man-
aging the infrastructural elements of an organization, they force
engineers into a single cloud provider as switching from one to
another can be a cumbersome process. Due to this, cloud agnostic
IaC tools such as Terraform [14] and Pulumi [25] are becoming
increasingly popular. The former proposes the use of a domain
specific language for the definition of the various infrastructural
elements of a project or organization and offers various providers
for interacting with the different Cloud services. On the other hand,
Pulumi is conceived because of the rapidly evolving cloud necessi-
ties of the organizations and provides various APIs for interacting
with cloud services from a programmatic approach. Secondly, the
configuration management phase refers to the process of program-
matically installing the requirements and libraries of an application
on a given infrastructural device. There are two distinct patterns in
this type of solution: one that interacts directly with the devices,
and another one that relies on the use of agents for installation and
configuration of the requirements. Technologies such as Chef [7]
and Puppet [26] are extremely popular when adopting the client-
server approach to configuration management. On the other hand,
Ansible [15] and Saltstack [32] promote a more lightweight interac-
tion with the infrastructure by avoiding the use of agents. Finally,
the application deployment phase oversees the operationalization
and maintenance of the various elements in the application layer.
Recently, containerization has become the reigning approach to
develop and deploy application in heterogeneous environments,
as they represent a lightweight form of providing isolation and re-
source management [12]. There are various platforms that provide
containerization capabilities such as LXC, LXD, and Docker with
varying performance overheads [22]. In addition, various projects
offer orchestration capabilities over the edge and cloud computation
layers. In [11] the authors leverage AIOps methodologies for the
deployment of distributed analytical pipelines. Next, the authors
offer an MLOps framework for the deployment and orchestration
of analytical pipelines using containerization technologies [20].
In [35], a lightweight orchestrator for TOSCA is presented. Yet
another orchestrator supporting TOSCA is Cloudify [18], which
allows applications to efficiently run across multiple clouds and
data centers. Finally, the authors present a platform for the dynamic
management of virtual infrastructures [5].

The conceptualization of the IEM has leveraged these method-
ologies and technologies to provide a unified IaC orchestrator. It
aspires to be compatible with the major cloud providers by utiliz-
ing an initial set of provisioning and configuration management
technologies. In addition, it has been conceived to be an extensible
tool so it can support the full lifecycle of DevSecOps projects.

3 THE IAC EXECUTION MANAGER
The PIACERE Project1, which has been leading the development
of the IEM2, aspires to make the creation of IaC more accessible to
designers, developers, and operators; while increasing the quality,
security, trustworthiness and evolvability of IaC code [1]. The IEM

1https://www.piacere-project.eu/
2https://doi.org/10.5281/zenodo.7310937
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Figure 2: The application lifecycle supported by the IEM.

is the component in charge of operationalization of the various
use cases generated by the PIACERE ecosystem. The existing tools
already utilized in industry and research focus on one stage of
the application lifecycle management. The IEM was envisioned
to orchestrate the provisioning, configuration management, and
application deployment into one single component. In addition,
the projects within PIACERE are required to adhere to the appli-
cation lifecycle depicted in Figure 2, and specific tools have been
designed for each of the depicted stages. First, (a) the modeling of
the solution is accomplished via an Eclipse-based IDE3. Next, (b) the
optimization stage of the solution is conducted by the IOP, which
provides DevSecOps teams with the most appropriate deployment
configuration subject to a set of predefined constraints [24]. Then,
(c) the re-deployment of the optimized solution is exclusively han-
dled by the IEM. Finally, the (d) monitoring and (e) self-healing are
conducted by the runtime monitoring component4.

The IEM relies on the implementation of various engines to
orchestrate the lifecycle of the PIACERE use cases. This engine
interface has been designed with the goal of being an extensible
mechanism so that further implementations can be added in the
future. Even tools that are not yet publicly available or designed
could be added seamlessly by implementing this interface. In its
current state, the two tools that are currently in use are Terraform
andAnsible, which are explained in further detail in Section 2. There
are several reasons for choosing Terraform as the infrastructure
provisioning tool to be used by the IEM: i) it provides an abstraction
layer over a myriad of public and private cloud providers [13]
including AWS, Azure, or Google Cloud Platform; ii) it is an open
source tool with a large community and enterprise support; and iii)
it has a declarative syntax meaning that failing deployments can be
retriggered and has built-in support for partial redeployments. Next,
Ansible has been selected as the configuration management tool for
the following reasons: i) it is agentless meaning that it can interact
straightaway with the provisioned infrastructural devices, ii) it is
also open-source with both business and community support, and
iii) a failure during and execution can be solved just by retriggering
the failing task. However, these technologies have been designed
to be used in isolation, and being able to glue them together into
one single tool comes at a cost. In this regard, the IEM provides a
unified interface for the utilization of these tools in the form of a
REST API.

Projects implemented with Terraform often incur failures due to
the lack of resources in the cloud provider, or the stringent security
policies imposed by the account owners. This problem is especially
acute in private cloud providers such as OpenStack [33], in which

3https://doi.org/10.5281/zenodo.6821671
4https://doi.org/10.5281/zenodo.6821765

the number of resources tends to bemore limited than in their public
cloud counterparts, which are not that limited in this regard. On
the other hand, Ansible tends to fail such as when the provisioned
infrastructural devices linger for too long in the creation state and
do not react to the provided commands in time. These problems
in the provisioning and configuration management stages are not
particularly complex to solve when the tools are utilized in isolation
from one another. However, given that the IEM aspires to provide
a seamless experience to the user, they need to be considered and
appropriate mechanisms have been implemented for alleviating
their impact.

1 {
2 "deployment_id ": "string",
3 "repository ": "string",
4 "commit ": "string",
5 "credentials ": {
6 "aws": {
7 "access_key_id ": "string",
8 "secret_access_key ": "string"
9 },
10 "azure": {
11 "arm_client_id ": "string",
12 "arm_client_secret ": "string",
13 "arm_subscription_id ": "string",
14 "arm_tenant_id ": "string"
15 },
16 "openstack ": {
17 "user_name ": "string",
18 "password ": "string",
19 "auth_url ": "string",
20 "project_name ": "string",
21 "region_name ": "string",
22 "domain_name ": "string",
23 "project_domain_name ": "string",
24 "user_domain_name ": "string"
25 }
26 }
27 }

Listing 1: The IEM schema for credentials handling when
triggering a deployment.

The first challenge while developing this orchestrator is cre-
dential handling. The IEM is designed to be agnostic to the cloud
provider, and yet the distinct credentials to be used by the different
cloud providers need to be fed into the orchestrator. The schema to
be used when performing a deployment or undeployment action on
a given project is depicted in Listing 1. At its current stage, the IEM
orchestrator offers support for the AWS and Azure public cloud
providers and the OpenStack private one, which enables its users to
leverage deployments on some of the most common infrastructures
and even hybrid ones. The necessary fields for interacting with
the different cloud providers have been abstracted and are fed into
the IEM to interact with them. In addition, this payload has been
designed to be extensible so additional providers not being consid-
ered in the first place can be incorporated in further iterations. It is
worth noting that these credentials are treated as session variables
internally, which provides an isolated environment for the different
requests of the systems. Due to this, cloud credentials are never
persisted on disk, hence the IEM is safe to be used by distinct users
at the same time.

Next, one of the biggest feats has been the implementation of
a mechanism so that the different technologies the IEM leverages
are glued together seamlessly. This way the user does not need to
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dive into the nuances of the underlying technologies and manages
the projects from one unified interface. To do this, we have relied
on simple YAML files, an example of which is depicted in Listing 2.
A typical project is comprised of various folders, each of them
represents a different stage of the deployment lifecycle. For the IEM
to understand the structure, a configuration file is placed on each
folder, including the root of the project. This first configuration file
is slightly different than the rest, as it contains the order in which
the separate phases must be executed. A stage is only executed
should the previous one be finished successfully. The IEM tries to
recover from existing failures, but an unrecoverable failure would
result in the whole project ending up in a bad state. The rest of the
configuration files follow the structure depicted in Listing 2. First,
the inputs that are fed into that stage, followed by the outputs of
that stage, and the engine to be used. A complete example of such
a project can be found in GitLab [34] for further details.

1 −−−

2 i npu t :
3 − OS_USERNAME
4 − OS_PASSWORD
5 − OS_AUTH_URL
6 − OS_PROJECT_NAME
7 ou tpu t :
8 − i n s t a n c e _ i p
9 eng ine : t e r r a f o rm
10 . . .

Listing 2: Snippet of a configuration file utilized within the
IEM.

Finally, the IEM component must provide means for the self-
healing strategy of the PIACERE ecosystem, which encompasses
an embedded predictive module that tries to know beforehand the
behavior of the system based on the incremental learning of the
monitored variables. In case some of these variables exceed their
threshold, this module warns the self-healing component, and an
event may be raised. Should an event occur, the IEM offers a series
of endpoints for triggering the appropriate self-healing strategy for
the event. These self-healing strategies are automatically scheduled,
and the underlying technologies comply with the various engines
implemented within the IEM.

In summary, the overarching goal of the IEM is to provide a
unified component for the seamless orchestration of the application
lifecycle within PIACERE. However, its use expands beyond the
project in which it has been conceived, and it can be used inde-
pendently of the rest of the ecosystem. An in-depth description of
the IEM with further instructions on its use is publicly available in
Zenodo [6].

4 AN IEM ENHANCED USE CASE
The validation of the IEM has been designed with the following
use case: an organization has decided to transition from their man-
ual deployment, which was both time-consuming and error prone,
to a more agile continuous delivery. They aspire to reduce the
drawbacks they have been experiencing when performing even
tiny modifications to their application and reduce the fear of op-
erationalizing software. Their ecosystem is composed of several
microservices that are deployed on virtual machines, which they
have been deploying on an OpenStack they already own within
their premises. Currently, they provision three virtual machines

PIACERE
Ecosystem

User

IEM

1

2

3

OpenStack

Database

Backend

Frontend

Figure 3: An IEM enhanced use case.

utilizing the OpenStack dashboard, where they manually select
the desired resources. Then, they build the required artifacts and
copy them over to each of the virtual machines. Finally, they spin
up the processes and make sure each service is running smoothly.
There are major drawbacks with this process, as failing to properly
execute one of the stages can lead to a failed deployment, and a
lengthy downtime. Due to this, the organization has decided to
pursue the automatization of this process as they believe it can
solve many of their problems, and they have been advised to do
so by embracing IaC technologies. However, there is a daunting
number of frameworks that can cover various stages of the opera-
tionalization of their software components, and they do not have
the resources to learn them, nor the time to utilize them efficiently.
Due to this, they reckon the IEM can be a practical solution because
it unifies different IaC engines into one single application and can
be utilized free of charge due to being open source.

The new scenario for this particular use case is depicted in Fig-
ure 3. The IEM can work as part of the PIACERE ecosystem (1) or
as an independent entity (2). In this particular use case, the orga-
nization has decided to go down this second path, as it does not
require the complexity of the whole PIACERE ecosystem. This is
one of the benefits of its design, as pure IaC technologies can be fed
into its interface, and the user can define the integration between
them with the simple configuration files defined in Section 3. First,
the user designs its deployment locally, and (2) feeds into the IEM
with the appropriate credentials. In this scenario the organization
is using an OpenStack private cloud providers the way is depicted
in Listing 1. A combination of Terraform and Ansible scripts suf-
fices to get the job done. At this point, the IEM oversees the (3)
communication with the OpenStack first, for provisioning each
of the required virtual machines with the specified characteristics.
Then, it moves to the configuration management stage in which the
requirements for each of the microservices are handled and auto-
matically configured. Finally, the actual deployment and execution
takes place.

These steps are executed sequentially, and the user does not need
to be aware of the specifics of each tool, nor does it need to install
their clients. In addition, common problems and pitfalls are handled
automatically by the IEM, hence lightening the burden of solving
common communication and execution problems from the user.
Finally, a set of healing strategies has been defined. For instance,
the backend is using a library that even though it is important for
the organization has some unfixed memory problems. Should an
out of memory problem occur, the IEM provides means for the
triggering of healing strategies such as rebooting the application.
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In summary, the IEM is an appropriate asset for this organization
as it reduces the errors during the operationalization, minimizes
the downtime, promotes the automation of the ecosystem, and
reduces the learning curve for the integration of the various IaC
technologies.

5 CONCLUSIONS AND FUTUREWORK
Recent computing paradigms such as cloud and edge computing
require innovative methodologies like cloud continuum. In addition,
the success of DevOps practices has paved the way to solutions such
as MLOps and DevSecOps. In this research, we present the IEM, a
framework devoted to the orchestration of multilingual IaC projects.
It excels at seamlessly integrating the provisioning, configuration
management, and application lifecycle frameworks into one unified
tool. In addition, the proposed use case demonstrates the suitability
of the IEM in traditional organizations. It lightens the burden of
utilizing multiple IaC technologies and stages off the user and eases
the automation of the deployments.

As for the future work, the development of the IEM is tightly
coupled with the requirements of the PIACERE Consortium, and
its use cases. One of the main goals is to provide functionalities
not only with the OpenStack provider as demonstrated in this
research, but also with Azure, AWS, and multicloud deployments.
In addition, we aspire to offer a better coverage of the application
deployment stage depicted in Figure 1 by leveraging technologies
such as Docker, Swarm, and Kubernetes.
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