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ABSTRACT
The SPLADE (SParse Lexical AnD Expansion) model is a highly
effective approach to learned sparse retrieval, where documents
are represented by term impact scores derived from large language
models. During training, SPLADE applies regularization to ensure
postings lists are kept sparse — with the aim of mimicking the
properties of natural term distributions — allowing efficient and
effective lexical matching and ranking. However, we hypothesize
that SPLADE may encode additional signals into common postings
lists to further improve effectiveness. To explore this idea, we per-
form a number of empirical analyses where we re-train SPLADE
with different, controlled vocabularies and measure how effective
it is at ranking passages. Our findings suggest that SPLADE can
effectively encode useful ranking signals in documents even when
the vocabulary is constrained to terms that are not traditionally
useful for ranking, such as stopwords or even random words.
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1 INTRODUCTION AND PRELIMINARIES
Learned sparse retrieval is a paradigm that exploits decades of work
on efficient inverted index-based representations [21] and modern
deep-learning based relevance modelling by replacing simple statis-
tical payloads (usually term frequencies) with learned impacts [12].
A number of learned sparse retrieval models have been proposed
[4, 6, 13, 15, 17, 22]; their key differences lie in terms of how or
whether document expansion is applied [15, 20, 23], the way the
model is trained to assign impacts, and the use of query term expan-
sion and weighting. The SPLADE (SParse Lexical AnD Expansion)
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('##rogen', 251) ('receptor', 242) ('and', 225) ('receptors', 189) 
('hormone', 179) ('definition', 162) ('meaning', 99) ('genus', 89)
('is', 70) (',', 68) ('define', 59) ('the', 56) ('drug', 53) ('for', 46) 
('ring', 38) ('gene', 37) ('are', 32) ('god', 25) ('what', 18) ('##rus', 15)
('purpose', 12) ('defined', 10) ('doing', 8) ('a', 4) ('goal', 4)

Figure 1: An example of the SPLADE encoding for the query andro-
gen receptor define. Each query term is represented as a (‘token’,
weight) tuple, with blue terms representing the original input query
terms, orange terms representing alternate inflections on those orig-
inal terms, and pink terms representing entirely new terms. Figure
reproduced with permission from Mackenzie et al. [16].

Table 1: Ten most commonly expanded tokens by SPLADEv2 on the
6,980 MS MARCO dev queries. These commonly expanded tokens
have very long postings lists, and are typically not informative.

Term Count % List length

him 2419 34.7 2,907,631
ring 1995 28.6 2,665,265

it 1941 27.8 2,737,546
for 1921 27.5 3,116,632
a 1838 26.3 2,873,128

are 1732 24.8 2,782,156
god 1704 24.4 1,293,359

. 1659 23.8 3,381,977
cause 1657 23.7 1,869,128

, 1606 23.0 2,553,418

family currently represents the most effective approach to learned
sparse retrieval, with variations providing different efficiency and
effectiveness trade-offs [4–6, 10]. Nguyen et al. [18] provide a uni-
fied overview and comparison of various learned sparse retrieval
methods.

Recently, Mackenzie et al. [16] explored the efficiency properties
of various learned sparse retrieval models, showing that they are
often less efficient than traditional rankers due to so-called “wacky
weight” distributions. However, it was not only the distribution
of the impact weights that was abnormal; SPLADE was shown to
expand terms that seem to have no relevance to the query, including
the use of stopwords and punctuation. Figure 1 provides an example
of this behavior, and Table 1 reports the top ten most commonly
expanded tokens across the MS MARCO dev query set. While it
is difficult to understand the reasoning behind these somewhat
strange term expansions, we hypothesize that SPLADE may be
using tokens that are typically not informative to encode additional
signals that can be used during ranking. As such, the goal of this
preliminary study is to better understand why SPLADE expands
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such terms, and to determine whether SPLADE has the ability to
encode signals into typically uninformative lists to improve ranking.

To gain insight into how “meaningless” tokens affect the effec-
tiveness of the SPLADE model, we made changes to its MLM head.
This allowed the model to expand and assign weights to specific
sets of tokens during both training and inference. For instance, we
experimented with restricting SPLADE’s expansion to a limited set
of 150 stopwords (e.g., “is”, “the”, and “and”), which are considered
to have little semantic meaning in the context of the content. The
surprising outcome was that despite this restriction, SPLADE was
still able to perform at the same level of effectiveness as BM25 on
MS MARCO dev queries. This result suggests that SPLADE has the
ability to encode semantic information effectively, regardless of the
tokens used to represent documents. To further understand this
phenomenon and explore which types of tokens have the greatest
impact on SPLADE’s encoding, we tested other settings, such as
limiting expansion to low-frequency tokens, and even restricting
the vocabulary to “latent tokens” that do not represent real terms.
We believe our findings have the potential to broaden the commu-
nity’s understanding of the SPLADE model, and to motivate efforts
to improve the explainability of learned sparse retrieval systems.

2 RELATEDWORK
2.1 SPLADE models
The SPLADE family of models [4–6, 10] are BERT-based sparse
retrieval models. They have been developed to project every term in
queries and documents to a vocabulary-sized weight vector, where
each dimension represents the weight of a token in the BERT’s
vocabulary. This innovative approach estimates the weights of
these vectors using the logits of masked language models, and then
combines them (e.g., through sum or max pooling) to obtain a single
representation of the query and document. This representation
can be considered an expansion of the query or document, as it
includes terms not originally present. To maintain efficiency, a
sparsity regularization loss is applied during training to obtain a
sparse representation that can be used more effectively with the
inverted index. Compared to other learned sparse methods, such as
docT5query [20], DeepImpact [17], uniCOIL [13] and TILDEv2 [22],
SPLADE models perform the “expansion then assigning weights"
process in an end-to-end manner. Hence, this model offers a more
efficient and effective solution to the vocabulary mismatch problem
for learned sparse retrieval.

2.2 SPLADEv2
This paper delves into the SPLADEv2 model [4]. This model can pre-
dict term importance over BERT WordPiece vocabulary (|𝑉𝐵𝐸𝑅𝑇 | =
30522) for any given query and passage. SPLADEv2 relies on BERT’s
contextual embeddings (ℎ1, ℎ2, ..., ℎ𝑛) for a given sequence of text
tokens (query tokens or passage tokens). Using the MLM head of
its trained BERT, it maps each embedding into a weight vector
comprising of the entire vocabulary size as follows:

®𝑤𝑖 = 𝑀𝐿𝑀 (ℎ𝑖 ), (1)

In this equation, ®𝑤𝑖 ∈ R𝑉 , where each element𝑤𝑖 𝑗 within this
vector corresponds to the importance score of the 𝑗th token in the
BERT vocabulary. To obtain the final importance score of the 𝑗th

token, a log-saturation effect is applied to the max pooling of all
𝑗th elements in the weight vectors of the sequence of 𝑛 tokens.
Negative scores are masked out by the ReLU function, resulting in
the following equation:

𝑤 𝑗 = max
𝑖∈𝑛

log(1 + ReLU(𝑤𝑖 𝑗 )) . (2)

With the importance score prediction scheme in place, SPLADEv2
is capable of creating a single vocabulary size vector ®𝑞 or ®𝑑 for the
given query or document. Each element in these vectors represents
the importance of the corresponding token to the original input text.
Following this, the model is trained to learn sparse lexical matching
between relevant query-document pairs, using contrastive loss and
FLOPS losses. For a more detailed explanation of these losses, we
refer the reader to the original paper [4]. However, it is crucial to
note that, after training, any element in ®𝑞 and ®𝑑 has the potential
to be assigned a high importance score, regardless of whether the
token occurs in the original input text or not.

3 EXPERIMENTS
We now describe our experimental setup, baselines, and the con-
trolled vocabulary mechanisms we explore. Our goal is to examine
the effects of different expanded vocabularies on SPLADEv2. To
demonstrate the impact, we compare the outcomes with BM25, a
dense retriever trained under similar conditions, and the original
SPLADEv2.

3.1 Experimental Setup
We experiment on the MS MARCO-v1 passage corpus consisting of
around 8.8million passages [19]. We evaluate our experiments with
both the MS MARCO dev set (containing 6,980 queries and around
1.1 relevant documents per query) as well as the 2019 and 2020
TREC deep learning track passage ranking queries and judgments
(43 and 54 queries for DL2019 and DL2020, respectively, and both
with much deeper judgements) [1, 2].

3.2 Baseline Systems
To situate our findings, we report a few typical baselines as follows.

BM25. We use the Pyserini [14] toolkit to run BM25 with the tuned
parameters 𝑘1 = 0.82 and 𝑏 = 0.68 as recommended by Dai and
Callan [3].1

Dense Retriever. We train a dense retriever with MS MARCO
training dataset by following the example provided in Tevatron DR
training toolkit [9].2 Specifically, we employed CoCondenser [8] as
our backbone encoder model. For each query in the MS MARCO
training set, we took the top 200 passages retrieved by BM25 and
randomly selected 7 hard negative passages, as well as one positive
passage from the qrels. With a batch size of 8, we applied in-batch
negatives to each training sample in the batch, which resulted in
63 negatives per training sample. To optimize our training, we set
the learning rate to 5e-6 and the number of epochs to 3.

1https://github.com/castorini/pyserini/blob/master/docs/experiments-msmarco-
passage.md
2https://github.com/texttron/tevatron/blob/main/examples/example_msmarco.md

https://github.com/castorini/pyserini/blob/master/docs/experiments-msmarco-passage.md
https://github.com/castorini/pyserini/blob/master/docs/experiments-msmarco-passage.md
https://github.com/texttron/tevatron/blob/main/examples/example_msmarco.md
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Table 2: Overall effectiveness of the models across all collections. The best results are highlighted in boldface. Superscripts denote significant
differences in paired, two-sided Student’s t-test with 𝑝 ≤ 0.01.

# Model MS MARCO dev DL2019 DL2020

RR@10 Recall@1000 NDCG@10 Recall@1000 NDCG@10 Recall@1000

A BM25 18.7 85.7 49.7 74.5𝑒 𝑓 𝑘 48.8 80.3𝑒 𝑓 ℎ𝑘

B DR 35.9𝑎𝑑𝑒𝑓 𝑔ℎ𝑖 𝑗𝑘𝑚 97.8𝑎𝑐𝑑𝑒 𝑓 𝑔ℎ𝑖 𝑗𝑘𝑚 65.8𝑎𝑒𝑓 𝑔ℎ𝑖𝑘𝑚 78.2𝑒 𝑓 𝑔ℎ𝑖𝑘𝑚 66.1𝑎𝑒𝑓 𝑔ℎ𝑖𝑘𝑚 82.4𝑒 𝑓 𝑔ℎ𝑖𝑘𝑚

C SPLADEv2 35.5𝑎𝑑𝑒𝑓 𝑔ℎ𝑖𝑘𝑚 97.4𝑎𝑑𝑒𝑓 𝑔ℎ𝑖𝑘𝑚 66.9𝑎𝑒𝑓 𝑔ℎ𝑖𝑘𝑚 81.1𝑒 𝑓 𝑔ℎ𝑖𝑘𝑚 62.3𝑎𝑒𝑓 ℎ𝑘 81.9𝑒 𝑓 𝑔ℎ𝑖𝑘𝑚

D no-stop 35.7𝑎𝑒𝑓 𝑔ℎ𝑖 𝑗𝑘𝑚 97.5𝑎𝑒𝑓 𝑔ℎ𝑖𝑘𝑚 69.0𝑎𝑒𝑓 𝑔ℎ𝑖𝑘𝑚 82.8𝑒 𝑓 𝑔ℎ𝑖𝑘𝑚 64.3𝑎𝑒𝑓 ℎ𝑘 83.8𝑒 𝑓 𝑔ℎ𝑖𝑘𝑚

E stop-150 20.8𝑎 84.4 42.7 56.6 43.9 62.1
F random-150 23.4𝑎𝑒 87.0𝑒 51.6 60.0 50.3 68.8𝑒

G random-768 28.4𝑎𝑒𝑓 ℎ𝑘 92.9𝑎𝑒𝑓 ℎ𝑘 56.0𝑒 65.1𝑒𝑘 56.7𝑒ℎ 72.5𝑒ℎ

H lowfreq-150 24.0𝑎𝑒 87.8𝑎𝑒𝑘 47.6 60.7 47.9 66.7
I lowfreq-768 28.7𝑎𝑒𝑓 ℎ𝑘 93.2𝑎𝑒𝑓 ℎ𝑘 57.3𝑒ℎ 69.3𝑒 𝑓 ℎ𝑘 60.2𝑒 𝑓 ℎ𝑘 73.5𝑒 𝑓 ℎ𝑘

J added-latent-150 35.0𝑎𝑒𝑓 𝑔ℎ𝑖𝑘𝑚 97.2𝑎𝑒𝑓 𝑔ℎ𝑖𝑘𝑚 68.2𝑎𝑒𝑓 𝑔ℎ𝑖𝑘𝑚 79.7𝑒 𝑓 𝑔ℎ𝑖𝑘𝑚 63.0𝑎𝑒𝑓 ℎ𝑘 82.2𝑒 𝑓 𝑔ℎ𝑖𝑘𝑚

K latent-150 24.6𝑎𝑒𝑓 86.6𝑒 53.1𝑒 57.4 50.3 67.8𝑒

L added-latent-768 35.3𝑎𝑒𝑓 𝑔ℎ𝑖𝑘𝑚 97.5𝑎𝑒𝑓 𝑔ℎ𝑖 𝑗𝑘𝑚 68.1𝑎𝑒𝑓 𝑔ℎ𝑖𝑘𝑚 81.8𝑒 𝑓 𝑔ℎ𝑖𝑘𝑚 64.7𝑎𝑒𝑓 ℎ𝑘 83.4𝑒 𝑓 𝑔ℎ𝑖𝑘𝑚

M latent-768 29.1𝑎𝑒𝑓 ℎ𝑘 92.5𝑎𝑒𝑓 ℎ𝑘 51.3 66.1𝑒 𝑓 ℎ𝑘 60.1𝑎𝑒𝑓 ℎ𝑘 73.2𝑒 𝑓 ℎ𝑘

SPLADEv2. Our final baseline is the “default” SPLADEv2 system.
To train SPLADEv2, we follow the example in the Tevatron toolkit
from the original SPLADE authors.3 To ensure a fair comparison
with our dense retriever baseline, we utilized the same backbone
model and training hyperparameters, and note that all systems
were trained on the title augmented passage collection [11].

3.3 SPLADEv2 with Controlled Vocabularies
To determine how important the original representation of each doc-
ument is for the effectiveness of SPLADEv2, we re-train SPLADEv2
using different vocabularies. During training, we limit the atten-
tion to only tokens appearing in the provided vocabulary; as such,
every document and query is represented by just a subset of these
vocabulary tokens. We tested the following vocabularies.

No Stopword Tokens. Our first model is a simple modification
to the SPLADEv2 baseline discussed above. We apply the NLTK4

English stopword list to the BERT vocabulary to ensure stopwords
are not seen by the model during training. We refer to this approach
as no-stop.

Stopword Tokens. Our second approach applies only the NLTK
English stopword list as the full vocabulary, resulting in a total
of |𝑉 | = 150 unique tokens that can be used to represent each
document and/or query. These tokens are typically considered to
be uninformative for ranking and retrieval on English corpora due
to their commonality. We refer to this setting as stop-150.

Random Tokens. We also randomly sample tokens from the orig-
inal BERT vocabulary (|𝑉𝐵𝐸𝑅𝑇 | = 30,522 tokens). We try both
|𝑉 | = 150 (random-150) and |𝑉 | = 768 (random-768) terms cor-
responding to the size of the stopwords-tokens-only and typical
dense retrieval dimensionality, respectively.

3https://github.com/texttron/tevatron/tree/main/examples/splade
4https://www.nltk.org/

Low Frequency Tokens. Another approach is to simply take
the lowest frequency tokens (the rarest tokens). In particular, we
tokenize the original corpus into BERT tokens and then use the
least frequent tokens as the vocabulary, again experimenting with
|𝑉 | = 150 and |𝑉 | = 768 (called lowfreq-150 and lowfreq-768, re-
spectively).

Latent Tokens. In this context, we introduce 150 and 768 new
tokens that we call latent tokens. These tokens do not exist in the
original BERT vocabulary and have randomly initialized embed-
dings. We conduct experiments in four different settings to explore
the impact of these latent tokens. The first setting is called added
latent tokens (added-latent-*), where we add our 150 or 768 la-
tent tokens to the original BERT vocabulary, resulting in a total of
|𝑉 | = |𝑉𝐵𝐸𝑅𝑇 | + 150 and |𝑉 | = |𝑉𝐵𝐸𝑅𝑇 | + 768 tokens. The second
setting is called latent tokens only (latent-*), where we use our sets
of latent tokens as the full vocabulary, resulting in |𝑉 | = 150 and
|𝑉 | = 768.

4 RESULTS
Table 2 presents the effectiveness of the baselines and alternative
vocabulary approaches across the MS MARCO dev, DL2019, and
DL2020 topics. We break these results down in the following para-
graphs, all in reference to Table 2.

Are stopwords useful? Given that SPLADEv2 was shown to ex-
pand seemingly “unhelpful” tokens in many queries, we hypothe-
sized that SPLADE may be using these tokens to encode additional
ranking signals. We now try to determine whether this is indeed
the case, using stopwords as our proxy for such tokens. First, let us
examine the stop-only SPLADEv2 (row E) to the baseline systems.
Surprisingly, even if we only allow SPLADEv2 to represent the en-
tire index with 150 stopwords, it manages to outperform the BM25
baseline on the dev set with RR@10. Although this finding does

https://github.com/texttron/tevatron/tree/main/examples/splade
https://www.nltk.org/
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not hold across the other metrics or collections, it is still surpris-
ingly effective. This motivated us to further explore how SPLADEv2
leverages stopwords for ranking.

Comparing our SPLADEv2 baseline (B) to the same system with-
out the inclusion of stopwords during training (D), we observe
some (but not significant) improvements when the stopwords were
removed, which contradicts our hypothesis that these tokens are
being used by the original model in a meaningful way.

To try to better understand this difference, we also experimented
with removing the top 100 most commonly expanded terms on the
original SPLADEv2 model during query time (that is, without re-
training the baseline SPLADEv2model). Similarly, we observed only
a veryminor drop in effectiveness (from an RR@10 of 35.5 to 35.2 on
the dev queries). Overall, this suggests that our original hypothesis
does not hold. So how do we explain the surprising effectiveness of
the stop-150 system, which represents all documents and queries
through just 150 stopwords?

Does the vocabulary actually matter? Next, we try to under-
stand why training SPLADEv2 on just 150 stopword tokens yields
such a surprisingly effective model. Our first idea was to consider
alternative vocabularies (with 150 tokens) – systems F (random
tokens), H (low frequency tokens), and K (latent tokens) – to see if
the findings hold. Here, we observe even better effectiveness than
stop-150, with all of the alternatives outperforming stop-150 (and
rivalling BM25) across most metrics and collections. This suggests
that SPLADEv2 is capable of modelling useful ranking information
in arbitrary vocabularies, irrespective of the terms within them.

Increasing the vocabulary size. Next, we re-examine the con-
trolled vocabulary SPLADEv2 systems by increasing the vocabulary
size from 150 to 768 tokens. Interestingly, we see large (and often
significant) improvements (from F to G, H to I, and K to M) just by
increasing the vocabulary size. This is intuitive, because larger vo-
cabularies can provide SPLADEv2 with more “space” to accurately
model and represent term interactions. Based on the notion that the
vocabulary terms themselves do not seem to make a huge difference
to the quality of retrieval, but that the size of the vocabulary seems
important, we began to hypothesize whether SPLADEv2 can be
thought of as a type of dense retriever , in the sense that the lexical
matching only serves to activate some learned representation for
relevance. However, comparing our results to the baseline dense re-
triever (also using 768 dimensions) demonstrates that these systems
(G, I, and M) are significantly less effective than the dense retriever,
suggesting that training SPLADEv2 with a constrained represen-
tation may have weaker semantic encoding abilities. Despite this
finding, it would be premature to conclude that SPLADEv2 cannot
function as a dense retriever, especially since additional experimen-
tation is necessary to verify or refute this hypothesis.

Can latent tokens help SPLADEv2? Since even arbitrary lexi-
cons were able to represent documents for ranking tasks, we now
test whether adding tokens to the original SPLADEv2 model can
improve performance further. Our intuition is that SPLADEv2 may
be able to take advantage of the latent tokens to form a type of
hybrid retriever. During training, we allow SPLADEv2 to use the
latent tokens thus increasing the original vocabulary by either 150
or 768. Rows J and L report the outcome. Interestingly, we find

that adding latent tokens can increase the effectiveness of the orig-
inal SPLADEv2 baseline, though not significantly, suggesting that
SPLADEv2 may be able to employ these tokens to its advantage.
However, further experimentation is required to understand this
phenomenon.

5 CONCLUSION AND FUTUREWORK
In conclusion, our study demonstrated that SPLADEv2 is a robust
model that can effectively represent documents by a small set of
meaningless stopword tokens and still deliver impressive effective-
ness. Moreover, our experiments with randomly sampled and low
frequency sets of tokens revealed that SPLADEv2 can outperform
BM25, even when the expanded tokens are completely irrelevant to
the original text. This surprising finding suggests that SPLADEv2
can effectively encode semantic information into any tokens it is
given, effectively acting like a dense retriever. Our attempt to make
SPLADEv2 act like a hybrid model by adding latent tokens to the
original vocabulary showed some improvement in effectiveness,
albeit not statistically significant. Our preliminary study sheds light
on the capabilities of the SPLADEv2 model and can help the com-
munity gain a deeper understanding of its potential applications.
For future work, we suggest to investigate the relationship between
vocabulary size (and subset) and SPLADE’s representation capabili-
ties. Additionally, exploring the potential use of latent tokens could
potentially enhance the semantic encoding power of the SPLADE
model. It would also be interesting to examine other models to un-
derstand if these findings generalize [7]. These avenues of inquiry
will help the community to fully comprehend the capabilities of
such models and maximize its potential for future applications.

We have made our code publicly available at https://github.com/
ielab/understanding-splade, allowing others to easily reproduce
the results presented in this paper.

REFERENCES
[1] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and Daniel Campos. 2020. Overview

of the TREC 2020 Deep Learning Track. In Proceedings of the Twenty-Ninth Text
REtrieval Conference, TREC 2020, Virtual Event [Gaithersburg, Maryland, USA],
November 16-20, 2020 (NIST Special Publication), Ellen M. Voorhees and Angela
Ellis (Eds.), Vol. 1266. National Institute of Standards and Technology (NIST).
https://trec.nist.gov/pubs/trec29/papers/OVERVIEW.DL.pdf

[2] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M.
Voorhees. 2020. Overview of the TREC 2019 deep learning track. CoRR
abs/2003.07820 (2020). arXiv:2003.07820 https://arxiv.org/abs/2003.07820

[3] Zhuyun Dai and Jamie Callan. 2020. Context-Aware Term Weighting For First
Stage Passage Retrieval. In Proceedings of the 43rd International ACM SIGIR Con-
ference on Research and Development in Information Retrieval (Virtual Event,
China) (SIGIR ’20). Association for Computing Machinery, New York, NY, USA,
1533–1536. https://doi.org/10.1145/3397271.3401204

[4] Thibault Formal, Carlos Lassance, Benjamin Piwowarski, and Stéphane Clinchant.
2021. SPLADE v2: Sparse Lexical and Expansion Model for Information Retrieval.
CoRR abs/2109.10086 (2021). arXiv:2109.10086 https://arxiv.org/abs/2109.10086

[5] Thibault Formal, Carlos Lassance, Benjamin Piwowarski, and Stéphane Clinchant.
2022. From Distillation to Hard Negative Sampling: Making Sparse Neural
IR Models More Effective. In Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval (Madrid, Spain)
(SIGIR ’22). Association for ComputingMachinery, NewYork, NY, USA, 2353–2359.
https://doi.org/10.1145/3477495.3531857

[6] Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. 2021. SPLADE:
Sparse Lexical and Expansion Model for First Stage Ranking. In Proceedings
of the 44th International ACM SIGIR Conference on Research and Development
in Information Retrieval (Virtual Event, Canada) (SIGIR ’21). Association for
Computing Machinery, New York, NY, USA, 2288–2292. https://doi.org/10.1145/
3404835.3463098

[7] Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. 2021. A White
Box Analysis of ColBERT. In Advances in Information Retrieval, Djoerd Hiemstra,

https://github.com/ielab/understanding-splade
https://github.com/ielab/understanding-splade
https://trec.nist.gov/pubs/trec29/papers/OVERVIEW.DL.pdf
https://arxiv.org/abs/2003.07820
https://arxiv.org/abs/2003.07820
https://doi.org/10.1145/3397271.3401204
https://arxiv.org/abs/2109.10086
https://arxiv.org/abs/2109.10086
https://doi.org/10.1145/3477495.3531857
https://doi.org/10.1145/3404835.3463098
https://doi.org/10.1145/3404835.3463098


Exploring the Representation Power of SPLADE Models ICTIR ’23, July 23, 2023, Taipei, Taiwan

Marie-Francine Moens, Josiane Mothe, Raffaele Perego, Martin Potthast, and
Fabrizio Sebastiani (Eds.). Springer International Publishing, Cham, 257–263.

[8] Luyu Gao and Jamie Callan. 2022. Unsupervised Corpus Aware Language Model
Pre-training for Dense Passage Retrieval. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers). Association for Computational Linguistics, Dublin, Ireland, 2843–2853.
https://doi.org/10.18653/v1/2022.acl-long.203

[9] Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. 2022. Tevatron: An
Efficient and Flexible Toolkit for Dense Retrieval. CoRR abs/2203.05765 (2022).
https://doi.org/10.48550/arXiv.2203.05765 arXiv:2203.05765

[10] Carlos Lassance and Stéphane Clinchant. 2022. An Efficiency Study for SPLADE
Models. In Proceedings of the 45th International ACM SIGIR Conference on Research
and Development in Information Retrieval (Madrid, Spain) (SIGIR ’22). Association
for Computing Machinery, New York, NY, USA, 2220–2226. https://doi.org/10.
1145/3477495.3531833

[11] Carlos Lassance and Stéphane Clinchant. 2023. The tale of two MS MARCO -
and their unfair comparisons. CoRR abs/2304.12904 (2023). https://doi.org/10.
48550/arXiv.2304.12904 arXiv:2304.12904

[12] Jimmy Lin. 2022. A Proposed Conceptual Framework for a Representational
Approach to Information Retrieval. SIGIR Forum 55, 2, Article 4 (mar 2022),
29 pages. https://doi.org/10.1145/3527546.3527552

[13] Jimmy Lin and Xueguang Ma. 2021. A Few Brief Notes on DeepImpact, COIL,
and a Conceptual Framework for Information Retrieval Techniques. CoRR
abs/2106.14807 (2021). arXiv:2106.14807 https://arxiv.org/abs/2106.14807

[14] Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-Hong Yang, Ronak Pradeep,
and Rodrigo Nogueira. 2021. Pyserini: A Python Toolkit for Reproducible In-
formation Retrieval Research with Sparse and Dense Representations. In Pro-
ceedings of the 44th International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (Virtual Event, Canada) (SIGIR ’21). Asso-
ciation for Computing Machinery, New York, NY, USA, 2356–2362. https:
//doi.org/10.1145/3404835.3463238

[15] XueguangMa, Ronak Pradeep, RodrigoNogueira, and Jimmy Lin. 2022. Document
Expansion Baselines and Learned Sparse Lexical Representations for MS MARCO
V1 and V2. In Proceedings of the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval (Madrid, Spain) (SIGIR ’22).
Association for Computing Machinery, New York, NY, USA, 3187–3197. https:
//doi.org/10.1145/3477495.3531749

[16] Joel Mackenzie, Andrew Trotman, and Jimmy Lin. 2023. Efficient Document-at-a-
Time and Score-at-a-Time Query Evaluation for Learned Sparse Representations.
ACM Trans. Inf. Syst. 41, 4, Article 96 (mar 2023), 28 pages. https://doi.org/10.
1145/3576922

[17] Antonio Mallia, Omar Khattab, Torsten Suel, and Nicola Tonellotto. 2021. Learn-
ing Passage Impacts for Inverted Indexes. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Development in Information Retrieval
(Virtual Event, Canada) (SIGIR ’21). Association for Computing Machinery, New
York, NY, USA, 1723–1727. https://doi.org/10.1145/3404835.3463030

[18] Thong Nguyen, Sean MacAvaney, and Andrew Yates. 2023. A Unified Framework
For Learned Sparse Retrieval. In Advances in Information Retrieval: 45th Euro-
pean Conference on Information Retrieval, ECIR 2023, Dublin, Ireland, April 2–6,
2023, Proceedings, Part III (Dublin, Ireland). Springer-Verlag, Berlin, Heidelberg,
101–116. https://doi.org/10.1007/978-3-031-28241-6_7

[19] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan
Majumder, and Li Deng. 2016. MS MARCO: A Human Generated MAchine
Reading COmprehension Dataset. In Proceedings of the Workshop on Cognitive
Computation: Integrating neural and symbolic approaches 2016 co-located with the
30th Annual Conference on Neural Information Processing Systems (NIPS 2016),
Barcelona, Spain, December 9, 2016 (CEUR Workshop Proceedings), Tarek Richard
Besold, Antoine Bordes, Artur S. d’Avila Garcez, and GregWayne (Eds.), Vol. 1773.
CEUR-WS.org. https://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf

[20] Rodrigo Nogueira and Jimmy Lin. 2019. From doc2query to docTTTTT-
query. https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_
docTTTTTquery-latest.pdf Unpublished report, David R. Cheriton School of
Computer Science, University of Waterloo, Canada.

[21] Nicola Tonellotto, Craig Macdonald, and Iadh Ounis. 2018. Efficient Query
Processing for Scalable Web Search. Found. Trends Inf. Retr. 12, 4–5 (dec 2018),
319–500. https://doi.org/10.1561/1500000057

[22] Shengyao Zhuang and Guido Zuccon. 2021. Fast Passage Re-ranking with
Contextualized Exact Term Matching and Efficient Passage Expansion. CoRR
abs/2108.08513 (2021). arXiv:2108.08513 https://arxiv.org/abs/2108.08513

[23] Shengyao Zhuang and Guido Zuccon. 2021. TILDE: Term Independent Likelihood
MoDEl for Passage Re-Ranking. In Proceedings of the 44th International ACM
SIGIR Conference on Research and Development in Information Retrieval (Virtual
Event, Canada) (SIGIR ’21). Association for Computing Machinery, New York,
NY, USA, 1483–1492. https://doi.org/10.1145/3404835.3462922

https://doi.org/10.18653/v1/2022.acl-long.203
https://doi.org/10.48550/arXiv.2203.05765
https://arxiv.org/abs/2203.05765
https://doi.org/10.1145/3477495.3531833
https://doi.org/10.1145/3477495.3531833
https://doi.org/10.48550/arXiv.2304.12904
https://doi.org/10.48550/arXiv.2304.12904
https://arxiv.org/abs/2304.12904
https://doi.org/10.1145/3527546.3527552
https://arxiv.org/abs/2106.14807
https://arxiv.org/abs/2106.14807
https://doi.org/10.1145/3404835.3463238
https://doi.org/10.1145/3404835.3463238
https://doi.org/10.1145/3477495.3531749
https://doi.org/10.1145/3477495.3531749
https://doi.org/10.1145/3576922
https://doi.org/10.1145/3576922
https://doi.org/10.1145/3404835.3463030
https://doi.org/10.1007/978-3-031-28241-6_7
https://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-latest.pdf
https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-latest.pdf
https://doi.org/10.1561/1500000057
https://arxiv.org/abs/2108.08513
https://arxiv.org/abs/2108.08513
https://doi.org/10.1145/3404835.3462922

	Abstract
	1 Introduction and Preliminaries
	2 Related work
	2.1 SPLADE models
	2.2 SPLADEv2

	3 Experiments
	3.1 Experimental Setup
	3.2 Baseline Systems
	3.3 SPLADEv2 with Controlled Vocabularies

	4 Results
	5 Conclusion and future work
	References

