
Mars: Near-Optimal Throughput with Shallow Buffers
in Reconfigurable Datacenter Networks∗

VAMSI ADDANKI, Faculty of Electrical Engineering and Computer Science, TU Berlin, Germany
CHEN AVIN, School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Israel
STEFAN SCHMID, Faculty of Electrical Engineering and Computer Science, TU Berlin, Germany

The performance of large-scale computing systems often critically depends on high-performance communica-
tion networks. Dynamically reconfigurable topologies, e.g., based on optical circuit switches, are emerging as
an innovative new technology to deal with the explosive growth of datacenter traffic. Specifically, periodic
reconfigurable datacenter networks (RDCNs) such as RotorNet (SIGCOMM 2017), Opera (NSDI 2020) and
Sirius (SIGCOMM 2020) have been shown to provide high throughput, by emulating a complete graph through
fast periodic circuit switch scheduling.

However, to achieve such a high throughput, existing reconfigurable network designs pay a high price:
in terms of potentially high delays, but also, as we show as a first contribution in this paper, in terms of the
high buffer requirements. In particular, we show that under buffer constraints, emulating the high-throughput
complete graph is infeasible at scale, and we uncover a spectrum of unvisited and attractive alternative RDCNs,
which emulate regular graphs, but with lower node degree than the complete graph.

We present Mars, a periodic reconfigurable topology which emulates a 𝑑-regular graph with near-optimal
throughput. In particular, we systematically analyze how the degree 𝑑 can be optimized for throughput given
the available buffer and delay tolerance of the datacenter. We further show empirically that Mars achieves
higher throughput compared to existing systems when buffer sizes are bounded.

1 INTRODUCTION
With the popularity of data-centric and distributed applications, the traffic in datacenters is growing
explosively. Dealing with this traffic however becomes increasingly challenging: while cloud traffic
roughly doubles each year [1], the capacity increase provided by electrical switches for a given
power and cost starts to lag behind. This gap is expected to worsen with the current trend to
hardware-driven workloads such as distributed machine learning training [2].
As the throughput of datacenter networks is becoming more and more critical for application

performance, over the last years, great efforts have been made to increase the capacity of datacenter
topologies. A particularly innovative architecture to meet the stringent bandwidth requirements of
modern datacenters, are reconfigurable (optical) datacenter networks (RDCNs) [2–11], e.g., based on
optical circuit switches, tunable lasers, and simple passive gratings [12]. By quickly cycling through a
sequence of different topologies—typically matchings between top-of-rack (ToR) switches—RDCNs
such as RotorNet [3], Opera [4] or Sirius [2] can provide periodic direct connectivity between rack
pairs, at microsecond or even nanosecond granularity. A common property of these systems is that
they emulate a complete graph, and so avoid the “bandwidth tax” of multi-hop forwarding [4, 13].
Indeed, empirical studies show that periodic reconfigurable datacenter topologies can achieve
significantly higher throughput compared to cost-equivalent traditional datacenters based on static

topologies [2–4].

This paper is motivated by the observation that the existing approach of using reconfigurable

technologies to emulate complete graphs comes at a price: long delays and large buffer requirements.

First, at scale, emulating a complete graph can entail long delays: the denser the emulated
network, the longer the periodic reconfiguration cycle and hence the longer a given rack pair has
∗Authors version. Final version of the paper to appear in ACM SIGMETRICS 2023. This work is part of a project that has
received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme, consolidator project Self-Adjusting Networks (AdjustNet), grant agreement No. 864228, Horizon
2020, 2020-2025.
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Fig. 1. Periodic reconfigurable datacenter topologies pose fundamental tradeoffs across throughput, delay

and buffer requirements. Existing designs are at the extremes of a spectrum of optimal designs with lower

delay and buffer requirements.

to wait to be connected again. Second, as we show analytically in this paper, the resulting long
reconfiguration cycles require excessive buffering at the ToR switches and end-hosts. The required
buffer can intuitively be viewed as bandwidth-delay product of dynamic topologies similar to the
corresponding notion for static topologies in TCP literature. In practice though, datacenter switches
are equipped with shallow buffers. Further, several studies in the recent past show an increasing
gap between switch capacity and buffer sizes [14, 15].

Our main insight in this paper is that accounting for buffer constraints can significantly change the

design considerations of reconfigurable datacenter networks.

In particular, we initiate the study of—and make the case for—reconfigurable networks which
emulate graphs of lower node degree, uncovering an entire spectrum of possible topology designs.
We present a systematic and formal analysis of the design spectrum and the tradeoffs that these
topologies introduce in terms of throughput, delay, and buffer requirements. Our perspective and
the main tradeoffs are intuitively visualized in Figure 1 (left), where on the x-axis (at the bottom)
we show the topologies according to the node degree of the graph they emulate. The x-axis (at the
top) also represents increasing delay from left to right. The y-axis shows the throughput of the
system from low to high. Let us elaborate on the important points in the figure (summarizes in the
table on the right):

1 Static DCNs: On the very left of the design space are traditional static datacenter networks
referred as uni-regular topologies [16] e.g., expander based DCNs [17–19]1. Such a design in
principle incurs the lowest delay and requires the least amount of buffer to achieve its ideal
throughput, i.e., the optimal throughput under low delay tolerance. However, since the topology
remains static, for scalability reasons, each ToR switch can only connect to a limited number of
other ToR switches. This results in long multi-hop paths and hence a high “bandwidth tax” [13],
and lower throughput.

2 Existing periodic RDCNs: To reduce the “bandwidth tax” and to achieve high throughput,
existing designs resort to emulating a complete graph where each rack-pair is connected directly
1These works also claimed that static expander-based topologies are similar or better designs (in terms of performance and
cost) compared to Clos-based topologies. We henceforth focus on static expanders. A detailed discussion can be found in §6.
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once in every matching cycle [2, 3]. Such designs achieve high throughput, in fact maximum across
all topologies in our design space, i.e., the optimal throughput. However, as we will show in this
paper, the high throughput offered by emulating a complete graph comes at the cost of high delay
and is subject to the availability of large buffers.

3 Existing periodic RDCNs under resource constraints: Given the large buffer requirements
of existing designs (emulating a complete graph), we study their throughput under limited buffer.
Interestingly, we find that, existing periodic reconfigurable datacenter topologies may perform
equally or worse compared to a static uni-regular topology in terms of throughput, when buffer
sizes are bounded.
4 Mars: Exploiting the fundamental tradeoffs across the design space, we propose Mars, a
periodic reconfigurable topology that provides near optimal, high throughput with the limited
amount of available buffer. Specifically, we parametrize our design based on the delay tolerance
and available buffer. We systematically determine the optimal degree 𝑑 which depending on the
resource constraints lies between a static topology and a complete graph.

It is interesting to observe from Figure 1 that the throughput-delay relation implies an infeasible

region for topology design (shown in red shade). The available buffer space further restricts the
design space (shown in gray shade), imposing a fundamental tradeoff across the topologies within
the feasible region in terms of throughput, delay and buffer.

Our analytical approach in this paper is novel and relies on a reduction of a periodic evolving
graph to a specific static graph (Theorem 1). This enables us to study the throughput maximization
problem using well-known graph analysis techniques for static graphs and to analytically evaluate
the throughput of both existing dynamic topologies (RotorNet, Opera, and Sirius) as well as possible
alternatives (Mars). We believe that this reduction technique may be of independent interest and
could be potentially used to study other properties of dynamic topologies.

In summary, our key contributions in this paper are:
• We provide a throughput-centric view and formal model of the performance of periodic
reconfigurable datacenter topologies. In particular, we analytically derive the relation between
throughput, delay, and the required amount of buffer in the network which reveals a non-
trivial tradeoff in the design of periodic reconfigurable topologies.

• We present Mars, a novel reconfigurable datacenter design that maximizes throughput under
limited buffer and delay requirements.

• We report on an extensive evaluation showing that Mars improves throughput by up to
4x compared to existing approaches when buffer sizes are bounded. Our evaluation also
shows that Mars improves the 99-percentile flow completion time for short flows by up to
75% compared to the state-of-the-art approach [4] and by up to 87% compared to Sirius and
RotorNet.

For ease of presentation and due to space constraints, we explain the main concepts of the paper
intuitively, and defer the formal definitions and detailed proofs to the appendix.

2 PRELIMINARIES & MODEL
We first give a brief background on periodic reconfigurable topologies and introduce our model.

2.1 Periodic Reconfigurable Topologies
The key enablers and building blocks for fast periodic reconfigurations are optical circuit switching
technologies such as rotor-switches [3], AWGR gratings [20] and tunable lasers [2, 21]. Such
technologies are oblivious to the demand, thus avoiding the overhead of measuring and estimating
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the demand. For instance, the overhead is in the order ofmicroseconds for RotorNet and nanoseconds
for Sirius which periodically reconfigure the network topology.

Timeslot

Timeslots (Period       )

periodic

Input portOutput port

Fig. 2. The periodic sequence of matchings of an optical circuit switch.

Circuit switchmodel:As a unified model of periodic circuit switching technologies, a rotor-switch
serves as a building block for us in the rest of the paper. Rotor-switches perform circuit switching

and implement a sequence of matchings in a periodic schedule with period Γ where a matching is
a map from the switch’s input ports to its output ports. The packets arriving at an input port of a
rotor-switch are forwarded to the matched output port. Specifically, rotor-switches do not process
packets and the forwarding is dictated by the matching at any given instance of time. Figure 2
shows an example of a rotor-switch with four input and output ports with a sequence of three
matchings. We use the term timeslot denoted by Δ to refer to the total time spent by rotor-switch
in each matching including the reconfiguration time. We denote the reconfiguration time by Δ𝑟 .
The utilization time (when traffic is sent) is then Δ − Δ𝑟 . In essence, a rotor-switch pays a “latency
tax” of Δ𝑢 =

Δ𝑟

Δ .
Note that, newer proposals such as Sirius [2] use optical gratings and tunable lasers to achieve

fast periodic reconfigurations at nanosecond scale. In contrast to rotor-switches, Sirius uses optical
gratings which are the building blocks and the ToR switches (or end-hosts) connect to the gratings
via tunable lasers which tune the wavelength of emitted light periodically. However, both RotorNet
and Sirius logically capture a rotor-switch that rotates periodically across a fixed number of
matchings. To this end, Sirius can be abstracted as a topology with rotor-switches and the difference
arises in the system level parameters such as reconfiguration time Δ𝑟 . We do not model system

Servers

ToRs

 Circuit
Switches

Circuit Switch
  (over time)

(a) A 2-tier periodic RCDN.

Circuit Switching Spine Layer

ToR Input

ToR Output

(b) An abstract view of periodic RCDN topologies.

Fig. 3. Illustration of periodic RCDN model we consider in this paper, consisting of 𝑛𝑢 ToR switches each

with 𝑛𝑢 uplinks. The datacenter is interconnected by a circuit switching spine layer consisting of 𝑛𝑠 circuit

switches, each with 𝑛𝑝 input and output ports.
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Timeslot 0 Timeslot 2 Periodic

(a) Example of a periodic evolving graph with period Γ = 2 depicting the
ToR-to-ToR connectivity over time; 𝑛𝑡 = 16, 𝑛𝑢 = 2, 𝑛𝑠 = 2 and 𝑛𝑝 = 16.

(b) The corresponding Emulated
graph (static) over time.

Fig. 4. Given the number of ToR switches 𝑛𝑡 with uplinks 𝑛𝑢 and a periodic sequence of matchings corre-

sponding to each circuit switch, the topology is a periodic evolving graph which emulates a static graph

over time.

level parameters in this paper and only focus on the topological aspects. In the following, we will
sometimes use the more general term optical switch when referring to the rotor-switch.

Topology: Following the literature on existing proposals [2–4], we consider 2-tier reconfigurable
datacenter topologies with a set of ToR switches (leaf layer) and a set of circuit switches (spine
layer) as shown in Figure 3a, where each circuit switch functions as a rotor-switch. The uplinks
of the ToR switches connect to the spine layer which interconnects the datacenter2. Concretely,
as illustrated in Figure 3b, we consider a periodic reconfigurable datacenter with 𝑛𝑡 ToR switches
each with 𝑛𝑢 uplinks; 𝑛𝑠 circuit switches each with 𝑛𝑝 input and output ports. We assume that a
link 𝑒 in the topology has capacity 𝑐 (𝑒). We will later show that this generalized view reveals an
entire spectrum of topologies where the existing systems (e.g., RotorNet and Sirius) are special
instances of the spectrum which emulate a complete graph i.e., each ToR connects to every other
ToR in a period.

2.2 Graph Theoretic Model of Periodic ToR-to-ToR Connectivity
In contrast to packet switched networks, circuit switched networks do not buffer packets. To this
end, since periodic reconfigurable topologies are circuit switched, we are mainly interested in
the connectivity between the end points of the circuit switched network, namely the ToR-to-ToR
connectivity. Hence, circuit availability between a pair of ToR switches can be considered as a
direct link between the pair. In the following, we model the periodically reconfigurable ToR-to-ToR
connectivity over time as a periodic evolving graph.

Periodic evolving graph: Consider the periodic reconfigurable topology described in §2.1 (shown
in Figure 3b). ToR switches connect to the optical switches via uplinks. The optical spine layer in
turn establishes a circuit between ToR pairs periodically as shown in Figure 4a since the optical
switches reconfigure periodically according to a fixed schedule. To this end, we represent the
ToR-to-ToR connectivity as periodic evolving graph denoted by G = (𝑉 , E). Specifically, G is a
periodic sequence of directed graphs defined for timeslots 𝑡 ∈ [0,∞) where each timeslot is of Δ
duration. We denote the graph at time 𝑡 as G𝑡 = (𝑉 , E𝑡 ), where 𝑉 is the set of all ToR switches and
the edge set E𝑡 represents the circuit availability between the ToR switches at time 𝑡 . The sequence
of edge sets E𝑡 and consequently the evolving graph G are periodic with period of Γ timeslots.
The period in turn relates to the periodic switching schedule of the optical switch. We denote the
capacity of circuit between ToR pairs at any time 𝑡 as 𝑐𝑡 (𝑒) for all 𝑒 ∈ E𝑡 . We explicitly set 𝑐𝑡 (𝑒) = 0

2Each ToR uplink is a set of two SERDESes [2, 22] which are uni-directional corresponding to ToR output (pentagons) and
input (circles) as depicted in Figure 3b.
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if 𝑒 ∉ E𝑡 . Further, we model the “latency tax” Δ𝑢 due to reconfigurations by limiting the access to
an edge 𝑒 ∈ E𝑡 to only a (1−Δ𝑢) fraction of a timeslot (from the start of every timeslot). This model
serves as an entry point for our formal analysis of throughput, delay, and buffer requirements of
reconfigurable topologies in the next section.

3 MOTIVATION: FUNDAMENTAL TRADEOFFS OF PERIODIC RDCNS
We now provide a more detailed motivation for our work. Specifically, we analytically derive
the throughput of periodic RDCNs (§3.1) and its relation to delay (§3.2). We further study the
buffer requirements (§3.3) and highlight that the topologies introduce a fundamental tradeoff
between throughput, delay and buffer. We then present remarks and practical implications of
our results (§3.4). Finally, we discuss the optimization opportunities in the design of periodic
reconfigurable topologies (§3.5).

3.1 Throughput of Periodic RDCNs
We first study the throughput of periodic reconfigurable topologies. Specifically, we prove that the
throughput of a periodic evolving graph is equivalent to that of a unique static graph. Following
this result, we re-investigate the throughput of static graphs and obtain a more general result
which is in line with the definitions and intuitions discussed in the literature. Our result asserts
that the throughput of periodic reconfigurable topologies as well as static topologies is inversely
proportional to average route length as opposed to shortest path lengths used in the most recent
work [16].

In the following, we briefly introduce our definitions in the context of periodic evolving graphs.
Prior works [16, 23, 24] define throughput of a static topology given a demand matrixM as the
maximum scaling factor 𝜃 such that there exists a feasible flow that satisfies the scaled demand 𝜃 ·M.
A more formal definition appears in Appendix A. While prior works studied the throughput of static
topologies, we are not aware of a formal definition and study of the throughput of general dynamic
topologies. Initial studies on dynamic topologies informally define throughput of existing systems
(e.g., RotorNet) which emulate a complete graph, specifically in terms of demand completion
times [13]. We emphasize that our definitions and results in this paper hold for any periodic
reconfigurable topology. Next, we define the throughput of dynamic topologies using the notion of
temporal flows which are formally defined in Appendix B.

DemandmatrixM: Given a set of vertices𝑉 , a demand matrix specifies the demand rate between
every pair of vertices in bits per second defined as M = {𝑚𝑢,𝑣 | 𝑢 ∈ 𝑉 , 𝑣 ∈ 𝑉 } where𝑚𝑢,𝑣 is the
demand between the pair 𝑢, 𝑣 . A saturated demand matrix is such that the total demand originating
at a source 𝑠 equals its outgoing capacity and the total demand terminating at a destination 𝑑 equals
its incoming capacity. We consider saturated demand matrices since we focus on the maximum
achievable throughput. Specifically, saturated demand matrices allow for studying the maximum
demand that can be routed in a topology within the capacity constraints.

Legal flow: A legal flow in a static graph obeys capacity constraints and satisfies flow conservation
at all times (Appendix A, Definition 4). In the evolving graph, a legal temporal flow (Appendix B,
Definition 8) is subject to capacity constraints at all times and conserves flow in every period (Γ
timeslots).

Throughput 𝜃 (M, F ) of a flow: Following the seminal works on throughput [25–27]3, given a
demand matrixM specified in bits per second, we define the throughput achieved by a temporal

flow F in a periodic evolving graph as the scaling factor 𝜃 (M, F ) such that the flow F satisfies
3The maximum concurrent flow problem [25] considers that the demand between each pair 𝑠,𝑑 is equal. We relax this
assumption for the throughput maximization problem in our networking context similar to prior work [23].
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the scaled demand matrix 𝜃 (M, F ) · M where F is subject to capacity constraints at all times
and flow conservation in every period (Γ timeslots). We assume that certain amount of buffer is
available at each node to hold traffic until it can be forwarded to the next hop or destination.

Throughput 𝜃 (M) of the graph for a demand matrix: Since we are interested in the ideally
achievable throughput, following prior work [16, 23, 24], we define the throughput of a periodic
evolving graph as follows: given a demand matrixM, throughput is the maximum scaling factor
𝜃 (M) such that the scaled demand matrix 𝜃 (M) ×M is feasible in the network i.e., 𝜃 (M) is the
maximum throughput across all feasible flows: 𝜃 (M) = maxF 𝜃 (M, F ).

Throughput 𝜃 ∗ of the graph: The throughput 𝜃 ∗ is the maximum scaling factor 𝜃 (M) for a worst-
case demand matrix i.e., 𝜃 ∗ is the minimum throughput across all the saturated demand matrices:
𝜃 ∗ = minM 𝜃 (M). In essence, the network can always support 𝜃 ∗ · M demand for any saturated
demand matrix, where a saturated demand matrix is such that the total demand originating at any
source, and received by any destination equals the total node capacity.

We study the throughput of periodic RDCNs in relation to the graph emulated by the periodic
topology which we call the emulated graph, formally defined below.

Emulated graph: Consider a periodic evolving graph (see §2.2) G = (𝑉 , E) with edge capacities
𝑐𝑡 (𝑒) for every edge 𝑒 at time 𝑡 . Consider a static (directed, multi, edge-labeled) graph which is a
function of the evolving graph G defined as𝐺 (G) = (𝑉 , 𝐸), where 𝐸 = {(𝑒, ℓ) | 𝑒 ∈ Eℓ , ℓ ∈ [0, Γ)} is
the union of edges of the evolving graph over one period of time-interval and the labels correspond
to the time in the evolving graph. Let the capacity of an edge (𝑒, ℓ) ∈ 𝐸 in the static graph be 𝑐 (𝑒, ℓ)
where 𝑐 (𝑒, ℓ) = (1−Δ𝑢 )

Γ · 𝑐ℓ (𝑒). We refer to this static graph as emulated graph. Figure 4b illustrates
an example of the emulated graph corresponding to the periodic evolving graph in Figure 4a. Our
formal definition appears in Appendix B.3.

Our first main result, which is the basis for our methodology, is that the throughput of a periodic
evolving graph is equivalent to the throughput of its corresponding emulated graph.

Theorem 1 (Relation to Emulated Graph). Given a demand matrixM, any legal temporal flow F
in the periodic evolving graph G with throughput 𝜃 (M, F ) can be converted to a legal flow 𝐹 in the

emulated graph𝐺 (G) with the same throughput 𝜃 (M, 𝐹 ) = 𝜃 (M, F ) and vice versa. Consequently
the periodic evolving graph and the emulated graph have the same throughput 𝜃 (M) = max𝐹 𝜃 (M, 𝐹 ):
the maximum scaling factor given a demand matrixM; they further have the same throughput 𝜃 ∗ for
a worst-case demand matrix, where 𝜃 ∗ = minM 𝜃 (M).

Proof sketch. We present the formal proof of Theorem 1 in Appendix C and provide a proof
sketch here. We first define what we call extended paths for the static emulated graph that allows a
conversion between paths in the periodic evolving graph and the corresponding static emulated
graph. While the standard definition of path in a static graph is a sequence of edges connecting
a source and a destination, our extended path definition differs in two aspects. Given a temporal
path in the periodic evolving graph, we define the extended path in the static emulated graph as
the sequence of edges traversed in the temporal path where each edge is associated with a label
corresponding to the time when the edge was accessed in the temporal path. Further, each extended
path consists of a unique identifier. Since the evolving graph is periodic, we mainly focus on the
foundation set of temporal paths that start in the first period. As a result, there exists a one-to-one
mapping between the foundation set of temporal paths in the periodic evolving graph and the
extended set of paths in the static emulated graph. Exploiting this relation, we prove the following:
(i) we prove in Lemma 1 that if a legal flow in the emulated graph has throughput 𝜃 over the set
of extended paths, then there exists a legal temporal flow in the periodic evolving graph with the
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same throughput; (ii) we prove in Lemma 2 that if a legal temporal flow achieves throughput 𝜃 in
the evolving graph, then there exists a legal flow in the emulated graph with the same throughput
over the set of extended paths; (iii) finally, we prove in Lemma 3 that a flow in the emulated graph
over the set of all paths has the same throughput as that of a flow over the set of extended paths.
Using the above three results, we prove our main claim in Theorem 1.

Discussion. Theorem 1 enables us to study the throughput of periodic reconfigurable topologies
with the techniques used in static graphs. We emphasize that our result is general for periodic
reconfigurable topologies and is not specific to the existing systems; for instance the emulated
graph could indeed be an expander graph, or even a non-regular graph, but our result still holds.
We believe that our proof renders useful not only to study throughput maximization problem but
also other variants of flow problems. For example, by using our technique to convert flows from
the static to the periodic graph and vice versa one could easily derive a relation between the metric
of interest in each graph. We leave this exploration for future work.
We now shift our focus to obtain the throughput upper bound of static topologies for two

reasons. First, from Theorem 1, the throughput of a periodic reconfigurable topology is equivalent
to its corresponding emulated graph (a static graph). Second, the best known throughput upper
bound [16] for static topologies is specific to certain datacenter topologies and is not general
enough (see Appendix A). To this end, we revisit the problem and analyze it again using the formal
definitions typically used in the literature. We find that, the throughput of a static topology is
directly proportional to the total capacity and inversely proportional to the average route length,
which generalizes the recently derived throughput upper bound [16] for shortest paths.

Theorem 2 (Throughput). Given a demand matrix M and a flow 𝐹 , the throughput 𝜃 (M, 𝐹 ) of a
static graph represented as 𝐺 = (𝑉 , 𝐸) is given by Equation 1. The graph 𝐺 has throughput 𝜃 (M) =
max𝐹 𝜃 (M, 𝐹 ): the maximum scaling factor given a demand matrix M; and has throughput 𝜃 ∗ =

minM 𝜃 (M) for a worst-case demand matrix.

𝜃 (M, 𝐹 ) ≤ 𝐶

𝑀 · ARL(M, 𝐹 ) (1)

where 𝐶 =
∑

𝑒∈𝐸 𝑐 (𝑒) is the total capacity of the network,𝑀 =
∑

𝑠,𝑑∈𝑉 𝑚𝑠,𝑑 is the total demand for the

network and ARL(M, 𝐹 ) = ∑
𝑠,𝑑∈𝑉

∑
𝑝∈𝑃𝑠,𝑑

𝑚𝑠,𝑑

𝑀
· 𝑟𝑝 · len(𝑝) is the average route length forM and 𝐹 ,

where 𝑟𝑝 is the fraction of demand transmitted on the path 𝑝 .

Proof sketch. Our proof of Theorem 2 appears in Appendix D. We rely on average route length

formally defined in Definition 12, i.e., the weighted sum of all path lengths where the weight
corresponding to each path is the fraction of total demand transmitted on the path. The rest of the
proof follows by capacity constraints and flow conservation rules.

Discussion. Theorem 2 indeed expresses that the throughput maximization problem essentially
boils down to minimizing average route length as opposed to shortest path lengths [16] or average
shortest paths [24]. Both Theorem 1 and Theorem 2 provide a concrete understanding on the
achievable throughput of periodic reconfigurable topologies. First, Theorem 1 provides a relation
between the throughput of periodic reconfigurable topologies and the throughput of static topolo-
gies. Second, Theorem 2 provides the throughput of static topologies more concretely. Finally, for
the worst-case demand matrix, we rely on an important result stated in [16] (and even earlier
informally in [23, 24]) and claims that the worst-case demand matrix in a static topology is a
specific permutation matrix (longest-matching). Consequently the worst-case demand matrix for
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any periodic reconfigurable topology, due to Theorem 1, is a specific permutation matrix in the
corresponding emulated graph4.

However, so far we still assumed that (i) a certain amount of buffer is available at each intermediate
node and (ii) any amount of delay is tolerable. Hence, we study two important questions in the
remainder of this section.We first seek to understand whether high throughput provided by periodic
reconfigurations comes at the cost of inflated delay.

(Q1) Delay:What is the relation between throughput and delay in a periodic reconfigurable topology?

Given the increasing gap between capacity growth and switch buffers, we are further interested
in investigating whether periodic reconfigurable topologies address the near-end of Moore’s law
w.r.t buffer requirements.

(Q2) Buffer: How much buffer is required at each node to achieve the throughput upper bound stated

in Theorem 2?

3.2 Delay of Periodic RDCNs
The periodic reconfigurations naturally introduce a certain delay. In our context, delay is the time
it takes for a packet sent from a source to reach its destination in the periodic evolving graph,
without experiencing congestion from other packets. The maximum delay for a path 𝛿 is bounded by
len(𝛿) · Γ since every consecutive edge in the path is available within Γ timeslots (period). We are
mainly interested in the maximum delay incurred by feasible paths which typically reflects in the
tail latencies observed in a datacenter. In the following, we state the relation between throughput
𝜃 ∗ and delay.

Theorem 3 (Delay). Given a demand matrixM, a 𝑛𝑢-regular periodic evolving graph G emulating a

𝑑-regular graph with a period of Γ timeslots each of duration Δ and a flow F that achieves throughput

𝜃 (M, F ), the average route delay ARD(M, F ) and the maximum delay 𝐿𝑚𝑎𝑥 are given by
5
,

𝐿𝑚𝑎𝑥 ≥ ARD(M, F ) = ARL(M, F ) · Γ · Δ

≥ Ω

(
𝑑 · Δ

𝑛𝑢 · 𝜃 (M, F )

)
(2)

where ARD(M, F ) =
∑

𝑠,𝑑∈𝑉
∑

𝛿
𝑚𝑠,𝑑

𝑀
· 𝑟𝛿 · 𝐿(𝛿) is the average route delay for M and F , where

𝑟𝛿 is the fraction of demand transmitted on the legal temporal path 𝛿 , and 𝐿(𝛿) is the delay of the

path 𝛿 ,𝑀 =
∑

𝑠∈𝑉
∑

𝑑∈𝑉 𝑚𝑠,𝑑 is the total demand. In particular, for a worst-case demand matrix, the

maximum latency is bounded by

𝐿𝑚𝑎𝑥 ≥ Ω

(
𝑑 · Δ
𝑛𝑢 · 𝜃 ∗

)
(3)

Proof sketch.We use the argument of flow conservation to prove our claim. Our full proof appears
in Appendix E. Specifically, consider a temporal path 𝛿 with delay 𝐿(𝛿) between a source 𝑠 and a
destination𝑑 ; 𝑟𝛿 be the fraction of demand𝑚𝑠,𝑑 transmitted on the path 𝛿 . Notice that the destination
𝑑 does not receive the flow initially until 𝐿(𝛿) duration due to the path delay. From then on, in order
to satisfy the demand, source 𝑠 transmits 𝜃 (M, F ) ·𝑚𝑠,𝑑 · 𝑟𝛿 amount of flow in every period and
destination 𝑑 receives 𝜃 (M, F ) ·𝑚𝑠,𝑑 ·𝑟𝛿 amount of flow is every period. Due to conservation of flow,
the initially transmitted data (flow volume) until 𝐿(𝛿) time i.e., 𝜃 (M, F ) ·𝑚𝑠,𝑑 · 𝑟𝛿 · 𝐿(𝛿) circulates
(moves between 𝑠-𝑑) in the network in every period. As a result, the overall capacity consumed can
be written as 𝜃 (M, F ) · 𝐴𝑅𝐷 (M,F)

Γ ·Δ where ARD is the average route delay (Definition 14). However,
4A similar but less general result was recently claimed for specific RDCN designs [13]. In particular, it holds only for designs
which emulate a complete graph, while our result holds for any emulated graph due to our new result in Theorem 1.
5Ω is the asymptotic lower bound notation.
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the overall capacity utilized can also be written in terms of path lengths i.e., 𝜃 (M, F ) ·ARL(M, F )
where ARL is the average route length (Definition 12). By equating the two, we obtain our result in
Eq. (2). Eq. (3) follows by considering the throughput 𝜃 ∗ for a worst-case demand matrix.

Discussion.Using Theorem 3, we illustrate the throughput and delay relation for different values of
𝑑 in Figure 1. Here 𝑑 is the degree of the graph emulated by a periodic reconfigurable topology. Note
that the worst-case demand matrix (a permutation matrix) specifies non-zero demands between
ToR pairs at maximum distance in the graph [16] and hence the average route lengths ARL is close
to the diameter which is bounded by log𝑑 (𝑛𝑡 ) for 𝑑-regular graphs. Hence the throughput 𝜃 ∗ is
inversely proportional to log𝑑 (𝑛𝑡 ) whereas the delay based on Eq. (3) is proportional to 𝑑 · log𝑑 (𝑛𝑡 ).
Specifically, we notice that the existing designs which emulate a complete graph achieve the highest
throughput but at the cost of high delay.

3.3 Buffer Requirements of Periodic RDCNs
With the understanding of the relation between throughput and delay of periodic reconfigurable
topologies, we now study their buffer requirements. We assume that each node is equipped with a
memory region shared across the entire device and hence buffer is an aggregate value per node
in our analysis. This model is similar to shared memory architectures with complete sharing [28].
Our analysis reveals an interesting inequality for the required buffer, which is conceptually of the
well-known “bandwidth-delay product” form.

Theorem 4 (Buffer). Given a demand matrixM, a periodic evolving graph G requires at least 𝐵̂ total

amount of buffer in the network in order to achieve throughput 𝜃 (M, F ).

𝐵̂ ≥ (𝜃 (M, F ) ·𝑀) · ARD(M, F ) (4)

where 𝐵̂ =
∑

𝑢∈𝑉 𝐵(𝑢) is the total buffer of the network and 𝐵(𝑢) is the available buffer at a node 𝑢;
𝑀 =

∑
𝑠,𝑑∈𝑉 𝑚𝑠,𝑑 is the total demand for the network; ARD(M, F ) = ∑

𝑠,𝑑∈𝑉
∑

𝛿
𝑚𝑠,𝑑

𝑀
· 𝑟𝛿 · 𝐿(𝛿) is

the average route delay for M and F , where 𝑟𝛿 is the fraction of demand transmitted on the legal

temporal path 𝛿 .

Proof sketch.While the proof of Theorem 3 accounts for flow conservation with in one period
time interval, the proof of Theorem 4 follows by carefully accounting the flow that is in transit
within one period time interval before conservation applies. Our full proof appears in Appendix E.

Discussion. Theorem 4 reveals a non-trivial tradeoff across the spectrum of periodic reconfigurable
topologies which we discuss in detail in §3.5. Our result for the required buffer in Theorem 4
intuitively resembles the “bandwidth-delay product” commonly used in the TCP literature. A “pipe”
must have at least a bandwidth-delay product amount of bytes in transit (or inflight) in order to
achieve full utilization. Similarly, our result shows that the total buffer in a periodic reconfigurable
network must be at least the product of total demand (in bits per second) and the average route
delay. The required buffer stems from the waiting times at intermediate nodes along a path due to
the periodic reconfigurations. We believe this analogy may also render useful for instance to predict
the overall graph throughput based on the configuration of transport protocols. For example, the
window size6 of a transport protocol typically relates to the amount of buffering, and the maximum
window size may relate to the overall periodic graph throughput. We leave it for future work to
study such relations in detail.

6The window size of a transport protocol is typically the maximum amount of bytes allowed to be in transit at any point in
time.
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3.4 Remarks and Discussion on Theorems 1-4
Our results in the previous sections allow us to answer and shed light on several basic questions
also discussed in the literature [2, 3, 29].
Canbuffering at the end-hosts instead of ToRs alleviate the problems of excessive buffering?
Our result in Theorem 4 expresses the total amount of buffering required in the network. We note
that this buffering can either be done at the ToR switches or can be moved to the end-hosts. Several
works in the past [3, 29] informally discussed the need for in-network buffers but outside the circuit
switching layer7. Two-hop and in general multi-hop routing further worsens the need for additional
in-network buffers in periodic reconfigurable networks [3]. To this end, prior works proposed to
move the buffering from ToR switches to the end-hosts with specialized synchronization and packet
pause/unpause techniques between the end-hosts and the ToR switches [29]. These techniques are
motivated based on the fact that end-host DRAM memory is cheap and abundant while on-chip
ToR buffers are costly and limited in size. Nevertheless, excessive buffering at the end-hosts still
poses the well-known problems of queuing delay, although it alleviates the problems of scarce
buffer resource at the ToRs. The question of buffering at the end-hosts vs ToR switches poses an
inherent tradeoff between a) simplicity by buffering at the ToR but at the cost of large on-chip
costly buffers and b) cost-effectiveness by buffering at the end-hosts but at the cost of complex
techniques that consume additional CPU resources and potentially added processing delays.
Can nanosecond reconfiguration mask the problems of delay and buffer needs?
Notice that delay (from Theorem 3) is directly proportional to the timeslot duration Δ. Naturally, if
the reconfiguration delay Δ𝑟 is small, the timeslot duration Δ can also be reduced. As a result, the
maximum delay and the average route delay can be significantly reduced. However, notice that
the buffer requirements (from Theorem 4) are directly proportional to the timeslot duration Δ as
well as the total capacity e.g., the buffer requirements would remain the same if all the links in the
network are increased in capacity by 2x even if the reconfiguration time is reduced by 2x.
What is the difference between the degree of the emulated graph and the physical topology?
We emphasize that the emulated graph is obtained by the union of edges of the periodic evolving
graph (ToR-to-ToR connectivity) over one period of a time-interval. Hence, the node degree of
the emulated graph is the number of ToR switches that are directly connected to a given ToR
switch (over one period). In contrast, the node degree of the physical topology is the number of
circuit switches that are directly connected to a given ToR switch at any time. In particular, the
node degree in the physical topology is given by 𝑛𝑢 : the number of uplinks. However, for example,
both RotorNet and Sirius emulate a complete graph and hence have the same node degree in the
emulated graph given by 𝑛𝑡 : the total number of ToR switches. Hereafter in this paper, the emulated
graph and its degree play an important role (§4) especially as seen in Theorem 1 and Theorem 3
where 𝑑 is the degree.
Are the results applicable to Valiant routing?
We stress that our results in Theorem 1, 2, 3, 4 are general for an ideal routing scheme and are not
based on Valiant load balancing. We only assume the specific case of Valiant load balancing later
in §4.

3.5 Tradeoffs & Optimization Opportunity
Interestingly, the relation between throughput and delay is a concave function without buffer
constraints (Theorem 2) but is a convex function for a fixed amount of buffer (Theorem 4). Figure 1
illustrates the tradeoffs that arise across the design space of periodic reconfigurable topologies.
Specifically, for a certain fixed amount of buffer, existing designs emulating a complete graph are
no longer throughput optimal as the available buffer simply cannot hold enough traffic to achieve
7Recall that circuit switches are bufferless.
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the ideally achievable maximum. Further, throughput and delay pose a fundamental tradeoff in
terms of performance.
Although periodic reconfigurable datacenter designs were developed in view of bandwidth

scaling problem posed by the gradual end of Moore’s law, the required buffer with linear relation to
throughput does not indicate high scalability in future. Several studies in the recent past show an
increasing gap between the capacity growth and switch buffers [14, 15]. Specifically, the top-of-the-
rack buffers are extremely shallow and the buffer per port per Gbps has been gradually decreasing
over the recent years. In the following, we summarize our key motivation to explore the design
space of topologies.

• Throughput: If buffer is not a concern, then emulating a complete graph (existing designs)
results in high throughput but at the cost of high delay.

• Delay: If delay is a concern, even without buffer concerns, emulating a 𝑑-regular graph
where 𝑑 < 𝑛𝑡 results in lower delay but at the cost of throughput.

• Buffer: Finally, if buffer is a concern, there exists a𝑑-regular graph thatmaximizes throughput
within the buffer limits.

Our goal in this work is to design a periodic reconfigurable topology that maximizes throughput
given the buffer and delay requirements.

4 MARS: NEAR-OPTIMAL THROUGHPUT RDCNWITH SHALLOW BUFFERS
Reflecting on our observations in §3, we study the family of periodic reconfigurable topologies that
emulate a 𝑑-regular graph. Specifically, our aim is to systematically determine the high throughput
topology within the underlying buffer limits.

4.1 Overview
We first give an intuition on our design. Recall that the network consists of 𝑛𝑡 ToR switches each
with 𝑛𝑢 in/out ports interconnected via optical circuit switches.

Mars emulates a 𝑑-regular graph with near-optimal throughput: Given the importance of
the graph emulated by the topology, Mars emulates a “good” 𝑑-regular graph with the degree 𝑑
optimized for throughput with the limited available buffer. Specifically, the degree 𝑑 of the emulated
graph influences two factors (i) average path lengths which relates to throughput and (ii) delay
which relates to the buffer requirements. Among the set of all 𝑑-regular graphs, we are interested
in the “good” graphs with diameter close to log𝑑 (𝑛𝑡 ), where 𝑛𝑡 is the number of ToR switches. Note
that the lower bound for diameter of any 𝑑-regular graph is log𝑑 (𝑛𝑡 ). Following prior work [2], we
assume Valiant load balancing [30] for the routing scheme for simplicity. This inflates the average
route length by a factor of two i.e., 2 · log𝑑 (𝑛𝑡 ). Notice that emulating a 𝐾𝑛𝑡 complete graph with
large degree would result in shorter average route length. However, as we will see later, emulating
a degree 𝑑 ≤ 𝑛𝑡 results in better delay and better throughput under limited buffer.

A parametrized approach:We parametrize our design based on two values (i) delay requirement
𝐿 and (ii) buffer limit 𝐵. The degree 𝑑 of the emulated graph of Mars depends on the delay and
buffer requirements.

Delay and buffer requirements: Mars finds a balance between throughput, delay and buffer.
Specifically in Figure 1, Mars is the topology at the intersection of throughput upper bound with
and without buffer restrictions. To this end, Mars maximizes the throughput while finding a balance
in delay and buffer requirements.
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4.2 Properties of Mars
We first express the throughput of Mars without delay and buffer constraints which gives an
intuition on the ideally achievable throughput.

Theorem 5 (Unconstrained Throughput Upper Bound). The throughput of Mars connecting 𝑛𝑡
ToR switches each with 𝑛𝑢 in/out ports, emulating a 𝑑-regular graph without any delay and buffer

constraints, under Valiant load balancing, is given by:

𝜃 ∗ =
1

𝐴𝑅𝐿
≈ 1

2 · log𝑑 (𝑛𝑡 )

First the diameter of Mars’s emulated graph is close to log𝑑 (𝑛𝑡 ). Second, we then argue that the
worst-case permutation demand matrix specifies non-zero demands between ToR pairs which are
separated by a distance close to diameter. Further, Valiant load balancing inflates the route lengths
by a factor of 2 e.g., similar to existing designs [2] i.e., ARL = 2 · log𝑑 (𝑛𝑡 ) under worst-case demand
matrix and hence 𝜃 ∗ = 1

2·log𝑑 (𝑛𝑡 )
. For instance, in the case of 𝑑 = 𝑛𝑡 (emulating a complete graph),

we obtain 𝜃 ∗ = 1
2 .

With the understanding of the throughput of Mars, we can now relate its throughput to delay.
Using our result in Theorem 3, the delay 𝐿𝑚𝑎𝑥 of Mars is related to throughput as Ω( 𝑑 ·Δ

𝑛𝑢 ·𝜃 ∗ ) =

Ω( 2· (log𝑑 𝑛𝑡 ) ·𝑑 ·Δ
𝑛𝑢

). Given a constraint on delay i.e., the topology must ideally incur a delay less than
𝐿, we state the optimal degree for Mars in the following.

Theorem 6 (Optimal degree 𝑑 with delay constraints). The optimal 𝑑-regular graph emulated by

Mars that maximizes throughput (given the delay requirement 𝐿 and under Valiant load balancing)

has a degree 𝑑 given by,

𝑑 = ⌊𝑒−W(𝑘)⌋
where 𝑘 =

−2·ln(𝑛𝑡 ) ·Δ
𝑛𝑢 ·𝐿 ;W is the Lambert W function [31]; ln(.) is the natural logarithm and 𝑒 is the

Euler’s number.

We provide a proof sketch here. We begin by equating the delay of Mars and the desired delay
𝐿. We then use the property that if 𝑦𝑦 = 𝑘 where 𝑘 is some constant, then 𝑦 = 𝑒W(𝑙𝑛 (𝑘)) . Our full
proof appears in Appendix F.
Our observations in §3 reveal that a key tradeoff arises across the buffer requirements and the

achievable throughput. We are now interested in determining the optimal degree 𝑑 of Mars for a
limited buffer 𝐵 at each node. As an intuition, a topology requires more buffer as the product of the
scaled demand and the average route delay increases.

Theorem 7 (Optimal degree 𝑑 with buffer constraints). The optimal degree 𝑑 for the emulated graph

of Mars independent of the specific flow that maximizes throughput, given a limited buffer 𝐵 ≤ 𝑛𝑡 · Δ
at each node, is given by,

𝑑 = ⌊ 𝐵

𝑐 · Δ ⌋

where 𝑐 is the capacity of every edge in the topology and Δ is the timeslot value.

Our proof is a straight-forward extension using our results in Theorem 3, 4. The full proof
appears in §F. From Theorem 7, emulating a complete graph like the existing designs would require
a buffer of 𝑛𝑡

𝑛𝑢
· (𝑛𝑢 · 𝑐) · Δ = 𝑛𝑡 · 𝑐 · Δ where 𝑛𝑢 · 𝑐 · Δ is the amount of data that can be sent out

or received in a single timeslot and 𝑛𝑡
𝑛𝑢

is the period for a complete graph. In contrast, a 𝑑-regular
graph would only require 𝑑 · 𝑐 · Δ amount of buffer and achieves better throughput under limited
buffer compared to a periodic topology emulating complete graph.
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4.3 Interconnect

Switch size: Given 𝑛𝑡 number of ToR switches each with 𝑛𝑢 uplinks, Mars requires a switch size
of at least 𝑛𝑝 = 𝑛𝑡 similar to prior work [3, 4]. We need 𝑛𝑢 such circuit switches to interconnect the
datacenter. We leave it for future work to study the feasibility of using circuit switches with lower
port count.

Wiring: Each ToR uses its 𝑛𝑢 uplinks to connect to each of the 𝑛𝑢 circuit switches.

Matchings: We first generate a 𝑑-regular directed graph. Specifically, in generating the emulated
graph, we choose the 𝑑-regular graph for which the diameter approaches the lower bound of
⌈log𝑑 (𝑛𝑡 )⌉ [32–34] e.g., deBruijn digraphs [35]. A straight-forward argument shows that a 𝑑-
regular directed graph can be decomposed into 𝑑 perfect matchings. The idea is to recursively find a
1-factor and delete it from the graph where each 1-factor by definition is a perfect matching [36, 37].
We shuffle the resulting 𝑑 matchings and randomly assign 𝑑

𝑛𝑢
matchings to each of the 𝑛𝑢 circuit

switches in the topology. Each circuit switch then cycles through the 𝑑
𝑛𝑢

matchings periodically.
We note that decomposing the 𝑑-regular emulated graph into matchings can be computationally
expensive. However, this is performed only once at the time of deployment and the circuit switches
cycle through the installed matchings periodically thereafter.

Note that the interconnect for Mars can be implemented using the same hardware as in prior work

[2–4]; in fact, the only change required in Mars compared to these systems concerns the matchings

configurations.

4.4 Example: deBruijn-based Emulated Graph

Fig. 5. An example of a periodic RDCN interconnect

with 16 ToR switches each with 2 in/out ports; 2 circuit
switches each with 16 in/out ports. For better visualiza-
tion, the ToR switch outputs are depicted as pentagons

and inputs are depicted as circles. Circuit switches are

depicted as squares.

We walk through an example to better illus-
trate the topology construction and the inher-
ent tradeoffs. We consider an example with
𝑛𝑡 = 16 ToR switches each with 𝑛𝑢 = 2 in/out
ports. The interconnect requires𝑛𝑠 = 𝑛𝑢 = 2 op-
tical circuit switches each of size 𝑛𝑝 = 𝑛𝑡 = 16.
Each ToR uses its uplinks to connect to each of
the two circuit switches as shown in Figure 5.
Circuits are set up for 90𝜇𝑠 duration and it takes
10𝜇𝑠 to reconfigure (timeslotΔ = 100𝜇𝑠 for each
matching) similar to RotorNet switches [3]. All
the links have a capacity of 𝑐 = 400Gbps.
Before constructing the sequence of match-

ings, we take one of the factors into consid-
eration (i) buffer size of ToR switches and (ii)

latency tolerance. Using Theorem 6 and Theorem 7, we determine the optimal degree 𝑑 to maxi-
mize throughput. It remains to generate a 𝑑-regular emulated graph with optimal diameter and
decompose it to a sequence of matchings which are then deployed in the circuit switches.
We consider the spectrum of deBruijn digraphs in generating the emulated graph. Specifically,

for 𝑛𝑡 ToR switches (vertices), 𝐺 = (𝑉 , 𝐸) is a deBruijn graph (emulated graph), where 𝑉 =

{0, 1, ..., 𝑛𝑡 − 1} is the set of vertices and 𝐸 = {(𝑢, 𝑣) | 𝑣 ≡ (𝑢 · 𝑑 + 𝑎) mod 𝑛𝑡 , 𝑎 ∈ {0, 1, ..., 𝑑 − 1}}
is the edge set [33]. It is known that deBruijn graphs have a low diameter of ⌈log𝑑 (𝑛𝑡 )⌉ which is
close to Moore’s bound for diameter. Our emphasis on the graph diameter is due to Theorem 2 as
the average route length gets closer to diameter under a worst-case demand matrix which specifies
non-zero demand between pairs at maximum distance in the graph.
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(a) Static 2-regular
Emulated Graph (2 Matchings)

(b) 4-regular deBruijn
Emulated Graph (4 Matchings)

(c) Complete Emulated Graph

(16 Matchings)

Fig. 6. A periodic reconfigurable topology (shown in Figure 5) can emulate a spectrum of graphs depending

on the matchings schedule in the circuit switches. (a) A static emulated graph has the least delay but at the

cost of throughput. (b)Mars finds the best degree of the emulated graph in order to achieve near-optimal

throughput based on the available buffer and delay tolerance. (c) Existing designs emulate a complete graph

trading delay for throughput and suffer in terms of throughput with shallow buffers. Each color in the figure

corresponds to a matching. Since there are two circuit switches (shown in Figure 5), at any point in time, the

union of two matchings corresponds to the ToR-to-ToR connectivity.

Using the optimal degree 𝑑 based on Theorem 6 and Theorem 7, we generate a 𝑑-regular directed
deBruijn graph and decompose the edge set into𝑑 matchings. We shuffle the𝑑-matchings and assign
𝑑
2 number of matchings to each of the two circuit switches. In Figure 6, we show three emulated
graph instances which differ in the degree 𝑑 for 𝑛𝑡 = 16 ToR switches each with 𝑛𝑢 = 2 in/out
ports. We note that the standard complete graph 𝐾𝑛𝑡 has a degree of 𝑛𝑡 − 1 without self-loops. For
simplicity, we consider that the optical circuit switches match every ToR to every ToR including one
self-loop i.e., degree is 𝑛𝑡 instead of 𝑛𝑡 − 1. Table 1 summarizes our example. We next walkthrough
the throughput, delay and buffer requirements of different design choices including Mars.

Topology Throughput Delay Buffer

1 0.125 ≈ 0 ≈ 0
2 0.5 1600𝜇𝑠 80MB
3 0.125 1600𝜇𝑠 20MB
4 0.25 850𝜇𝑠 20MB

Table 1. Tradeoffs across different design choices based on the degree of the emulated graph for the example

topology shown in Figure 6, 5.

1 Static uni-regular DCNs:With two circuit switches in the topology, each deployed with only
one matching results in a static topology8 as shown in Figure 6a. While this is an extreme choice
given the reconfigurable circuit switches, it is interesting to observe the throughput vs buffer
requirements. Specifically, the diameter is 4 resulting in a throughput of 1

8 (from Theorem 5) for
a worst-case permutation demand matrix. However, the delay is nearly zero theoretically since
the topology remains static assuming negligible transmission and propagation delays. Since the
delay is near-zero, the topology also requires near-zero buffers at each node to achieve the ideal
throughput of 1

8 .

2 Existing designs: Using 16 matchings in total, with 8 matchings deployed in each of the two
circuit switches, the topology emulates a complete graph as shown in Figure 6c which is similar to
8In this case, since there are no reconfigurations, we set the timeslot value as Δ ≈ 0, the latency tax due to reconfigurations
Δ𝑢 = 0 and the period Γ = 1.
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Fig. 7. Mars achieves the best throughput under shallow buffers. Existing approaches which emulate a

complete graph (Sirius/RotorNet) suffer significantly under limited buffer (a,b) but can gain throughput if

buffers are large (c).

existing designs [2, 3]. Emulating a complete graph results in optimal throughput of 1
2 but at the

expense of high delay as much as 16 · Δ = 1600𝜇𝑠 (from Theorem 3). In order to achieve the optimal
throughput of 1

2 , each ToR switch would require significantly large buffers as much as 80MB in our
small scale example topology.

3 Existing designs under resource constraints: While emulating a complete graph as shown
in Figure 6c may result in optimal throughput, the achievable throughput critically depends on the
available buffer at each ToR switch. For instance, if each ToR switch is equipped with only 20MB
buffer, then the throughput drops to 1

8 (from Theorem 4). Notice that even with 10MB buffer, a
simple static topology achieves similar throughput with significantly lower delay (see above).

4 Mars:Our approach leverages the insights from §3. Based on the available buffer (say𝐵 = 20MB)
and the delay requirements (say 𝐿 = 850𝜇𝑠), we systematically determine the degree 𝑑 of the
emulated graph to be emulated by the reconfigurable network. In this case, the optimal degree
turns out to be 𝑑 = 4 both in terms of delay 𝐿 (from Theorem 6) and available buffer 𝐵 (from
Theorem 7). The topology has a diameter of log4 (16) = 2 and achieves much higher throughput: 1

4
in our example.

5 EVALUATION
We evaluate Mars and compare against the existing approaches in the design space. Our evaluation
aims at answering four main questions.

(Q1) Can Mars improve the throughput in datacenters? Our evaluation shows that, Mars
improves the throughput of existing datacenter designs by up to 64% compared to an expander DCN,
by up to 37% compared to Opera [4] and by more that 4x compared to Sirius [2] and RotorNet [3]
under Valiant load balancing.

(Q2) How does Mars perform under shallow buffers? Even under extremely shallow buffers,
Mars significantly outperforms existing approaches by improving the throughput by up to 6x at
moderate load conditions. At low loads, Mars performs similar to existing approaches.

(Q3) Can Mars improve the FCTs of short flows?

We find that Mars does not trade latency for throughput. Indeed Mars’s low buffer requirements to
achieve high throughput also contribute to better latency even under permutation demand matrices.
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Fig. 8. For the websearch workload under a random permutation demand matrix, Mars improves the 99-
percentile flow completion times for short flows without sacrificing the flow completion times of long flows.

Note the log scale on both axes.

Our evaluation shows that Mars can improve the FCTs of short flows by up to 96% compared to
expander DCN, by up to 75% compared to Opera and by up to 87% compared to RotorNet and Sirius
under Valiant load balancing.

(Q4) Do long flows benefit from Mars? Our results show that Mars reduces the FCTs of long
flows for various workloads by up to 4% on average compared to existing approaches under various
loads and demand matrices.

5.1 Setup
Our evaluation is based on packet-level simulations using htsim used in prior work [4, 38].

Interconnect:We consider a datacenter network with 256 servers organized into 64 ToR switches.
Each ToR switch has 4 uplinks that connect to 4 rotor-switches [3] with a reconfiguration delay of
1𝜇𝑠 . All the links have a capacity of 10Gbps and 500 nanoseconds delay.

Workload:We generate traffic using websearch [39] and datamining [40] workloads. We evalu-
ate across various loads on the server-ToR links in the range 1 − 20% for all-to-all and random
permutation demand matrices. Note that 20% load is already close to the maximum load that an
expander topology can sustain9. Flows arrive according to a Poisson process and we control the
mean inter-arrival time to achieve the desired load. In the interest of space, we report our results
for the datamining workload in the Appendix and only discuss our results for websearch workload
in this section.

Comparisons: We compare Mars to Opera [4], Sirius [2], RotorNet [3] and static expander
networks. For expander, we generate 𝑑 = 4 (number of uplinks) random regular graphs 𝐺 with 64
ToRs as vertices such that 𝜆(𝐺) ≤ 2

√
𝑢 − 1 where 𝜆 is the second eigen value and 2

√
𝑢 − 1 is the

Ramanujan constant. This gives us a Ramanujan graph which is known to be excellent expander.
9Atleast 1

ARL capacity is sacrificed due to multi-hop routing; where ARL is the average route length. An alternative in order
to further increase throughput is to simply“undersubscribe” i.e., with oversubscription < 1. We leave it for future work to
analyze such designs which requires a comprehensive cost-analysis for a fair comparison.
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Fig. 9. For the websearch workload under all-to-all demand matrix, as the load increases, Mars outperforms

in flow completion times for both short and long flows. Note the log scale on both the axes.

Metrics: We report server downlink utilization indicating the effective throughput. We also report
99-percentile flow completion times (FCTs) and buffer occupancies.

Configuration:We construct Mars which emulates a deBruijn directed graph of degree 8 (see §4.3)
optimized for a shallow buffer size of 8 packets per port in the interconnect described above. Switches
are configured with routing information statically at initialization time and packets are sprayed
across all equal cost paths. Mars, Sirius [2] and RotorNet [3] use Valiant load balanced paths;
expander uses all (edge-disjoint) shortest paths; and Opera uses all (edge-disjoint) shortest paths in
each topology slice [4] for short flows and single hop paths for long flows. The long flow cutoff is
set to 15MB based on [4]. We use NDP [38] as the transport protocol and set the trimming threshold
per port to 8 packets by default based on [38] unless explicitly stated. We vary the packet trimming
threshold to vary the maximum buffer size values in our evaluation. Finally, we set minRTO to 1ms.

5.2 Results

Mars significantly improves the throughput: In Figure 7a and Figure 7b, we show the effective
throughput achieved by Mars and existing approaches across various loads of websearch workload.
Specifically, in Figure 7a for the All-to-All demand matrix, we see that Mars improves the effective
throughput at 20% load by 1.37x compared to Opera, by 1.64x compared to expander and by 7.02x
compared to Sirius and RotorNet under Valiant load balancing. In Figure 7b, for random permutation
demand matrix, we see that Mars improves the effective throughput by up to 1.33x on average
compared to Opera and expander; and by 5.66x compared to Sirius and RotorNet. At low loads,
Mars achieves similar throughput compared to existing approaches.

Mars outperforms under shallow buffers: Given the high throughput of Mars, we evaluate
its performance under various buffer sizes at the ToR switches and compare against existing
approaches. In Figure 7c, we see that even at extremely shallow buffers such as 4 packets per
port, Mars achieves 1.57x better throughput on average compared to Opera, expander, Sirius and
RotorNet. However, as we show in Figure 1, existing systems require significantly more buffer to
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achieve high throughput. As expected, in Figure 7c, we see that Opera, Sirius and RotorNet increase
in throughput with large buffers. Indeed, Sirius and RotorNet can sustain even higher loads up to
50% since they emulate a complete graph with shorter path lengths but this requires extremely
large buffers. We omit these results for brevity, given that Sirius and RotorNet require buffer sizes
as large as 64 packets per port to achieve 20% throughput in Figure 7c.

Mars does not require large buffers: In Figure 10, we show the CDF of buffer occupancies at
the ToR switches for 20% websearch load and 64 packet per port buffers. We see that Mars and
Opera require significantly lower buffer compared to expander, Sirius and RotorNet (under Valiant
load balancing). Opera selectively buffers packets at the end-hosts based on their flow size and only
routes short flows across multi-hops which contributes its very low buffer requirements as seen in
Figure 10. However, Opera achieves 1.22x lower throughput compared to Mars as seen in Figure 7c.
We also observe that Sirius and RotorNet emulating a complete graph, consume significantly more
buffer compared to Mars: 2.09x higher at the tail.
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Fig. 10. Mars achieves high throughput but requires

significantly less buffer compared to Expander, Sirius

and RotorNet; and similar buffers as Opera.

Mars significantly improves FCTs of

short flows: The high throughput as well as
low buffer requirements of Mars significantly
improve the FCTs of short flows. Figure 8
shows the 99-percentile FCTs across vari-
ous loads for random permutation demand
matrix under websearch workload. At 1%
load (Figure 8a), we see that Mars achieves
similar FCTs for short flows compared to
Opera and expander networks and improves
upon Sirius and RotorNet by 87.37%. As the
load increases, Mars outperforms existing
approaches. Specifically, at 5% load (Figure 8b),
Mars reduces the FCTs for short flows by 77%
compared to Opera, by 98.11% compared to
expander and by 88.43% compared to Sirius
and RotorNet. Further, at 10% load (Figure 8c),
Mars improves the FCTs for short flows by 93.88% compared to Opera, by 98.11% compared to
expander and by 83.47% compared to Sirius and RotorNet.
We observe similar improvements under an all-to-all demand matrix as shown in Figure 9. At

5% (10%) load, Mars reduces the FCTs for short flows by 66.96% (90.15%) compared to Opera, by
81.35% (97.46%) compared to expander and by 87.6% (83.90%) compared to Sirius and RotorNet.
It is interesting to observe that the 99%-percentile flow completion times for short flows at 1%

load follows the delay trend shown in Figure 1: a static expander has the least path delay and
similarly Opera since it routes all the short flows over an expander; Sirius and RotorNet which
emulate a complete graph experience the highest delays. However, as the load increases, multi-hop
routing and queueing delays also impact the FCTs of short flows.

Mars does not trade long flow FCTs for short flows: Mars not only improves the FCTs
for short flows but also achieves on-par 99-percentile FCTs for long flows compared to existing
approaches. Under random permutation demand matrix (Figure 8), at 20% load, Mars reduces the
99-percentile FCTs for long flows by 2.37% compared to Opera, by 85.98% compared to expander and
by 99.9% compared to Sirius and RotorNet. Further, under an all-to-all demand matrix (Figure 9), at
20% load, Mars reduces the FCTs for long flows by 63.42% compared to Opera, by 81.96% compared
to expander and by 99.2% compared to Sirius and RotorNet. Interestingly, at 20% load, under random

19



permutation (Figure 8d) and all-to-all (Figure 9d) demand matrices, Sirius and RotorNet cannot
sustain long flow FCTs given the shallow buffers used in our setup. This result further strengthens
our motivation on the performance of existing approaches under resource constraints.

Overall, our evaluation confirms that Mars outperforms existing approaches by improving
throughput and reducing the flow completion times for short flows as well as long flows.

6 DISCUSSION
While our model and choice of topologies are in line with the assumptions and conclusions in the
literature, they have certain practical implications which we discuss below.

Demand Matrix: Our model assumes that a demand matrix is fixed and does not change over
time. In contrast, real-world demand matrices evolve. This would indeed complicate our analysis
framework by introducing time variables to the demand. However, our analysis still provides
insights within the duration in which the demand matrix remains constant. As demand matrices
do not change rapidly over time [41], one could use our analysis to find the throughput between
two time instances when the demand matrix changes significantly.

Congestion control and load balancing: Both congestion control and load balancing signifi-
cantly impact the achievable throughput. Our main results in this paper rely on the theoretical
definition of flow and throughput maximization problem. As a result, we make a simplifying
assumption on the underlying system: congestion control, load balancing and routing have a
central view of the entire network and perform ideally. Our theoretical results can be useful in
understanding the ideal scenario and provides insights into the performance gap of a deployed
system.

Worst-case analysis: Literature defines throughput of topologies based on worst-case demand
matrices and corresponding maximum flow. On one hand, worst-case demand matrices help in
understanding the performance bound of a topology under any demand matrix (within the scope
of our definition). In other words, a topology optimized for the worst-case demand matrix achieves
strictly greater throughput under any other demand matrix. On the other hand, the theoretical
definition of “flow” relates to fluid transmissions with ideal congestion control, load balancing
and routing (see above). In essence, our analysis captures the performance bounds of an ideal
transport under worst-case demand. Our key insights from theory (summarized in §3.5) drove
the design of Mars which is optimized for the worst-case. However, our evaluation of Mars
incorporates stochastic flow arrival process (not the worst-case) based on real-world flow size
distributions [39, 40] at a given load. The significantly better performance of Mars (optimized for
the worst-case) in our evaluation setup (not the worst-case) shows that our analysis indeed finds
itself useful even under realistic settings.

Cost-equivalent Clos topologies:We emphasize that our results in Theorem 1, 2, 3, 4 and our
evaluation concerns uni-regular topologies i.e., every switch is connected to servers and generates
traffic. In contrast, traditional datacenters built on Clos topologies add additional layers of switches
(additional capacity) that do not generate traffic in order to maximize throughput. This paper
does not argue that uni-regular topologies are better than Clos topologies. However, most recent
works [2–4, 8, 42] demonstrate the significant benefits of reconfigurable (uni-regular) topologies
over Clos. Furthermore, comparing any other topologies outside the spectrum shown in Figure 1
requires a cost analysis which is volatile in nature. We hence focus strictly on the spectrum of
topologies with periodic reconfigurations and their tradeoffs. It would be interesting to determine
the buffer size at which the performance of a throughput-optimal periodic reconfigurable topology
drops below a cost-equivalent Clos topology.
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We leave it for future work to theoretically study the throughput of periodic reconfigurable
topologies under dynamic demand matrices and more practical design considerations.

7 RELATEDWORK
Indeed, only little is known today about how existing reconfigurable topologies fare against each
other, and whether alternative designs could improve the throughput further. In the following, we
discuss the related work in network throughput both in the context of traditional static datacenter
topologies [1, 17–19, 43–45] and emerging reconfigurable datacenter topologies [2–11, 46–54].

Throughput as a metric: Bisection bandwidth has been used extensively as a metric in the
networking community. A classic result in graph theory suggests that the max-flow can be an
O(log(𝑛)) factor lower than the sparsest cut [26, 27]. The throughput maximization problem has
been studied in the context of max-flow multicommodity flow and maximum concurrent flow
problems [25, 55, 56]. A fully polynomial-time approximation scheme exists for arbitrary demands
and uniform capacity [25]. Recently, Jyothi et al. [23] revisited the relation between cut-based
metrics and max-flow in our networking context and proposed throughput under a worst-case
demand matrix as metric. While it still remains an active area of research to efficiently compute
throughput of a static topology [16, 23, 24], initial studies on dynamic and demand-aware topologies
attempt to characterize throughput in terms of demand-completion times [13]. We are not aware of
a formal definition and analysis of throughput in the context of periodic reconfigurable topologies.

Static topologies: Clos-based topologies [43, 44] have been shown to provide optimal through-
put [16]. Bcube [57] proposes a server-centric architecture and provides high capacity for all-to-all
traffic patterns but may not be optimal in terms of the throughput metric. JellyFish [18] argues
that random graphs are highly flexible for datacenters in-terms of heterogeneous expansion and
fault-tolerance while achieving high throughput. SlimFly [19] optimizes for diameter of the topol-
ogy (consequently throughput) but imposes strict conditions on the size of switches. Xpander [17]
focuses on incremental deployability while achieving high throughput. F10 [58] on fault-tolerance,
and FatClique [45] on the cost, incremental expansion and management in a datacenter.

Reconfigurable topologies: In contrast to static topologies based on costly, power-intensive
electrical packet switches, reconfigurable topologies rely on cost-effective technologies such as
optical circuit switches and tunable lasers. Reconfigurable topologies can be broadly classified
into two types (i) demand-aware and (ii) demand-oblivious. Demand-aware topologies such as
Duo [46], ReNets [59] and others [8–10, 60] adjust the topology based on the traffic patterns.
However, such networks incur high “latency tax” due to the added complexity of measuring and
calculating the demand via control-plane. Demand-oblivious topologies such as RotorNet [2–4] rely
on a pre-defined schedule for circuit setup and have been shown to provide high-throughput with
low “latency tax” due to reconfigurations. More recently in a parallel work, the relation between
throughput and delay of periodic reconfigurable networks has been studied in detail [61]. Our
main focus in this work has been on demand-oblivious designs under resource constraints. In
particular, we reveal the fundamental tradeoffs across throughput, delay and buffer requirements
for such designs. We further propose Mars, a throughput-optimal periodic (demand-oblivious)
reconfigurable topology.

Reducing the buffer requirements:A vast literature in buffer management [28, 62, 63] and active
queue management [64–67], scheduling [40, 68, 69] and end-host congestion control [38, 39, 70–73]
focuses on reducing the queueing at a bottleneck link specifically in static datacenter topologies.
However, as we rigorously discussed in this paper (§3, §4), periodic reconfigurable topologies
fundamentally require certain amount of buffering and incur significant throughput loss under
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limited amount of buffer. Our approach exploits this tradeoff to systematically find the throughput-
optimal design for any given delay and buffer constraints.

8 CONCLUSION
This paper was motivated by the observation that while dynamically reconfigurable datacenter
networks can greatly improve throughput, existing RCDN designs which emulate complete graphs
can entail high delays and buffer requirements. Based on our analysis of the underlying performance
tradeoffs, we presented a more scalable network design, Mars, which achieves near-optimal
throughput by emulating a 𝑑-regular graph and ensuring shallow buffers.

We understand our work as a first step and believe that it opens several interesting avenues for
future research. In particular, naturally, the optimal RDCN topology will also depend on the price,
and it will be interesting to conduct an economic study of the viability of different architectures.
Furthermore, we have so far focused on flat networks; while such networks are common in the
literature and have several advantages, it will be interesting to extend our study of buffer-aware
RDCN designs to multi-tier networks as well.
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APPENDICES
A PRELIMINARIES: THROUGHPUT OF STATIC TOPOLOGIES
Our goal in this section is to formally introduce throughput for static topologies and the relevant
definitions, including the limitations of existing bounds. This section builds the intuition and
motivation for our throughput analysis in the context of periodic reconfigurable topologies (§B).
Much of the prior work [16, 23, 24] focused on static topologies and it remains unclear how the
existing methodologies can be used to study the throughput problem in the context of reconfig-
urable topologies which is the focus of this paper. Initial studies on reconfigurable topologies [13]
informally define throughput of specific existing systems (e.g., RotorNet) which emulate a complete
graph. We emphasize that our definitions hold for any periodic reconfigurable topology.
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The predominant throughput metrics for static topologies are defined via demand matrices
(Definition 1, below), and in particular, the worst-case demand matrix. Following the definition of
Jyothi et al. [23], we formally introduce throughput given a demand matrix for static topologies.
In a nutshell, given a demand matrixM, throughput is the highest scaling factor 𝜃 (M) such that
the scaled demand matrix 𝜃 (M) · M is feasible in the topology i.e., there exists a feasible flow
that satisfies the demand. The throughput 𝜃 ∗ under a worst case demand matrix is the minimum
𝜃 (M) over the set of all saturated demand matrices i.e., 𝜃 ∗ = minM 𝜃 (M). Before formally defining
throughput, we first define certain preliminaries which build the intuition for our definition of
throughput in dynamic topologies (§B).
Consider any static topology (at switch level) represented as a static directed multigraph 𝐺 =

(𝑉 , 𝐸) where 𝑉 is the set of vertices (switches) and 𝐸 is the set of labelled edges (links). Labelled
edges allow for distinguishing parallel links. Let 𝑐 (𝑒, ℓ) denote the capacity of an edge (𝑒, ℓ) ∈ 𝐸
where ℓ is the corresponding label and 𝑒 is directed edge of the form (𝑢, 𝑣) connecting two vertex 𝑢
to vertex 𝑣 . We denote by 𝑐 (𝑢), the sum of capacities of all outgoing (correspondingly incoming)
edges of a node 𝑢. We assume that each node has equal incoming and outgoing total capacity. A
demand matrix specifies the demand in bps (bits/second) between every pair of vertices.

Definition 1 (Demand matrix). Given a set of vertices 𝑉 , a demand matrix specifies the demand

rate between every pair of vertices in bps defined as M = {𝑚𝑢,𝑣 | 𝑢 ∈ 𝑉 , 𝑣 ∈ 𝑉 } where𝑚𝑢,𝑣 is the

demand between the pair 𝑢, 𝑣 . A saturated demand matrix is such that the total demand originating at

a source 𝑠 equals its outgoing capacity and the total demand terminating at a destination 𝑑 equals its

incoming capacity i.e.,

∑
𝑢∈𝑉 𝑚𝑠,𝑢 = 𝑐 (𝑠) and ∑

𝑢∈𝑉 𝑚𝑢,𝑑 = 𝑐 (𝑑).

We consider saturated demand matrices since we focus on the maximum achievable throughput.
Specifically, saturated demand matrices allow for studying the maximum demand that can be routed
in a topology within the capacity constraints.

A.1 Paths and Flow in Static Graphs
Given a demand matrix M, the graph 𝐺 has a set of 𝑠-𝑑 paths for transmitting the demand𝑚𝑠,𝑑

from source 𝑠 to destination 𝑑 for all 𝑠-𝑑 pairs. We consider simple paths i.e., without cycles.

Definition 2 (Simple paths in static graphs (Standard)). Given a static directed graph 𝐺 = (𝑉 , 𝐸)
with set of vertices 𝑉 and the set of all labelled edges 𝐸, a path 𝑝∗ of length 𝑛 connecting a source

𝑠 and a destination 𝑑 is a sequence of 𝑛 labelled edges ⟨(𝑒1, ℓ1), (𝑒2, ℓ2) ... (𝑒𝑛, ℓ𝑛)⟩ where (𝑒𝑖 , ℓ𝑖 ) ∈ 𝐸;
the corresponding sequence of vertices is ⟨𝑣1, 𝑣2 ... 𝑣𝑛, 𝑣𝑛+1⟩ where 𝑣𝑖 ∈ 𝑉 , 𝑣1 is the source 𝑠 , 𝑣𝑛+1 is the
destination 𝑑 and 𝑒𝑖 is an edge between 𝑣𝑖 and 𝑣𝑖+1 i.e., 𝑒𝑖 = (𝑣𝑖 , 𝑣𝑖+1) for all 𝑖 ∈ [1, 𝑛]. We consider

simple paths where each vertex appears only once in the path, so there are no cycles.

Similar to edge labels in a multigraph, we generalize the definition of paths to facilitate distin-
guishing between two paths with the same sequence of labelled edges (crucial for our analysis
later). From here on, we will use an extended definition of paths in static graphs, formally defined
below. We associate each path 𝑝 with a unique identifier. As a result, notice that by associating
each path with a unique identifier, the set of all extended paths 𝑃 may contain more than one path
with the same sequence of labelled edges and vertices. For example, (𝑝∗, 𝑖) and (𝑝∗, 𝑗) are treated as
two different paths unless 𝑖 = 𝑗 even though 𝑝∗ from Definition 2 has the same sequence of labelled
edges and vertices. We define paths with unique identifiers deliberately for ease of analysis later.
Given a set of (extended) paths 𝑃 and a path 𝑝 ∈ 𝑃 , we denote by 𝐼 (𝑝), the set of all (extended)
paths which have the identical sequence of labelled edges and vertices as that of 𝑝 .

Definition 3 (Extended paths in static graphs). Given a static directed graph𝐺 = (𝑉 , 𝐸), an extended
path 𝑝 is a pair 𝑝 = (𝑝∗, 𝑖), where 𝑝∗ is a standard path (Definition 2) and 𝑖 is a unique identifier. An
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extended set of paths 𝑃 is a set of extended paths. Given such 𝑃 , the set of all 𝑠-𝑑 (extended) paths in 𝑃

is denoted by 𝑃𝑠,𝑑 .

Intuitively, the transmission of 𝑠-𝑑 demand from 𝑠 to 𝑑 in a graph is called an 𝑠-𝑑 flow. The set of
all 𝑠-𝑑 flows is called a flow. We consider that 𝑠-𝑑 flow is splittable over multiple edges along all
𝑠-𝑑 paths. A legal (or feasible) flow in a static graph must be conserved along the path and must
obey capacity constraints on every edge. Given a static graph and the set of all paths (Definition 2),
there are infinite possibilities for an extended set of paths from Definition 3. Note that, flow is a
map from a finite set of extended paths. We explicitly assume that for each path 𝑝 ∈ 𝑃 , and any
𝑝 ′ ∈ 𝐼 (𝑝), we have 𝐹 (𝑝) = 𝐹 (𝑝 ′).

Definition 4 (Flow in static graphs). Given static graph 𝐺 = (𝑉 , 𝐸) and a finite set of (extended)

paths 𝑃 , a Flow 𝐹 is a map 𝐹 : 𝑃 → R+ where R+ denotes non-negative real numbers. A legal flow
further has the following constraints: (i) flow is conserved along the path and (ii) it obeys the capacity
constraints. The amount of flow on a path 𝑝 ∈ 𝑃 is denoted by 𝐹 (𝑝), namely 𝐹 (𝑝) is the amount of flow

in each edge 𝑒 ∈ 𝑝 , denoted by 𝐹 (𝑝, 𝑒). Formally, 𝐹 (𝑝, 𝑒) = 𝐹 (𝑝) for all 𝑒 ∈ 𝑝 . Additionally, w.l.o.g, we
assume that for each path 𝑝 ∈ 𝑃 , and any 𝑝 ′ ∈ 𝐼 (𝑝), we have 𝐹 (𝑝) = 𝐹 (𝑝 ′). The capacity constraint

for a legal flow is given by the following inequality, where I(·) is the indicator function.∑︁
𝑝∈𝑃

𝐹 (𝑝) · I((𝑒, ℓ) ∈ 𝑝) ≤ 𝑐 (𝑒, ℓ) ∀𝑒, ∀ℓ (5)

A.2 Throughput of Static Graphs
Following the definition of Jyothi et al. [23], throughput given a demand matrix M is the highest
scaling factor 𝜃 such that the scaled demand matrix 𝜃 ·M is feasible in the topology i.e., there exists
a legal flow which can serve the scaled demand matrix 𝜃 ·M. The Throughput 𝜃 ∗ of a static topology
is defined as the throughput under a worst-case demand matrix. Importantly, the following formal
definition builds intuition for our context of periodic reconfigurable topologies.

Definition 5 (Throughput of static graphs). Given a demand matrix M and a graph 𝐺 , a legal

flow 𝐹 has a throughput 𝜃 (M, 𝐹 ) if it satisfies the scaled demand matrix 𝜃 (M, 𝐹 ) · M. Formally, for

each 𝑠, 𝑑 pair, the 𝑠-𝑑 flow sent from the source 𝑠 to destination 𝑑 is greater than the scaled demand

𝜃 (M, 𝐹 ) ·𝑚𝑠,𝑑 . ∑︁
𝑝∈𝑃𝑠,𝑑

𝐹 (𝑝) ≥ 𝜃 (M, 𝐹 ) ·𝑚𝑠,𝑑 ∀𝑠 ∈ 𝑉 , ∀𝑑 ∈ 𝑉 (6)

The graph 𝐺 has throughput 𝜃 (M) = max𝐹 𝜃 (M, 𝐹 ) and the throughput 𝜃 ∗ under a worst-case

demand matrix is the minimum 𝜃 (M) i.e., 𝜃 ∗ = minM 𝜃 (M).

Given a demand matrixM, the throughput maximization problem has the objective to maximize
𝜃 , subject to Equation 5 (capacity constraint) and Equation 6 (demand constraint). Unfortunately, a
linear program approach does not scale well to large topologies.

A.3 TUB and its Limitations
Recently, Namyar et al., proposed TUB [16], a scalable throughput upper bound for static topolo-
gies. The focus of this paper is not on the throughput of static topologies but rather on periodic
reconfigurable topologies. However, even the most recently proposed throughput upper bound for
static topologies has key limitations. Specifically, Namyar et al.propose the following throughput
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upper bound (Theorem 2.2 in [16]),

𝜃 ∗ ≤ 𝑚𝑖𝑛
M

∑︁
𝑒

𝑐 (𝑒)∑︁
𝑠∈𝑉

∑︁
𝑑∈𝑉

𝑚𝑠,𝑑 · 𝐿𝑠,𝑑

where 𝑐 (𝑒) is the capacity of an edge 𝑒 ∈ 𝐸 and 𝐿𝑠,𝑑 is the shortest path length from 𝑠 to 𝑑 .
Key limitations of TUB: Consider a topology represented as a complete graph 𝐾𝑛 with edge
capacity 𝑐 . Every node connects to every other node and hence the shortest path length for all
pairs is one. In this case, TUB suggests that the topology has full throughput under a saturated
permutation demand matrix, i.e., 𝜃 ∗ ≤ 1. However, the actual throughput is only 𝑛

2·𝑛−1 ≈ 1
2 . This is

since the saturated permutation demand matrix specifies a demand of (𝑛 − 1) × 𝑐 but the shortest
path can only accommodate 𝑐 demand. The remaining demand must be routed through multi hop
paths resulting in lower throughput. Unfortunately, TUB does not capture this effect. In general we
observe that TUB does not converge even for large scale topologies when the shortest path length
significantly differs from the average route length. We show in our analysis that the throughput
upper bound for any static graph is indeed related to the average route length (Theorem 2) which
gives a much tighter bound 𝜃 ∗ ≤ 1

2 in the above example.

B PRELIMINARIES: THROUGHPUT OF PERIODIC RDCNS
We now study the throughput of periodic reconfigurable topologies. Similar to static topologies, we
first need to formally define paths and flow in the context of periodic reconfigurable topologies. In
this section, we follow the periodic evolving graph model introduced in §2.2. Recall that the period
of the periodic evolving graph is denoted by Γ, timeslot is denoted by Δ and the reconfiguration
time is denoted by Δ𝑟 . Since circuit switches do not route traffic during reconfiguration, links
remain idle for Δ𝑟 amount of time in every timeslot Δ. We denote this fraction of time spent in
reconfiguration by Δ𝑢 . We next formally define periodic evolving graph.

Definition 6 (Periodic Evolving Graph). A periodic evolving graph (henceforth for simplicity referred

to as evolving graph) denoted by G = (𝑉 , E) is a periodic sequence of directed graphs with a period

of Γ timeslots, defined for each timeslot 𝑡 ∈ W. The directed graph at time 𝑡 ∈ W is defined as

G𝑡 = (𝑉 , E𝑡 ), where 𝑉 is the set of vertices and E𝑡 ⊆ 𝑉 ×𝑉 is the set of directed edges at time 𝑡 and

W is the set of whole numbers. Note that an edge 𝑒 ∈ 𝑉 ×𝑉 may appear in multiple edge sets E𝑡 at

different times 𝑡 . The evolving graph G has the following properties:

• The sequence of graphs starts at 𝑡 = 0 and is defined for each timeslot in the interval 𝑡 ∈ [0,∞).
• The edge set E𝑡 at time 𝑡 is periodic with period Γ i.e., E𝑡+Γ = E𝑡 and consequently the graph G𝑡

is periodic with period Γ.
• An edge 𝑒 ∈ 𝑉 ×𝑉 has a capacity 𝑐𝑡 (𝑒) at time 𝑡 . Since the graph is periodic, the capacity of

an edge is also periodic: 𝑐𝑡+Γ (𝑒) = 𝑐𝑡 (𝑒). For notational convenience we set 𝑐𝑡 (𝑒) = 0 whenever
𝑒 ∉ E𝑡 .

In this section, we first define the notions of path and flow in the periodic evolving graph. Using
these definitions, we then formally define throughput.

B.1 Temporal Paths and Temporal Flow
Recall from Definition 6 that a periodic evolving graph G is a periodic sequence of directed graphs
with period Γ. The graph at time 𝑡 is denoted by G𝑡 = (𝑉 , E𝑡 ) where𝑉 is the set of vertices (switches)
and E𝑡 is the set of edges (links) at time 𝑡 . Note that the edge set evolves over time. As a result,
paths are formed over time as opposed to static paths. To this end, we define a temporal path in

28



the evolving graph as a sequence of (𝑒, 𝑡) edge-time pairs, where an edge 𝑒 is accessed at time 𝑡 .
Consecutive edges along the path are accessed in non-decreasing order of time. We assume that
the next edge along a path is accessed within Γ timeslots (the period). Further, temporal paths are
periodic. We define the set of all temporal paths which start within the first period as the foundation
set of temporal paths denoted by P0. The set of all temporal paths is denoted by P∗. The foundation
set is a crucial part of our analysis in §C, especially since temporal paths are periodic. We define
temporal paths formally in the following.

Definition 7 (Temporal paths in evolving graphs). Given a periodic evolving graph G with set of

vertices 𝑉 , a temporal path 𝛿 of length 𝑛 connecting a source 𝑠 and a destination 𝑑 is a sequence

of 𝑛 edges and corresponding time values ⟨(𝑒1, 𝑡1), (𝑒2, 𝑡2) ... (𝑒𝑛, 𝑡𝑛)⟩ where 𝑡𝑖 is the time when the

edge 𝑒𝑖 is accessed along the path and 𝑒𝑖 is an edge in E𝑡𝑖 ; the corresponding sequence of vertices is

⟨𝑣1, 𝑣2 ... 𝑣𝑛, 𝑣𝑛+1⟩ where 𝑣1 is the source 𝑠 , 𝑣𝑛+1 is the destination 𝑑 and 𝑒𝑖 is an edge between 𝑣𝑖 and

𝑣𝑖+1 i.e., 𝑒𝑖 = (𝑣𝑖 , 𝑣𝑖+1) for all 𝑖 ∈ [1, 𝑛]. A legal temporal path additionally has the following properties:

• An edge 𝑒𝑖+1 is accessed at time 𝑡𝑖+1 within a period time (Γ) after accessing 𝑒𝑖 at time 𝑡𝑖 i.e.,

𝑡𝑖 < 𝑡𝑖+1 ≤ 𝑡𝑖 + Γ
• 𝑣𝑖 ≠ 𝑣 𝑗 if 𝑖 ≠ 𝑗 i.e., the temporal path is simple and has no cycles

The foundation set of temporal paths, denoted as P0
includes all legal temporal paths in G that start

within the first period (i.e., 𝑡1 ∈ [0, Γ)). For the foundation set P0
, we define the set P∗

of all legal
temporal paths in G as follows:

• P0 ⊂ P∗
and temporal paths are periodic with period Γ.

• A function 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 (𝛿) is defined as follows for every temporal path 𝛿 : the set of

all temporal paths which have the same sequence of edges with the time sequence

shifted by an integer multiple of Γ. Precisely, for any temporal path 𝛿 ∈ P,

𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 (𝛿) = {⟨(𝑒1, 𝑡1 + 𝑘 · Γ), (𝑒2, 𝑡2 + 𝑘 · Γ) ... (𝑒ℓ , 𝑡ℓ + 𝑘 · Γ)⟩ | 𝑘 ∈ W}, where 𝛿 =

⟨(𝑒1, 𝑡1), (𝑒2, 𝑡2) ... (𝑒ℓ , 𝑡ℓ )⟩ andW is the set of whole numbers.

• P∗ =
⋃

𝛿 ∈P0 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 (𝛿) i.e., the set of all temporal paths P∗
is the union of periodic temporal

paths for each temporal path in the foundation set P0
. For simplicity of notation, we say

P∗ = 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 (P0).
The sets P0

and P∗
are unique given G. Let the set of all 𝑠-𝑑 temporal paths in P0

and P∗
be denoted

by P0
𝑠,𝑑

and P∗
𝑠,𝑑
, respectively.

Similar to paths and flow in static graphs (§A), in our context, the evolving graph and the set of
𝑠-𝑑 paths (Definition 7) in the evolving graph allow for transmitting the demand of all 𝑠-𝑑 pairs.
Intuitively, the transmission of 𝑠-𝑑 demand along 𝑠-𝑑 paths is called flow. In contrast to the flow in
static graphs, the evolving graph G forces for the flow (Definition 4) to be additionally split in time
since temporal paths are spread over time. Similar to the flow in static graphs, in the following we
define a Temporal-Flow and its constraints in periodic evolving graphs. Specifically, a legal temporal
flow must obey capacity constraints i.e., the sum of all flows on an edge at time 𝑡 is upper bounded
by the edge capacity 𝑐𝑡 (𝑒).

Definition 8 (Temporal flow in evolving graphs). Given a periodic evolving graph G a legal set of

temporal paths P, a temporal flow F is a map F : P → R+. The amount of flow on a path 𝛿 ∈ P is

denoted by F (𝛿), namely F (𝛿) is the amount of flow in each edge (𝑒, 𝑡) ∈ 𝛿 , denoted by F (𝛿, 𝑒, 𝑡).
Formally, F (𝛿, 𝑒, 𝑡) = F (𝛿) for all (𝑒, 𝑡) ∈ 𝛿 and otherwise F (𝛿, 𝑒, 𝑡) = 0. Temporal-Flow is periodic

on periodic paths i.e., F (𝛿) = F (𝛿 ′) if 𝛿 ′ ∈ 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 (𝛿). A temporal flow is said to be legal if it obeys
the capacity constraints at any time 𝑡 , formally∑︁

𝛿 ∈P
F (𝛿, 𝑒, 𝑡) ≤ 𝑐𝑡 (𝑒) ∀𝑒, ∀𝑡 (7)
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where 𝑐𝑡 (𝑒) is the capacity of an edge 𝑒 at time 𝑡 .

B.2 Throughput of Evolving Graphs
Based on the definition of temporal-paths and temporal-flow, we are now ready to define throughput
in evolving graphs. Intuitively, given a demand matrix M, we define throughput as the highest
scaling factor 𝜃 (M) such that 𝜃 (M) · M amount of demand can be routed in the evolving graph
over one period on average. Specifically, a temporal path 𝛿 sends F (𝛿) · (Δ−Δ𝑟 ) amount of demands
(in bits) over Γ · Δ time before its next periodic flow begins. Hence, (Δ−Δ𝑟 )

Γ ·Δ · F (𝛿) = ( 1−Δ𝑢

Γ ) · F (𝛿)
is the average bits per second transmitted on a temporal path 𝛿 . Following this intuition, we define
throughput in the evolving graph.

Definition 9 (Throughput in the evolving graph). Given a demand matrixM and an evolving graph

G, a legal temporal flow F has throughput 𝜃 (M, F ) if it satisfies the scaled demand matrix over

Γ timeslots. For each 𝑠, 𝑑 pair, the 𝑠-𝑑 temporal flow sent from the source 𝑠 to destination 𝑑 over Γ
timeslots is greater than the scaled demand 𝜃 (M, F ) ·𝑚𝑠,𝑑 . Formally, let P0

be the foundation set of

G and P0
𝑠,𝑑

is the set of all 𝑠-𝑑 temporal flows starting in the first period.(
1 − Δ𝑢

Γ

)
·

∑︁
𝛿 ∈P0

𝑠,𝑑

F (𝛿) ≥ 𝜃 (M, F ) ·𝑚𝑠,𝑑 ∀𝑠 ∈ 𝑉 , ∀𝑑 ∈ 𝑉

The graph G has throughput 𝜃 (M) = maxF 𝜃 (M, F ) and the throughput 𝜃 ∗ under a worst-case

demand matrix is the minimum 𝜃 (M) i.e., 𝜃 ∗ = minM 𝜃 (M).

Throughput in the evolving graph can be calculated over any one period time-interval. For
simplicity, we consider the first period and the foundation set of temporal paths P0 especially since
the summation of 𝑠-𝑑 flows can be converted to the first period using the periodic property of
temporal paths and flow i.e., for every 𝛿 ∈ P0

𝑠,𝑑
, F (𝛿) = F (𝛿 ′) for 𝛿 ′ ∈ 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 (𝛿). However, note

that it takes at most the duration of the longest temporal path, in order for Definition 9 to hold at
the destination. In essence, Definition 9 for periodic evolving graphs, follows the reasoning behind
throughput of static topologies i.e., the maximum scaling factor 𝜃 such that the scaled demand
matrix is feasible to route continuously in the periodic topology.
We now begin to analyze the throughput maximization problem in periodic evolving graphs.

Notice that the problem is much more complicated compared to static graphs. First, the set of all
temporal paths is infinite. Second, even the foundation set of temporal paths is exponential in size
and grows with larger Γ (period).

To this end, our technique involves a static graphwhich we call the Emulated graph corresponding
to a periodic evolving graph. We then show that a periodic evolving graph and its corresponding
static emulated graph have the same throughput.

B.3 Emulated Graph: An Equivalent Static Topology
Given a periodic evolving graph G, we define the corresponding emulated graph𝐺 (G) as a function
of G. Specifically, edge set of the emulated graph is obtained from the union of edge sets of the
periodic evolving graph taken over any one period time interval and the edges are labelledwith the
corresponding time of the edge in the evolving graph. The edge capacities are such that the emulated
graph has the same amount of average capacity between all pairs compared to the evolving graph,
including the overhead of reconfiguration (Δ𝑟 ). In the following, we formally define the emulated
graph.

Definition 10 (Emulated graph). The emulated graph𝐺 (G) of periodic graph G is defined as a static

directed multigraph𝐺 = (𝑉 , 𝐸), where𝑉 is the set of vertices of G and 𝐸 = {(𝑒, ℓ) | 𝑒 ∈ Eℓ , ℓ ∈ [0, Γ)}
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is the set of directed edges obtained from the union of edges of the evolving graph over the [0, Γ) time

interval and every edge (𝑒, ℓ) is labelled with ℓ if 𝑒 ∈ Eℓ . An edge (𝑒, ℓ) ∈ 𝐸 has capacity 𝑐 (𝑒, ℓ) where
the relation between 𝑐 (𝑒, ℓ) and the original capacity 𝑐ℓ (𝑒) in the evolving graph is given by,

𝑐 (𝑒, ℓ) =
(
1 − Δ𝑢

Γ

)
· 𝑐ℓ (𝑒) ∀𝑒, ∀ℓ ∈ [0, Γ) (8)

We now precisely specify the extended set of paths (see Definition 3) in the emulated graph.
Specifically, the extended set of paths with unique identifiers allow for a relation between a path in
the emulated graph to a temporal path in the evolving graph. We define a function static which
converts a temporal path to static extended path and a function temporal which converts a static
extended path to a temporal path. In essence, the set of all extended paths in the emulated graph is
𝑃∗ = static(P0). The temporal function allows for backward conversion i.e., P0 = temporal(𝑃∗).
Definition 11 (Extended paths in Emulated graph). Given a periodic evolving graph G with

the foundation set of paths P0
, the corresponding emulated graph 𝐺 (G) has a set of extended

paths 𝑃∗ given by static(P0). The static function is defined as follows: for every temporal path

𝛿 , where 𝛿 = ⟨(𝑒1, 𝑡1), (𝑒2, 𝑡2) ... (𝑒𝑛, 𝑡𝑛)⟩, the extended static path 𝑝 = static(𝛿) is given by 𝑝 =

(⟨(𝑒1, ℓ1), (𝑒2, ℓ2) ... (𝑒𝑛, ℓ𝑛)⟩ , 𝛿), where ℓ𝑖 = 𝑡𝑖 mod Γ and 𝛿 is the unique identifier of the extended static
path; recall that 𝛿 is unique. The inverse of static function is defined as: temporal(𝑝) = static−1 (𝑝) = 𝛿 ,
for all 𝑝 ∈ 𝑃∗, where 𝛿 is the unique identifier associated with the extended path 𝑝 .

𝑃∗ = static(P0) = {static(𝛿) | 𝛿 ∈ P0}
P0 = temporal(𝑃∗) = {temporal(𝑝) | 𝑝 ∈ 𝑃∗} (9)

Note that, given a periodic evolving graph G, its foundation set of temporal paths P0 is unique
and includes all temporal paths which start in the first period. Since the emulated graph is a function
of the periodic evolving graph, the set of extended static paths (Definition 11) is also unique. The
extended set of paths and the static, temporal functions are a crucial part of our throughput analysis
in the next section.

C ANALYSIS: THROUGHPUT OF PERIODIC RDCNS
Before presenting our analysis, we first state our main result in this section. Consider a periodic
periodic evolving graph (see Definition 6) G = (𝑉 , E) with edge capacities 𝑐𝑡 (𝑒) for every edge 𝑒
at time 𝑡 . Consider a static graph which is a function of the evolving graph G obtained from
Definition 10 represented as 𝐺 (G) = (𝑉 , 𝐸). We prove that the throughput of a periodic evolving
graph is equivalent to the corresponding emulated graph.
Theorem 1 (Relation to Emulated Graph). Given a demand matrixM, any legal temporal flow F
in the periodic evolving graph G with throughput 𝜃 (M, F ) can be converted to a legal flow 𝐹 in the

emulated graph𝐺 (G) with the same throughput 𝜃 (M, 𝐹 ) = 𝜃 (M, F ) and vice versa. Consequently
the periodic evolving graph and the emulated graph have the same throughput 𝜃 (M) = max𝐹 𝜃 (M, 𝐹 ):
the maximum scaling factor given a demand matrixM; they further have the same throughput 𝜃 ∗ for
a worst-case demand matrix, where 𝜃 ∗ = minM 𝜃 (M).
A sketch of our approach is as follows: (i) we prove in Lemma 1 that if a legal flow in the

emulated graph has throughput 𝜃 over set of extended paths 𝑃∗ = static(P0), then there exists
a legal temporal flow in the periodic evolving graph with the same throughput; (ii) we prove in
Lemma 2 that if a legal temporal flow achieves throughput 𝜃 in the evolving graph, then there
exists a legal flow in the emulated graph with the same throughput over the set of extended paths
𝑃∗ = static(P0); (iii) finally, we prove in Lemma 3 that a flow in emulated graph over the set of
all paths 𝑃 has the same throughput upper bound as that of a flow over the set of extended paths
𝑃∗ = static(P0). Using the above three results, we prove our main claim.
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Lemma 1. Let M be a demand matrix, G be a periodic evolving graph, 𝐺 (G) be its emulated graph

and 𝑃∗ = static(P0). If 𝐹 : 𝑃∗ → R+ is a legal flow in 𝐺 (G) with throughput 𝜃 (M, 𝐹 ) then there

exists a legal temporal flow F in the evolving graph G with the same throughput 𝜃 (M, F ) = 𝜃 (M, 𝐹 ).
The temporal flow F in the evolving graph can be constructed as follows:

F (𝛿) =
(

Γ

1 − Δ𝑢

)
· 𝐹 (𝑝)

∀𝑝 ∈ 𝑃∗; 𝛿 ∈ 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 (temporal(𝑝)) (10)

where F is periodic; for any temporal path 𝛿 ∈ temporal(𝑃∗), F (𝛿, 𝑒, 𝑡) = F (𝛿) for all (𝑒, 𝑡) ∈ 𝛿 and

F (𝛿, 𝑒, 𝑡) = 0 if (𝑒, 𝑡) ∉ 𝛿 . F is then a map F : P∗ → R+, where P∗ = 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 (temporal(𝑃∗)).

Proof. From Definition 4, since 𝐹 is a legal flow in the emulated graph, 𝐹 obeys capacity
constraints. ∑︁

𝑝∈𝑃∗
𝐹 (𝑝) · I((𝑒, ℓ) ∈ 𝑝) ≤ 𝑐 (𝑒, ℓ) ∀𝑒, ∀ℓ ∈ [0, Γ)

We first substitute 𝑐 (𝑒, ℓ) = (1−Δ𝑢 )
Γ · 𝑐ℓ (𝑒) and change ℓ to ℓ mod Γ without changing the value of

both sides of the above inequality.∑︁
𝑝∈𝑃∗

𝐹 (𝑝) · I((𝑒, ℓ mod Γ) ∈ 𝑝) ≤
(
1 − Δ𝑢

Γ

)
· 𝑐 (ℓ mod Γ) (𝑒)

∀𝑒, ∀ℓ ∈ [0, Γ)

We now expand the above inequality as follows for all ℓ ∈ [0,∞), without changing the value on
both sides of the inequality. Recall that 𝑐ℓ (𝑒) = 𝑐ℓ+𝑘 ·Γ for any integer 𝑘 ≥ 0 (𝑐ℓ (𝑒) is periodic).∑︁

𝑝∈𝑃∗
𝐹 (𝑝) · I((𝑒, ℓ mod Γ) ∈ 𝑝) ≤

(
1 − Δ𝑢

Γ

)
· 𝑐ℓ (𝑒)

∀𝑒, ∀ℓ ∈ [0,∞)

The above inequality holds since 𝑐ℓ (𝑒) is periodic and ℓ mod Γ always ranges between [0, Γ).
Substituting the temporal flow F for the static flow 𝐹 , using Equation 10,∑︁

𝑝∈𝑃∗
F (temporal(𝑝)) · I((𝑒, ℓ mod Γ) ∈ 𝑝) ≤ 𝑐ℓ (𝑒)

∀𝑒, ∀ℓ ∈ [0,∞)

From Definition 11 and from the periodic property of temporal paths (Definition 7), for every path
𝑝 ∈ 𝑃∗ and for every (𝑒, ℓ mod Γ) ∈ 𝑝 , there exists exactly one path 𝛿 ∈ 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 (temporal(𝑝))
such that (𝑒, ℓ) ∈ 𝛿 . Using this relation, we convert the above inequality as follows,∑︁

𝛿 ∈𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 (temporal(𝑃∗))
F (𝛿) · I((𝑒, 𝑡) ∈ 𝛿) ≤ 𝑐𝑡 (𝑒)

∀𝑒, ∀𝑡 ∈ [0,∞)

Since 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 (temporal(𝑃∗)) = P∗, and since 𝑐𝑡 (𝑒) = 0 if 𝑒 ∉ E𝑡 , we obtain the following relation.∑︁
𝛿 ∈P∗

F (𝛿, 𝑒, 𝑡) ≤
{
𝑐𝑡 (𝑒) 𝑒 ∈ E𝑡

0 𝑒 ∉ E𝑡

From Definition 8, we conclude that F (from Equation 10) obeys capacity constraints. Further
since temporal flow is constant and equal for all (𝑒, 𝑡) ∈ 𝛿 for all temporal paths, it obeys flow
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conservation rules. It remains to prove that F also achieves throughput 𝜃 . Since 𝐹 has a throughput
𝜃 (M), from Definition 5 we have that,∑︁

𝑝∈𝑃∗
𝑠,𝑑

𝐹 (𝑝) ≥ 𝜃 (M, 𝐹 ) ·𝑚𝑠,𝑑 ∀𝑠 ∈ 𝑉 , ∀𝑑 ∈ 𝑉

using the relation between 𝐹 and F from Equation 10, we obtain the following inequality. From
Definition 9, we conclude that F also achieves throughput 𝜃 (M, F ) = 𝜃 (M, 𝐹 ).(

1 − Δ𝑢

Γ

)
·

∑︁
𝛿 ∈P0

𝑠,𝑑

F (𝑝) ≥ 𝜃 (M, 𝐹 ) ·𝑚𝑠,𝑑 ∀𝑠 ∈ 𝑉 , ∀𝑑 ∈ 𝑉

□

From Lemma 1, we have that, given a demand matrix M, if the static emulated graph has
throughput 𝜃 (M, 𝐹 ) for a specific flow 𝐹 , then the scaled demand matrix 𝜃 (M, 𝐹 ) · M is feasible
in the periodic evolving graph. In the following, we state the reverse i.e., given a demand matrix
M, if the periodic evolving graph has throughput 𝜃 (M, F ) for a specific temporal flow F , then
the scaled demand 𝜃 (M, F ) · M is feasible in the static emulated graph.

Lemma 2. Given a demand matrixM, if F : P∗ → R+ is a legal temporal flow in the evolving graph

G with throughput 𝜃 (M, F ) then there exists a legal flow 𝐹 in the emulated graph𝐺 (G) with same

throughput 𝜃 (M, 𝐹 ) = 𝜃 (M, F ). 𝐹 is obtained as follows:

𝐹 (static(𝛿)) =
(
1 − Δ𝑢

Γ

)
· F (𝛿) ∀𝛿 ∈ P0 (11)

𝐹 is then a map 𝐹 : 𝑃∗ → R+, where 𝑃∗ = static(P0).

Proof. From Definition 4, for 𝐹 to be a legal flow in the emulated graph𝐺 , 𝐹 must obey capacity
and flow conservation constraints. Further in order to achieve throughput 𝜃 (M, 𝐹 ), we require
that 𝐹 ≥ 𝜃 (M, 𝐹 ) · M. Since F is a legal flow in the evolving graph, F obeys capacity constraints.
From Definition 8, for all 𝑒 ∈ E𝑡 at any time 𝑡 we have that,∑︁

𝛿 ∈P∗

F (𝛿) · I((𝑒, 𝑡) ∈ 𝛿) ≤ 𝑐𝑡 (𝑒) ∀𝑒, ∀𝑡 ∈ [0,∞)

The remainder of the proof follows similar logic as that of the proof of Lemma 1. Since for any
path 𝛿 ∈ P∗, P∗ = 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 (P0) = 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 (temporal(𝑃∗)), if (𝑒, 𝑡) ∈ 𝛿 , then there exists no other
path 𝛿 ′ ∈ 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 (𝛿) where (𝑒, 𝑡) ∈ 𝛿 ′, except for the path 𝛿 itself. For every such path 𝛿 , there
exists exactly one path 𝑝 ∈ 𝑃∗ where (𝑒, ℓ) ∈ 𝑝 and ℓ = 𝑡 mod Γ. Using the relation between F and
𝐹 from Equation 11 and substituting the capacity relation 𝑐 (𝑒, ℓ) = (1−Δ𝑢 )

Γ · 𝑐ℓ (𝑒), we obtain the
following: ∑︁

𝑝∈𝑃∗
𝐹 (𝑝) · I((𝑒, ℓ) ∈ 𝑝) ≤ 𝑐 (𝑒, ℓ) ∀𝑒, ∀ℓ ∈ [0, Γ)

From Definition 4, the above inequality implies that the flow 𝐹 obeys capacity constraints. Further,
flow is conserved since 𝐹 (𝑝) is constant and equal for all 𝑒 ∈ 𝑝 for all paths. It remains to prove
that 𝐹 achieves throughput 𝜃 (M, 𝐹 ) = 𝜃 (M, F ).
Since F has a throughput 𝜃 (M, F ) for a demand matrix M, from Definition 9 we have that,(

1 − Δ𝑢

Γ

)
·

∑︁
𝛿 ∈P0

𝑠,𝑑

F (𝛿) ≥ 𝜃 (M, F ) ·𝑚𝑠,𝑑 ∀𝑠 ∈ 𝑉 , ∀𝑑 ∈ 𝑉
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We now substitute static variables using Equation 11 and obtain the throughput relation,∑︁
𝑝∈static(P0

𝑠,𝑑
)
𝐹 (𝑝) ≥ 𝜃 (M, F ) ·𝑚𝑠,𝑑 ∀𝑠 ∈ 𝑉 , ∀𝑑 ∈ 𝑉

Using the above inequality and since 𝑠𝑡𝑎𝑡𝑖𝑐 (P0
𝑠,𝑑
) = 𝑃∗

𝑠,𝑑
, from Definition 5, we conclude that 𝐹 also

achieves throughput 𝜃 (M, 𝐹 ) = 𝜃 (M, F ). □

From Lemma 1 and Lemma 2, given a demand matrixM, the periodic evolving graph and the
emulated graph with extended set of paths 𝑃∗ = static(P0), have the same throughput. It remains to
show that the emulated graph with set of extended paths 𝑃∗ = static(P0) has the same throughput
compared to the emulated graph with set of all possible paths (not extended).

Lemma 3. Let M be a demand matrix, G be a periodic evolving graph, 𝐺 (G) be its emulated graph

and 𝑃∗ = static(P0). If 𝐹 : 𝑃 → R+ is a legal flow in 𝐺 (G) with throughput 𝜃 (M, 𝐹 ) where 𝑃 is the

set of all simple paths then there exists a legal flow 𝐹 ′ : 𝑃∗ → R+ in the emulated graph G with the

same throughput 𝜃 (M, 𝐹 ′) = 𝜃 (M, 𝐹 ) where 𝐹 ′ is as follows:

𝐹 ′(𝑝 ′) = 𝐹 (𝑝)
|𝐼 (𝑝) | ∀𝑝 ′ ∈ 𝐼 (𝑝) (12)

where 𝐼 (𝑝) is the set of all extended paths which have the same sequence of labelled edges as that of a

path 𝑝 ∈ 𝑃 .

Proof. We have that 𝐹 : 𝑃 → R+ is a legal flow in the emulated graph and has a throughput
𝜃 (M, 𝐹 ). The proof follows by showing that 𝐹 ′ : 𝑃∗ → R+ also obeys capacity constraints and has
throughput 𝜃 (M, 𝐹 ′) = 𝜃 (M, 𝐹 ). We will first prove that the following capacity constraint (from
Definition 4) for 𝐹 ′ holds. We prove this using the relation between 𝐹 and 𝐹 ′ from Equation 12
and the fact that 𝐹 obeys capacity constraints. Since 𝐹 obeys capacity constraints, the following
inequality holds. ∑︁

𝑝∈𝑃
𝐹 (𝑝) · I((𝑒, ℓ) ∈ 𝑝) ≤ 𝑐 (𝑒) ∀𝑒, ∀ℓ

For every path 𝑝 ∈ 𝑃 , the set of extended paths 𝑃∗ consists of a set 𝐼 (𝑝) of extended paths. Note that
𝐼 (𝑝) is strictly greater than zero i.e., 𝐼 (𝑝) > 0. The argument is that (i) 𝑃 is the set of all paths; (ii) 𝑃∗
is obtained from the foundation set of all temporal paths P0 as 𝑃∗ = 𝑠𝑡𝑎𝑡𝑖𝑐 (P0); (iii) for any path
𝑝 ∈ 𝑃 with the sequence of edges ⟨𝑒1, 𝑒2, ...𝑒𝑛⟩, there exists at least one legal temporal path 𝛿 ∈ P0

where 𝛿 = ⟨(𝑒1, 𝑡1), (𝑒2, 𝑡2) ... (𝑒𝑛, 𝑡𝑛)⟩ such that 𝑡1 is the time when the edge 𝑒1 appears for the first
time in the first period, 𝑡2 is the time when the edge 𝑒2 appears for the first time after 𝑡1 and so on;
each edge appears within Γ timeslots due to the periodicity of the edge set and such a temporal
path 𝛿 belongs to P0 by definition. Further, for any path 𝑝 ∈ 𝑃 and a labelled edge (𝑒, ℓ) ∈ 𝑝 , by
definition, the labelled edge (𝑒, ℓ) also belongs to any path 𝑝 ′ ∈ 𝐼 (𝑝). Using this relation, we expand
the summation in the above inequality as follows:∑︁

𝑝∈𝑃

∑︁
𝑝′∈𝐼 (𝑝)

𝐹 (𝑝)
|𝐼 (𝑝) | · I((𝑒, ℓ) ∈ 𝑝

′) ≤ 𝑐 (𝑒) ∀𝑒, ∀ℓ

Substituting 𝐹 ′ using Equation 12, we obtain the following relation.∑︁
𝑝∈𝑃∗

𝐹 ′(𝑝 ′) · I((𝑒, ℓ) ∈ 𝑝 ′) ≤ 𝑐 (𝑒) ∀𝑒, ∀ℓ

From Definition 4, the above inequality suggests that 𝐹 ′ obeys capacity constraints. Similarly, it is
easy to show that

∑
𝑝′∈𝑃∗

𝑠,𝑑
𝐹 ′(𝑝 ′) ≥ 𝜃 (M, 𝐹 ) ·𝑚𝑠,𝑑 using the fact that 𝐹 has a throughput 𝜃 (M)
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i.e.,
∑

𝑝∈𝑃𝑠,𝑑 𝐹 (𝑝) ≥ 𝜃 (M, 𝐹 ) ·𝑚𝑠,𝑑 , for all 𝑠, 𝑑 source-destination pairs. This concludes that the flow
𝐹 ′ has throughput 𝜃 (M, 𝐹 ′) = 𝜃 (M, 𝐹 ). □

Using Lemma 1, Lemma 2 and Lemma 3, it is now straight-forward that our claim in Theorem 1
holds.

Proof of Theorem 1. From Lemma 1 and Lemma 2, for any feasible temporal flow F in the
evolving graph with throughput 𝜃 (M, F ), there exists a feasible flow 𝐹 in the emulated graph
with the same throughput 𝜃 (M, 𝐹 ) = 𝜃 (M, F ) and vice versa. From Lemma 3, we have that, our
definition of extended paths and its use in our analysis does not impact the throughput of emulated
graph i.e., throughput with our definition of extended set of paths is same as the throughput with
the standard definition of paths. This concludes that the evolving graph and the corresponding
emulated graph have the same throughput 𝜃 (M): the maximum scaling factor given a demand
matrix and the same throughput 𝜃 ∗ under a worst-case demand matrix. □

Corollary 1 (Reduction to simple graph). Throughput of a periodic evolving graph G = (𝑉 , E) is
equivalent to the simple static graph𝐺 (G) = (𝑉 , 𝐸), where𝑉 is the set of vertices (same as the evolving

graph) and 𝐸 =
⋃

𝑡 ∈[0,Γ) E𝑡 is the union of edges over one period of time (without any labels). The

capacity of an edge 𝑒 ∈ 𝐸 is given by,

𝑐 (𝑒) =
(
1 − Δ𝑢

Γ

)
·

∑︁
𝑡 ∈[0,Γ)

𝑐𝑡 (𝑒)

where 𝑐𝑡 (𝑒) is the capacity of an edge 𝑒 ∈ E𝑡 at time 𝑡 in the evolving graph.

Notice that the simple static graph in Corollary 1 is a weighted simple graph corresponding to
the emulated graph (Definition 10) with the same amount of capacity between any 𝑢, 𝑣 ∈ 𝑉 for
every (𝑢, 𝑣) ∈ 𝐸. It is standard in the literature that a multigraph and the corresponding weighted
graph have the same max-flow [74]. This allows us to use the simple static graph in order to obtain
the throughput of a periodic evolving graph.

D REVISITING THROUGHPUT OF STATIC TOPOLOGIES
Definition 12 (Average route length). Given a demand matrixM, a static graph 𝐺 = (𝑉 , 𝐸) and a
flow 𝐹 that satisfies the demand, the average route length denoted by ARL(M, 𝐹 ) is defined by,

ARL(M, 𝐹 ) =
∑︁
𝑠,𝑑∈𝑉

∑︁
𝑝∈𝑃𝑠,𝑑

𝑚𝑠,𝑑

𝑀
· 𝑟𝑝 · len(𝑝)

where𝑀 =
∑

𝑠∈𝑉
∑

𝑑∈𝑉 𝑚𝑠,𝑑 ; 𝑟𝑝 is the fraction of 𝑠-𝑑 demand transmitted on the path 𝑝 and len(𝑝) is
the length of the path 𝑝 .

Theorem 2 (Throughput). Given a demand matrix M and a flow 𝐹 , the throughput 𝜃 (M, 𝐹 ) of a
static graph represented as 𝐺 = (𝑉 , 𝐸) is given by Equation 1. The graph 𝐺 has throughput 𝜃 (M) =
max𝐹 𝜃 (M, 𝐹 ): the maximum scaling factor given a demand matrix M; and has throughput 𝜃 ∗ =

minM 𝜃 (M) for a worst-case demand matrix.

𝜃 (M, 𝐹 ) ≤ 𝐶

𝑀 · ARL(M, 𝐹 ) (1)

where 𝐶 =
∑

𝑒∈𝐸 𝑐 (𝑒) is the total capacity of the network,𝑀 =
∑

𝑠,𝑑∈𝑉 𝑚𝑠,𝑑 is the total demand for the

network and ARL(M, 𝐹 ) = ∑
𝑠,𝑑∈𝑉

∑
𝑝∈𝑃𝑠,𝑑

𝑚𝑠,𝑑

𝑀
· 𝑟𝑝 · len(𝑝) is the average route length forM and 𝐹 ,

where 𝑟𝑝 is the fraction of demand transmitted on the path 𝑝 .

35



Proof. We restrict our analysis to saturated demand matrices. Let the static topology under
consideration be a graph 𝐺 = (𝑉 ′, 𝐸), where 𝑉 ′ is the set of all vertices and 𝐸 is the set of all edges.
A set 𝑉 ⊆ 𝑉 ′ denotes the set of all vertices generating traffic (demand). Specifically, given any set
of vertices 𝑉 , a demand matrix M from Definition 1 has elements𝑚𝑢,𝑣 such that

∑
𝑣∈𝑉 𝑚𝑢,𝑣 = 𝑐 (𝑢)

for all 𝑢 ∈ 𝑉 where 𝑐 (𝑢) is the total physical bandwidth of the vertex 𝑢. We denote the capacity of
an edge 𝑒 by 𝑐 (𝑒).
Given a graph 𝐺 = (𝑉 ′, 𝐸), the set of vertices generating traffic (demand) 𝑉 ⊆ 𝑉 ′, a demand

matrixM for 𝑉 , and a flow 𝐹 , the relation between the throughput as a function of demand matrix
M is given by Definition 5. From Definition 4, for 𝐹 to be legal we have that,∑︁

𝑝∈𝑃
𝐹 (𝑝) · I(𝑒 ∈ 𝑝) ≤ 𝑐 (𝑒) ∀𝑒

summing over all the edges 𝑒 ∈ 𝐸, we obtain the following:∑︁
𝑒∈𝐸

∑︁
𝑝∈𝑃

𝐹 (𝑝) · I(𝑒 ∈ 𝑝) ≤
∑︁
𝑒∈𝐸

𝑐 (𝑒) (13)

From Definition 5, a flow 𝐹 achieves throughput 𝜃 (M, 𝐹 ) if it obeys the following constraint:∑︁
𝑝∈𝑃𝑠,𝑑

𝐹 (𝑝) ≥ 𝜃 (M, 𝐹 ) ·𝑚𝑠,𝑑 ∀𝑠 ∈ 𝑉 , 𝑑 ∈ 𝑉

Let 𝑟𝑝 =
𝐹 (𝑝)∑

𝑝∈𝑃𝑠,𝑑 𝐹 (𝑝) for all 𝑝 ∈ 𝑃𝑠,𝑑 for each 𝑠, 𝑑 pair. We now expand the inequality in Equation 13
as follows: ∑︁

𝑠∈𝑉

∑︁
𝑑∈𝑉

∑︁
𝑒∈𝐸

∑︁
𝑝∈𝑃𝑠,𝑑

𝐹 (𝑝) · I(𝑒 ∈ 𝑝) ≤
∑︁
𝑒∈𝐸

𝑐 (𝑒)

we convert the summation over all edges 𝑒 ∈ 𝐸 to a summation over only edges of each path 𝑒 ∈ 𝑝
and drop the identifier I without changing the value of the LHS in the above inequality:∑︁

𝑠∈𝑉

∑︁
𝑑∈𝑉

∑︁
𝑝∈𝑃𝑠,𝑑

∑︁
𝑒∈𝑝

𝐹 (𝑝) ≤
∑︁
𝑒∈𝐸

𝑐 (𝑒)

substituting 𝐹 (𝑝) = 𝑟𝑝 · ∑𝑝∈𝑃𝑠,𝑑 𝐹 (𝑝) and since
∑

𝑝∈𝑃𝑠,𝑑 𝐹 (𝑝) ≥ 𝜃 (M, 𝐹 ) ·𝑚𝑠,𝑑 :∑︁
𝑠∈𝑉

∑︁
𝑑∈𝑉

∑︁
𝑝∈𝑃𝑠,𝑑

∑︁
𝑒∈𝑝

𝜃 (M, 𝐹 ) ·𝑚𝑠,𝑑 · 𝑟𝑝 ≤
∑︁
𝑒∈𝐸

𝑐 (𝑒)

Since 𝜃 (M, 𝐹 ) ·𝑚𝑠,𝑑 · 𝑟𝑝 is constant for all edges of a given path, the summation over all edges
𝑒 ∈ 𝑝 gives len(𝑝) · 𝜃 (M, 𝐹 ) ·𝑚𝑠,𝑑 · 𝑟𝑝 where len(𝑝) denotes the number of edges in the path 𝑝 or
simply the length of the path.∑︁

𝑠∈𝑉

∑︁
𝑑∈𝑉

∑︁
𝑝∈𝑃𝑠,𝑑

len(𝑝) · 𝜃 (M, 𝐹 ) ·𝑚𝑠,𝑑 · 𝑟𝑝 ≤
∑︁
𝑒∈𝐸

𝑐 (𝑒)

Finally from the inequality, we obtain the throughput upper bound given a demand matrix as
follows,

𝜃 (M, 𝐹 ) ≤
∑

𝑒∈𝐸 𝑐 (𝑒)∑
𝑠∈𝑉

∑
𝑑∈𝑉 𝑚𝑠,𝑑 ·

(∑
𝑝∈𝑃𝑠,𝑑 len(𝑝) · 𝑟𝑝

)
where

∑
𝑝∈𝑃𝑠,𝑑 len(𝑝) · 𝑟𝑝 is conceptually the average route length from 𝑠 to 𝑑 . Let 𝑀 =∑

𝑠∈𝑉
∑

𝑑∈𝑉 𝑚𝑠,𝑑 and 𝐶 =
∑

𝑒∈𝐸 𝑐 (𝑒),

𝜃 (M, 𝐹 ) ≤ 𝐶

𝑀 · ARL(M, 𝐹 ) (14)
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where ARL(M, 𝐹 ) = ∑
𝑠,𝑑∈𝑉

∑
𝑝∈𝑃𝑠,𝑑

𝑚𝑠,𝑑

𝑀
· 𝑟𝑝 · len(𝑝) is the average route length forM and 𝐹 .

Given a demand matrix, the above inequality varies based on the flow 𝐹 . In order to maximize
throughput, we rewrite the above inequality as a maximum over possible flow 𝐹 .

𝜃 (M) = max
𝐹

𝐶

𝑀 · ARL(M, 𝐹 ) (15)

The throughput under a worst-case demand matrix is then the minimum 𝜃 (M) over the set of all
saturated demand matrices.

𝜃 ∗ = min
M

max
𝐹

𝐶

𝑀 · ARL(M, 𝐹 ) (16)

□

We note that providing a lower bound for the ARL(M, 𝐹 ), even when𝑀 and/or 𝐹 are not known
would provide an upper bound for 𝜃 ∗. One such example is to take the shortest paths in the
topology, as was done in [16]. But this will not always lead to a tight bound (see Appendix A.3), for
example in the complete graph 𝐾𝑛 . While efficiently computing the throughput upper bound is
an on-going research [16, 23, 24], Theorem 2 shows that computing throughput essentially boils
down to computing average route lengths.

E ANALYSIS: DELAY & BUFFER REQUIREMENTS
In this section, we determine the amount of buffer required at each node in order to achieve a
throughput 𝜃 (M) which reveals an interesting relation between throughput and buffer in peri-
odic reconfigurable topologies. We first formally define the delay of a temporal path for a better
understanding later on the flow that needs to be “stored” at intermediate nodes.

Definition 13 (Temporal path delay). Given a periodic evolving graph G and the set of all temporal

paths P, the delay of a temporal path 𝛿 ∈ P denoted by 𝐿(𝛿) is time it takes when the first edge

𝑒1 ∈ 𝛿 is accessed until the time the flow reaches the destination on the last edge 𝑒𝑛 ∈ 𝛿 . Formally,

for a path 𝛿 ∈ P, if ⟨(𝑒1, 𝑡1), (𝑒2, 𝑡2) ... (𝑒𝑛, 𝑡𝑛)⟩ is the sequence of edge-time values, then 𝐿(𝛿) =

(𝑡𝑛 − 𝑡1 + 1) · Δ + (Γ − 1) · Δ where Δ is the absolute time of each timeslot and Γ is the period of the

evolving graph.

Clearly, the delay is lower bounded by len(𝛿) · Δ + (Γ − 1) · Δ since it takes Δ (timeslot) amount
of time to send over each edge 𝑒 ∈ 𝛿 and there is always an inherent delay of (Γ − 1) timeslots
due to the periodic nature. Similarly, the delay is upper bounded by len(𝛿) · Γ · Δ since the delay
between accessing each edge along a path can be at most Γ timeslots.

We first, define average route delay similar to average route length (Definition 12, which plays a
key role in the analysis of the maximum latency and the required buffer at each node.

Definition 14 (Average route delay). Given a demand matrixM, a periodic evolving graph G and a

flow F that satisfies the demand, the average route delay denoted by ARD(M, F ) is defined by,

ARD(M, F ) =
∑︁
𝑠,𝑑∈𝑉

𝑚𝑠,𝑑

𝑀
· 𝐿𝑠,𝑑

where𝑀 =
∑

𝑠∈𝑉
∑

𝑑∈𝑉 𝑚𝑠,𝑑 ; 𝐿𝑠,𝑑 =
∑

𝛿 ∈P0
𝑠,𝑑
𝑟𝛿 · 𝐿(𝛿) is the 𝑠-𝑑 delay; 𝑟𝛿 is the fraction of 𝑠-𝑑 demand

transmitted on the temporal path 𝛿 and 𝐿(𝛿) is the delay of the temporal path 𝛿 .

We now state the lower bound for the maximum delay in a periodic evolving graph.

Theorem 3 (Delay). Given a demand matrixM, a 𝑛𝑢-regular periodic evolving graph G emulating a

𝑑-regular graph with a period of Γ timeslots each of duration Δ and a flow F that achieves throughput
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𝜃 (M, F ), the average route delay ARD(M, F ) and the maximum delay 𝐿𝑚𝑎𝑥 are given by
10
,

𝐿𝑚𝑎𝑥 ≥ ARD(M, F ) = ARL(M, F ) · Γ · Δ

≥ Ω

(
𝑑 · Δ

𝑛𝑢 · 𝜃 (M, F )

)
(2)

where ARD(M, F ) =
∑

𝑠,𝑑∈𝑉
∑

𝛿
𝑚𝑠,𝑑

𝑀
· 𝑟𝛿 · 𝐿(𝛿) is the average route delay for M and F , where

𝑟𝛿 is the fraction of demand transmitted on the legal temporal path 𝛿 , and 𝐿(𝛿) is the delay of the

path 𝛿 ,𝑀 =
∑

𝑠∈𝑉
∑

𝑑∈𝑉 𝑚𝑠,𝑑 is the total demand. In particular, for a worst-case demand matrix, the

maximum latency is bounded by

𝐿𝑚𝑎𝑥 ≥ Ω

(
𝑑 · Δ
𝑛𝑢 · 𝜃 ∗

)
(3)

Proof. Based on Definition 9, for every 𝑠-𝑑 source-destination pair, the source generates
𝜃 (M, F ) ·𝑚𝑠,𝑑 flow on average in bits per second in every period. From Definition 14, 𝐿𝑠,𝑑 denote
the average delay between a source 𝑠 and destination 𝑑 . Then the destination only receives its
first data at 𝐿𝑠,𝑑 time later, implying that the source has already generated 𝜃 (M, F ) ·𝑚𝑠,𝑑 · (𝐿𝑠,𝑑 )
amount of data. From then on, the source transmits 𝜃 (M, F ) ·𝑚𝑠,𝑑 average flow in bits per second
and the destination receives 𝜃 (M, F ) ·𝑚𝑠,𝑑 average flow in bits per second in every period. Due
to conservation of flow, for every source-destination pair, the data generated until 𝐿𝑠,𝑑 delay i.e.,
𝜃 (M, F ) ·𝑚𝑠,𝑑 · (𝐿𝑠,𝑑 ) amount of data, circulates (moves between source-destination) in the network
in every period. As a result, the capacity consumed by each 𝑠-𝑑 flow is 𝜃 (M, F ) ·𝑚𝑠,𝑑 · 𝐿𝑠,𝑑

Γ ·Δ . The
total capacity utilized is then

∑
𝑠∈𝑉

∑
𝑑∈𝑉 𝜃 (M, F ) ·𝑚𝑠,𝑑 · 𝐿𝑠,𝑑

Γ ·Δ . However, the total utilized capacity
can also be written as 𝜃 (M, F ) ·𝑀 · ARL(M, F ), where 𝜃 (M, F ) ·𝑀 is the total bits per second
generated by the sources and ARL(M, F ) is the average route length. Equating the above two, we
have that, ∑︁

𝑠∈𝑉

∑︁
𝑑∈𝑉

𝜃 (M, F ) ·𝑚𝑠,𝑑 ·
𝐿𝑠,𝑑

Γ · Δ = 𝜃 (M, F ) ·𝑀 · ARL(M, F )

1
𝑀

∑︁
𝑠∈𝑉

∑︁
𝑑∈𝑉

𝑚𝑠,𝑑 · 𝐿𝑠,𝑑 = ARD(M, F ) = ARL(M, F ) · Γ · Δ

Since the maximum delay 𝐿𝑚𝑎𝑥 is atleast the average delay,

𝐿𝑚𝑎𝑥 ≥ ARD(M, F ) = ARL(M, F ) · Γ · Δ

The period Γ is at least 𝑑
𝑛𝑢

timeslots since the node degree is limited to the number of uplinks 𝑛𝑢 in
each timeslot. Further, since the total capacity 𝐶 equals the total demand𝑀 for saturated demand
matrices; and using the relation between ARL and 𝜃 ∗ from Theorem 2, for a worst-case demand
matrix we obtain the following:

𝐿𝑚𝑎𝑥 ≥ Ω

(
𝑑 · Δ
𝑛𝑢 · 𝜃 ∗

)
□

Notice from Definition 7 and Definition 8 that it requires to “store” flow for a certain time and
“forward” the flow when the next edge along a path is available. As a result, every node in the
evolving graph requires certain amount of buffer space to store and forward flow on temporal paths
in the evolving graph.

In the following, we extend our model to capture the required buffer space at each node.

10Ω is the asymptotic lower bound notation.
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Theorem 4 (Buffer). Given a demand matrixM, a periodic evolving graph G requires at least 𝐵̂ total

amount of buffer in the network in order to achieve throughput 𝜃 (M, F ).
𝐵̂ ≥ (𝜃 (M, F ) ·𝑀) · ARD(M, F ) (4)

where 𝐵̂ =
∑

𝑢∈𝑉 𝐵(𝑢) is the total buffer of the network and 𝐵(𝑢) is the available buffer at a node 𝑢;
𝑀 =

∑
𝑠,𝑑∈𝑉 𝑚𝑠,𝑑 is the total demand for the network; ARD(M, F ) = ∑

𝑠,𝑑∈𝑉
∑

𝛿
𝑚𝑠,𝑑

𝑀
· 𝑟𝛿 · 𝐿(𝛿) is

the average route delay for M and F , where 𝑟𝛿 is the fraction of demand transmitted on the legal

temporal path 𝛿 .

Proof. Let 𝐵(𝑢) be the amount of available (and used) buffer at a node 𝑢 ∈ 𝑉 . Then at any time
𝑇 ≥ 0, the difference between the total flow arrived and departed from node 𝑢 (except the flow
originating and terminating at 𝑢) is the amount of flow stored at 𝑢, formally expressed below. For
simplicity, we set Δ𝑡 = Δ − Δ𝑟 and Δ𝑡

Δ = 1 − Δ𝑟

Δ = 1 − Δ𝑢 . We denote the set of incoming (outgoing)
edges of a node 𝑢 at any time 𝑡 by E−

𝑡 (𝑢) (E+
𝑡 (𝑢)).

𝐵(𝑢) ≥
𝑇∑︁
𝑡=0

∑︁
𝑠,𝑑∈𝑉 \{𝑢 }

∑︁
𝛿 ∈P𝑠,𝑑

©­«
∑︁

𝑒∈E−
𝑡 (𝑢)

F (𝛿, 𝑒, 𝑡) −
∑︁

𝑒∈E+
𝑡 (𝑢)

F (𝛿, 𝑒, 𝑡)ª®¬ · Δ (17)

For simplicity, we define the sum of all flows arriving and departing from a node 𝑢 at any time 𝑡 as
follows:

𝑅−𝑡 (𝑢) =
∑︁
𝑠,𝑑∈𝑉

∑︁
𝛿 ∈P𝑠,𝑑

∑︁
𝑒∈E−

𝑡 (𝑢)
F (𝛿, 𝑒, 𝑡)

𝑅+𝑡 (𝑢) =
∑︁
𝑠,𝑑∈𝑉

∑︁
𝛿 ∈P𝑠,𝑑

∑︁
𝑒∈E+

𝑡 (𝑢)
F (𝛿, 𝑒, 𝑡)

Notice that at any time 𝑡 ,
∑

𝑢∈𝑉 𝑅
−
𝑡 (𝑢) =

∑
𝑢∈𝑉 𝑅

+
𝑡 (𝑢). Since we take the summation over all nodes,

for every outgoing flow on an edge, there is a corresponding equal flow incoming at the other end
of the edge.
We now simplify Equation 17 using the above notation. Note that∑

𝑠∈𝑉 \{𝑢 }
∑

𝛿 ∈P𝑠,𝑢

∑
𝑒∈𝐸− (𝑢) F (𝛿, 𝑒, 𝑡) is same as

∑
𝑠∈𝑉

∑
𝛿 ∈P𝑠,𝑢

∑
𝑒∈𝐸− (𝑢) F (𝛿, 𝑒, 𝑡) since P𝑢,𝑢 is

a null set.

𝐵(𝑢) ≥
∑︁

𝑡 ∈[0,𝑇 ]

©­«𝑅−𝑡 (𝑢) −
∑︁
𝑠∈𝑉

∑︁
𝛿 ∈P𝑠,𝑢

∑︁
𝑒∈𝐸− (𝑢)

F (𝛿, 𝑒, 𝑡)ª®¬ · Δ
−

∑︁
𝑡 ∈[0,𝑇 ]

©­«𝑅+𝑡 (𝑢) −
∑︁
𝑑∈𝑉

∑︁
𝛿 ∈P𝑢,𝑑

∑︁
𝑒∈𝐸+ (𝑢)

F (𝛿, 𝑒, 𝑡)ª®¬ · Δ
Summing over all the nodes 𝑢 ∈ 𝑉 , we obtain the following,

∑︁
𝑢∈𝑉

𝐵(𝑢) ≥

Data sent out from each source 𝑢 ∈ 𝑉︷                                                   ︸︸                                                   ︷∑︁
𝑢∈𝑉

©­«
∑︁

𝑡 ∈[0,𝑇 ]

∑︁
𝑑∈𝑉

∑︁
𝛿 ∈P𝑢,𝑑

∑︁
𝑒∈𝐸+ (𝑢)

F (𝛿, 𝑒, 𝑡)ª®¬ · Δ
−

∑︁
𝑢∈𝑉

©­«
∑︁

𝑡 ∈[0,𝑇 ]

∑︁
𝑠∈𝑉

∑︁
𝛿 ∈P𝑠,𝑢

∑︁
𝑒∈𝐸− (𝑢)

F (𝛿, 𝑒, 𝑡)ª®¬ · Δ︸                                                  ︷︷                                                  ︸
Data received at each destination 𝑢 ∈ 𝑉
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Let 𝐿(𝛿) denote the temporal path delay. F (𝛿) · 𝐿 (𝛿) ·(1−Δ𝑢 )
Γ is the amount of flow sent on a periodic

path before the first data arrives at the destination i.e., F (𝛿) · Δ · (1 − Δ𝑢) is the data sent over Γ
timeslots (Γ · Δ time) and F (𝛿) · 𝐿 (𝛿) ·(1−Δ𝑢 )

Γ is the data sent over 𝐿(𝛿) time. For each 𝑠-𝑑 source-
destination, the total data received at the destination 𝑑 until time𝑇 is the total data sent from source
𝑠 until time 𝑇 minus the total data sent from source 𝑠 before the destination 𝑑 receives its first data.∑︁

𝑢∈𝑉
𝐵(𝑢) ≥

∑︁
𝑢∈𝑉

(
𝑇 · Δ ·

∑︁
𝑑∈𝑉

𝜃 (M, F ) ·𝑚𝑢,𝑑

)
−

∑︁
𝑢∈𝑉

(
𝑇 · Δ ·

∑︁
𝑠∈𝑉

𝜃 (M, F ) ·𝑚𝑠,𝑢

)
+

∑︁
𝑢∈𝑉

∑︁
𝑠∈𝑉

∑︁
𝛿 ∈P0

𝑠,𝑢

F (𝛿) · 𝐿(𝛿) · (1 − Δ𝑢)
Γ

Finally, the above inequality reduces to,∑︁
𝑢∈𝑉

𝐵(𝑢) ≥
∑︁
𝑠∈𝑉

∑︁
𝑑∈𝑉

∑︁
𝛿 ∈P0

𝑠,𝑑

F (𝛿) · 𝐿(𝛿) · (1 − Δ𝑢)
Γ

We expand the above summation
∑

𝛿 ∈P0
𝑠,𝑑

F (𝛿) by multiplying and dividing by 𝜃 (M, F ) ·𝑚𝑠,𝑑

where 𝜃 (M, F ) ·𝑚𝑠,𝑑 =
∑

𝛿 ∈P0
𝑠,𝑑

F(𝛿) ·(1−Δ𝑢 )
Γ from Definition 9.∑︁

𝑢∈𝑉
𝐵(𝑢) ≥

∑︁
𝑠∈𝑉

∑︁
𝑑∈𝑉

©­­­­­­«
𝜃 (M, F ) ·𝑚𝑠,𝑑 · Γ ·

∑︁
𝛿 ∈P0

𝑠,𝑑

F (𝛿) · 𝐿(𝛿) · (1 − Δ𝑢)
Γ∑︁

𝛿 ∈P0
𝑠,𝑑

F (𝛿) · (1 − Δ𝑢)

ª®®®®®®¬
Let 𝑟𝛿 denote the fraction of temporal flow on a path 𝛿 ∈ 𝑃0

𝑠,𝑑
i.e., 𝑟𝛿 =

F(𝛿)∑
𝛿∈P0

𝑠,𝑑
F(𝛿) .

∑︁
𝑢∈𝑉

𝐵(𝑢) ≥𝜃 (M, F ) ·
∑︁
𝑠∈𝑉

∑︁
𝑑∈𝑉

©­­«𝑚𝑠,𝑑 ·
∑︁

𝛿 ∈P0
𝑠,𝑑

𝑟𝛿 · 𝐿(𝛿)
ª®®¬

Let 𝑀 =
∑

𝑠∈𝑉
∑

𝑑∈𝑉 𝑚𝑠,𝑑 and the average route delay for M and F is denoted by ARD(M, F ) =∑
𝑠,𝑑∈𝑉

∑
𝛿 ∈P𝑠,𝑑

𝑚𝑠,𝑑

𝑀
· 𝑟𝛿 · 𝐿(𝛿). The total buffer in the network is 𝐵̂ =

∑
𝑢∈𝑉 𝐵(𝑢). We obtain the

following,

𝐵̂ ≥ (𝜃 (M, F ) ·𝑀) · ARD(M, F )

□

F ANALYSIS: MARS

We now restate and prove the throughput optimal degree 𝑑 of Mars, given the delay requirement
𝐿.
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Theorem 6 (Optimal degree 𝑑 with delay constraints). The optimal 𝑑-regular graph emulated by

Mars that maximizes throughput (given the delay requirement 𝐿 and under Valiant load balancing)

has a degree 𝑑 given by,

𝑑 = ⌊𝑒−W(𝑘)⌋

where 𝑘 =
−2·ln(𝑛𝑡 ) ·Δ

𝑛𝑢 ·𝐿 ;W is the Lambert W function [31]; ln(.) is the natural logarithm and 𝑒 is the

Euler’s number.

Proof. We begin by equating the delay of Mars and the desired delay 𝐿.

𝐿 =
2 · log𝑑 (𝑛𝑡 ) · 𝑑 · Δ

𝑛𝑢

Rearranging the terms in the above equation, we obtain the following,

ln(𝑑)
𝑑

=
2 · ln(𝑛𝑡 ) · Δ

𝑛𝑢 · 𝐿

1
𝑑
· ln

(
1
𝑑

)
= −2 · ln(𝑛𝑡 ) · Δ

𝑛𝑢 · 𝐿

For simplicity, let − 2·ln(𝑛𝑡 ) ·Δ
𝑛𝑢 ·𝐿 be some constant 𝑘 .

1
𝑑
· ln

(
1
𝑑

)
= 𝑘

The above equation is of the form𝑦 · ln(𝑦) = 𝑘 whose solution is𝑦 = 𝑒W(𝑘) whereW is the lambert
𝑊 function [31].

1
𝑑
= 𝑒W(𝑘)

Substituting 𝑘 in the above, we obtain the following.

𝑑 = 𝑒−W(𝑘) = 𝑒
−W

(
− 2·ln(𝑛𝑡 ) ·Δ

𝑛𝑢 ·𝐿

)
Here, if 𝑘 < − 1

𝑒
, there exists no real solution. However, we show that 𝑘 is always greater than − 1

𝑒

i.e., 𝑘 > − 1
𝑒

𝑘 = −2 · ln(𝑛𝑡 ) · Δ
𝑛𝑢 · 𝐿 ≥ −2 · ln(𝑛𝑡 )

𝑛𝑢
≥ −2 · ln(𝑛𝑡 ) > −1

𝑒

The above inequalities hold since the latency 𝐿 is at least one timeslot i.e., 𝐿 ≥ Δ; the topology
consists of at least two ToRs i.e., 𝑛𝑡 ≥ 2 and ln(2) > 1

𝑒
.

If − 1
𝑒
≤ 𝑘 < 0, there exists two real solutions for the degree 𝑑 . In this case, we take the the

highest value and round it to the nearest integer. Here, choosing the highest value 𝑑 lowers the
average route length 2 · log𝑑 (𝑛𝑡 ) and consequently maximizes throughput within the latency
requirement. □

Theorem 7 (Optimal degree 𝑑 with buffer constraints). The optimal degree 𝑑 for the emulated graph

of Mars independent of the specific flow that maximizes throughput, given a limited buffer 𝐵 ≤ 𝑛𝑡 · Δ
at each node, is given by,

𝑑 = ⌊ 𝐵

𝑐 · Δ ⌋

where 𝑐 is the capacity of every edge in the topology and Δ is the timeslot value.
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Fig. 11. 99-percentile flow completion times for Datamining workload [40] under random permutation
demand matrix.
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Fig. 12. 99-percentile flow completion times for Datamining workload [40] under all-to-all demand matrix.

Proof. From Theorem 4, the required buffer is (𝜃 (M, F ) · 𝑀 · 𝐴𝑅𝐷 (M, F )). Further, from
Theorem 3 we have that the delay is bounded by 𝑑 ·Δ

𝑛𝑢 ·𝜃 (M,F) . Since 𝑀 = 𝑛𝑡 · 𝑛𝑢 · 𝑐 (total demand
and capacity), this gives us the buffer requirement of 𝑛𝑡 · 𝑐 · 𝑑 · Δ in the whole network. Given the
regularity of the Mars, each node would then require 𝑐 · 𝑑 · Δ amount of buffer to hold the demand.
Now, given the constraint that only 𝐵 amount of buffer is available at each node, the optimal degree
𝑑 is then 𝐵

𝑐 ·Δ rounded to the nearest integer. □
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