
KALE: Using a K-Sparse Projector for Lexical Expansion
Luís Borges

Language Technologies Institute
Carnegie Mellon University

Pittsburgh, PA, USA
lborges@andrew.cmu.edu

Bruno Martins
IST and INESC-ID
University of Lisbon
Lisbon, Portugal

bruno.martins@tecnico.ulisboa.pt

Jamie Callan
Language Technologies Institute
Carnegie Mellon University

Pittsburgh, PA, USA
callan@andrew.cmu.edu

ABSTRACT
Recent research has proposed retrieval approaches based on sparse
representations and inverted indexes, with terms produced by neu-
ral languagemodels and leveraging the advantages from both neural
retrieval and lexical matching. This paper proposes KALE, a new
lightweight method of this family that uses a small model with a
k-sparse projector to convert dense representations into a sparse set
of entries from a latent vocabulary. The KALE vocabulary captures
semantic concepts than perform well when used in isolation, and
perform better when extending the original lexical vocabulary, this
way improving first-stage retrieval accuracy. Experiments with the
MSMARCOv1 passage retrieval dataset, the TREC Deep Learning
dataset, and BEIR datasets, examined the effectiveness of KALE
under varying conditions. Results show that the KALE terms can
replace the original lexical vocabulary, with gains in accuracy and
efficiency. Combining KALE with the original lexical vocabulary,
or with other learned terms, can further improve retrieval accuracy
with only a modest increase in computational cost.

CCS CONCEPTS
• Information systems→ Query representation; Document
representation; Retrieval effectiveness; Retrieval efficiency.

KEYWORDS
Neural Information Retrieval, Learned Sparse Representations, Effi-
ciency in Neural Retrieval.

ACM Reference Format:
Luís Borges, Bruno Martins, and Jamie Callan. 2023. KALE: Using a K-
Sparse Projector for Lexical Expansion. In Proceedings of the 2023 ACM
SIGIR International Conference on the Theory of Information Retrieval (ICTIR
’23), July 23, 2023, Taipei, Taiwan. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3578337.3605131

1 INTRODUCTION
Neural retrieval approaches, based on the computation of dense vec-
tor representations for documents and queries, tend to outperform
methods based on sparse representations [26, 41]. Dense methods
typically perform a re-ranking of a small set of results obtained from

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICTIR ’23, July 23, 2023, Taipei, Taiwan.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0073-6/23/07. . . $15.00
https://doi.org/10.1145/3578337.3605131

a first-stage retriever, or they use in-memory indexes for perform-
ing either exhaustive or Approximate Nearest-Neighbour (ANN)
searches over the document collection. On the other hand, methods
based on sparse representations use inverted indexes for efficient
retrieval over large collections stored in disk, and these particular
indexing and query processing strategies have been extensively
studied within the community [37, 43]. It is therefore of interest to
consider ways of computing sparse representations with the same
type of neural approaches that support the better performing dense
representations, envisioning indexing with inverted indexes.

The dual encoder architecture is a popular method of converting
text to dense representations [8, 9, 14, 20, 21, 30–32, 39]. Queries
and documents are processed with a Transformer encoder model
(e.g., BERT), and a similarity between the resulting dense vectors
can then be computed. The current research focus with dense re-
trieval lies on the choice of the negative examples for training
[21, 32, 39], knowledge distillation [20, 21], better training method-
ologies [9, 30, 32], and larger models [27]. Dense representations
are typically stored in memory and incur not only in large mem-
ory requirements, but also in larger search times, since queries
are compared to every document in the collection. On the other
hand, modern sparse approaches generally leverage Transformer
models to process the text and create new sparse representations,
which involve reweighting existing document terms, expanding the
document with new terms, or both. These methods either project
the dense representations into a known lexical vocabulary, e.g.
the BERT wordpiece vocabulary [7, 24], or into new high dimen-
sional vocabulary spaces [12], often with a larger vocabulary size
than BERT. State-of-the-art learned sparse representations typi-
cally perform reweighting/expansion over the BERT vocabulary,
but are limited to the concepts captured by the aforementioned set
of terms. Additionally, expanding queries/documents can become
expensive, in terms of query latency and index size. Approaches
that project dense representations into high dimensional spaces
usually underperform reweighting/expansion techniques, and are
used in isolation, replacing the existing English vocabulary.

This paper presents KALE (K-spArse Projector for Lexical
Expansion), a simple and fast approach based on a typical dual-
encoder that produces sparse representations in a new vocabulary
space. Instead of relying on the BERT vocabulary, a new vocabulary
is created, with the goal of allowing a neural model to generate
important semantic concepts from its training dataset. Ideally, these
terms should capture concepts beyond those from the lexical vo-
cabulary, and can be used either as a replacement of the original
English vocabulary, or as an addition to existing representations.

KALE consists of a simple encoder, leveraging a DistilBERT
model, in order to generate sparse representations of the input text.
In order to train the model, a frozen teacher distills knowledge into

13

https://doi.org/10.1145/3578337.3605131
https://doi.org/10.1145/3578337.3605131
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3578337.3605131&domain=pdf&date_stamp=2023-08-09

ICTIR ’23, July 23, 2023, Taipei, Taiwan. Luís Borges, Bruno Martins, & Jamie Callan

Dense approaches MRR@10
(A) DPR [14] 0.311
(B) ANCE [39] 0.330
(C) TCT-ColBERT [20] 0.364
(D) Condenser [8] 0.366
(E) RocketQA [30] 0.370
(F) TCT-ColBERTv2 [21] 0.375
(G) CoCondenser [9] 0.382
(H) RocketQAv2 [32] 0.388
(I) MASTER [42] 0.415
(J) RetroMAEv2 [38] 0.426
(K) ABS [2] + CoCond. [9]∗ 0.447

Sparse approaches MRR@10
(a) BM25 [33] 0.187
(b) DeepCT [6] 0.244
(c) DocT5Query [28] 0.277
(d) CCSA [18] 0.289
(e) UHD-BERT [12] 0.300
(f) SPLADE [7] 0.322
(g) DocT5Query– [10] 0.323
(h) DeepImpact [24] 0.326
(i) SpaDE [3] 0.355
(j) EfficientSPLADE [17] 0.380
(k) LexMAEv2 [34] 0.426

Figure 1: Experimental results for the methods presented in Section 2. Evaluation is performed on MSMARCOv1, and the
reported metric is the official MSMARCOv1 metric of MRR@10. The rightmost plot shows each of the retrievers in the tables,
with the x axis roughly corresponding to a time dimension (i.e., methods on the right are usually more recent, although that is
not always the case). The symbol ∗ denotes a submission to the MSMARCOv1 passage ranking leaderboard, which includes
further improvements not covered in the original paper.

a learnable DistilBERT. This learnable language model then outputs
a vector to be further sparsified and indexed, either in isolation or
together with existing lexical vocabularies.

The proposed approach was tested on the MSMARCOv1 [1],
TREC DL [4, 5], and BEIR [36] datasets for passage retrieval. The
experimental results confirm that the KALE vocabulary captures
distinct concepts not always present in the lexical terms of the
document. The new terms, on their own, significantly outperform a
BM25 baseline based on the original lexical terms. When appended
to the lexical terms, or to the representations generated by other
sparse retrievers, KALE is consistently able to provide a further
increase in effectiveness, at a small price in terms of query latency.

Section 2 reviews the state-of-the-art in terms of both dense
and sparse retrieval models. Section 3 describes our KALE model.
Section 4 elaborates on the datasets and evaluation methods, while
Section 5 presents and discusses our experimental results. Section 6
reflects on some limitations of KALE, and finally Section 7 presents
the conclusions and ideas for future work.

2 RELATEDWORK
This section presents an overview of relevant related work, covering
both dense and sparse representations. Figure 1 aggregates state-
of-the-art results associated to those two directions.

2.1 Retrieval with Dense Representations
A popular architecture for dense retrieval, known as the dual-
encoder architecture, uses a BERT-based model to independently
encode the query and the document into real valued vectors. The
document vectors can be pre-computed, indexed in memory, and
searched with libraries such as FAISS [13]. Dual-encoders contrast
with the slower cross-encoders, with the latter jointly encoding
queries and passages, and being commonly used for re-ranking.

Recent work is focused on optimizing the choice of negative
examples for loss computation, distilling knowledge from better
performing models, or employing better (pre-)training methodolo-
gies. For instance, DPR [14] uses in-batch negatives, and BM25

negatives. ANCE [39] chooses hard negatives by performing ANN
search on the representations derived from its current model state.

One of the first knowledge distillation methods [11] had a cross-
encoder computing scores between queries and documents, using
them to train a faster student model with a margin loss to ensure
the differences between scores were similar between student and
teacher. Later, the same authors [20] released TCT-ColBERT, con-
sisting of a dual encoder student, and a ColBERT [15] teacher. The
teacher computes scores for the positive documents and in-batch
negatives, and the student is trained with a loss composed of a
cross entropy component, together with a Kullback-Leibler (KL)
divergence between the distributions of student and teacher scores.
In subsequent work, Lin et al. [21] further improved TCT-ColBERT
with hard negative mining.

Regarding more nuanced training methodologies, RocketQA [30]
trains a dual encoder with cross-batch negatives along multiple
GPUs, uses a cross-encoder to sample hard negatives with a high
confidence score, and augments the training corpus by having a
cross-encoder create high confidence positive and negative doc-
uments, in response to a set of unlabeled queries. The follow-up
work, RocketQAv2 [32], jointly optimized document retrieval with
a dual encoder, with further re-ranking with a cross-encoder.

The current state-of-the-art involves target corpus pre-training
before fine-tuning. Gao et al. [8] proposed the Condenser, i.e., a
Transformer architecture able to better aggregate information into
the [CLS] token representations from a BERT model, followed by
CoCondenser [9], i.e. a strategy where the Condenser is additionally
pre-trained with a contrastive loss. Recently, Xiao et al. [23, 38]
proposed RetroMAE, composed of a BERT encoder and a shallow
Transformer decoder. In this approach, the input text is masked
before being fed to the model, with the decoder input being masked
more aggressively. Given the representation from the encoder and
the highly masked input text, the shallow decoder attempts to
reconstruct the original text, forcing a higher quality from the
representation output by the encoder. Following the same idea
of bottlenecked masked auto-encoding, Zhou et al. [42] proposed

14

KALE: Using a K-Sparse Projector for Lexical Expansion ICTIR ’23, July 23, 2023, Taipei, Taiwan.

MASTER, which extends this idea into a multi-task setting, with a
task-specific decoder for every task.

2.2 Retrieval with Sparse Representations
With sparse retrieval, queries and documents are represented with
sparse vectors, usually with size of the lexical vocabulary and where
the values different than zero occur on the dimensions correspond-
ing to the vocabulary terms that are present in the text. Those values
represent the importance of the term in that text, and common ap-
proaches include Term Frequency (TF) weights, or combinations
with Inverse Document Frequency (TF-IDF) together with length
normalization. The documents are indexed and searched through
in-disk inverted indexes, extensively studied in the literature.

Dai et al. [6] proposed DeepCT, using BERT to estimate the term
frequencies of sparse representations, afterwards doing ranked
retrieval with the BM25 [33] approach. Still, one of issues with
BM25 and DeepCT is the vocabulary mismatch problem, where
different words with the same meaning never match.

Lin et al. [29] proposed Doc2Query and later DocT5Query [28],
which use a language model to generate queries to which the doc-
uments might be relevant, later using them to expand the doc-
uments. This does both re-weighting and expansion with new
vocabulary. Recently, Gospodinov et al. [10] filtered the queries
from DocT5Query with a cross-encoder before expansion, getting
a strong performance boost. Another step forward was proposed
by Mallia et al. [24], first expanding the original documents with
DocT5Query, and then computing impact scores for every term in
the expanded passage. These impacts are stored in the index, and
the score between a query and a document is their dot product.

Choi et al. [3] proposed SpaDE, which uses a BERT encoder to
learn term weighting, and another BERT encoder with a MLM head
to learn expansion. The term weighting encoder creates a score for
every input token via a MLP from its hidden states, and max-pools
the scores to obtain a term weighting vector. The term expansion
encoder is analogous, leveraging the MLM head together with a
top-K operation to ensure sparsity.

The Composite Code Sparse Auto-Encoder [18] model takes as
input dense vectors, generating a corresponding sparse represen-
tation and attempting to reconstruct the original vectors from the
sparse representation with a reconstruction loss, using a gumbel
softmax activation function to create the sparse vectors. The sparse
vectors are further converted to sparse composite codes of dimen-
sionality 65,536, which are then indexed by an inverted index and
searched with a counting scoring function.

UHD-BERT also makes use of sparse vectors with a high dimen-
sionality (i.e., 81,920), arguing for a higher expressive power of
representations with bigger dimensionalities. Queries and docu-
ments are encoded by a shared-weight BERT model. The outputs of
every layer within BERT are then sparsified with a top-K operation,
together with max-pooling to create one single vector, which the
authors call bucket. The final scoring operation between a query
and a document is the sum of the dot products between query
and document buckets from every BERT layer, and the buckets are
indexed with an inverted index.

An approach bearing similarities to the present work is the Stan-
dalone Neural Ranking Model (SNRM) from Zamani et al. [40].

Figure 2: The KALE architecture. Dense vectors are colored
in red, while sparse vectors are black and white. The dense
vectors derived from the DistilBERT Language Models (LMs)
have dimensionality 768. After going through the projector,
dense vectors have dimensionality |V| (i.e., the size of the
KALE vocabulary). The terms to be indexed are denoted as
the KALE sparse representation.

SNRM aggregates n-gram representations into a high-dimensional
sparse representation (i.e., up to a maximum of 20k terms), therefore
also generating a latent vocabulary. The documents are stored in an
inverted index and, at query time, documents are retrieved via the
dot product between the latent vocabulary weights of query and
document vectors. The authors did not evaluate on MSMARCO.

Recently, SPLADE models [7, 17] became increasingly popular.
In SPLADE [7], for each term in the input, the MLM head from
BERT is used to compute scores for |V| terms, where |V| is the
size of the BERT vocabulary. Afterwards, the resulting vectors are
max-pooled to create a final representation. An improved version
named EfficientSPLADE [17] incorporated multiple improvements:
a distillation component; using separate encoders for queries and
documents, specifically with a smaller query encoder; using an
L1 regularization term for query representations; and performing
middle-training before fine-tuning on the retrieval task.

The current state-of-the-art for sparse retrieval was proposed
by Shen et al. [34], with a system named LexMAE (Lexicon Bot-
tlenecked Masked Autoencoder). LexMAE is fairly analogous to
its dense counterpart named RetroMAE, with an encoder and a
shallow decoder trying to reconstruct a heavily masked version of
the input text. The encoder first generates a sequence of LM logit
vectors of the size of the vocabulary, which is then max-pooled
to generate an intermediate representation. This representation
is multiplied by the embedding matrix from the encoder, hence
creating a bag-of-words bottleneck to serve as additional context
for the decoder to reconstruct the aggressively masked input.

3 THE KALE APPROACH
KALE receives as input a piece of text, and returns a sparse repre-
sentation of the input over a new vocabulary of index terms. Ideally,
the sparse representations should be aligned with existing dense
representations, which offer good retrieval performance. This is

15

ICTIR ’23, July 23, 2023, Taipei, Taiwan. Luís Borges, Bruno Martins, & Jamie Callan

achieved with a teacher model, which is kept fixed, and with a loss
component that aligns the teacher with a learnable student. Addi-
tionally, the new index terms should be equally distributed over the
corpus, avoiding the skews that are typical of natural vocabularies,
and promoting a more efficient search over the inverted index. For
this purpose, an equipartitioning component is included in the loss
function, which promotes equal weight distribution among the
dimensions of the generated KALE representations.

The KALE architecture is composed of two Language Models
(LMs), where one LM is learnable, and the other LM is initialized
with a fine-tuned checkpoint and has its weights kept frozen. This
last LM was not specifically trained to be compatible with sparse
index terms. Additionally, both LMs consider vector representations
of fixed size. With that in mind, the fine-tuned LM serves as the
Teacher LM, producing the dense vectors to which the learnable
dense representations are going to be aligned to, through distillation
in the loss function. In order to have flexibility regarding different
vocabulary sizes other than the LM hidden size, KALE leverages a
projector, which consists of a single feed-forward layer, projecting
the learned LM vectors to a different vocabulary size (e.g., 1024
terms). The main components in KALE are therefore a learnable
DistilBERT model, which is referred to as the Trained Language
Model (Trained LM), a teacher model (Teacher LM), and a projector
layer. At inference time, a TopK operation sparsifies the output of
the projector, outputting an indexable sparse representation. Figure
2 provides an overview of the approach.

KALE gets as input the text of a query/document, and returns
a sparse vector representation of its input. First, the Trained LM
generates a dense vector representation of the input text, which is
the average-pooling of the sequence of its internal hidden states.
Alternative dense representations, considering either max-pooling
or the [CLS] token representation, did not provide any additional
benefits. In parallel, the same textual input is fed to the Teacher
LM, which generates a dense vector representation, also through
an average-pooling operation. The average-pooled dense vector
from the Teacher LM serves as target for the learnable dense rep-
resentations to align to. The learnable representation of the input
goes through the projector, which creates a new vector of the size
of the vocabulary. The activation within the projector is the ReLU
activation function, which naturally already enforces a degree of
sparsity, by setting all negative values to zero. Also, the ReLU en-
sures positivity of the vector values, which is necessary for the
TopK operation to function as expected (e.g., negative values with a
high absolute value would never be extracted). The representation
from the projector then acts as a student in the ranking loss, and is
also fed to the equipartitioning component.

At inference time, each query and document is augmented with
a set of new terms, which requires KALE to output a sparse rep-
resentation for each input text. Given the dense vector output by
the projector, sparsification is achieved through a TopK operation.
The TopK operation grabs a vector, maintains its top 𝐾 values, and
zeroes out the remaining dimensions. The sparsified vector is the
KALE sparse representation of the input text, ready to be indexed
and searched. The resulting sparse dimensions are indexed with a
constant term frequency weight. Different weighting schemes did
not provide additional benefits. A 𝐾 hyperparameter is set for the

queries, while another is set for the passages. These hyperparame-
ters are kept fixed. A dynamic 𝐾 value for every query/passage did
not provide significative improvements.

The loss function is a weighted sum of two components. The first
component aligns the teacher with the student model, and is the
Multi-Margin MSE (M3SE) proposed by Menon et al. [25]. Given a
set of student scores s and teacher scores t, the M3SE is defined as:

M3SE(t, s) =
∑︁
𝑖∈𝑅

((𝑡𝑖 − 𝑡 𝑗∗) − (𝑠𝑖 − 𝑠 𝑗∗))2 +
∑︁
𝑗∈𝑁

[𝑠 𝑗 − 𝑠 𝑗∗]2+, (1)

where 𝑅 is the set of relevant passages for a training query, 𝑁 is
the set of non-relevant passages, and 𝑗∗ is the index of the negative
passage with the highest teacher score. This approach enforces
a correct margin between the relevant passages and the highest
scoring negatives. For the remaining negatives, it suffices to have
a lower score than 𝑗∗. The student scores and teacher scores are
computed with the cosine similarity. For each query, a relevant
passage is fetched from the annotated data. A hard negative is
retrieved from the top 50 passages returned from BM25 for that
query. The relevant passages of the other queries in the batch serve
as in-batch negatives. One aspect to note is that although the KALE
sparse representation is the vector to be indexed, initial experiments
showed that it was beneficial to connect the dense representation
output by the projector into the ranking loss, instead of directly
connecting the sparsified vector. Since TopK only extracts a small
number of dimensions, the sparse vector likely had insufficient
information to provide stable learning compared to the dense vector,
and thus this dense vector was kept as the student.

The regularization term promoting equipartitioning takes as
input the same vectors that go into the M3SE loss. Given the dense
vectors, the sum of the weights in each dimension is computed,
as well as the sum of all the weights in the batch. Dividing these
values returns the current weight distribution across the dimensions.
Ideally, the distribution should be uniform, which translates to:

dims =
|𝐵 |∑︁
𝑖

B𝑖 , 𝑤𝑒𝑖𝑔ℎ𝑡 =
|𝑉 |∑︁
𝑣

𝑑𝑖𝑚𝑠𝑣, (2)

Equipartition(B) = KL
(
dims
𝑤𝑒𝑖𝑔ℎ𝑡

,
1
𝐷

)
+ KL

(
1
𝐷
,
dims
𝑤𝑒𝑖𝑔ℎ𝑡

)
. (3)

In the previous equations, KL is the Kullback-Leibler divergence,
|𝐵 | is the batch size, and |𝑉 | is the vocabulary size, which matches
the dimensionality of the input dense vectors. Vectors and matrices
are boldfaced, while scalars are italicized. The term 1

𝐷
denotes a

uniform distribution over the 𝐷 dimensions.
With equipartitioning, the KALE loss is the sum of the two

individual components:

Loss = M3SE + Equipartition. (4)

4 DATASETS AND EVALUATION METHODS
KALE was trained on the MSMARCOv1 [1] dataset. About 800.000
training queries have been released, while approximately 100.000
queries were reserved for model development. The passage collec-
tion comprises more than 8 million passages. There is on average

16

KALE: Using a K-Sparse Projector for Lexical Expansion ICTIR ’23, July 23, 2023, Taipei, Taiwan.

Figure 3: Generating new terms from the KALE sparse rep-
resentations, and then expanding the input text with the
extracted terms. The augmented passages are then ready to
be indexed, while expanded queries can be searched over the
resulting index. NT stands for New Term.

one relevant passage for each query. Besides MSMARCOv1, evalua-
tion is done on the TREC DL19 [4] and TREC DL20 [5] judged sets
of queries - composed of 43 and 54 queries, respectively - which
are also searched on the MSMARCOv1 passage collection. The
retrieval metrics are Recall@10 for both datasets, MRR@10 for
MSMARCOv1, and NDCG@10 for TREC DL.

The learned vocabulary was further evaluated on out-of-domain
data, making use of the BEIR benchmark [36]. BEIR is a collection of
18 datasets from multiple text retrieval tasks over multiple domains.
Four of those datasets are not public. The tasks range from bio-
medical information retrieval to citation prediction. In this article,
the BEIR benchmarks were divided into search tasks and semantic
relatedness tasks, and NDCG@10 is the evaluation metric.

The experiments mostly relied on BM25 scoring, with the excep-
tion of impact indexes. After KALE is trained and a sparse repre-
sentation of a query/passage is obtained, KALE creates a series of
artificial terms for the dimensions in which the KALE sparse repre-
sentation is different than zero, appending each term to the text of
the query or passage, with a constant term frequency. The texts can
be composed either by the original representations only (what is
referred to as BM25), or by the original terms reweighted/expanded
by another method (e.g., DeepCT, or DocT5Query). The BM25 hy-
perparameters were kept at default (𝑘1 = 0.9, 𝑏 = 0.4). Methods
with BM25 scoring are expanded with TF=1 for KALE terms. For im-
pact indexes (i.e., DeepImpact and EfficientSPLADE), the artificial
vocabulary is also indexed with a constant impact. For DeepImpact,
KALE terms have an impact of 10. Regarding EfficientSPLADE, the
generated vocabulary is indexed with an impact of 30. Figure 3
illustrates this process, for TF=1, and a vocabulary size of 1,024.
Once the corpus is expanded, it can be indexed and stored in disk.
At query time, KALE expands the query, and searches the index.

KALE was implemented with the Pytorch library. The teacher
LM was kept fixed as the dual-encoder checkpoint from Sentence
Transformers [31] named msmarco-distilbert-cos-v5. Models were
trained during 20 epochs, with a maximum learning rate of 1e-4,
and a linear learning rate scheduler. An epoch was considered as a
whole pass through the entire set of 500k training queries. Indexing
and BM25 search were done with the Pyserini toolkit [19], with 12
threads and a batch size of 64.

5 EXPERIMENTAL EVALUATION
This section presents and discusses experimental results, guided
by several research issues to be assessed, namely: (1) the effect of
different vocabulary sizes; (2) the effect of the number of artifi-
cial terms added to the queries/documents; (3) the usefulness of
complementing existing learned sparse retrievers with the KALE
vocabulary; (4) the distribution of the generated term posting lists;
and (5) the out-of-domain performance of the proposed method.

5.1 Evaluating the Vocabulary Size
KALE argues that the generated vocabulary is able to capture se-
mantic concepts that existing lexical terms might not be able to
clearly capture. Smaller vocabularies should imply more abstract
concepts, which are perhaps not expressive enough to accurately
represent a document, at least on their own. As the vocabulary size
increases, KALE should have more expressive power to accurately
extract the important concepts from the corpus, leading to better
effectiveness. Ideally, higher vocabulary sizes should also result in
a smaller average posting list size, and consequent faster search.

This subsection presents experiments varying the size of the
KALE vocabulary, with a fixed number of 16 artificial terms for
the query, and 64 artificial terms for the passage (i.e., relatively
small values in both cases). Two settings were tested, namely one
where only the artificial vocabulary was indexed and searched (i.e.,
KALE only), and another where the lexical English vocabulary was
expanded with the KALE terms, and search was performed with
BM25 (i.e., BM25+KALE). The average query latency forMSMARCO
queries, in milliseconds, was also measured.

Table 1 presents the results from the aforementioned experi-
ments, divided into four table blocks. The first block features the
lexical baseline BM25, together with the Teacher LM. This shows
not only the effectiveness drop when distilling teacher knowledge
into KALE, but also the efficiency gain.

The second block changes the vocabulary size in the KALE only
scenario. Regarding accuracy, every vocabulary size either equalled
or outperformed BM25 with the original English terms. Both ac-
curacy and efficiency improved as the vocabulary size increased.
For sufficiently large sizes, KALE was faster than BM25. Besides
outperforming BM25, the KALE vocabulary performed closely to
DocT5Query, despite using a smaller DistilBERT model instead of
the heavier T5 backbone. Significant improvements on accuracy
halted after 8,192 KALE terms, likely given that the number of
query and passage terms from KALE was being kept fixed. Larger
vocabularies may require more terms to accurately describe the
contents of a query/document since, in that setting, KALE is trained
to encode its input over a more fine-grained set of concepts.

The third block provides a different view, where the artificial
terms were combined with the existing English vocabulary. In this
setting, every experiment significantly improved over the BM25
baseline, showing the proposed approach to be strong at comple-
menting existing vocabularies. Very small vocabulary sizes (i.e. 512
and 768) were suboptimal, and presumably the concepts were ex-
cessively abstract. The effectiveness peak was reached with 1,024
terms, and larger vocabulary sizes performed worse. The reason
may again be that larger vocabularies require more terms to accu-
rately describe a query/document, and these hyperparameters were
kept fixed in these experiments.

17

ICTIR ’23, July 23, 2023, Taipei, Taiwan. Luís Borges, Bruno Martins, & Jamie Callan

Table 1: Experimental results when varying the size of the KALE vocabulary. The number of terms in the KALE query
representation (𝑘𝑞𝑢𝑒𝑟𝑦) was set to 16, while 𝑘𝑝𝑎𝑠𝑠𝑎𝑔𝑒 was set to 64. BM25+KALE denotes BM25 search with KALE terms, and
the original lexical terms. QL denotes the average MSMARCO query latency, and was measured in milliseconds. The teacher
model used for distillation (msmarco-distilbert-cos-v5) is also included in the first block of results, in order to assess the extent
to which accuracy was decreased when generating the sparse representations. The symbol † denotes statistically significant
improvement over BM25, for a paired t-test with a p-value of 0.05.

MSMARCO Dev TREC DL 19 TREC DL 20
Method |V| MRR@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 QL
BM25 - 0.184 0.379 0.506 0.129 0.480 0.164 17
Teacher - 0.338† 0.586† 0.680† 0.143 0.645† 0.207† 182
KALE only 512 0.202† 0.400† 0.521 0.103 0.498 0.166 86
KALE only 768 0.223† 0.430† 0.535 0.100 0.507 0.164 73
KALE only 1024 0.231† 0.442† 0.520 0.100 0.518 0.159 63
KALE only 8192 0.252† 0.455† 0.498 0.095 0.538† 0.173 22
KALE only 32768 0.254† 0.456† 0.550 0.105 0.540† 0.169 16
KALE only 65536 0.251† 0.445† 0.535 0.100 0.569† 0.182 14
KALE only 98304 0.254† 0.453† 0.547 0.097 0.562† 0.178 15
KALE only 131072 0.251† 0.450† 0.559 0.106 0.565† 0.167 14
BM25+KALE 512 0.294† 0.565† 0.653† 0.151 0.639† 0.213† 93
BM25+KALE 768 0.308† 0.569† 0.657† 0.149 0.646† 0.219† 75
BM25+KALE 1024 0.309† 0.567† 0.630† 0.133 0.649† 0.206† 72
BM25+KALE 8192 0.306† 0.549† 0.582 0.130 0.626† 0.204† 27
BM25+KALE 32768 0.301† 0.539† 0.615† 0.126 0.627† 0.206† 24
BM25+KALE 65536 0.296† 0.532† 0.592 0.122 0.624† 0.205† 19
BM25+KALE 98304 0.296† 0.535† 0.628† 0.132 0.637† 0.214† 19
BM25+KALE 131072 0.297† 0.533† 0.613 0.112 0.624† 0.194 18
BM25+Teacher 768 0.293† 0.546† 0.651† 0.153 0.606† 0.212 84

The last block of the table answers the question of whether there
is a necessity of learning the student LM. The block tested a setting
where sparsification, indexing, and consequent search occurred
directly over the dense outputs of the Teacher LM, bypassing any
additional training. Directly sparsifying the teacher vectors resulted
in a lower performance compared to the setting where a student
LM is learned and a new vocabulary vector is generated through
the projector. This is likely because the teacher LM vectors are
real valued (compared to projected vectors from KALE, which go
through a ReLU operation), which causes the TopK operation to
ignore dimensions with a high absolute value, but negative weight.

The latencies behaved as expected. Every query was expanded
with a fixed number of artificial terms, so latency depends on the
posting list sizes of the added terms. Passages were also expanded
with a constant number of KALE terms, meaning smaller vocabu-
laries cause an increase in the average posting list size, therefore
making search slower. Some experiments with larger vocabularies,
in the KALE only setting, are more efficient than the original BM25
baseline. This may indicate that the KALE term posting list sizes
are reasonably uniform, avoiding typical skews from the English
vocabulary. When complementing KALE with BM25, latency in-
creased since queries were made longer, considering terms from
both the English and KALE vocabularies.

In summary, increasing the vocabulary size showed to be benefi-
cial, specially in the KALE only scenario. In this setting, a larger
vocabulary consistently resulted in efficiency and effectiveness
gains, although accuracy flattened. Furthermore, the KALE terms

in isolation were able to significantly outperform the BM25 base-
line, both in efficiency and effectiveness. When augmenting the
existing English vocabulary, larger vocabularies underperformed,
possibly given the experimental decision of keeping a fixed num-
ber of expansion terms. Nonetheless, KALE showed to be specially
effective together with the lexical vocabulary. Moreover, a signifi-
cant improvement over BM25 was observed independently of the
vocabulary size, which indicates that regardless of the nature of
the concepts being captured, KALE is consistently able to improve
on the lexical vocabulary. Throughout the other tests KALE was
therefore considered together with the lexical terms.

5.2 Evaluating the Number of Expansion Terms
When considering different expansion terms in the query/document,
a trade-off between efficiency and effectiveness is expected. A
higher number of generated query/passage terms should improve
the text representations, therefore increasing accuracy. However,
adding new terms either causes the inverted lists to become longer
(by increasing the number of passage terms), or forces retrieval and
search over additional inverted lists (when adding query terms),
hence hurting query latency.

This subsection reports tests varying the number of terms to
expand the queries and passages, and Table 2 displays the exper-
imental results. In general, an effectiveness stability is observed
across the several vocabulary sizes, and the reported intuitions
match the results. Regarding latency, an increase in expansion
terms, whether in the query or the passages, did lead to an effi-
ciency drop. Increasing the amount of query terms consistently lead

18

KALE: Using a K-Sparse Projector for Lexical Expansion ICTIR ’23, July 23, 2023, Taipei, Taiwan.

Table 2: Experimental results when changing the number of query and passage terms in the KALE representations. KALE terms
were used together with the lexical terms in BM25. QL denotes MSMARCO query latency, measured in milliseconds.

MSMARCO Dev TREC DL 19 TREC DL 20
|V| 𝑘𝑞𝑢𝑒𝑟𝑦 𝑘𝑝𝑎𝑠𝑠𝑎𝑔𝑒 MRR@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 QL
1024 8 32 0.292 0.548 0.592 0.127 0.614 0.210 31
1024 8 64 0.279 0.538 0.603 0.138 0.622 0.208 36
1024 16 64 0.309 0.567 0.630 0.133 0.649 0.206 72
1024 16 128 0.288 0.555 0.631 0.143 0.606 0.194 86
32768 16 64 0.301 0.539 0.615 0.126 0.627 0.206 24
32768 16 128 0.307 0.554 0.607 0.134 0.655 0.205 27
32768 32 128 0.310 0.555 0.628 0.133 0.639 0.206 41
32768 32 256 0.316 0.566 0.633 0.135 0.657 0.211 52
98304 16 64 0.296 0.535 0.628 0.132 0.637 0.214 19
98304 16 128 0.303 0.542 0.625 0.136 0.656 0.216 19
98304 32 128 0.316 0.557 0.647 0.137 0.636 0.209 21
98304 32 256 0.319 0.564 0.646 0.142 0.639 0.210 26
131072 16 64 0.297 0.533 0.613 0.112 0.624 0.194 18
131072 16 128 0.302 0.548 0.627 0.124 0.644 0.204 20
131072 32 128 0.312 0.553 0.640 0.133 0.660 0.216 22
131072 32 256 0.318 0.564 0.657 0.131 0.673 0.218 25

to a higher accuracy, and increasing the number of passage terms
also provided accuracy benefits, with the exception of a vocabulary
of 1,024 terms. Leveraging smaller vocabularies and forcing every
passage to be expanded with a large number of artificial terms likely
introduces noise in the passage representations, since the terms
are forced to exist across passages despite bearing no semantic
similarity among themselves. Like in previous experiments, KALE
showed robustness from an effectiveness perspective, regardless of
vocabulary size, query terms, or passage terms.

Overall, the results from these tests confirmed our expectations
regarding the trade-offs between accuracy and efficiency. More
expansion terms improved effectiveness, with a query latency cost.
Given the conclusions from this subsection and from the previous
subsection, a set of hyperparameters was chosen for subsequent ex-
periments, in an attempt to balance accuracy and efficiency. Specif-
ically, the vocabulary size was kept at 98,304, 𝑘𝑞𝑢𝑒𝑟𝑦 was set to 32,
and𝑘𝑝𝑎𝑠𝑠𝑎𝑔𝑒 was set to 256. This configuration was kept throughout
the remainder of the experiments.

5.3 Complementing Different Representations
Previous subsections demonstrated KALE to be compatible with
the English lexical vocabulary, through the BM25 retriever. Other
learned sparse representations operate over the same or similar
vocabularies, with different approaches, e.g., performing lexical ex-
pansion, or re-weighting the existing lexical terms. If KALE terms
indeed capture different information from that of existing lexical vo-
cabularies, one would expect the KALE vocabulary to be compatible
with other types of learned sparse representations.

The next experiments examined whether the terms generated
by KALE could complement more advanced lexical representa-
tions. Several sparse retrievers, of increasing retrieval performance,
were chosen to be augmented with the KALE generated vocabu-
lary. Besides BM25, KALE terms were also tested with DeepCT [6],
DocT5Query [28], DeepImpact [24], and EfficientSPLADE [17].

Table 3 presents these results. Each block compares the retrieval
accuracy and query latency of the retriever alone (i.e., with the
learned lexical vocabulary only), and the same retriever augmented
with KALE terms. For every retriever, an effectiveness gain is vis-
ible, at a small latency cost. Even with EfficientSPLADE, which
already relies heavily on re-weighting and expanding with lexical
terms, a statistically significant MRR@10 boost was observed over
MSMARCO. This reinforces the claim that the generated terms are
able to capture concepts beyond the existing English vocabulary.

Overall, KALE terms were able to complement already strong
learned sparse representations, providing accuracy boosts at rel-
atively small efficiency costs. This supports the claim that KALE
terms are able to capture semantic information in the corpus that
existing sparse representations do not capture as accurately, or do
not capture at all.

5.4 Assessing Posting List Size Distribution
Natural vocabularies are typically skewed, and KALE, following pre-
vious work such as EfficientSPLADE [17], employs a regularization
term in the loss function to ensure a balanced index. Enforcing an
equal distribution of document frequencies across all the artificial
terms, and the consequent balancing of posting list size, is helpful
from an efficiency perspective, avoiding the search of query terms
with excessively high posting list sizes. The latencies reported in
previous experiments did not hint at any serious unbalance in the
posting list sizes, which may be the effect of the regularization term.
Still, it is relevant to quantify the effect of regularization, and assess
how the KALE vocabulary would be distributed without it.

In this subsection, experiments were conducted with a modified
version of KALE, and posting list sizes for the generated vocabulary
were plotted. Instead of leveraging both the M3SE loss and the
equipartitioning loss, a setting was tested where KALE is trained
solely with M3SE. After training KALE in this setting, posting list
sizes were plotted, both with and without regularization.

19

ICTIR ’23, July 23, 2023, Taipei, Taiwan. Luís Borges, Bruno Martins, & Jamie Callan

Table 3: Experimental results when complementing other sparse retrievers with the KALE vocabulary. KALE terms were added
with TF=1, with the exception of impact indexes. The lexical terms were either untouched (i.e., BM25), or reweighted/expanded
by the other retrievers. QL denotes MSMARCO query latency, measured in milliseconds. The symbol † denotes statistically
significant improvements over the base retrievers, for a paired t-test with a p-value of 0.05

.
MSMARCO Dev TREC DL 19 TREC DL 20

Method MRR@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 QL
BM25 0.184 0.379 0.506 0.129 0.480 0.164 17
BM25+KALE 0.319† 0.564† 0.646† 0.142 0.639† 0.210† 26
DeepCT 0.245 0.481 0.576 0.156 0.550 0.178 17
DeepCT+KALE 0.326† 0.590† 0.681† 0.166 0.650† 0.219 30
DocT5Query 0.274 0.539 0.629 0.159 0.611 0.218 21
DocT5Query+KALE 0.323† 0.574† 0.658 0.145 0.641 0.211 26
DeepImpact 0.326 0.582 0.662 0.152 0.602 0.198 55
DeepImpact+KALE 0.359† 0.625† 0.704† 0.160 0.667† 0.222 84
EfficientSPLADE 0.386 0.671 0.715 0.168 0.718 0.242 43
EfficientSPLADE+KALE 0.389† 0.667 0.720 0.168 0.713 0.239 89

Table 4: Ablation tests with the equipartitioning component.
Index size is the disk size of the inverted index, measured in
GB. QL denotes query latency, and is measured in ms/query.

Method MRR@10 Index Size QL
BM25 0.184 0.72 18
KALE 0.319 3.80 26
KALE w/o Equipartitioning 0.315 3.80 31

Figure 4: Document frequencies for KALE terms when en-
abling or disabling the equipartitioning component.

Table 4 compares KALE with and without equipartitioning, in
terms of effectiveness, query latency, and index size. The results
show a statistically significant effect (paired t-test with a p-value
of 0.05) when removing equipartitioning. As expected, KALE terms
increased the size of the index in disk, and removing equiparti-
tioning did not influence index size (i.e., equipartitioning changes
the size distribution within the same 98,304 posting lists, which
combine to the same total size). Taking regularization out resulted
in an effectiveness drop, together with an increase in query latency.
This indicates that the regularization term was useful in enforc-
ing a fairly balanced distribution of posting list sizes, which also
contributed to an accuracy increase.

The left violin plot from Figure 4 illustrates the distribution of the
term Document Frequency (DF) for the 98,304 KALE terms, while
the right plot presents the same data, without equipartitioning. Ide-
ally, all terms should have the DF obtained by dividing the number
of documents in the collection with the KALE vocabulary size of
98,304. The average DF for both distributions matched this ideal DF.
Removing equipartitioning increased the standard deviation of the
DFs, which aligns with the previous expectation that regularization
helped balance the DFs, and consequently, decrease search latency.

The previous experiments showed that the equipartitioning com-
ponent was useful in balancing the posting list sizes of the gener-
ated KALE vocabulary, and therefore improve search efficiency. Not
considering the regularization component led not only to worse
MRR@10, but also to an increase in query latency.

5.5 Experiments with Out-of-Domain Data
This paper claims that the KALE vocabulary captures important
concepts in its training corpus. This makes it seem unreasonable to
expect the generated terms to retain performance when porting to
unrelated domains, since the vocabulary is likely domain-specific.
For example, a vocabulary term related to gardening may indeed
be useful in MSMARCOv1, but still useless in a physics dataset.

Table 5 displays the results of combining KALE terms with BM25,
as well as using KALE in isolation, over the BEIR benchmark. KALE
performed poorly when evaluated zero-shot on different domains,
particularly on the semantic relatedness tasks. Unlike in previous
experiments, KALE struggled to outperform BM25, but still mostly
outperformed DeepCT, when combined with the English terms.
The search tasks are closer in nature with the MSMARCOv1 pas-
sage ranking task, and KALE improved over BM25 in one of these
datasets. That corpus corresponds to a Question Answering dataset
similar to MSMARCOv1, which aligns with the intuitions.

In order to further assess the hypothesis of whether the terms are
specific to MSMARCOv1 or not, five random dimensions were sam-
pled, and the training queries were sorted based on their weights for
those specific dimensions. The top 20 queries were selected based
on the aforementionedweights. Table 6 displays the dimensions, the
five lexical terms with a higher frequency on these top queries, and

20

KALE: Using a K-Sparse Projector for Lexical Expansion ICTIR ’23, July 23, 2023, Taipei, Taiwan.

Table 5: Experimental results on the public BEIR datasets. Results are measured with NDCG@10. Boldface denotes the best
scores, underline denotes the second best, and italics denotes cases where KALE improves over BM25.

BM25 DeepCT DocT5Query EfficientSPLADE KALE+BM25 KALE only
Search Tasks

DBPedia 0.313 0.177 0.331 0.405 0.287 0.245
FIQA 0.236 0.191 0.291 0.318 0.221 0.169
HotpotQA 0.603 0.503 0.581 0.666 0.498 0.318
NFCorpus 0.325 0.283 0.328 0.331 0.258 0.217
NQ 0.329 0.188 0.399 0.515 0.363 0.318
TREC-COVID 0.656 0.406 0.713 0.661 0.516 0.423

Semantic Relatedness Tasks
Arguana 0.315 0.309 0.349 0.473 0.308 0.256
Climate-FEVER 0.213 0.066 0.201 0.189 0.192 0.118
FEVER 0.753 0.353 0.714 0.749 0.637 0.509
Scidocs 0.158 0.124 0.162 0.153 0.112 0.069
Scifacts 0.665 0.631 0.675 0.674 0.573 0.305
Touche2020 0.367 0.156 0.347 0.270 0.208 0.204

Table 6: Interpretations of 5 different KALE terms. For each
dimension, the top 20 queries with the highest weight for
that dimension were inspected, and the table reports the top
5 terms with the highest frequencies in those queries.

Dim. Top 5 terms Interp.
871 click, iphone, itunes, open, connect iphone
3862 first, wedding, love, day, song wedding songs
14609 business, cost, market, make, process business
29305 home, windows, gas, oven, kitchen kitchen
31376 heart, info., symptoms, online, test heart concern

the interpretation of the concept being captured by the correspond-
ing vocabulary term. This experiment supports the expectations on
the domain-specific nature of the vocabulary generated by KALE.

In summary, as expected, the generated vocabulary is domain-
specific, which is the likely cause of the limited ability of KALE
to generalize out-of-domain. Semantic relatedness tasks are fairly
different than the retrieval domain KALE was trained on. For search
tasks, KALE still showed some improvements, specifically in a
Question Answering dataset similar to MSMARCOv1.

6 LIMITATIONS
In spite of the positive results, some limitations should also be
highlighted. First, the experimental results seemed to plateau, and
larger vocabularies did not lead to large improvements. A potential
reason is the fact that KALE applies no term weighting, augmenting
the lexical text with new artificial terms and using a constant term
frequency. This setting is not novel in the IR community, as classi-
cal expansions with controlled vocabularies [16, 35] often employ
no term weighting. Experiments with different term frequencies
offered marginal improvements over the TF=1 setting in KALE, but
this research direction was not extensively pursued.

The teacher model distilled into KALE is also far from being
the strongest available dense retrieval model. We did some ini-
tial experiments trying to distill knowledge from stronger dense
models, but results fell short compared to the reported teacher
model. Previous work [22] pointed out how knowledge distillation
from strong models is not entirely straightforward - the authors

proposed to gradually improve the quality of the teachers and the
difficulty of the examples as training progresses. Initial experiments
leveraging two teachers instead of one resulted in a very marginal
improvement, corroborating the aforementioned previous work.

7 CONCLUSIONS AND FUTUREWORK
This paper presented KALE, a simple model to generate sparse rep-
resentations from dense vectors, via a simple projector applied on
top of the output from a DistilBERT language model, followed by a
TopK operation. Sparse representations for an input text are gener-
ated over a new vocabulary space, and these representations are
then converted to artificial terms, which can be stored in inverted in-
dexes and searched efficiently. KALE was trained and evaluated on
MSMARCOv1. We encoded the MSMARCOv1 corpus with KALE,
hence generating new terms for every passage in the collection,
and then indexed the resulting augmented passages. At query time,
KALE generates new query terms, to be searched in conjunction
with the existing lexical terms.

Experimental results demonstrate that the proposed vocabulary,
on its own, outperforms the lexical English vocabulary with a BM25
baseline. When combined with existing sparse methods, further per-
formance increases are observed across different sparse retrievers,
with a small penalty in query latency. KALE can be highly relevant
when resources are scarce, since the method is simple and cheap
to use, and incurs in only small latency costs. Hopefully, this work
can motivate additional research on learned sparse representations.
Several questions are left open (e.g., the benefits of general terms
against more specific terms, or different term weighting schemes),
and future work can attempt to address them.

ACKNOWLEDGMENTS
This research was supported by the Portuguese Recovery and Re-
silience Plan through project C645008882-00000055, through Fun-
dação para a Ciência e Tecnologia (FCT) with the Ph.D. scholarship
SFRH/BD/150497/2019 under the CMU-PT Program, and through
the INESC-ID multi-annual funding from the PIDDAC programme,
corresponding to reference UIDB/50021/2020.

21

ICTIR ’23, July 23, 2023, Taipei, Taiwan. Luís Borges, Bruno Martins, & Jamie Callan

REFERENCES
[1] Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu,

Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, et al. 2016.
MS MARCO: A human generated machine reading comprehension dataset. In
Proceedings of the Workshop on Cognitive Computation at the Annual Conference
on Neural Information Processing Systems.

[2] Donghyun Choi, Myeongcheol Shin, Eunggyun Kim, and Dong Ryeol Shin. 2021.
Adaptive batch scheduling for open-domain question answering. IEEE Access 9
(2021).

[3] Eunseong Choi, Sunkyung Lee, Minijn Choi, Hyeseon Ko, Young-In Song, and
Jongwuk Lee. 2022. SpaDE: Improving sparse representations using a dual
document encoder for first-stage retrieval. In Proceedings of the ACM International
Conference on Information & Knowledge Management.

[4] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M
Voorhees. 2020. Overview of the TREC 2019 deep learning track. arXiv preprint
arXiv:2003.07820 (2020).

[5] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M
Voorhees. 2021. Overview of the TREC 2020 deep learning track. arXiv preprint
arXiv:2102.07662 (2021).

[6] Zhuyun Dai and Jamie Callan. 2020. Context-aware term weighting for first
stage passage retrieval. In Proceedings of the International ACM SIGIR conference
on research and development in Information Retrieval.

[7] Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. 2021. SPLADE:
Sparse lexical and expansion model for first stage ranking. In Proceedings of the
International ACM SIGIR Conference on Research and Development in Information
Retrieval.

[8] Luyu Gao and Jamie Callan. 2021. Condenser: a Pre-training Architecture for
Dense Retrieval. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing.

[9] Luyu Gao and Jamie Callan. 2022. Unsupervised Corpus Aware Language Model
Pre-training for Dense Passage Retrieval. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics.

[10] Mitko Gospodinov, Sean MacAvaney, and Craig Macdonald. 2023. Doc2Query:
When Less is More. In Proceedings of the European Conference on Information
Retrieval.

[11] Sebastian Hofstätter, Sophia Althammer, Michael Schröder, Mete Sertkan, and
Allan Hanbury. 2020. Improving efficient neural ranking models with cross-
architecture knowledge distillation. arXiv preprint arXiv:2010.02666 (2020).

[12] Kyoung-Rok Jang, Junmo Kang, Giwon Hong, Sung-Hyon Myaeng, Joohee Park,
Taewon Yoon, and Heecheol Seo. 2021. Ultra-High Dimensional Sparse Repre-
sentations with Binarization for Efficient Text Retrieval. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing.

[13] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with gpus. IEEE Transactions on Big Data 7, 3 (2019).

[14] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval for Open-
Domain Question Answering. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing.

[15] Omar Khattab and Matei Zaharia. 2020. ColBERT: Efficient and effective pas-
sage search via contextualized late interaction over BERT. In Proceedings of the
International ACM SIGIR conference on research and development in Information
Retrieval.

[16] Margaret EI Kipp. 2011. Controlled vocabularies and tags: An analysis of research
methods. NASKO 3 (2011), 23–32.

[17] Carlos Lassance and Stéphane Clinchant. 2022. An efficiency study for SPLADE
models. In Proceedings of the International ACM SIGIR Conference on Research and
Development in Information Retrieval.

[18] Carlos Lassance, Thibault Formal, and Stéphane Clinchant. 2021. Composite code
sparse autoencoders for first stage retrieval. In Proceedings of the International
ACM SIGIR Conference on Research and Development in Information Retrieval.

[19] Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-Hong Yang, Ronak Pradeep,
and Rodrigo Nogueira. 2021. Pyserini: A Python Toolkit for Reproducible Informa-
tion Retrieval Research with Sparse and Dense Representations. In Proceedings of
the 44th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR 2021). 2356–2362.

[20] Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. 2020. Distilling dense
representations for ranking using tightly-coupled teachers. arXiv preprint
arXiv:2010.11386 (2020).

[21] Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. 2021. In-batch negatives
for knowledge distillation with tightly-coupled teachers for dense retrieval. In

Proceedings of the Workshop on Representation Learning for NLP.
[22] Zhenghao Lin, Yeyun Gong, Xiao Liu, Hang Zhang, Chen Lin, Anlei Dong, Jian

Jiao, Jingwen Lu, Daxin Jiang, Rangan Majumder, et al. 2023. PROD: Progressive
Distillation for Dense Retrieval. In Proceedings of the International World Wide
Web Conference.

[23] Zheng Liu and Yingxia Shao. 2022. RetroMAE: Pre-training retrieval-oriented
transformers via masked auto-encoder. arXiv preprint arXiv:2205.12035 (2022).

[24] Antonio Mallia, Omar Khattab, Torsten Suel, and Nicola Tonellotto. 2021. Learn-
ing passage impacts for inverted indexes. In Proceedings of the International ACM
SIGIR Conference on Research and Development in Information Retrieval.

[25] Aditya Menon, Sadeep Jayasumana, Ankit Singh Rawat, Seungyeon Kim, Sashank
Reddi, and Sanjiv Kumar. 2022. In defense of dual-encoders for neural ranking.
In Proceedings of the International Conference on Machine Learning.

[26] Thong Nguyen, Sean MacAvaney, and Andrew Yates. 2023. A Unified Frame-
work for Learned Sparse Retrieval. In Proceedings of the European Conference on
Information Retrieval.

[27] Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo Hernández Ábrego, Ji Ma,
Vincent Y Zhao, Yi Luan, Keith B Hall, Ming-Wei Chang, et al. 2021. Large dual
encoders are generalizable retrievers. arXiv preprint arXiv:2112.07899 (2021).

[28] Rodrigo Nogueira, Jimmy Lin, and AI Epistemic. 2019. From doc2query to
docTTTTTquery. Online preprint 6 (2019).

[29] Rodrigo Nogueira, Wei Yang, Jimmy Lin, and Kyunghyun Cho. 2019. Document
expansion by query prediction. arXiv preprint arXiv:1904.08375 (2019).

[30] Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Wayne Xin Zhao, Daxi-
ang Dong, Hua Wu, and Haifeng Wang. 2021. RocketQA: An Optimized Training
Approach to Dense Passage Retrieval for Open-Domain Question Answering. In
Proceedings of the Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies.

[31] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing.

[32] Ruiyang Ren, Yingqi Qu, Jing Liu, Wayne Xin Zhao, Qiaoqiao She, Hua Wu,
Haifeng Wang, and Ji-Rong Wen. 2021. RocketQAv2: A Joint Training Method for
Dense Passage Retrieval and Passage Re-ranking. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing.

[33] Stephen Robertson, Hugo Zaragoza, et al. 2009. The probabilistic relevance
framework: BM25 and beyond. Foundations and Trends® in Information Retrieval
3, 4 (2009).

[34] Tao Shen, Xiubo Geng, Chongyang Tao, Can Xu, Xiaolong Huang, Binxing Jiao,
Linjun Yang, and Daxin Jiang. 2022. LexMAE: Lexicon-Bottlenecked Pretraining
for Large-Scale Retrieval. arXiv preprint arXiv:2208.14754 (2022).

[35] Barry Smith and Anand Kumar. 2004. Controlled vocabularies in bioinformatics:
a case study in the gene ontology. Drug Discovery Today: BIOSILICO 2, 6 (2004),
246–252.

[36] Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna
Gurevych. 2021. BEIR: A Heterogeneous Benchmark for Zero-shot Evaluation
of Information Retrieval Models. In Proceedings of the Conference on Neural
Information Processing Systems: Datasets and Benchmarks Track.

[37] Nicola Tonellotto, Craig Macdonald, Iadh Ounis, et al. 2018. Efficient query
processing for scalable web search. Foundations and Trends® in Information
Retrieval 12, 4-5 (2018), 319–500.

[38] Shitao Xiao and Zheng Liu. 2022. RetroMAE v2: Duplex Masked Auto-
Encoder For Pre-Training Retrieval-Oriented Language Models. arXiv preprint
arXiv:2211.08769 (2022).

[39] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N Bennett,
Junaid Ahmed, and Arnold Overwijk. 2020. Approximate Nearest Neighbor
Negative Contrastive Learning for Dense Text Retrieval. In Proceedings of the
International Conference on Learning Representations.

[40] Hamed Zamani, Mostafa Dehghani, W Bruce Croft, Erik Learned-Miller, and
Jaap Kamps. 2018. From neural re-ranking to neural ranking: Learning a sparse
representation for inverted indexing. In Proceedings of the ACM International
Conference on Information and Knowledge Management.

[41] Wayne Xin Zhao, Jing Liu, Ruiyang Ren, and Ji-Rong Wen. 2022. Dense
text retrieval based on pretrained language models: A survey. arXiv preprint
arXiv:2211.14876 (2022).

[42] Kun Zhou, Xiao Liu, Yeyun Gong, Wayne Xin Zhao, Daxin Jiang, Nan Duan,
and Ji-Rong Wen. 2022. MASTER: Multi-task Pre-trained Bottlenecked Masked
Autoencoders are Better Dense Retrievers. arXiv preprint arXiv:2212.07841 (2022).

[43] Justin Zobel and Alistair Moffat. 2006. Inverted files for text search engines. ACM
computing surveys (CSUR) 38, 2 (2006), 6–es.

22

	Abstract
	1 Introduction
	2 Related Work
	2.1 Retrieval with Dense Representations
	2.2 Retrieval with Sparse Representations

	3 The KALE Approach
	4 Datasets and Evaluation Methods
	5 Experimental Evaluation
	5.1 Evaluating the Vocabulary Size
	5.2 Evaluating the Number of Expansion Terms
	5.3 Complementing Different Representations
	5.4 Assessing Posting List Size Distribution
	5.5 Experiments with Out-of-Domain Data

	6 Limitations
	7 Conclusions and Future Work
	Acknowledgments
	References

