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We investigate the problem of stabilizing an unknown networked linear system under communication con-

straints and adversarial disturbances. We propose the first provably stabilizing algorithm for the problem.

The algorithm uses a distributed version of nested convex body chasing to maintain a consistent estimate of

the network dynamics and applies system level synthesis to determine a distributed controller based on this

estimated model. Our approach avoids the need for system identification and accommodates a broad class of

communication delay while being fully distributed and scaling favorably with the number of subsystems.
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1 INTRODUCTION
Large-scale networked dynamical systems play a crucial role in many emerging engineering systems

such as the power grid [26], autonomous vehicles [50], and swarm robots [57]. Motivated by the

success of learning-based control methods for single-agent (centralized) linear systems, there has

been growing interest in learning distributed controllers for unknown networked systems composed

of interconnected and spatially distributed linear time-invariant (LTI) subsystems [16, 31, 32, 52, 87].

However, since most existing literature ports centralized learning-based control techniques over

to the distributed setting, almost all previous work assumes that the underlying dynamics are stable,

or that a stabilizing and distributed controller is known. For a large-scale networked system, such

assumptions are often unrealistic, because designing stabilizing distributed controllers itself is a

significant task even if the dynamics model is available [7, 30, 35, 64, 81, 92].

Recent work has begun to lift the assumption of the knowledge of a stabilizing controller in the

centralized case, e.g. [18, 40, 70]. This line of work follows the approach of system identification,

either by letting the unstable system run open-loop or by exciting the system via control inputs.
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Table 1. Maximum and top 90% infinity norm of the state (∥𝑥 (𝑡)∥∞) for different disturbance profiles
averaged over 10 runs. Simulation details are provided in Section 5.

Algorithm Correlated Gaussian (Top 90%) Uniform (Top 90%) State-dependent (Top 90%)

This work 1.21 × 101 (0.31 × 101) 2.30 × 101 (0.36 × 101) 7.14 × 101 (0.54 × 101)
SysID 5.12 × 1011 (1.71 × 1011) 5.12 × 1011 (1.71 × 1011) 5.12 × 1011 (1.71 × 1011)

However, such approaches induce explosive transient behaviors due to the instability of the under-

lying system. Without proper generalization to the networked setting, such explosive behavior can

cause catastrophic system degradation before a proper stabilizing controller can be learned.

Further, until now, scalability and information constraints have only been considered separately

in learning-based distributed controller design; no general approach exists. On the other hand,

information constraints and scalability have been the central topics in distributed control for the

past decade due to their theoretical challenge and practical importance [56, 63, 72, 72, 82, 93].

Therefore, it is crucial to simultaneously consider such constraints when designing learning-based

distributed control algorithms for networked systems.

1.1 Contributions
In this work, we overcome the aforementioned challenges by leveraging recent advances in online

learning and distributed control. In particular, we propose an approach that combines a distributed

version of nested convex body chasing (NCBC), in order to maintain a consistent estimate of

the network dynamics, with system level synthesis (SLS), in order to determine a distributed

controller based on the selected consistent model. This combination yields the first online algorithm

that provably stabilizes a networked LTI system with information constraints under adversarial

disturbances (Theorem 4.4). The proposed algorithm (Algorithm 2) is distributed and scales favorably

to the number of subsystems in the network.

The proposed approach in this paper is fundamentally different than traditional system identifica-

tion based methods, which incur prohibitively large state norm under adversarial disturbances, even

in the simplest setting (see Table 1). The reason is that system identification-based approaches seek

to learn the full system dynamics, which requires full excitation of the system against worst-case

disturbances. On the other hand, our approach does not require precise knowledge of the system.

Instead, we maintain model estimates that are consistent with the observations generated by the

unknown system at all times. A consequence of focusing on consistency is a natural endogenous

exploration-exploitation scheme where our algorithm performs well (small state norm) while the

selected model stays consistent, and gains information about the system whenever it observes a

large state norm that renders the selected model inconsistent.

The main result of this paper is an input-to-state stability guarantee (Theorem 4.4), where we

draw novel connections between the path length property of NCBC techniques and system stability

analysis. This follows from a set of novel technical results for SLS in the learning-based control

context. In particular, we generalize a previous result [7] on the characterization of the closed loop

under SLS controllers that are synthesized from an arbitrary and potentially incorrect system model

(Lemma 3.2). This result enables the analysis of our algorithm when each subsystem uses local,

asynchronous, and wrong model information for local controller synthesis. Further, we derive a

novel perturbation result with explicit constants for finite-horizon SLS synthesis (Theorem 3.4) that

globally bounds the sensitivity of the optimal solution to the SLS problem (a quadratic program

with equality and sparsity constraints) with respect to the model. This result is also applicable in

other contexts such as a class of MPC problems studied in [6, 15, 68].
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1.2 Related work
This work contributes to a large and growing body of work on the topics related to learning-based

control design, online control, and distributed control. We briefly review the literature most related

to this work below.

Stabilization of unknown systems. Stabilizing unknown linear systems has long been a

fundamental problem studied in adaptive control theory [42]. It recently reemerged as a learning

problem and received considerable attention from the machine learning community [40, 59, 75, 91].

Most works have been developed under single-agent setting, with a no-noise assumption [47, 74] or

Gausssian noise models [28, 46]. Under the adversarial noise setting, which is the focus of this paper,

the only work that guarantees stabilization for LTI systems is [18], with a system identification-

based approach that achieves order-optimal regret. In contrast, we propose a novel framework

for stabilization under adversarial noise that does not rely on accurate identification of the true

dynamics. In particular, our method is the first algorithm to stabilize a networked LTI system under

adversarial disturbances with information constraints while simultaneously achieving magnitudes

of improvement in empirical performance over the state-of-the-art identification-based approach

[18] in the single-agent setting, despite the regret-optimal guarantee in [18].

Distributed control. Motivated by large-scale cyberphysical systems that are composed of

physically distributed subsystems with local dynamical interactions, there is a large body of work

on control design for networked systems [7, 45, 92]. Cyberphysical systems such as the power grid

are commonly constrained by a communication layer that allows specific structure of information

exchange among the subsystems. such information structure imposes significant challenges for

optimal control design, often rendering the problem NP-hard [76]. In [64], it was shown that a large

class of practically relevant distributed control problems is convex and tractable to solve. Since

then, many works have focused on this class of problems [30, 48]. However, [83] observes that the

complexity of computation and implementation of distributed controllers developed under this

setting can be prohibitively expensive, thus not scalable to large-scale systems. The System Level

Synthesis (SLS) framework is developed as a scalable alternative to distributed control design [7].

In particular, SLS allows order-constant complexity for synthesis and implementation, due to its

special parameterization and implementation of the feedback controller. As a result, many works

have adopted SLS as the basis for novel (learning-based) control algorithms in both distributed and

centralized setting [6, 21, 24, 79]. We contribute to the literature on SLS by developing a suit of

technical results for SLS controllers that can find applications beyond the setting of this work.

Learning distributed controllers. Many learning-based control algorithms for networked

systems adopt a centralized learning or computational approach with the objective of regret

minimization, e.g., [16, 27, 31, 32, 87]. All prior work use the stochastic noise or no-noise model and

assume a known stabilizing distributed controller is given [4–6, 44, 52, 73]. As far as we are aware,

no previous work accommodates communication delay while doing both learning and control. The

most related to our work are [37] and [31], where learning-based SLS controllers are designed to

control unknown networked systems. Both of the methods require the knowledge of a stabilizing

and distributed controller. [37] is only applicable to small-uncertainty scenarios, while [31] requires

a stabilizing distributed controller and performs centralized learning. In this work, we focus on

stabilization and propose the first distributed learning-based control algorithm that guarantees

stability for unknown networked systems under adversarial disturbances.

Online learning. The problem of online stabilization for unknown dynamical systems is an

instance of online decision making problems, where an agent makes a sequence of decisions based

on the feedback from an unknown environment with the goal of cost minimization. Online decision

making is studied extensively in the online learning literature, with a line of work [34, 53, 66, 88] that
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makes interesting connections between convex function and body chasing [9, 10] and linear control

theory. In particular, [38] proposes an online nonlinear robust control method based on convex

body chasing that guarantees finite mistakes under adversarial disturbances without the need for

system identification. While [38] considers binary cost functions, we present novel technical results

that establish the first connection between convex body chasing and stability analysis for both

single-agent and networked linear dynamical systems.

1.3 Notation
Let ∥ · ∥ be the ℓ2 norm and ∥ · ∥𝐹 be the Frobenius norm. We denote the (𝑖, 𝑗)th position of a

matrix𝑀 as𝑀 (𝑖, 𝑗) and use𝑀 (:, 𝑗), 𝑀 (𝑖, :) for the 𝑗th column and 𝑖th row of𝑀 respectively. We

use [𝑁 ] for the set of positive integers up to 𝑁 . Positive integers are denoted as N+. Bold face

lower cases are reserved for vector signal of the form x := [𝑥 (0)𝑇 , 𝑥 (1)𝑇 , . . . ]𝑇 with 𝑥 (𝑡) ∈ R𝑛 is

an infinite sequence of vectors indexed by time 𝑡 . We reserve bold face capital letters for causal

linear operators/transfer matrices with components 𝐾 [0], 𝐾 [1], . . . , such that

K :=


𝐾 [0] 0 . . .

𝐾 [1] 𝐾 [0] 0 . . .
...

. . .
. . .

. . .

 .
We write y = Gx to mean that 𝑦 (𝑡) = ∑𝑡

𝑘=0𝐺 [𝑘]𝑥 (𝑡 − 𝑘). Given any binary matrix C ∈ {1, 0}𝑁×𝑁 ,
we say 𝑀 ∈ C for a matrix 𝑀 ∈ R𝑁×𝑁 if the sparsity of 𝑀 is C. We use {𝑒 𝑗 }𝑛𝑗=1 for the standard
basis in R𝑛 .

2 PRELIMINARIES AND PROBLEM SETUP
We consider the task of stabilizing an unknown networked system made up of 𝑁 interconnected,

heterogeneous linear time-invariant (LTI) subsystems, illustrated in Figure 1(a). For each subsystem

𝑖 ∈ [𝑁 ], let 𝑥𝑖 (𝑡) ∈ R𝑛𝑖 ,𝑢𝑖 (𝑡) ∈ R𝑚𝑖
,𝑤 𝑖 (𝑡) ∈ R𝑛𝑖 be the local state, control, and disturbance vectors

respectively. Each subsystem 𝑖 has dynamics,

𝑥𝑖 (𝑡 + 1) =
∑︁

𝑗 ∈N(𝑖)

(
𝐴𝑖 𝑗𝑥 𝑗 (𝑡) + 𝐵𝑖 𝑗𝑢 𝑗 (𝑡)

)
+𝑤 𝑖 (𝑡), (1)

where we write 𝑗 ∈ N (𝑖) if the states or control actions of subsystem 𝑗 affect those of subsystem 𝑖

through the open-loop network dynamics (𝑖 ∈ N (𝑖)). Concatenating all the subsystem dynamics,

we can represent the global dynamics as

𝑥 (𝑡 + 1) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) +𝑤 (𝑡), (2)

where 𝑥 (𝑡) ∈ R𝑛𝑥 , 𝑢 (𝑡) ∈ R𝑛𝑢 , 𝑤 (𝑡) ∈ R𝑛𝑥 , with 𝑛𝑥 =
∑𝑁

𝑖=1 𝑛𝑖 and 𝑛𝑢 =
∑𝑁

𝑖=1𝑚𝑖 , and we define

𝐴𝑖 𝑗 , 𝐵𝑖 𝑗 ≡ 0 for all 𝑗 ∉ N(𝑖). The networked LTI model (1) has been extensively studied in the

networked control literature for various applications such as robotic swarms [58], voltage control

for the distribution network of the power grid [88], and many other large-scale cyber-physical

systems [49, 90]. An example is the linearized swing equation for power systems, where the global

system is composed of a mesh of interacting buses [33, 80]. In this setting, the states 𝑥𝑖 of each bus

𝑖 is two-dimensional and corresponds to the phase angle relative to some given setpoint and the

associated frequency. The input 𝑢𝑖 at bus 𝑖 is the controllable load, while𝑤 𝑖
is the bounded load

disturbances that are often correlated in space and time.

We assume that the topology among the subsystems is known, i.e., the sets N(𝑖) for 𝑖 ∈ [𝑁 ]
are known. However, the parameters of the dynamics (entries of matrices 𝐴𝑖 𝑗

, 𝐵𝑖 𝑗 ) are unknown.

Let \ 𝑖 denote the unknown local parameter for subsystem 𝑖 , i.e., \ 𝑖 :=
(
𝐴𝑖 𝑗 , 𝐵𝑖 𝑗

)
𝑗 ∈N(𝑖) . Further, let

Θ := (\1, . . . , \𝑁 ) be the global parameter. We write 𝐴(Θ) and 𝐵(Θ) (equivalently 𝐴𝑖 𝑗 (\ 𝑖 ), 𝐵𝑖 𝑗 (\ 𝑖 ))
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Dynamics
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x4

<latexit sha1_base64="YrN/clwoRM7+Ognfd0ZXVOlt4BI=">AAAB6nicbVDLTgJBEOz1ifhCPXqZSEw8kV2CjyOJF48Y5ZHASmaHXpgwO7uZmTUSwid48aAxXv0ib/6NA+xBwUo6qVR1p7srSATXxnW/nZXVtfWNzdxWfntnd2+/cHDY0HGqGNZZLGLVCqhGwSXWDTcCW4lCGgUCm8Hweuo3H1FpHst7M0rQj2hf8pAzaqx09/Rw3i0U3ZI7A1kmXkaKkKHWLXx1ejFLI5SGCap123MT44+pMpwJnOQ7qcaEsiHtY9tSSSPU/nh26oScWqVHwljZkobM1N8TYxppPYoC2xlRM9CL3lT8z2unJrzyx1wmqUHJ5ovCVBATk+nfpMcVMiNGllCmuL2VsAFVlBmbTt6G4C2+vEwa5ZJ3UarcVorVchZHDo7hBM7Ag0uowg3UoA4M+vAMr/DmCOfFeXc+5q0rTjZzBH/gfP4ADlmNnA==</latexit>

x5
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(a) System with communication graph G𝐶 .

<latexit sha1_base64="Yfgfr4NXdGWceHRL8ymbsbhL4xg="></latexit>2
6666664
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0 0 ⇤ ⇤ ⇤ 0
0 0 0 ⇤ ⇤ ⇤
⇤ 0 ⇤ 0 ⇤ ⇤

3
7777775

(b) 𝐴, 𝐵 matrix with pa-

rameter Θ.

<latexit sha1_base64="g8w+t6fLkHKG6v0U9XvvBqtKjgM="></latexit>2
6666664

1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 0 0 1
0 0 1 1 1 0
0 0 0 1 1 1
1 0 1 0 1 1

3
7777775

(c) Adjacency matrix C.

Fig. 1. Example networked LTI system with information constraints.

to emphasize that𝐴 and 𝐵 are matrices constructed with appropriate zeros according to the network

topology (known), and the nonzero entries specified by Θ (unknown).

Example 1. Consider the networked system in Figure 1(a) where each subsystem 𝑖 ∈ [6] has
𝑥𝑖 (𝑡) ∈ R and 𝑢𝑖 (𝑡) ∈ R. For each 𝑖 , the set N(𝑖) contains the subsystems that has a dashed arrow
pointing towards 𝑥𝑖 in the figure. For example, N(6) = {1, 3, 5, 6}. Each 𝐴𝑖 𝑗 and 𝐵𝑖 𝑗 for 𝑗 ∈ N (𝑖) is
a scalar. The stacked global dynamics has matrix 𝐴 and 𝐵 with structure shown in Figure 1(b). The
unknown local parameter \ 𝑖 corresponds to the ∗ entries of the 𝑖 th row of 𝐴 and 𝐵, while the global
parameter Θ is a vector containing ∗ entries in matrix 𝐴 and 𝐵.

We now introduce three core assumptions needed for our algorithm and analysis. As we highlight

below, these are standard assumptions in the learning-based control literature.

Assumption 1 (Adversarial disturbances). ∥𝑤 (𝑡)∥∞ ≤𝑊 for (2).

Assumption 2 (Compact Parameter Set). The network structure N(𝑖) for 𝑖 ∈ [𝑁 ] is known.
The true system parameter Θ★ :=

(
\1,★, . . . , \𝑁,★

)
is an element of a known compact convex set

P0 = P1
0 × · · · × P𝑁

0 , which is a product space of local parameter sets where \ 𝑖,∗ ∈ P𝑖
0. The known

parameter set is bounded such that there exists a known constant ^ > 0 where ∥ [𝐴 (Θ) 𝐵 (Θ)] ∥𝐹 ≤ ^
for all Θ ∈ P0.

Assumption 3 (Controllability). For all Θ ∈ P0, (𝐴(Θ), 𝐵(Θ)) is controllable.

Bounded adversarial disturbances is a common model in the adversarial online learning and

control problems [2, 24, 36]. Since we make no assumptions on how large the bound on the distur-

bance𝑊 is, Assumption 1 models a variety of disturbance models, such as bounded and correlated

stochastic noise or state-dependent disturbances such as the linearization and discretization error

for nonlinear continuous dynamics [78]. Moreover, the known bound𝑊 can be relaxed to an

unknown parameter [ with [ ≤𝑊 for a known constant𝑊 to reduce conservatism for large𝑊 .

Assumptions 2 and 3 are standard in the learning-based control literature, e.g., see [2, 20]. We

impose controllability in Assumption 3 for ease of exposition but it can be relaxed to stabilizability

by adjusting the choice of model-based controller to an infinite-horizon controller such as the one

proposed in [89] for the algorithm.

2.1 Stability
One of the fundamental goals for control design is to ensure stability. In this paper, we aim to learn

a stabilizing controller for the networked linear system (2) in the sense of input to state stability

(ISS) [71]. ISS is one of the main notions of stability for both linear and nonlinear systems [13, 43].

Here we adapt the ISS definition to the ℓ∞-norm.
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Definition 2.1 (ISS). A dynamical system of the form (2) is said to be input to state stable (ISS) if

there exist functions 𝛽 : R+ × N→ R+ that is continuous, strictly increasing, and bijective with

respect to the second argument with lim𝑡→∞ 𝛽 (𝑎, 𝑡) = 0 for all 𝑎 ≥ 0, 𝑡 ∈ N, and𝛾 : R+ → R+ that is
continuous, strictly increasing, and bijective such that for all initial state 𝑥 (0), disturbance sequence
w, and time 𝑡 ≥ 𝑡0 for 𝑡0 ∈ N+, we have ∥𝑥 (𝑡)∥∞ ≤ 𝛽 (∥𝑥 (𝑡0)∥∞ , 𝑡 − 𝑡0) + 𝛾 (sup𝑡 ≥𝑡0 ∥𝑤 (𝑡)∥∞).

2.2 Distributed design and information constraints
For large-scale networks such as the power grid with state dimension in the orders of thousands

to millions, it is unrealistic and prohibitively costly for a central agent to learn a global policy

online. A promising remedy is to decompose the global policy learning into a local one, where each
subsystem in the network learns a local policy in a distributed fashion. In this work, we propose a

distributed learning-based control algorithm for the networked linear system (2) that guarantees

stability of the global system.

In addition to distributed design, networks of the form (1) are often modelled with additional

information constraints that require careful consideration. In this work we consider two common

information constraints. The first is communication delay, where the dynamical system is endowed

with a communication network that specify delayed information transmission among subsystems.

The second is local information, where each subsystem only computes with (delayed) local informa-

tion within a specified neighborhood, and discard information outside of the neighborhood. We

come back to these information constraints and present definitions in Sections 4.1 and 4.2.

2.3 Algorithm preliminaries
Our proposed algorithm makes use of two emerging techniques, one from the learning community,

i.e., nested convex body chasing (NCBC), and one from the control community, i.e., system level

synthesis (SLS). We provide important background on each below before introducing our algorithm

in the next section.

2.3.1 Preliminaries on NCBC. The Nested Convex Body Chasing (NCBC) problem is a well-studied

online learning problem [12, 17]. At every round 𝑡 , the player is presented a convex body K𝑡 ⊂ R𝑛
which is nested in the previous body, e.g., K𝑡 ⊆ K𝑡−1. The player selects a point 𝑞𝑡 ∈ K𝑡 with the

objective of minimizing the total path length of the selection for 𝑇 rounds, e.g.,

∑𝑇
𝑡=0 ∥𝑞𝑡+1 − 𝑞𝑡 ∥.

There are many algorithms for the NCBC problem such as greedy projection of the previously

selected point onto the current body [11]. Among these, the Steiner point selector has been shown

to achieve optimal competitive ratio against the offline optimal selector [17]. The Steiner point of a

convex body K can be interpreted as the average of the extreme points and is defined as

St(K) := E𝑣:∥𝑣 ∥≤1 [𝑔K (𝑣)] ,
where𝑔K (𝑣) := argmax𝑥 ∈K𝑣

⊤𝑥 and the expectation is takenwith respect to the uniform distribution

over the unit ball. The Steiner point selector achieves the following total path length,

𝑇∑︁
𝑡=0

∥St(K𝑡 ) − St(K𝑡+1)∥ ≤ 𝑛 · diam(K0), for all 𝑇 ∈ N+. (3)

We note that the Steiner point can be approximated with any accuracy by solving sampling based

linear programs, [12, Algorithm 3].

2.3.2 Preliminaries on SLS. Even when the dynamics (1) is known, it remains challenging to design

distributed and localized control policies that accommodates communication delay and information

constraints due to nonconvexity and computational scalability issues. Motivated by this problem,

[83] introduces the SLS framework that synthesizes distributed controllers by parameterizing
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controllers with the closed-loop system responses induced under them. In [22, 23, 31], SLS plays a

central role for model-based learning algorithm design and analysis.

We illustrate SLS via a simple example. Consider a fixed static controller 𝐾 ∈ R𝑛𝑢×𝑛𝑥 such

that 𝑢 (𝑡) = 𝐾𝑥 (𝑡). Then the system (2) has the following closed-loop responses to the exogenous

disturbances w,

𝑥 (𝑡) =
𝑡∑︁

𝑘=0

(𝐴 + 𝐵𝐾)𝑘𝑤 (𝑡 − 𝑘 − 1), 𝑢 (𝑡) =
𝑡∑︁

𝑘=0

𝐾 (𝐴 + 𝐵𝐾)𝑘𝑤 (𝑡 − 𝑘 − 1), (4)

where we absorb the initial state 𝑥 (0) into𝑤 (−1). Instead of directly synthesizing 𝐾 , SLS optimizes

the linear operators that map w to x and u. Let Φ𝑥 [𝑘] := (𝐴 + 𝐵𝐾)𝑘 and Φ𝑢 [𝑘] := 𝐾 (𝐴 + 𝐵𝐾)𝑘 .
Then (4) can be written as 𝑥 (𝑡) = ∑𝑡

𝑘=0 Φ
𝑥 [𝑘]𝑤 (𝑡 − 𝑘 − 1) and 𝑢 (𝑡) = ∑𝑡

𝑘=0 Φ
𝑢 [𝑘]𝑤 (𝑡 − 𝑘 − 1). In

signal and transfer matrix form, x = Φxw and u = Φuw. We call Φx
and Φu

with components

Φ𝑥 [𝑘] and Φ𝑢 [𝑘] the closed-loop responses. More generally, for a fixed linear causal controller K,

the closed loop dynamics of (2) can be written in signal/transfer matrix notation as

x = ZAx + ZBu + w, u = Kx, (5)

whereZ is the block-downshift operator with identity matrices of size 𝑛𝑥 by 𝑛𝑥 in all the first block

sub-diagonal positions and zeros everywhere else. Operator A,B are block diagonal matrices with

matrix 𝐴 and 𝐵 on the diagonal respectively. We can similarly derive the closed-loop responses

Φx : w→ x and Φu : w→ u from (5) as[
x
u

]
=

[
(𝐼 −Z(A + BK))−1

K (𝐼 −Z(A + BK))−1
]
w =

[
Φx

Φu

]
w.

Therefore, SLS uses the closed-loop responses Φx
and Φu

as the alternative parameterization for

controller K. The following theorem characterizes an affine subspace of the achievable system

responses Φx
and Φu

under some feedback linear controller K.

Theorem 2.2 (Adapted from [7]). For system (2), any linear causal operators Φx,Φu with finite
impulse response of horizon 𝐻 and satisfying the following

Φ𝑥 [0] = 𝐼 , Φ𝑥 [𝑘 + 1] = 𝐴Φ𝑥 [𝑘] + 𝐵Φ𝑢 [𝑘] , for 𝑘 = 0, . . . , 𝐻 − 1 (6a)

Φ𝑥 [𝜏] = 0 for 𝜏 ≥ 𝐻 (6b)

are closed-loop responses for (2) under a stabilizing linear controller K. Moreover, given any linear
causal operators Φx, Φu that satisfy (6), the following SLS controller constructed using Φx, Φu,

𝑤 (𝑡) = 𝑥 (𝑡) −
𝐻−1∑︁
𝑘=1

Φ𝑥 [𝑘]𝑤 (𝑡 − 𝑘) (7a)

𝑢 (𝑡) =
𝐻−1∑︁
𝑘=0

Φ𝑢 [𝑘]𝑤 (𝑡 − 𝑘) (7b)

with𝑤 (0) = 𝑥 (0) achieves the desired closed-loop response prescribed by Φx, Φu.

We remark that here we are restricting to the space of linear causal operators with finite impulse
responses (FIR) up to horizon 𝐻 , instead of the entire space of linear causal operators. The horizon

𝐻 is a system-dependent design parameter relating to controllability of (2). Under Assumption

3, 𝐻 ≤ 𝑛𝑥 . Moreover, (6) provides affine constraints on finite number of nonzero parameters of

the closed-loop responses. Therefore, one can tractably optimize the closed-loop responses with
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respect to a convex cost. A common choice is the Linear Quadratic Regulator (LQR) cost on the

state and input expressed in terms of the closed-loop responses, e.g.,

min
Φx,Φu

∞∑︁
𝑘=0

[𝑄1/2 0
0 𝑅1/2

] [
Φ𝑥 [𝑘]
Φ𝑢 [𝑘]

]
𝐹

s.t. (6) . (8)

In this work, we leverage the SLS controllers (7) that is parameterized by and constructed from

the operators Φx
, Φu

. The interpretation of (7) is intuitive. When Φx
, Φu

satisfy (6), they are

valid closed-loop responses, mapping w to x and u under (2). Then equation (7a) estimates the

disturbance entering the state in the last time step by computing the difference between the

currently observed state 𝑥 (𝑡) and the counterfactual state

∑𝐻−1
𝑘=1 Φ𝑥 [𝑘]𝑤 (𝑡 − 𝑘) that should have

been observed according to the closed-loop repsonse Φx
if there were no disturbance. Indeed,

a simple calculation using substitution will reveal that 𝑤 (𝑡) = 𝑤 (𝑡 − 1), i.e., that the estimated

disturbance from an SLS controller constructed with operators that satisfy (6) is the perfect one-step

delayed estimation of the true disturbances. Then (7b) computes the control action to attenuate the

estimated disturbance according to the prescription of the closed-loop responses Φu
.

Distributed controller synthesis and implementation. A feature of SLS is that both the

closed-loop response synthesis (8) and the controller implementation (7) can be performed in a

distributed manner, unlike the commonly adopted optimal LQR control method via the Riccati

equation [69]. This is crucial for scalability of the control algorithm for large-scale systems.

Observe that (8) is a column separable problem. This means that we can partition matrix variables

Φ𝑥 [𝑘], Φ𝑢 [𝑘] into columns such as Φ𝑥 [𝑘] (:, 𝑖), Φ𝑢 [𝑘] (:, 𝑖) corresponding to each subsystem 𝑖 . We

refer to [82] for the definition of column separability and the verification of (8) as a column

separable problem. Thus, subsystem 𝑖 only needs to solve the column subproblems corresponding

to its dynamics (1) in the global dynamics (2) as follows. Let 𝝓𝑖,𝑥 and 𝝓𝑖,𝑢 denote the 𝑖th column of

Φx
and Φu

respectively and let 𝝓𝑖 collectively stand for 𝝓𝑖,𝑥 , 𝝓𝑖,𝑢 . The 𝑖th column subproblem is

min
𝝓 𝒊

∞∑︁
𝑘=0

[𝑄1/2 0
0 𝑅1/2

] [
𝜙𝑖,𝑥 [𝑘]
𝜙𝑖,𝑢 [𝑘]

]
𝐹

s.t. 𝜙𝑖,𝑥 [𝑘 + 1] = 𝐴𝜙𝑖,𝑥 [𝑘] + 𝐵𝜙𝑖,𝑢 [𝑘] for 𝑘 = 0, . . . , 𝐻 − 1
𝜙𝑖,𝑥 [0] = 𝑒𝑖 , 𝜙𝑖,𝑥 [𝐻 ] = 0 ,

(9)

where the constraints in (9) is the column-wise decomposition of the constraints (6) for the closed-

loop repsonse synthesis (8). It is straightforward to see that stacking the solutions to the column

subproblems recovers the optimal solution to (8).

When the dynamics interaction among subsystems (1) is sparse, additional sparsity can be

imposed on the closed-loop responses during synthesis (8). With sparse Φx
and Φu

, the implemen-

tation of the controller (7) can be distributed in a similar decomposition as the synthesis procedure.

In particular, each subsystem computes a disjoint subset of coordinates of𝑤 (𝑡). Due to sparsity,
such local computation for subsystem 𝑖 only requires the solutions to the column subproblems

from the local neighbors of 𝑖 via communication instead of from the entire network.

3 ONLINE STABILIZATION UNDER ADVERSARIAL DISTURBANCES
In this section, we propose a novel online algorithm presented in Algorithm 1 that stabilizes an

unknown networked linear system (2) under bounded and potentially adversarial disturbances. The

algorithm selects hypothesis models using methods for NCBC and constructs an SLS distributed

controller based on the hypothesis model. Our approach is distinguished from prior learning-based

control methods in that it does not perform system identification as part of the algorithm.
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Algorithm 1: Online stabilization under adversarial disturbances

Input: Parameter set P0
Initialize: 𝑡 = 0, 𝑢 (0) = 0

1 for 𝑡 = 1, 2, . . . do
2 Observe 𝑥 (𝑡)

/* CONSIST: Select consistent models */

3 Construct P𝑡 with (10)

4 if Θ𝑡−1 ∈ P𝑡 then Θ𝑡 ← Θ𝑡−1
5 else Θ𝑡 ← St(P𝑡 )

/* CONTROL: Perform model-based control with SLS */

6 Synthesize Φx
t , Φ

u
t using (8) based on Θ𝑡

7 Compute 𝑢 (𝑡) using the SLS controller (7) with Φx
t , Φ

u
t

8 end

We first introduce our algorithm without any communication or localization constraints. Then,

in Section 4, we extend the algorithm to a distributed one that accommodates communication delay

and local information (Algorithm 2). Though inspired by the approach in [38], Algorithms 1 and 2

are the first to consider the control goal of stabilization, which can not be subsumed under the

framework proposed in [38] where only binary cost functions are considered. To cast stabilization in

terms of a binary cost function, one needs to specify the largest norm of the state and control input

of the closed-loop system, which is unavailable a priori
1
. Moreover, our algorithms perform both

the parameter selection and the model-based control design distributedly for each local subsystem

based on delayed information from other subsystems, whereas [38] is a single-agent algorithm.

Algorithm 1 starts with the construction of a set of candidate models that are consistent with

the online data (line 3) after observing the latest state transition (line 2). A hypothesis model is

selected from the set of candidate models with NCBC techniques (line 5) if the previously selected

hypothesis model is invalidate by the new observation (line 4). Based on the selected hypothesis

model, model-based control design is performed using the SLS procedure introduced in Section 2.3.2

(line 6 - 7). We discuss the details of Algorithm 1 in the following subsections.

3.1 CONSIST: Consistent hypothesis model selection
The first component of Algorithm 1 is to select a hypothesis model Θ𝑡 in order to perform model-

based control. We name this component CONSIST. Due to the potentially adversarial disturbances

such as state-dependent noise, standard identification methods such as linear regression do not

guarantee accurate estimation of the model. Instead, we leverage NCBC for hypothesis selection.

After observing the latest state transition from 𝑥 (𝑡 −1), 𝑢 (𝑡 −1) to 𝑥 (𝑡), the algorithm constructs

the set of all Θ’s such that 𝐴(Θ), 𝐵(Θ) satisfy (2) with some admissible disturbances defined in

Assumption 1. In particular, each observed transition defines a set of linear constraints on Θ and

we construct the consistent parameter set, P𝑡 at each time 𝑡 , as

P𝑡 := {Θ ∈ P𝑡−1 : ∥𝑥 (𝑡) − (𝐴(Θ)𝑥 (𝑡 − 1) + 𝐵(Θ)𝑢 (𝑡 − 1))∥∞ ≤𝑊 } (10)

withP0 as the local initial parameter set defined in Assumption 2. Note that the consistent parameter

set P𝑡 is always convex, and nested within the parameter set P𝑡−1 recursively. Moreover, P𝑡 is
nonempty for all 𝑡 ∈ N+ because the true parameter Θ★

belongs to every P𝑡 . The key property

1
A crude approximation of the largest norm can be achieved by computing the worst-case state norm over all systems in

the initial parameter set P0, but such approximation results in significant conservatism and requires the knowledge of

control theoretical constants of the controller, e.g., SLS controllers, that may not always be available.
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of P𝑡 is that for all 𝑡 , any Θ𝑡 ∈ P𝑡 could have generated the observed trajectory up to 𝑥 (𝑡) and is

equally likely to be the true system model. By construction, the observed state trajectory can be

written as

𝑥 (𝑡) = 𝐴(Θ★)𝑥 (𝑡 − 1) + 𝐵(Θ★)𝑢 (𝑡 − 1) +𝑤★(𝑡 − 1) (11a)

= 𝐴(Θ𝑡 )𝑥 (𝑡 − 1) + 𝐵(Θ𝑡 )𝑢 (𝑡 − 1) +𝑤 (𝑡 − 1), (11b)

where𝑤★(𝑡) is the true disturbance and {𝑤 (𝑘)}∞𝑡=0 is some admissible disturbance sequence such

that ∥𝑤 (𝑡)∥∞ ≤𝑊 . We say a model is consistent with observations up to time 𝑡 if it belongs to P𝑡 .
Among all consistent models, we need to select a hypothesis model Θ𝑡 in order to perform model

based control. An ideal candidate is one that can remain inside of future consistent parameter sets.

To see why, consider an extreme case where the first selected parameter Θ1 stays consistent for the

entire online operation as we apply control actions generated based on Θ1. Since the consistent

model (11b) generates the same trajectory as the true model (11a), any guarantees that the model-

based control policy has for Θ1 will manifest in the observation. Note Θ1 does not necessarily have

to be close to Θ★
. We remark that P𝑡 is called the membership set in control literature [3, 14], where

most work study the convergence properties of P𝑡 to Θ★
in the context of system identification

given input-output data. In contrast, we construct P𝑡 not to identify the system but to use it for

downstrem control tasks in the online interactive setting.

This intuition motivates us to select a Θ𝑡 that could remain an element of the (yet unknown)

future consistent parameter set. In particular, if the hypothesis model selected at a previous time is

consistent for the current observation, we continue to use it. If the previous hypothesis model is

invalidated by the new observation, then we want to select a new Θ𝑡 ’s from the nested and convex

body P𝑡 with the objective of moving as little as possible for future bodies. This is an instance

of NCBC introduced in Section 2.3.1. The total path length cost function in NCBC formalizes a

measure of model consistency in our case: the less the a selector moves, the longer the selected

points stay consistent overall. In Algorithm 1, we select the Steiner point of P𝑡 as the hypothesis
model. The finite path length guarantee of Steiner point in (3) can be interpreted as a finite budget

for the adversarial disturbances: If the disturbances try to make the state norm large, then the

selected (wrong) hypothesis model will be quickly invalidated thanks to the excitation from the

disturbances. This will make CONSIST frequently re-select new hypothesis models. However, such

inconsistent model selection has bounded occurrences due to the finite path length guarantee (3)

of the Steiner point, i.e., CONSIST gains information and stops moving eventually.

3.2 CONTROL: Model-based control with SLS
After the selection of a hypothesis model Θ𝑡 from the consistent parameter set, Algorithm 1

performs the SLS closed-loop response synthesis (8) and implementation (7) based on Θ𝑡 . We name

this component of the algorithm CONTROL.

3.3 Distributed implementation of Algorithm 1
Per discussion in Section 2.3.2, it is straight forward to see that Algorithm 1 can be implemented

by each subsystem in a distributed fashion. In particular, in the CONSIST component, subsystem

𝑖 constructs a local consistent parameter set P𝑖
𝑡 based on the local observations generated from

the local dynamics (1). Subsystem 𝑖 then selects the Steiner point of P𝑖
𝑡 as its local hypothesis

model \ 𝑖𝑡 . In the CONTROL component, all subsystems collects the local hypothesis models from

other subsystems and construct a global estimate Θ𝑡 = (\1𝑡 , . . . , \𝑁𝑡 ) since we assume no commu-

nication delay here. Based on Θ𝑡 , each subsystem synthesizes columns of Φx
t and Φu

t by solving

the subproblems decomposed from (8). After collecting and assembles the column solutions via
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instantaneous communication, each subsystem computes a disjoint subset of coordinates of𝑤 (𝑡)
and 𝑢 (𝑡), corresponding to the positions of the local states 𝑥𝑖 (𝑡) and input 𝑢𝑖 (𝑡) in the global

dynamics (2) respectively.

3.4 Stability guarantee
Our main results in this section is the following ISS guarantee for Algorithm 1.

Theorem 3.1. Under Assumption 1-3, Algorithm 1 guarantees the stability of the closed loop of (2)

in the sense of ISS such that for all 𝑡 ≥ 𝑡0

max{∥𝑥 (𝑡)∥∞, ∥𝑢 (𝑡)∥∞} ≤ 𝑂
(
𝑒𝑛𝑥

5/2
)
·
(
𝑒−(𝑡−𝑡0)/𝐻𝑥 (𝑡0) + sup

𝑡0≤𝑘<𝑡
∥𝑤 (𝑘)∥∞

)
,

where 𝑥 (𝑡0) is the initial condition, 𝑛𝑥 is the total state dimension of the global network (2), and 𝐻 is
the finite impulse response horizon for the SLS model-based control synthesis.

We remark that the decay factor 𝑒−𝑡/𝐻 corroborates the fact that 𝐻 quantifies the controllability

of the parameter set P0. Intuitively, the smaller 𝐻 can be for the SLS synthesis (20) to be feasible,

the easier the systems in the set can be learned and controlled.

Proof. The main idea of the proof is as follows. First, we characterize the closed loop dynamics

of (2) under any SLS controllers constructed with arbitrary linear causal operators (Lemma 3.2).

We then relax the original SLS condition (6) in Theorem 2.2 to a sufficient condition for ISS of the

closed-loop dynamics under bounded adversarial disturbances (Lemma 3.3). Crucially, we show

that the bounded path length property (3) of the selected hypothesis models in Algorithm 1 implies

the satisfaction of the sufficient condition for closed-loop stability. This implication is established

through a novel perturbation analysis (Theorem 3.4) of the SLS closed-loop response synthesis

problem (8). We defer the proofs of the helper lemmas used here to Appendix B.

Specifically, we show that given arbitrary Φx, Φu
with FIR horizon 𝐻 , the closed-loop dynamics

of (2) under an SLS controller constructed from Φx, Φu
is characterized as follows.

Lemma 3.2 (Closed-loop characterization). The closed loop of (2) under Algorithm 1 is char-
acterized as follows for all time 𝑡 ∈ N:

𝑥 (𝑡) =
𝐻−1∑︁
𝑘=0

Φ𝑥
𝑡 [𝑘]𝑤 (𝑡 − 𝑘), 𝑢 (𝑡) =

𝐻−1∑︁
𝑘=0

Φ𝑢
𝑡 [𝑘]𝑤 (𝑡 − 𝑘) (12a)

𝑤 (𝑡) =
𝐻∑︁
𝑘=1

(
𝐴Φ𝑥

𝑡−1 [𝑘 − 1] + 𝐵Φ𝑢
𝑡−1 [𝑘 − 1] − Φ𝑥

𝑡 [𝑘]
)
𝑤 (𝑡 − 𝑘) +𝑤 (𝑡 − 1). (12b)

where𝐴, 𝐵 are the truemodel parameters from (2)while𝑤 (𝑡) is the true unknown bounded disturbances
with ∥𝑤 (𝑡)∥∞ ≤𝑊 . The linear causal operators Φx

t , Φ
u
t are synthesized via (8) based on the selected

hypothesis model at 𝑡 and𝑤 (𝑡) is the estimated disturbance from the SLS controller (7).

This result generalizes Theorem 2.2 where we characterize the closed loop behaviour of SLS

controllers constructed from any linear casual operators, not necessarily those satisfying (6a).

Under Algorithm 1, we can further replace the true model in (12b) with the selected hypothesis

model (Steiner point of the consistent set) Θ𝑡 , i.e.,

(12b) =

𝐻∑︁
𝑘=1

(
𝐴(Θ𝑡 )Φ𝑥

𝑡−1 [𝑘 − 1] + 𝐵(Θ𝑡 )Φ𝑢
𝑡−1 [𝑘 − 1] − Φ𝑥

𝑡 [𝑘]
)
𝑤 (𝑡 − 𝑘) +𝑤 (𝑡 − 1),

with admissible disturbances such that ∥𝑤 ∥∞ ≤𝑊 due to the consistency property (11) of Θ𝑡 .
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Moreover, Lemma 3.2 leads to a simple sufficient condition for stability of the closed loops under

any SLS controllers. To see this, we first argue that there exist constants that bound the decay rate

of the closed loop responses synthesized from (8). In particular, due to the finite impulse response

property imposed by (6b) of the synthesized closed-loop responses, there always exists a large

enough 𝐶 > 0 and 𝜌 ∈ (0, 1) such that[𝜙𝑖,𝑥 [𝑘]𝜙𝑖,𝑢 [𝑘]

]
𝐹

≤ 𝐶𝜌𝑘 for all closed-loop responses satisfying (6b).

This property is commonly employed in SLS-based analysis [21, 23, 31]. We use 𝐶 and 𝜌 for the

sake of proof here and does not require the knowledge of them for Algorithm 1 to run.

With the decay property, according to Lemma 3.2, if ∥𝑤 (𝑡)∥∞ ≤ �̂�∞ for some �̂�∞ > 0, then we

can bound the global state via (12a) as follows,

∥𝑥 (𝑡)∥∞ ≤ �̂�∞
𝐻−1∑︁
𝑘=0

Φ𝑥
𝑡 [𝑘]


∞ ≤ �̂�∞𝐶

1/2𝑛𝑥
1/2 1

1 − 𝜌1/2
.

The bound on control input ∥𝑢 (𝑡)∥∞ follows analogously. Therefore, the stability of the closed loop

reduces to the boundedness of𝑤 (𝑡) in (12b). To show this, we prove the following.

Lemma 3.3 (Sufficient condition for 𝐻 -convolution ISS). Let 𝐻 ∈ N+. For 𝑘 ∈ [𝐻 ], let
{𝑎𝑡 [𝑘]}∞𝑡=1 and {𝑤𝑡 }∞𝑡=0 be positive sequences. Let {𝑠𝑡 }∞𝑡=0 be a positive sequence such that

𝑠𝑡 ≤
𝐻∑︁
𝑘=1

𝑎𝑡−1 [𝑘] · 𝑠𝑡−𝑘 +𝑤𝑡−1 . (13)

Then {𝑠𝑡 }∞𝑡=0 is ISS if
∑∞

𝑡=0

∑𝐻
𝑘=1 𝑎𝑡 [𝑘] ≤ 𝐿 for some 𝐿 ∈ R+. In particular, for all 𝑡 ≥ 𝑡0,

𝑠𝑡 ≤ 𝑒−(𝑡−𝑡0)/𝐻 · 𝑒𝐿𝑠𝑡0 +
(
𝑒𝐿 + 𝑒 − 1

)
𝑒 − 1 sup

𝑡0≤𝑘<𝑡
𝑤𝑘 . (14)

The above sufficient condition is suitable for analyzing dynamical evolution under adversarial

inputs. Consider taking the norm on both sides of (12b). Then Lemma 3.3 is immediately applicable

with 𝑠𝑡 = ∥𝑤 (𝑡)∥∞, and

𝑎𝑡 [𝑘] =
𝐴(Θ𝑡 )Φ𝑥

𝑡−1 [𝑘 − 1] + 𝐵(Θ𝑡 )Φ𝑢
𝑡−1 [𝑘 − 1] − Φ𝑥

𝑡 [𝑘]

∞ . (15)

Therefore, a sufficient condition for ISS of (2) under Algorithm 1 is the boundedness of (15) summing

over time 𝑡 ∈ N+ and horizon 𝑘 ≤ 𝐻 . This quantity represents the total error of the implemented

closed-loop responses Φx
t , Φ

u
t synthesized from the selected hypothesis dynamics model Θ𝑡 , with

respect to the correct closed-loop responses generated from the true model Θ★
.

To bound (15), we make a crucial connection between the total path length of the Steiner point

model selection in Algorithm 1 and (15). This is established via the following perturbation result

for the SLS closed-loop response synthesis problem (8), where the formal statement (Theorem D.10)

and proof is presented in Appendix D.

Theorem 3.4 (Informal, Perturbation bound). Let 𝜙★(𝐴, 𝐵) := [x★,⊤, u★,⊤]⊤ denote the con-
catenated optimal solution to the following optimization problem

min
𝑥,𝑢

𝐻∑︁
𝑡=0

𝑥 (𝑡)𝑇𝑄𝑥 (𝑡) + 𝑢 (𝑡)𝑇𝑅𝑢 (𝑡)

s.t. 𝑥 (𝑡 + 1) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡), 𝑥 (0) = 𝑥0, 𝑥 (𝐻 ) = 0 ,

(16)
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with 𝑄, 𝑅 ≻ 0. Let (𝐴1, 𝐵1) and (𝐴2, 𝐵2) be two system matrices such that (16) is feasible. Then the
corresponding optimal solutions 𝜙★(𝐴1, 𝐵1) and 𝜙★(𝐴2, 𝐵2) satisfy

∥𝜙★(𝐴1, 𝐵1) − 𝜙★(𝐴2, 𝐵2)∥𝐹 ≤ Γ

[𝐴1 −𝐴2

𝐵1 − 𝐵2

]
𝐹

,

where
𝜙★(𝐴, 𝐵)

𝐹
:=

∑𝐻
𝑘=0 ∥ [𝑥 (𝑘)⊤, 𝑢 (𝑘)⊤] ∥𝐹 . Constant Γ > 0 involves the system theoretical

quantities for 𝐴1, 𝐴2, 𝐵1, 𝐵2, 𝑄, 𝑅.

The quadratic program (16) corresponds to the column-wise decomposed subproblems of the

SLS closed-loop response synthesis (8). Therefore, (15) can be bounded as follows.

(15) =
𝐴(Θ𝑡 ) (Φ𝑥

𝑡−1 [𝑘 − 1] − Φ𝑥
𝑡 [𝑘 − 1]) + 𝐵(Θ𝑡 ) (Φ𝑢

𝑡−1 [𝑘 − 1] − Φ𝑢
𝑡 [𝑘 − 1])


∞

≤ 2𝑛𝑥^

[Φ𝑥
𝑡−1 [𝑘 − 1] − Φ𝑥

𝑡 [𝑘 − 1]
Φ𝑢
𝑡−1 [𝑘 − 1] − Φ𝑢

𝑡 [𝑘 − 1]

]
𝐹

,

where the equality is due to the constraint (6) during the model-based control step in Line 5 of

Algorithm 1. The inequality invokes Assumption 2. Finally we show the total error summing (15)

over all time step 𝑡 and horizon 𝑘 ≤ 𝐻 is bounded by the total path length of the selected hypothesis

models via the Steiner point.

∞∑︁
𝑡=0

𝐻∑︁
𝑘=1

(15) ≤ 2𝑛𝑥^
∞∑︁
𝑡=0

𝐻∑︁
𝑘=1

[Φ𝑥
𝑡−1 [𝑘 − 1] − Φ𝑥

𝑡 [𝑘 − 1]
Φ𝑢
𝑡−1 [𝑘 − 1] − Φ𝑢

𝑡 [𝑘 − 1]

]
𝐹

≤ 2𝑛3/2𝑥 ^Γ
∞∑︁
𝑡=0

∥Θ𝑡−1 − Θ𝑡 ∥𝐹 ≤ 2𝑛5/2𝑥 ^Γdiam(P0), (17)

where we use Theorem 3.4 for the second inequality and the total path length bound (3) of the

Steiner point selector for the last inequality. Finally, we plug the total bound (17) in (14) for an ISS

bound on𝑤 (𝑡), which gives the desired state and control input bound in Theorem 3.1. □

Remark 1. NCBC algorithms other than the Steiner point selector can be substituted in Algorithm 1
as long as the finite path length guarantee (3) holds. Therefore, we can use a more computationally
efficient algorithm with respect to the number of constraints in (10), such as greedy projection, at the
expense of a larger worst-case path length bound. Such trade-off is potentially important since the
number of constraints in (10) grows linearly with time. A topic of continuing work is to find an efficient
representation of (10) that does not involve linear growth in the number of constraints.

Comparison of Theorem 3.1 with previous results. Compared to the state-of-art system identification-

based algorithm for online control under adversarial disturbances given in [18], which induces

Ω(2𝑛) state and control input norm, our algorithm also incur state norms that are exponential-

polynomial in the global dimension. However, our bound is a worst-case guarantee which is on

average not achieved during deployment. On the other hand, the exponential bound in [18] is

qualitatively obtained, since system identification-based methods require full excitation of the

system despite adversarial disturbances [18, Lemma 14]. This is the reason behind the orders of

magnitude of performance improvement of our algorithm over system identification-based methods

observed in the numerical study shown in Table 1.

Comparison of Theorem 3.4 with previous results. The Lipschitz continuity of optimal control

problems, similar to (16), has been investigated in learning-based LQR literature, e.g., [29, 77].

However, our perturbation result Theorem 3.4 (formal statement in Theorem D.10) is with regard

to a finite-horizon quadratic program with terminal state constraints, whereas previous Lipschitz

continuity analysis is performed with respect to the infinite-horizon LQR optimal gain. As a result,
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we use a different set of tools from matrix theory, unlike the Riccati equation (value function) based

analysis for infinite-horizon LQR problems in previous works. In Section 4, we further generalize

the perturbation result to handle sparsity constraints.

4 ADVERSARIAL STABILIZATIONWITH INFORMATION CONSTRAINTS
The implementation of Algorithm 1 assumes that each subsystem has instantaneous access to the

information from other subsystems, such as the local consistent hypothesis models, and the column

solutions to the subproblems decomposed from (8). Such instantaneous information sharing is

often unrealistic in large-scale networked control systems. Therefore, in this section we extend the

presentation in Section 3 to a fully distributed algorithm, shown in Algorithm 2, that for the first

time guarantees the stability of unknown interconnected LTI systems with information constraints

under bounded adversarial disturbances. These results are the main contributions of the paper.

Specifically, we consider two classes of information constraints, namely communication delay
and local information, which we define formally below. After defining these information constraints,

we describe the adjustments to Algorithm 1 and present our main result.

4.1 Communication delay
A key feature of large-scale networked systems is that information observed locally at each subsys-

tem cannot be immediately available to the global network. Instead, information sharing among

subsystems is constrained by communication limitations. Such limitations often lead to delayed

partial observation and pose further challenges for learning-based algorithm design [6, 52, 87]. To

formalize the communication constraints, we define a communication graph G𝐶 = (𝑉𝐶 , 𝐸𝐶 ) for (2),
where𝑉𝐶 = [𝑁 ] and 𝐸𝐶 is the set of directed communication link from one subsystem to the other.

Self-loops at all vertices are included in 𝐸𝐶 and they represent zero delay. The communication graph

is demonstrated by the solid blue lines in Figure 1(a). We use C ∈ {1, 0}𝑁×𝑁 to denote the adjacency

matrix associated with the communication graph G𝐶 . Moreover, we define the information delay

induced by G𝐶 as follows.

Definition 4.1 (Information delay). The information delay from subsystem 𝑖 to 𝑗 is defined to be

the total distance of the shortest path from 𝑖 to 𝑗 according to G𝐶 and is denoted as 𝑑 (𝑖 → 𝑗).

Globally, the 𝑘th power of the adjacency matrix C𝑘 has nonzero (𝑖, 𝑗)th entry if subsystem 𝑖

gets 𝑘-delayed information from subsystem 𝑗 . Locally, at time step 𝑡 , subsystem 𝑖 has access to

subsystem 𝑗 ’s full information up to time 𝑡 − 𝑑 ( 𝑗 → 𝑖). Moreover, 𝑑 ( 𝑗 → 𝑖) is the smallest integer

such that C𝑑 ( 𝑗→𝑖) (𝑖, 𝑗) ≠ 0. With slight abuse of notation, we write C𝑘 to mean the support of the

matrix so C𝑘 ∈ {1, 0}𝑁×𝑁 .

Example 2. Consider the system in Figure 1(a) where the solid blue line denotes the communication
among subsystems. The adjacency matrix C is depicted in Figure 1(c). Observe that C(1, 3) = 0 but
C2 (1, 3) ≠ 0. Therefore, the delay from subsystem 3 to subsystem 1 is 𝑑 (3→ 1) = 2.

Given G𝐶 , we make a mild assumption on the communication delay. This assumption ensures

that the graph describing the global dynamics is a subgraph of the communication graph. Such an

assumption ensures nested information structure [39] and is commonly adopted [48, 87]. It holds

true for systems where communication operates at least as fast as the dynamical propagation.

Assumption 4 (Communication Topology). C(𝑖, 𝑗) = 1 for all 𝑗 ∈ N (𝑖).

The communication delay model considered here is well-established in the distributed control

literature [48, 65, 86] and is applicable to many engineering systems [55, 67]. We refer interested

readers to [63] for a detailed discussion on information structures and their consequences for
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distributed control design. While we specify the communication delay to be synchronous with the

discrete time dynamics propagation for ease of exposition, our results can be readily applied to

systems with faster communication than the dynamics propagation.

4.2 Local information
Even though communication delay causes asynchronous partial information for each subsystem,

eventually each subsystem can obtain the delayed global information. However, due to the scale

of the global network, it can be prohibitively costly for subsystems to compute their local control

actions using such delayed global information. Moreover, a larger delay between subsystems

means, intuitively, that they are more dynamically decoupled due to Assumption 4. Therefore,

by discarding information from far-away subsystems, each subsystem has a smaller and more

up-to-date information set. A common approach is to require each subsystem 𝑖 to only use delayed

information from a local neighborhood. In this work, we define three neighborhoods, Din (𝑖),
Dout (𝑖), andM (𝑖) that subsystem 𝑖 is allowed to access information from. This is sometimes

referred to as localized control in multi-agent reinforcement learning [54, 60, 61] and distributed

control [6, 82] as a method for ensuring a scalable implementation of the control policy in large-scale

networked systems. Below we define each of the neighborhoods.

Definition 4.2 (𝑑-incoming/outgoing neighbors). The 𝑑-incoming and outgoing neighbors of sub-

system 𝑖 according to G𝐶 are respectively

Din (𝑖) = { 𝑗 ∈ [𝑁 ] : 𝑑 ( 𝑗 → 𝑖) ≤ 𝑑} , Dout (𝑖) = { 𝑗 ∈ [𝑁 ] : 𝑑 (𝑖 → 𝑗) ≤ 𝑑} .
The localization parameter 𝑑 is a design choice that is network structure dependent. Here we

focus on the cases where the dynamics topology and communication graph have sparse enough

edges that the network structure can be leveraged to design a localization parameter 𝑑 (given) that

is much smaller than the size of the global network and scales well with the number of subsystems.

Definition 4.3 (𝑑-interaction neighbors). The 𝑑-interaction neighbors of subsystem 𝑖 according to

local interaction (1) and G𝐶 is defined as

M (𝑖) = {ℓ ∈ [𝑁 ] : 𝑗 ∈ N (ℓ) for some 𝑗 ∈ Dout (𝑖)} .
The intuition behindM (𝑖) is that any subsystem ℓ ∈ M (𝑖) is dynamically influence by sub-

system 𝑗 because 𝑗 ∈ N (ℓ). Furthermore, 𝑗 makes local decisions such as 𝑢 𝑗 (𝑡) based on the

information from subsystem 𝑖 because 𝑗 ∈ Dout (𝑖). Therefore, it is sensible for subsystem 𝑖 to take

the information from ℓ into consideration during decision making, since ℓ will be indirectly affected

by decisions made at 𝑖 through information sharing and dynamical interaction via 𝑗 .

Finally, we make the following feasibility assumption.

Assumption 5 (Feasibility). For all Θ ∈ P0, there exists a stabilizing controller for 𝐴(Θ), 𝐵(Θ)
such that each agent with local dynamics (1) uses delayed and locally available information from its
𝑑-interaction, incoming, and outgoing neighbors according to G𝐶 .

Assumption 5 ensures the well-posedness of the distributed controller learning problem and is

commonly employed [1, 41, 51]. If a parameter set P0 has a few singular points where (𝐴, 𝐵) loses
feasibility such as when 𝐵 = 0, a simple heuristic is to ignore these points in the algorithm since

we assume the underlying system is controllable. We discuss the case of nonconvex parameter sets

in Appendix E.

4.3 A fully distributed and localized algorithm
We now describe how to extend Algorithm 1 to handle communication delay and localized control

constraints. To do this we add additional information exchange steps to Algorithm 1 in each of
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Algorithm 2: Distributed online stabilization under information constraints

Input: Parameter set P0
Initialize: 𝑡 = 0, 𝑢 (0) = 0, I(𝑖, 0) = ∅ for 𝑖 ∈ [𝑁 ]

1 for 𝑡 = 1, 2, . . . do
2 for Subsystem 𝑖 = 1, 2, . . . , 𝑁 do
3 Observe 𝑥𝑖 (𝑡)

/* CONSIST: Select consistent models */

4 Construct P𝑖𝑡 with (18)

5 if \𝑖
𝑡−1 ∈ P

𝑖
𝑡 then \

𝑖
𝑡 ← \𝑖

𝑡−1
6 else \𝑖𝑡 ← St(P𝑖𝑡 )

/* CONTROL: Perform model-based control with SLS */

7 Assemble local estimate of the global model 𝐴

(
Θ̂𝑖
𝑡

)
, 𝐵

(
Θ̂𝑖
𝑡

)
with (19)

8 Synthesize closed-loop response columns 𝝓𝑖𝑡 using (20) based on 𝐴

(
Θ̂𝑖
𝑡

)
, 𝐵

(
Θ̂𝑖
𝑡

)
9 Assemble delayed local column solutions

⋃
𝑗 ∈Din (𝑖) 𝝓

𝑗

𝑡−𝑑 ( 𝑗→𝑖)
10 Compute local control action 𝑢𝑖 (𝑡) using (21) with the assembled column solutions

11 end
12 end

the two components. The full algorithm is shown in Algorithm 2. For ease of exposition, we let

the subsystems have scalar state and fully actuated control actions (𝑛𝑥 = 𝑛𝑢 = 𝑁 ) in order to

minimize notation. It is straight-forawrd to generalize the presented algorithm and analysis to

vector subsystems.

4.3.1 CONSIST. This component of Algorithm 2 is identical to that of the distributed implementa-

tion of Algorithm 1 discussed in Section 3.3. Formally, subsystem 𝑖 constructs the local consistent
parameter set, P𝑖

𝑡 according to local dynamics (1) as

P𝑖
𝑡 :=

\ 𝑖 ∈ P𝑖
𝑡−1 :

𝑥𝑖 (𝑡) − ©«
∑︁

𝑗 ∈N(𝑖)
𝐴𝑖 𝑗 (\ 𝑖 )𝑥 𝑗 (𝑡 − 1) + 𝐵𝑖 𝑗 (\ 𝑖 )𝑢 𝑗 (𝑡 − 1)ª®¬


∞

≤𝑊
 (18)

with P𝑖
0 as the local initial parameter set defined in Assumption 2. The communication delay

pattern allows the construction of P𝑖
𝑡 because each subsystem 𝑖 precisely has access to 𝑥 𝑗 (𝑡 − 1)

and 𝑢 𝑗 (𝑡 − 1) from its immediate dynamical interaction neighbors N(𝑖) by Assumption 4.

Analogous to Algorithm 1, each subsystem 𝑖 selects the Steiner point of P𝑖
𝑡 as the local hypothesis

model if the previous selection is invalidated by the latest observation.

4.3.2 CONTROL. Since the local hypothesis models are no longer shared instantly among subsys-

tems due to the communication delay and local information constraints, we modify the model-based

control component of Algorithm 1 and carefully keep track of the available information. To give

an overview, at every step 𝑡 , subsystem 𝑖 first assembles a local estimate of the “global” model

using delayed information from other subsystems (line 7). Based on the estimated global model,

subsystem 𝑖 synthesizes the 𝑖th column of the SLS closed-loop responses by solving the column

subproblem of (8) as discussed in Section 3.3 (line 8). Then, subsystem 𝑖 assembles a local SLS

controller with the local column solutions 𝝓𝑖𝑡 computed from the previous step and the delayed

column solutions from other subsystems (line 9). Finally, the local control action is computed using

the locally assembled SLS controller (21) (line 10).
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Local estimate of the global model (line 7). After selecting a local hypothesis model, Sub-

system 𝑖 assembles a local estimate of the “global” parameter by collecting the available (delayed)

local hypothesis models from its neighbors inM (𝑖),

Θ̂𝑖
𝑡 :=

(
\
𝑗

𝑡−𝑑 ( 𝑗→𝑖)

)
𝑗 ∈M(𝑖)

, (19)

where the local neighborhoodM (𝑖) (Definition 4.3) represents the the set of neighbors whose

model information 𝑖 needs for synthesizing its local column solution later in (20).

Local column synthesis (line 8). Analogous to line 6 in Algorithm 1, subsystem 𝑖 now performs

model-based control via SLS by solving the column subproblem (9) with additional communication

delay and local information constraints based on the locally estimated “global” parameter Θ̂𝑖
𝑡 . It

is well-established that information constraints described in Sections 4.1 and 4.2 becomes convex

sparsity constraints on Φx
and Φu

[83]. In particular, these information constraints can be repre-

sented as binary matrices C𝑘 (for delay) and C𝑑 (for local information) with 𝑘 ∈ [𝐻 ]. Now, the
column subproblem for subsystem 𝑖 changes from (9) to

min
𝝓𝑖,𝑥
𝑡 ,𝝓𝑖,𝑢

𝑡

∞∑︁
𝑘=0

[𝑄1/2 0
0 𝑅1/2

] [
𝜙
𝑖,𝑥
𝑡 [𝑘]
𝜙
𝑖,𝑢
𝑡 [𝑘]

]
𝐹

(20a)

s.t. 𝜙
𝑖,𝑥
𝑡 [𝑘 + 1] = 𝐴

(
Θ̂𝑖
𝑡

)
𝜙
𝑖,𝑥
𝑡 [𝑘] + 𝐵

(
Θ̂𝑖
𝑡

)
𝜙
𝑖,𝑢
𝑡 [𝑘] , for 𝑘 = 0, 1, . . . , 𝐻 − 1 (20b)

𝜙
𝑖,𝑥
𝑡 [0] = 𝑒𝑖 , 𝜙

𝑖,𝑥
𝑡 [𝐻 ] = 0 (20c)

𝜙
𝑖,𝑥
𝑡 [𝑘], 𝜙

𝑖,𝑢
𝑡 [𝑘] ∈ C𝑘 (:, 𝑖) ∩ C𝑑 (:, 𝑖) , for 𝑘 = 0, 1, . . . , 𝐻 − 1. (20d)

where (20a)-(20b) are the same LQR cost and closed-loop response characterization in (9). The

communication and local information constraints are introduced via (20d). We refer interested

readers to [80, 89] for a standard derivation on how (20d) is equivalent to the information constraints

specified in Sections 4.1 and 4.2. The problem (20) is always feasible due to Assumption 3 and 5.

Delay in the local parameter information results in differently synthesized columns of different

Φx,Φu
for different subsystems. This contrasts Algorithm 1 where all subsystems use the same

global model as input to the local synthesis problems and output a column of the same Φx,Φu
.

Asynchronous closed-loop response assembly (line 9). Once local closed-loop columns are

synthesized, subsystem 𝑖 has to assemble other relevant columns from subsystem 𝑗 from Din (𝑖) in
order to perform the downstream task of local control action computation via the local version of the

SLS controller (7), shown in (21). In particular, (21) requires the 𝑖th element of every column 𝑗 such

that C𝑑 (𝑖, 𝑗) ≠ 0. By definition, Din (𝑖) (Definition 4.2) is the set of 𝑗 ’s such that C𝑑 has nonzero

(𝑖, 𝑗)th element. Thus, only closed-loop columns from 𝑗 ∈ Din (𝑖) are required. The assembled

closed-loop responses for each subsystem has asynchronous columns with varying delays.

Local Control Action Computation (line 10). The final step in CONTROL is to compute a

local control action, where each subsystem 𝑖 plugs the assembled closed-loop responses into the

SLS controller (7). Due to the sparsity constraints (from information constraints) enforced on the

column solutions during the synthesis (20), the matrix-vector computation in (7) does not require

the entire network’s delayed column solution. Instead, subsystem 𝑖 computes a local version of (7),

𝑤 𝑖 (𝑡) = 𝑥𝑖 (𝑡) −
∑︁

𝑗 ∈Din (𝑖)

𝐻−1∑︁
𝑘=1

𝜙
𝑗,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘] (𝑖) ·𝑤
𝑗 (𝑡 − 𝑘) (21a)

𝑢𝑖 (𝑡) =
∑︁

𝑗 ∈Din (𝑖)

𝐻−1∑︁
𝑘=0

𝜙
𝑗,𝑢

𝑡−𝑑 ( 𝑗→𝑖) [𝑘] (𝑖) ·𝑤
𝑗 (𝑡 − 𝑘), (21b)
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where 𝑥𝑖 (𝑡), 𝑢𝑖 (𝑡),𝑤 𝑖 (𝑡) ∈ R are the local state, control action, and estimated disturbance respec-

tively. The local controllers are initiated with𝑤 𝑖 (0) = 𝑥𝑖 (0). Similar to the global controller (7), the

intuition behind (21) is that each subsystem 𝑖 counterfactually assumes that the global closed loop

of (2) behaves exactly as the columns 𝝓 𝑗

𝑡−𝑑 ( 𝑗→𝑖) prescribe. In particular, the 𝑖th position of the 𝑗th

column solution 𝝓𝒋
𝒕−𝒅 (𝒋→𝒊)

maps the 𝑗 th position of w (w 𝑗
) to the 𝑖th position of x and u (x𝑖 and u𝑖 ).

Therefore, (21a) estimates the local disturbances by comparing observed local state 𝑥𝑖 (𝑡) and the

counterfactual state computed with 𝝓 𝑗

𝑡−𝑑 ( 𝑗→𝑖) ’s. Then (21b) acts upon the computed disturbance.

In this step, the errors caused by the delayed information propagate further during (21) when

each subsystem computes control action using the assembled closed-loop column solutions from

different sets of sub-controllers in (19). This contrasts the setting in Algorithm 2, where without

communication delay, all subsystems use the globally agreed closed-loop operators Φx
,Φu

to

compute the local control action using (7).

Thanks to (20d), regardless of the delay, all closed-loop columns has the correct sparsity required

by the communication and locality constraints. Consequently, any assembled closed loop columns

used for (21) at each subsystem preserve the required sparsity. Therefore, the SLS controller

implemented with these column solutions conforms to the information constraints.

4.4 Stability guarantee
We now present the main result of this paper. This is the first stabilization result for a distributed

policy (Algorithm 2) in a networked setting with unknown dynamics, communication delay, local

information constraint and adversarial disturbances.

Theorem 4.4 (Stability). Under Assumptions 1-5, Algorithm 2 guarantees the ISS of the closed
loop of (2) such that for all 𝑡 ≥ 𝑡0,

max{∥𝑥 (𝑡)∥∞, ∥𝑢 (𝑡)∥∞} ≤ 𝑂
(
𝑒 (𝑛)

9/2𝑑
) (
𝑒−(𝑡−𝑡0)/𝐻𝑥 (𝑡0) + sup

𝑡0≤𝑘≤𝑡
∥𝑤 (𝑘)∥∞

)
,

where 𝑥 (𝑡0) is the initial condition, local dimension 𝑛 = max{∥C𝑑 ∥1, ∥C𝑑 ∥∞, max𝑗 |M ( 𝑗) |} repre-
sents the total state dimension in the 𝑑-neighborhood specified by the dynamics interaction (1) and the
communication graph G𝐶 . Parameter 𝑑 is the largest local delay each subsystem allows for delayed
information, and 𝐻 is the SLS closed-loop response finite impulse horizon.

Theorem 4.4 highlights that only the local constants 𝑑 and 𝑛 impact the stability guarantee,

in contrast to the dependence on the global network dimension in Algorithm 1 and in system-

identification based approaches [18]. Further, the result makes explicit that communication delay

adds an exponential factor of error on the state deviation from the desired steady state compared

to Theorem 3.1. When the network connectivity is sparse, local constants 𝑛 and 𝑑 can remain small

even if the number of subsystems in the network is large and growing [80, 85].

Proof Outline. The proof of Theorem 4.4 follows a similar structure as that of Theorem 3.1. We

defer formal proofs to Appendix C. The main challenge here is to characterize the error caused by

asynchronous information at different subsystems throughout the algorithm due to delay.

To begin, we use Lemma 3.2 and show that despite the fact that each subsystem in Algorithm 2

uses differently delayed information to compute the local parameter, sub-controller, and control

actions, the closed loop for the global system under such distributed policy can be characterized with

a simple global representation. In particular, denote the actual closed-loop response implemented

by Algorithm 2 as Φx
t , Φ

u
t . By observation, each element of Φ𝑥

𝑡 [𝑘], Φ𝑢
𝑡 [𝑘] is

Φ𝑥
𝑡 [𝑘] (𝑖, 𝑗) := 𝜙

𝑗,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘] (𝑖), Φ𝑢
𝑡 [𝑘] (𝑖, 𝑗) := 𝜙

𝑗,𝑢

𝑡−𝑑 ( 𝑗→𝑖) [𝑘] (𝑖) .
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Therefore, the closed loop of (2) under Algorithm 2 can be characterized by (12) with Φx
t , Φ

u
t . It

follows from Lemma 3.3 that as long as the error term

∞∑︁
𝑡=1

𝐻∑︁
𝑘=1

𝐴(Θ𝑡 )Φ𝑥
𝑡−1 [𝑘 − 1] + 𝐵(Θ𝑡 )Φ𝑢

𝑡−1 [𝑘 − 1] − Φ𝑥
𝑡 [𝑘]


∞ (22)

is bounded, then the closed loop is ISS. Here Θ𝑡 is the consistent global model constructed from the

local consistent hypothesis models selected by all subsystems at time 𝑡 . In Appendix C, we quantify

the effect of delay that manifests in Φx
t and Φu

t .

To bound (22), we extend the perturbation bound in Theorem 3.4 to accommodate the additional

sparsity constraints in (20) (Corollary C.3). This result allows us to make a connection between (22)

and the total path length of each subsystem;s local parameter selection. Furthermore, Corollary C.3

has potential application for a class of SLS-based distributed and localized MPC problems [6, 68].

5 NUMERICAL EXAMPLES
The main contribution of this work focuses on deriving a stability guarantee for the proposed

method under adversarial disturbances and information constraints. In this section, we provide a

preliminary numerical exploration of the performance improvement of our approach compared

the state-of-the-art adversarial control method in the single-agent case in Section 5.1. We further

test our method on a mesh network of discretized swing dynamics for power systems, where we

demonstrate near-optimal performance of Algorithm 1 and Algorithm 2 compared to the offline

optimal controller synthesized according to the true dynamics in Section 5.2. Further, we study the

effect of the localization parameter and the network size under correlated Gaussian noise.

5.1 Single-agent: Double integrator dynamics
We consider the classic double integrator dynamics [62],[

𝑥1

𝑥2

]
(𝑡 + 1) =

[
1 1
0 1

] [
𝑥1

𝑥2

]
(𝑡) +

[
0
1

]
𝑢 (𝑡) +

[
𝑤1

𝑤2

]
(𝑡),

where 𝑥 (𝑡) = [𝑥1, 𝑥2]𝑇 (𝑡) ∈ R2, 𝑢 (𝑡) ∈ R. Disturbance 𝑤 (𝑡) ∈ R2 is the bounded (∥𝑤 (𝑡)∥∞ ≤ 1).
The system models a unit mass vehicle with position (𝑥1) and velocity (𝑥2) as its state under force

𝑢.

To the best of our knowledge, the only online algorithm that guarantees stability under bounded

adversarial disturbances is [18], where system identification is performed before a certainty-

equivalent controller is synthesized based on the estimated dynamics. Therefore, we study the per-

formance of our algorithm and that of [18]. The results are summarized in Table 1, where we report

the averaged maximum and top 90% state deviation from origin, i.e. max𝑡 ∥𝑥 (𝑡)∥∞ across 10 runs

under three different disturbance profiles. In particular, we generate correlated (across coordinates)

Gaussian noise projected to −1 and 1, the uniform disturbance, and the projected state-dependent

adversarial disturbance, where the adversary chooses𝑤 (𝑡) = sign

(
𝐴(Θ★)𝑥 (𝑡) + 𝐵(Θ★)𝑢 (𝑡)

)
.

To instantiate [18], we use exact system theoretical constants required for the algorithm and

perform the black-box system identification algorithm in [18, Algorithm 2] with identification

accuracy set to be 10−2 (largest error tolerable by the algorithm). Then, we generate a stabilizing

controller with [18, Algorithm 3]. For the proposed approach, we use the optimal LQR feedback

gain in place of the centralized SLS controller (8) and (7), since under Assumption 3, the SLS

controller synthesized under with LQR cost is equivalent to the optimal LQR feedback [7]. We

remark that for all disturbance profiles and regardless of the choice of stabilizing controller, the

system identification algorithm of [18] always requires control inputs in the order of 1011. Therefore,
across all disturbances, the trajectories generated by [18] are nearly identical.
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(a) 5 by 5 mesh network (b) State trajectory of the optimal distributed controller, Algorithm 1, 2.

Fig. 2. Example networked LTI system with information constraints.

5.2 Multi-agent:Discretized swing dynamics in a power system
We now consider a power network with randomly generated sparse edges representing dynamical

interactions over a 5 by 5 mesh, where each vertex represents a bus, illustrated in Figure 2(a). The

local dynamics at bus 𝑖 is given by the two-state discretized swing equations [7],

𝑥𝑖 (𝑡 + 1) =
[

1 Δ𝑡

−
∑

𝑗∈N(𝑖 ) 𝑘𝑖 𝑗
𝑚𝑖

Δ𝑡 1

]
𝑥𝑖 (𝑡) +

∑︁
𝑗 ∈N(𝑖)

[
0 0

−𝑘𝑖 𝑗

𝑚𝑖
Δ𝑡 0

]
𝑥 𝑗 (𝑡) +

[
0
1

] (
𝑢𝑖 (𝑡) +𝑤 𝑖 (𝑡)

)
where the states are the phase angle (first state) and frequency (second state) deviation from the

set point (origin), Δ𝑡 = 0.1s is the discretization time step, and𝑚𝑖 , 𝑘𝑖 𝑗 , 𝑢
𝑖 , 𝑤 𝑖 , are the inertia, line

susceptance between bus 𝑖 and 𝑗 , control action, and external disturbance respectively. We assume

each bus has a phase measurement unit and a frequency sensor to measure 𝑥𝑖 .

We randomly generate each 𝑘𝑖 𝑗 between [0.1, 1] and𝑚𝑖 between [0.1, 10], and assume these

parameters are unknown to the algorithm except their bounds. The global network is generated

to be open-loop unstable. We use correlated (across buses) Gaussian disturbances with a known

bound. In Figure 2(b) we compare the performance of Algorithm 1 (information shared globally

and without delay), Algorithm 2, and the offline optimal distributed SLS controller synthesized

from (8) with the knowledge of 𝑘𝑖 𝑗 ’s and𝑚𝑖 ’s, all subject to the same distributed control design

requirements. Specifically, the communication network is assume to be the same as the dynamical

interactionmesh graph, and we choose the localization parameter to be𝑑 = 3, which is much smaller

compared to the network size of 25. The centralized algorithm where no communication delay is

present matches closely with the trajectory generated by the offline optimal controller, whereas

the presence of the information constraints for Algorithm 2 degrades the performance. However,

we highlight that despite the exponential dependency on the local dimensions in Theorem 4.4, the

actual performance of Algorithm 2 in this case is significantly better than the theoretical guarantee.

Furthermore, we compare the effects of different localization parameter choices. On the one hand,

larger 𝑑 results in larger worst-case guarantee in Theorem 4.4 due to delayed information for local

computation. On the other, larger 𝑑 means that each agent in the network can access more (delayed)

information. This trade-off manifests on the left of Table 2, where 𝑑 = 5 appears to achieve lower

average state norm over 4 random runs with correlated Gaussian noises, slightly outperforming

controllers with 𝑑 = 3 (too little information) and 𝑑 = 10 (too much delay from far-away neighbors).

On the right of Table 2, we corroborate Theorem 4.4 where the stability guarantee only depends on

local constants 𝑑 and 𝑛. We randomly generate 3x3, 5x5, and 6x6 mesh networks of similar network

structure, and the resulting state norm does not scale with the network size.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 26. Publication date: March 2023.



Online Adversarial Stabilization of Unknown Networked Systems 26:21

Table 2. Comparison of the state norm (∥𝑥 (𝑡)∥∞) for different localization parameters 𝑑 on the 5 by 5 network
(left) and comparison for different network sizes with 𝑁 agents with fixed localization parameter 𝑑 = 3 (right).

Localization parameter Mean Top 95% Network Size Mean Top 95%

𝑑 = 3 3.98 14.02 𝑁 = 9 2.96 10.28

𝑑 = 5 3.85 14.18 𝑁 = 25 3.98 14.02

𝑑 = 10 4.19 14.08 𝑁 = 36 4.27 14.05

6 CONCLUDING REMARKS
In this work, we propose the first learning-based algorithm that provably achieves online stabiliza-

tion for networked LTI systems subject to communication delays under adversarial disturbances.

We leverage nested convex body chasing and distributed control. The novel approach achieves

orders of magnitude of performance improvement over state-of-the-art methods for single-agent

systems and handles information delays for networked multi-agent systems. Since most systems

are time-varying in nature, an immediate extension of this work is to combine general convex

body chasing and model-based control methods to handle time-varying dynamical systems. Future

directions include extending the communication model to incorporate stochastic and time-varying

delays among agents as well as exploring connections to emerging results in function and body

chasing, such as when predictions are available [19].

ACKNOWLEDGMENTS
The authors thank Varun Gupta and Yingying Li for helpful discussions as well as the anonymous

reviewers for their careful reading of this paper and insightful suggestions. This work was supported

by the National Science Foundation under grants CNS-2146814, CPS-2136197, CNS-2106403, NGSDI-

2105648.

REFERENCES
[1] Yasin Abbasi-Yadkori and Csaba Szepesvári. 2011. Regret bounds for the adaptive control of linear quadratic systems.

In Proceedings of the 24th Annual Conference on Learning Theory. JMLR Workshop and Conference Proceedings, 1–26.

[2] Naman Agarwal, Brian Bullins, Elad Hazan, Sham Kakade, and Karan Singh. 2019. Online control with adversarial

disturbances. In International Conference on Machine Learning. PMLR, 111–119.

[3] Hüseyin Akçay. 2004. The size of the membership-set in a probabilistic framework. Automatica 40, 2 (2004), 253–260.
[4] Siavash Alemzadeh and Mehran Mesbahi. 2019. Distributed q-learning for dynamically decoupled systems. In 2019

American Control Conference (ACC). IEEE, 772–777.
[5] Siavash Alemzadeh, Shahriar Talebi, and Mehran Mesbahi. 2021. D3PI: Data-Driven Distributed Policy Iteration for

Homogeneous Interconnected Systems. arXiv preprint arXiv:2103.11572 (2021).
[6] Carmen Amo Alonso, Fengjun Yang, and Nikolai Matni. 2021. Data-driven Distributed and Localized Model Predictive

Control. arXiv preprint arXiv:2112.12229 (2021).
[7] James Anderson, John C Doyle, Steven H Low, and Nikolai Matni. 2019. System level synthesis. Annual Reviews in

Control 47 (2019), 364–393.
[8] James Anderson and Nikolai Matni. 2017. Structured state space realizations for SLS distributed controllers. In 2017

55th Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 982–987.
[9] Antonios Antoniadis, Neal Barcelo, Michael Nugent, Kirk Pruhs, Kevin Schewior, andMichele Scquizzato. 2016. Chasing

convex bodies and functions. In LATIN 2016: Theoretical Informatics. Springer, 68–81.
[10] Charles Argue. 2022. Chasing Convex Bodies and Functions. Ph. D. Dissertation. Carnegie Mellon University.

[11] CJ Argue, Sébastien Bubeck, Michael B Cohen, Anupam Gupta, and Yin Tat Lee. 2019. A nearly-linear bound for

chasing nested convex bodies. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms.
SIAM, 117–122.

[12] CJ Argue, Anupam Gupta, Ziye Tang, and Guru Guruganesh. 2021. Chasing convex bodies with linear competitive

ratio. Journal of the ACM (JACM) 68, 5 (2021), 1–10.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 26. Publication date: March 2023.



26:22 Jing Yu, Dimitar Ho, and Adam Wierman

[13] Anil Aswani, Humberto Gonzalez, S Shankar Sastry, and Claire Tomlin. 2013. Provably safe and robust learning-based

model predictive control. Automatica 49, 5 (2013), 1216–1226.
[14] Er-Wei Bai, Hyonyong Cho, and Roberto Tempo. 1998. Convergence properties of the membership set. Automatica 34,

10 (1998), 1245–1249.

[15] Francesco Borrelli, Alberto Bemporad, and Manfred Morari. 2017. Predictive control for linear and hybrid systems.
Cambridge University Press.

[16] Jingjing Bu, Afshin Mesbahi, Maryam Fazel, and Mehran Mesbahi. 2019. LQR through the lens of first order methods:

Discrete-time case. arXiv preprint arXiv:1907.08921 (2019).
[17] Sébastien Bubeck, Bo’az Klartag, Yin Tat Lee, Yuanzhi Li, and Mark Sellke. 2020. Chasing nested convex bodies nearly

optimally. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 1496–1508.

[18] Xinyi Chen and Elad Hazan. 2021. Black-box control for linear dynamical systems. In Conference on Learning Theory.
PMLR, 1114–1143.

[19] Nicolas Christianson, Tinashe Handina, and AdamWierman. 2022. Chasing convex bodies and functions with black-box

advice. In Conference on Learning Theory. PMLR, 867–908.

[20] Alon Cohen, Tomer Koren, and Yishay Mansour. 2019. Learning Linear-Quadratic Regulators Efficiently with only

sqrt(T) Regret. In International Conference on Machine Learning. PMLR, 1300–1309.

[21] Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. 2020. On the sample complexity of the

linear quadratic regulator. Foundations of Computational Mathematics 20, 4 (2020), 633–679.
[22] Sarah Dean, Nikolai Matni, Benjamin Recht, and Vickie Ye. 2020. Robust guarantees for perception-based control. In

Learning for Dynamics and Control. PMLR, 350–360.

[23] Sarah Dean, Stephen Tu, Nikolai Matni, and Benjamin Recht. 2019. Safely learning to control the constrained linear

quadratic regulator. In 2019 American Control Conference (ACC). IEEE, 5582–5588.
[24] Alexandre Didier, Jerome Sieber, and Melanie N Zeilinger. 2022. A system level approach to regret optimal control.

IEEE Control Systems Letters (2022).
[25] Geir E Dullerud and Fernando Paganini. 2013. A course in robust control theory: a convex approach. Vol. 36. Springer

Science & Business Media.

[26] Xi Fang, Satyajayant Misra, Guoliang Xue, and Dejun Yang. 2011. Smart grid—The new and improved power grid: A

survey. IEEE communications surveys & tutorials 14, 4 (2011), 944–980.
[27] Mohamad Kazem Shirani Faradonbeh and Aditya Modi. 2022. Joint Learning-Based Stabilization of Multiple Unknown

Linear Systems. arXiv preprint arXiv:2201.01387 (2022).

[28] Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, and George Michailidis. 2018. Finite-time adaptive stabilization

of linear systems. IEEE Trans. Automat. Control 64, 8 (2018), 3498–3505.
[29] Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, and George Michailidis. 2020. Optimism-based adaptive

regulation of linear-quadratic systems. IEEE Trans. Automat. Control 66, 4 (2020), 1802–1808.
[30] Makan Fardad and Mihailo R Jovanović. 2014. On the design of optimal structured and sparse feedback gains via

sequential convex programming. In 2014 American Control Conference. IEEE, 2426–2431.
[31] Salar Fattahi, Nikolai Matni, and Somayeh Sojoudi. 2020. Efficient learning of distributed linear-quadratic control

policies. SIAM Journal on Control and Optimization 58, 5 (2020), 2927–2951.

[32] Luca Furieri, Yang Zheng, and Maryam Kamgarpour. 2020. Learning the globally optimal distributed LQ regulator. In

Learning for Dynamics and Control. PMLR, 287–297.

[33] Amin Gholami and Xu Andy Sun. 2020. A fast certificate for power system small-signal stability. In 2020 59th IEEE
Conference on Decision and Control (CDC). IEEE, 3383–3388.

[34] Gautam Goel and Adam Wierman. 2019. An online algorithm for smoothed regression and lqr control. In The 22nd
International Conference on Artificial Intelligence and Statistics. PMLR, 2504–2513.

[35] Jeongheon Han and Robert E Skelton. 2003. An LMI optimization approach for structured linear controllers. In 42nd
IEEE International Conference on Decision and Control (IEEE Cat. No. 03CH37475), Vol. 5. IEEE, 5143–5148.

[36] Elad Hazan, Sham Kakade, and Karan Singh. 2020. The nonstochastic control problem. In Algorithmic Learning Theory.
PMLR, 408–421.

[37] Dimitar Ho and John C. Doyle. 2019. Scalable Robust Adaptive Control from the System Level Perspective. In 2019
American Control Conference (ACC). 3683–3688. https://doi.org/10.23919/ACC.2019.8814896

[38] Dimitar Ho, Hoang Le, John Doyle, and Yisong Yue. 2021. Online Robust Control of Nonlinear Systems with Large

Uncertainty. In International Conference on Artificial Intelligence and Statistics. PMLR, 3475–3483.

[39] Yu-Chi Ho et al. 1972. Team decision theory and information structures in optimal control problems–Part I. IEEE
Transactions on Automatic control 17, 1 (1972), 15–22.

[40] Yang Hu, Adam Wierman, and Guannan Qu. 2022. On the Sample Complexity of Stabilizing LTI Systems on a Single

Trajectory. arXiv preprint arXiv:2202.07187 (2022).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 26. Publication date: March 2023.

https://doi.org/10.23919/ACC.2019.8814896


Online Adversarial Stabilization of Unknown Networked Systems 26:23

[41] Morteza Ibrahimi, Adel Javanmard, and Benjamin Roy. 2012. Efficient reinforcement learning for high dimensional

linear quadratic systems. Advances in Neural Information Processing Systems 25 (2012).
[42] Petros Ioannou and Bariş Fidan. 2006. Adaptive control tutorial. SIAM.

[43] Zhong-Ping Jiang and Yuan Wang. 2001. Input-to-state stability for discrete-time nonlinear systems. Automatica 37, 6
(2001), 857–869.

[44] Gangshan Jing, He Bai, Jemin George, Aranya Chakrabortty, and Piyush K Sharma. 2021. Learning Distributed

Stabilizing Controllers for Multi-Agent Systems. IEEE Control Systems Letters (2021).
[45] Mruganka Kashyap and Laurent Lessard. 2019. Explicit agent-level optimal cooperative controllers for dynamically

decoupled systems with output feedback. In 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 8254–8259.
[46] Sahin Lale, Kamyar Azizzadenesheli, Babak Hassibi, and Animashree Anandkumar. 2022. Reinforcement learning with

fast stabilization in linear dynamical systems. In International Conference on Artificial Intelligence and Statistics. PMLR,

5354–5390.

[47] Andrew Lamperski. 2020. Computing Stabilizing Linear Controllers via Policy Iteration. In 2020 59th IEEE Conference
on Decision and Control (CDC). IEEE, 1902–1907.

[48] Andrew Lamperski and Laurent Lessard. 2015. Optimal decentralized state-feedback control with sparsity and delays.

Automatica 58 (2015), 143–151.
[49] Joao M Lemos and Luis F Pinto. 2012. Distributed linear-quadratic control of serially chained systems: application to a

water delivery canal [applications of control]. IEEE Control Systems Magazine 32, 6 (2012), 26–38.
[50] Shengbo Eben Li, Yang Zheng, Keqiang Li, and Jianqiang Wang. 2015. An overview of vehicular platoon control under

the four-component framework. In 2015 IEEE Intelligent Vehicles Symposium (IV). IEEE, 286–291.
[51] Yingying Li, Subhro Das, Jeff Shamma, and Na Li. 2021. Safe Adaptive Learning-based Control for Constrained Linear

Quadratic Regulators with Regret Guarantees. arXiv preprint arXiv:2111.00411 (2021).
[52] Yingying Li, Yujie Tang, Runyu Zhang, and Na Li. 2021. Distributed reinforcement learning for decentralized linear

quadratic control: A derivative-free policy optimization approach. IEEE Trans. Automat. Control (2021).
[53] Yiheng Lin, James Preiss, Emile Anand, Yingying Li, Yisong Yue, and AdamWierman. 2022. Online Adaptive Controller

Selection in Time-Varying Systems: No-Regret via Contractive Perturbations. arXiv preprint arXiv:2210.12320 (2022).
[54] Yiheng Lin, Guannan Qu, Longbo Huang, and AdamWierman. 2020. Distributed reinforcement learning in multi-agent

networked systems. arXiv (2020).

[55] Dan Ma and Jun Zhao. 2015. Stabilization of networked switched linear systems: An asynchronous switching delay

system approach. Systems & Control Letters 77 (2015), 46–54.
[56] Nikolai Matni and Venkat Chandrasekaran. 2016. Regularization for design. IEEE Trans. Automat. Control 61, 12 (2016),

3991–4006.

[57] Daniel Morgan, Soon-Jo Chung, and Fred Y Hadaegh. 2014. Model predictive control of swarms of spacecraft using

sequential convex programming. Journal of Guidance, Control, and Dynamics 37, 6 (2014), 1725–1740.
[58] Sayak Mukherjee and Thanh Long Vu. 2022. Reinforcement Learning of Structured Stabilizing Control for Linear

Systems with Unknown State Matrix. IEEE Trans. Automat. Control (2022).
[59] Juan Perdomo, Jack Umenberger, and Max Simchowitz. 2021. Stabilizing Dynamical Systems via Policy Gradient

Methods. Advances in Neural Information Processing Systems 34 (2021).
[60] Guannan Qu, Yiheng Lin, AdamWierman, and Na Li. 2020. Scalable multi-agent reinforcement learning for networked

systems with average reward. arXiv preprint arXiv:2006.06626 (2020).
[61] Guannan Qu, Adam Wierman, and Na Li. 2020. Scalable reinforcement learning of localized policies for multi-agent

networked systems. In Learning for Dynamics and Control. PMLR, 256–266.

[62] Benjamin Recht. 2019. A tour of reinforcement learning: The view from continuous control. Annual Review of Control,
Robotics, and Autonomous Systems 2 (2019), 253–279.

[63] Michael Rotkowitz. 2008. On information structures, convexity, and linear optimality. In 2008 47th IEEE Conference on
Decision and Control. IEEE, 1642–1647.

[64] Michael Rotkowitz and Sanjay Lall. 2005. A characterization of convex problems in decentralized control. IEEE
transactions on Automatic Control 50, 12 (2005), 1984–1996.

[65] Parikshit Shah and Pablo A Parrilo. 2013. H2-Optimal Decentralized Control Over Posets: A State-Space Solution for

State-Feedback. IEEE Trans. Automat. Control 58, 12 (2013), 3084–3096.
[66] Guanya Shi, Yiheng Lin, Soon-Jo Chung, Yisong Yue, and Adam Wierman. 2020. Online optimization with memory

and competitive control. Advances in Neural Information Processing Systems 33 (2020), 20636–20647.
[67] Yang Shi, Ji Huang, and Bo Yu. 2012. Robust tracking control of networked control systems: application to a networked

DC motor. IEEE Transactions on Industrial Electronics 60, 12 (2012), 5864–5874.
[68] Jerome Sieber, Samir Bennani, and Melanie N Zeilinger. 2021. A system level approach to tube-based model predictive

control. IEEE Control Systems Letters 6 (2021), 776–781.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 26. Publication date: March 2023.



26:24 Jing Yu, Dimitar Ho, and Adam Wierman

[69] Max Simchowitz and Dylan Foster. 2020. Naive exploration is optimal for online lqr. In International Conference on
Machine Learning. PMLR, 8937–8948.

[70] Max Simchowitz, Horia Mania, Stephen Tu, Michael I Jordan, and Benjamin Recht. 2018. Learning without mixing:

Towards a sharp analysis of linear system identification. In Conference On Learning Theory. PMLR, 439–473.

[71] Eduardo D Sontag. 2008. Input to state stability: Basic concepts and results. In Nonlinear and optimal control theory.
Springer, 163–220.

[72] Yvonne R Sturz, Annika Eichler, and Roy S Smith. 2020. Distributed control design for heterogeneous interconnected

systems. IEEE Trans. Automat. Control (2020).
[73] Shahriar Talebi, Siavash Alemzadeh, and Mehran Mesbahi. 2021. Distributed Model-Free Policy Iteration for Networks

of Homogeneous Systems. In 2021 60th IEEE Conference on Decision and Control (CDC). IEEE, 6970–6975.
[74] Shahriar Talebi, Siavash Alemzadeh, Niyousha Rahimi, and Mehran Mesbahi. 2021. On regularizability and its

application to online control of unstable LTI systems. IEEE Trans. Automat. Control (2021).
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A NOTATION SUMMARY

Table 3. Notations and definitions for the model setup, algorithms, and proofs

Notation Meaning

𝑥𝑖 (𝑡), 𝑢𝑖 (𝑡),𝑤 𝑖 (𝑡) Local state (R𝑛𝑖 ), control action (R𝑚𝑖
), and disturbances (R𝑛𝑖 ) at subsystem 𝑖;

N(𝑖) Dynamical neighbors of subsystem 𝑖 where 𝑥 𝑗 (𝑡 − 1) affects 𝑥𝑖 (𝑡) for 𝑗 ∈ N (𝑖);
𝑥 (𝑡), 𝑢 (𝑡),𝑤 (𝑡) Global state, control action, and disturbance vector concatenated from the local

ones in (1);

𝐴𝑖 𝑗
, 𝐵𝑖 𝑗 Local dynamics matrices describing how states and control action of subsystem

𝑗 affects subsystem 𝑖 for 𝑗 ∈ N (𝑖) in (1);

𝐴, 𝐵 Concatenated global dynamics matrices from 𝐴𝑖 𝑗
’s and 𝐵𝑖 𝑗 ’s ;

\ 𝑖 The parameters for the nonzero locations in local dynamics matrices and we

write 𝐴𝑖 𝑗 (\ 𝑖 ), 𝐵𝑖 𝑗 (\ 𝑖 ). In particular, \ 𝑖 ∩ \ 𝑗 = ∅ for all 𝑖 ≠ 𝑗 ;

Θ The concatenated local parameters for the global dynamics withΘ :=
⋃

𝑖∈[𝑁 ] \
𝑖
;

P0 The known initial compact convex parameter set where the true dynamics

parameter lies;

G𝐶 Communication graph defined over system (2) with vertices 𝑉𝐶
corresponding

to subsystems and directed edges 𝐸𝐶 ;

C The adjecency matrix of G𝐶 ;
𝑑 (𝑖 → 𝑗) Communication delay from subsystem 𝑖 to subsystem 𝑗 defined as the graph

distance from 𝑖 to 𝑗 according to G𝐶 ;
Din (𝑖) 𝑑-incoming neighbors of subsystem 𝑖 where Din (𝑖) := { 𝑗 ∈ [𝑁 ] : 𝑑 ( 𝑗 → 𝑖) ≤

𝑑}. In particular, 𝑗 ∈ Din (𝑖) if C𝑑 (𝑖, 𝑗) ≠ 0;
Dout (𝑖) 𝑑-outgoing neighbors of subsystem 𝑖 where Dout (𝑖) := { 𝑗 ∈ [𝑁 ] : 𝑑 (𝑖 → 𝑗) ≤

𝑑}. In particular, 𝑗 ∈ Din (𝑖) if C𝑑 ( 𝑗, 𝑖) ≠ 0;
M (𝑖) Subsystems whose model information is needed for sub-controller

synthesis at subsystem 𝑖 with Algorithm 2 where M (𝑖) =

{ℓ ∈ [𝑁 ] : 𝑗 ∈ N (ℓ) for some 𝑗 ∈ Dout (𝑖)};
𝑑-neighbor of 𝑖 The union of all subsystems in Din (𝑖), Dout (𝑖),M (𝑖);
P𝑖
𝑡 Local consistent parameter set constructed by subsystem 𝑖 at time 𝑡 with (18);

\ 𝑖𝑡 Local consistent parameter for subsystem 𝑖 for 𝐴𝑖 𝑗
and 𝐵𝑖 𝑗 constructed with

Algorithm 2;

Θ̂𝑖
𝑡 The assembled local estimate of the "global" parameter where Θ̂𝑖

𝑡 :=⋃
𝑗 ∈M(𝑖) \

𝑗

𝑡−𝑑 ( 𝑗→𝑖) ;

𝝓𝑖𝑡 Local column solutions generated by subsystem 𝑖 at time 𝑡 from (20);

𝝓𝑖,𝑥𝑡 , 𝝓𝑖,𝑢𝑡 The 𝑥 and 𝑢 components of 𝝓𝑖𝑡 , respectively. They are synthesized from (20);

Θ𝑡 The collection of all local consistent parameters at time 𝑡 where Θ𝑡 =
⋃𝑁

𝑖=1 \
𝑖
𝑡 ;

𝐴𝑡 , 𝐵𝑡 ,𝑤 (𝑡) The global consistent matrices 𝐴(Θ𝑡 ), 𝐵(Θ𝑡 ), and corresponding admissible

disturbance;

𝑎𝑖𝑡 , 𝑏
𝑖
𝑡 The 𝑖th row of 𝐴𝑡 , 𝐵𝑡 respectively;

𝑤 (𝑡) Concatenated global estimated disturbance from𝑤 𝑖 (𝑡) in (21);

Φx
t Concatenated global closed loop operators where Φ𝑥

𝑡 [𝑘] (𝑖, 𝑗) := 𝜙
𝑗,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘] (𝑖)
from (21) ;

Φu
t Concatenated global closed loop operators where Φ𝑢

𝑡 [𝑘] (𝑖, 𝑗) := 𝜙
𝑗,𝑢

𝑡−𝑑 ( 𝑗→𝑖) [𝑘] (𝑖)
from (21) ;
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Table 4. Constants used throughout the paper

Constants Meaning

𝑁 Number of subsystems in the global dynamics (2);

𝑛𝑖 ,𝑚𝑖 Local state and control action dimension for subsystem 𝑖 in (1);

𝑛𝑥 , 𝑛𝑢 Global state and control dimension with 𝑛𝑥 =
∑𝑁

𝑖=1 𝑛𝑖 and 𝑛𝑢 =
∑𝑁

𝑖=1𝑚𝑖 ;

𝑊 The known bound on the true disturbances such that ∥𝑤 (𝑡)∥∞ ≤𝑊 ;

^ The bound on all possible system matrices where ∥𝐴(Θ)∥2, ∥𝐵(Θ)∥2 ≤ ^ for

all Θ ∈ P0;
𝑑 The localization parameter such that each subsystem is constrained to only use

information from its 𝑑-neighbors in Algorithm 2;

𝑛 The largest total local state dimension for the 𝑑-neighbors of the subsystems

where 𝑛 = max{∥C𝑑 ∥1, ∥C𝑑 ∥∞, max𝑗 |M ( 𝑗) |} ;
𝐶 , 𝜌 The decay rate for the closed-loop columns 𝝓𝑖𝑡 synthesized in (20) such that𝜙𝑖𝑡 [𝑘]2 ≤ 𝐶𝜌𝑘 ;
B PROOFS FOR SECTION 3
Below we restate and prove the auxiliary results needed for the proof of Theorem 3.1 in Section 3.

Lemma B.1 (Closed loop Dynamics). The closed loop of (2) under Algorithm 1 is characterized as
follows for all time 𝑡 ∈ N+:

𝑥 (𝑡) =
𝐻−1∑︁
𝑘=0

Φ𝑥
𝑡 [𝑘]𝑤 (𝑡 − 𝑘), 𝑢 (𝑡) =

𝐻−1∑︁
𝑘=0

Φ𝑢
𝑡 [𝑘]𝑤 (𝑡 − 𝑘) (23a)

𝑤 (𝑡) =
𝐻∑︁
𝑘=1

(
𝐴(Θ𝑡 )Φ𝑥

𝑡−1 [𝑘 − 1] + 𝐵(Θ𝑡 )Φ𝑢
𝑡−1 [𝑘 − 1] − Φ𝑥

𝑡 [𝑘]
)
𝑤 (𝑡 − 𝑘) +𝑤 (𝑡 − 1). (23b)

where𝐴, 𝐵 are the truemodel parameters from (2)while𝑤 (𝑡) is the true unknown bounded disturbances
with ∥𝑤 (𝑡)∥∞ ≤𝑊 . The linear causal operators Φx

t , Φ
u
t are synthesized via (8) based on the selected

hypothesis model at 𝑡 and𝑤 (𝑡) is the estimated disturbance from the SLS controller (7).

Proof. First, we write out the global closed-loop dynamics of (2) under the SLS controller (7)

with the synthesized closed-loop responses,

𝑥 (𝑡) = 𝐴
(
Θ★

)
𝑥 (𝑡 − 1) + 𝐵

(
Θ★

)
𝑢 (𝑡 − 1) +𝑤 (𝑡 − 1) (24a)

𝑤 (𝑡) = 𝑥 (𝑡) −
𝐻−1∑︁
𝑘=1

Φ𝑥
𝑡 [𝑘]𝑤 (𝑡 − 𝑘) (24b)

𝑢 (𝑡) =
𝐻−1∑︁
𝑘=0

Φ𝑢
𝑡 [𝑘]𝑤 (𝑡 − 𝑘), (24c)

where (24a) is the global dynamics (2) while (24b) and (24c) are the implemented SLS controller. Now,

we use the consistency property of all the consistent hypothesis model Θ𝑡 selected by Algorithm 1

and represent dynamics (24a) in terms of the global consistent parameter 𝐴𝑡 := 𝐴(Θ𝑡 ), 𝐵𝑡 := 𝐵(Θ𝑡 ),
𝑥 (𝑡) = 𝐴𝑡𝑥 (𝑡 − 1) + 𝐵𝑡𝑢 (𝑡 − 1) +𝑤 (𝑡 − 1), (25)

with admissible consistent disturbances ∥𝑤 (𝑡)∥∞ ≤𝑊 for all time 𝑡 . The replacement of (𝐴
(
Θ★

)
,

𝐵
(
Θ★

)
),𝑤 (𝑡)) with (𝐴𝑡 , 𝐵𝑡 ,𝑤 (𝑡)) is by definition of the consistent set (10). Next, observe that by
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moving 𝑥 (𝑡) to the left side, (24b) becomes:

𝑥 (𝑡) =
𝐻−1∑︁
𝑘=1

Φ𝑥
𝑡 [𝑘]𝑤 (𝑡 − 𝑘) +𝑤 (𝑡)

=

𝐻−1∑︁
𝑘=0

Φ𝑥
𝑡 [𝑘]𝑤 (𝑡 − 𝑘) , (26)

where in the last equality we used the fact that each Φ𝑥
𝑡 [0] = 𝐼 by the constraint (6). Now we

substitute (25) into (24b) to get

𝑤 (𝑡) = 𝑥 (𝑡) −
𝐻−1∑︁
𝑘=1

Φ𝑥
𝑡 [𝑘]𝑤 (𝑡 − 𝑘) (27a)

= 𝐴𝑡𝑥 (𝑡 − 1) + 𝐵𝑡𝑢 (𝑡 − 1) −
𝐻−1∑︁
𝑘=1

Φ𝑥
𝑡 [𝑘]𝑤 (𝑡 − 𝑘) +𝑤 (𝑡 − 1) (27b)

= 𝐴𝑡

𝐻−1∑︁
𝑘=0

Φ𝑥
𝑡−1 [𝑘]𝑤 (𝑡 − 1 − 𝑘) + 𝐵𝑡

𝐻−1∑︁
𝑘=0

Φ𝑢
𝑡−1 [𝑘]𝑤 (𝑡 − 1 − 𝑘) −

𝐻−1∑︁
𝑘=1

Φ𝑥
𝑡 [𝑘]𝑤 (𝑡 − 𝑘)

+𝑤 (𝑡 − 1) (27c)

=

𝐻−1∑︁
𝑘=1

(
𝐴𝑡Φ

𝑥
𝑡−1 [𝑘 − 1] + 𝐵𝑡Φ𝑢

𝑡−1 [𝑘 − 1] − Φ𝑥
𝑡 [𝑘]

)
𝑤 (𝑡 − 𝑘)

+
(
𝐴𝑡Φ

𝑥
𝑡−1 [𝐻 − 1] + 𝐵𝑡Φ𝑢

𝑡−1 [𝐻 − 1] − Φ𝑥
𝑡−1 [𝐻 ]

)
𝑤 (𝑡 − 𝐻 ) +𝑤 (𝑡 − 1) (27d)

=

𝐻∑︁
𝑘=1

(
𝐴𝑡Φ

𝑥
𝑡−1 [𝑘 − 1] + 𝐵𝑡Φ𝑢

𝑡−1 [𝑘 − 1] − Φ𝑥
𝑡 [𝑘]

)
𝑤 (𝑡 − 𝑘) +𝑤 (𝑡 − 1), (27e)

where in (27c) we substituted (26) and (24c) into 𝑥 (𝑡 − 1) and 𝑢 (𝑡 − 1) respectively. In (27d),

we grouped the terms according to𝑤 (𝑡 − 𝑘) and used the fact that the closed-loop responses are

synthesized in (8) such thatΦ𝑥
𝑡−1 [𝐻 ] = 0 for all 𝑡 . Together, (24c),(26), and (27e) are as requested. □

Lemma B.2 (Sufficient condition for 𝐻 -convolution ISS). Let 𝐻 ∈ N. For 𝑘 ∈ [𝐻 ], let
{𝑎𝑡 [𝑘]}∞𝑡=1 and {𝑤𝑡 }∞𝑡=1 be positive sequences. Let {𝑠𝑡 }∞𝑡=0 be a positive sequence such that

𝑠𝑡 ≤
𝐻∑︁
𝑘=1

𝑎𝑡−1 [𝑘] · 𝑠𝑡−𝑘 +𝑤𝑡−1 . (28)

Then {𝑠𝑡 }∞𝑡=0 is bounded if
∑∞

𝑡=0

∑𝐻
𝑘=1 𝑎𝑡 [𝑘] ≤ 𝐿 for some 𝐿 ∈ R+. In particular, for all 𝑡 ≥ 𝑡0,

𝑠𝑡 ≤ 𝑒−(𝑡−𝑡0)/𝐻 · 𝑒𝐿𝑠𝑡0 +
(
𝑒𝐿 + 𝑒 − 1

)
𝑒 − 1 sup

𝑡0≤𝑘<𝑡
𝑤𝑘 .

Proof. Fix 𝑡0 and 𝑡 ≥ 𝑡0. Denote {𝑧𝑡𝑖 } as a finite subsequence of {𝑠𝜏 }𝑡𝜏=𝑡0 such that

𝑧𝑡𝑁 = 𝑠𝑡

𝑧𝑡𝑖−1 = max
𝑡𝑖−𝐻 ≤𝜏≤𝑡𝑖−1

𝑠𝜏 , for 𝑖 = 𝑁, 𝑁 − 1, . . . , 1,
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with 𝑡𝑁 = 𝑡 and 𝑧𝑡𝑖 = 𝑠𝑡𝑖 . This construction of the {𝑧𝑡𝑖 } has to terminate at 𝑧𝑡0 = 𝑠𝑡0 . Therefore, 𝑁 is

at least
(𝑡−𝑡0)
𝐻

and at most 𝑡 − 𝑡0. By the recursive relationship of 𝑠𝑡 in (28), we have for any 𝑖 ,

𝑧𝑡𝑖 = 𝑠𝑡𝑖 ≤
𝐻∑︁
𝑘=1

𝑎𝑡𝑖−1 [𝑘]𝑠𝑡𝑖−𝑘 +𝑤𝑡𝑖−1

≤
(

𝐻∑︁
𝑘=1

𝑎𝑡𝑖−1 [𝑘]
)
𝑧𝑡𝑖−1 +𝑤𝑡𝑖−1

= 𝑎𝑡𝑖−1 · 𝑧𝑡𝑖−1 +𝑤𝑡𝑖−1, (29)

where we use the fact that 𝑎𝑡 [𝑘] ≥ 0 for all 𝑡 and 𝑘 . We also denote 𝑎𝑡𝑖−1 =

(∑𝐻
𝑘=1 𝑎𝑡𝑖−1 [𝑘]

)
for the

last equality. By the recursion (29), we have

𝑠𝑡 = 𝑧𝑡𝑁 ≤
𝑁∏
𝑖=1

𝑎𝑡𝑖−1 · 𝑧𝑡0 +
(
sup

𝑡0≤𝑘<𝑡
𝑤𝑘

) (
1 +

𝑁∑︁
𝑗=1

𝑁∏
𝑖=𝑗

𝑎𝑡𝑖−1

)
(30)

Now,

∏𝑁
𝑖=𝑗 𝑎𝑡𝑖−1 =

∏𝑁
𝑖=𝑗

( (
𝑎𝑡𝑖−1 − 1

)
+ 1

)
≤ ∏𝑁

𝑖=𝑗 𝑒
𝑎𝑡𝑖−1−1 = 𝑒

∑𝑁
𝑖=𝑗 (𝑎𝑡𝑖−1−1) ≤ 𝑒𝐿−(𝑁−𝑗+1) , where the

last inequality is due to the hypothesis that

∑∞
𝑡=0 𝑎𝑡 ≤ 𝐿. Plug this inequality for

∏𝑁
𝑖=𝑗 𝑎𝑡𝑖−1 back to

(30), we continue with

𝑠𝑡 ≤ 𝑒−(𝑡−𝑡0)/𝐻 · 𝑠𝑡0𝑒𝐿 +
(
sup

𝑡0≤𝑘<𝑡
𝑤𝑘

) (
1 +

𝑁∑︁
𝑗=1

𝑒𝐿−(𝑁−𝑗)

)
≤ 𝑒−(𝑡−𝑡0)/𝐻 · 𝑠𝑡0𝑒𝐿 +

(
sup

𝑡0≤𝑘<𝑡
𝑤𝑘

) (
1 + 𝑒𝐿

𝑁−1∑︁
𝑗=0

𝑒−𝑗

)
≤ 𝑒−(𝑡−𝑡0)/𝐻 · 𝑠𝑡0𝑒𝐿 +

(
sup

𝑡0≤𝑘<𝑡
𝑤𝑘

) (
1 + 𝑒𝐿 1

𝑒 − 1

)
,

where we used 𝑧𝑡0 = 𝑠𝑡0 and that 𝑁 is at least (𝑡 − 𝑡0)/𝐻 . This is the required bound, which holds

for any 𝑡, 𝑡0 ∈ N. □

C PROOF OF THEOREM 4.4
Theorem C.1 (Stability, Scalar Subsystems). Under Assumptions 1-5, Algorithm 2 guarantees

the ISS of the closed loop of (2) with

max{∥𝑥 (𝑡)∥∞, ∥𝑢 (𝑡)∥∞} ≤ 𝑂
(
𝑒 (𝑛)

9/2𝑑
) (
𝑒−(𝑡−𝑡0)/𝐻𝑥 (𝑡0) + sup

𝑡0≤𝑘≤𝑡
∥𝑤 (𝑘)∥∞

)
,

where 𝑥 (𝑡0) is the initial condition, local dimension 𝑛 = max{∥C𝑑 ∥1, ∥C𝑑 ∥∞, max𝑗 |M ( 𝑗) |} repre-
sents the total state dimension in the 𝑑-neighborhood specified by the dynamics interaction (1) and the
communication graph G𝐶 . Parameter 𝑑 is the largest local delay each subsystem allows for delayed
information, and 𝐻 is the SLS closed-loop response finite impulse horizon.

Proof. We first characterize the closed loop dynamics of (2) under Algorithm 2. In particular,

despite the fact that each subsystem uses differently delayed information to compute the local

parameter, column solutions to the closed-loop responses, and control actions, the closed loop for
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the global system under such distributed policy can be simply characterized as

𝑥 (𝑡) =
𝐻−1∑︁
𝑘=0

Φ𝑥
𝑡 [𝑘]𝑤 (𝑡 − 𝑘), 𝑢 (𝑡) =

𝐻−1∑︁
𝑘=0

Φ𝑢
𝑡 [𝑘]𝑤 (𝑡 − 𝑘) (31a)

𝑤 (𝑡) =
𝐻∑︁
𝑘=1

(
𝐴𝑡Φ

𝑥
𝑡−1 [𝑘 − 1] + 𝐵𝑡Φ𝑢

𝑡−1 [𝑘 − 1] − Φ𝑥
𝑡 [𝑘]

)
𝑤 (𝑡 − 𝑘) +𝑤 (𝑡 − 1), (31b)

by Lemma B.1. Here 𝑢 (𝑡), 𝑤 (𝑡) are concatenated control action and estimated disturbance from

(21). 𝐴𝑡 , 𝐵𝑡 are the global consistent parameter concatenated with the local consistent parameters

𝐴𝑖 𝑗 (\ 𝑖𝑡 ), 𝐵𝑖 𝑗 (\ 𝑖𝑡 ). Vector 𝑤 (𝑡) are the admissible consistent disturbances corresponding to 𝐴𝑡 , 𝐵𝑡
with the property that ∥𝑤 (𝑡)∥∞ ≤ 𝑊 for all time 𝑡 . Operators Φx

t ,Φ
u
t are shorthand for global

closed-loop operators when (21) is implemented, with

Φ𝑥
𝑡 [𝑘] (𝑖, 𝑗) := 𝜙

𝑗,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘] (𝑖), Φ𝑢
𝑡 [𝑘] (𝑖, 𝑗) := 𝜙

𝑗,𝑢

𝑡−𝑑 ( 𝑗→𝑖) [𝑘] (𝑖) .

We follow similar procedure in the proof of Theorem 3.1 and bound ∥𝑤 (𝑡)∥∞ from (31b) by

examining the following dynamical evolution,

∥𝑤 (𝑡)∥∞ ≤
𝐻∑︁
𝑘=1

𝐴𝑡Φ
𝑥
𝑡−1 [𝑘 − 1] + 𝐵𝑡Φ𝑢

𝑡−1 [𝑘 − 1] − Φ𝑥
𝑡 [𝑘]


∞ ∥𝑤 (𝑡 − 𝑘)∥∞ + ∥𝑤 (𝑡 − 1)∥∞ . (32)

By Lemma B.2, as long as

∑∞
𝑡=1

∑𝐻
𝑘=1

𝐴𝑡Φ
𝑥
𝑡−1 [𝑘 − 1] + 𝐵𝑡Φ𝑢

𝑡−1 [𝑘 − 1] − Φ𝑥
𝑡 [𝑘]


∞ ≤ 𝐿 for some

positive constant 𝐿, then we can bound (32) with

∥𝑤 (𝑡)∥∞ ≤ 𝑒−(𝑡−𝑡0)/𝐻 · 𝑒𝐿𝑥 (𝑡0) + sup
𝑡0≤𝑘<𝑡

∥𝑤 (𝑡)∥∞
(
𝑒𝐿 + 𝑒 − 1

)
𝑒 − 1 .

Therefore, what’s left is to show

∞∑︁
𝑡=1

𝐻∑︁
𝑘=1

𝐴𝑡Φ
𝑥
𝑡−1 [𝑘 − 1] + 𝐵𝑡Φ𝑢

𝑡−1 [𝑘 − 1] − Φ𝑥
𝑡 [𝑘]


∞ ≤ 𝐿 ,

which is proved in Proposition C.2 where 𝐿 = 𝑂
(
poly (𝑛) 𝑑

)
. This concludes the proof. □

Lemma C.2 (Bounded error for closed loop operators). Let Φx
t ,Φ

u
t denote the global closed

loop operators concatenated from sub-controllers generated with Algorithm 2 where Φ𝑥
𝑡 [𝑘] (𝑖, 𝑗) :=

𝜙
𝑗,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘] (𝑖) and Φ𝑢
𝑡 [𝑘] (𝑖, 𝑗) := 𝜙

𝑗,𝑢

𝑡−𝑑 ( 𝑗→𝑖) [𝑘] (𝑖). Denote matrices 𝐴𝑡 , 𝐵𝑡 as the global consistent
parameter concatenated with local consistent parameters 𝐴𝑖 𝑗 (\ 𝑖𝑡 ), 𝐵𝑖 𝑗 (\ 𝑖𝑡 ). Then we have

∞∑︁
𝑡=1

𝐻∑︁
𝑘=1

𝐴𝑡Φ
𝑥
𝑡−1 [𝑘 − 1] + 𝐵𝑡Φ𝑢

𝑡−1 [𝑘 − 1] − Φ𝑥
𝑡 [𝑘]


∞ (33)

≤ (𝑑 + 3)𝑛3diam(P0)
(
^𝑛

3
2 Γ𝐻 + 𝐶

1 − 𝜌

)
,

where 𝑛 = max{∥C𝑑 ∥1, ∥C𝑑 ∥∞, max𝑗 |M ( 𝑗) |}, and 𝑑 is the largest local delay each subsystem
considers for the algorithm, while 𝐻 is SLS controller horizon. Here, Γ is a system-theoretical constant
that does not depend on the global dynamics properties detailed in Theorem D.10.

Proof. To ease notation, we use 𝑎𝑖𝑡 and 𝑏
𝑖
𝑡 to denote the 𝑖th row of 𝐴𝑡 and 𝐵𝑡 respectively.
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Our strategy is to bound each term in (33) for a fixed 𝑡 and 𝑘 . We will see that the summation of

these terms over all 𝑘 and 𝑡 remain bounded. Each term in (33) can be bounded as follows.𝐴𝑡Φ
𝑥
𝑡−1 [𝑘 − 1] + 𝐵𝑡Φ𝑢

𝑡−1 [𝑘 − 1] − Φ𝑥
𝑡 [𝑘]


∞

=max
𝑖∈[𝑁 ]

∑︁
𝑗 ∈Din (𝑖)

���������
(
𝑎𝑖𝑡

)𝑇
Φ𝑥
𝑡−1 [𝑘 − 1] (:, 𝑗) +

(
𝑏𝑖𝑡

)𝑇
Φ𝑢
𝑡−1 [𝑘 − 1] (:, 𝑗) − Φ𝑥

𝑡 [𝑘] (𝑖, 𝑗)︸       ︷︷       ︸
Defined to be 𝜙

𝑗,𝑥

𝑡−𝑑 ( 𝑗→𝑖 ) [𝑘 ] (𝑖)

��������� . (34)

Due to the sparsity constraints that correspond to the information constraints placed on the closed-

loop responses during synthesis (20), the only nonzero elements in a particular row 𝑖 of Φ𝑥
𝑡 [𝑘]

are the positions at 𝑗 ∈ Din (𝑖). Hence, we can write sum of each row 𝑖 as sum of the elements in

position (𝑖, 𝑗) where 𝑗 ∈ Din (𝑖) in (34). Recall that 𝜙
𝑗,𝑥

𝑡−𝑑 ( 𝑗→𝑖) are synthesized in (20) such that

𝜙
𝑗,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘] (𝑖) =
(
𝑎𝑖
𝑡−𝑑 ( 𝑗→𝑖)−𝑑 (𝑖→𝑗)

)𝑇
𝜙
𝑗,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1]

+
(
𝑏𝑖
𝑡−𝑑 ( 𝑗→𝑖)−𝑑 (𝑖→𝑗)

)𝑇
𝜙
𝑗,𝑢

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1] (35)

because 𝜙
𝑗,𝑥

𝑡−𝑑 ( 𝑗→𝑖) is synthesized by 𝑗 at time 𝑡 −𝑑 ( 𝑗 → 𝑖). The 𝑖th position of 𝜙
𝑗,𝑥

𝑡−𝑑 ( 𝑗→𝑖) in particular

uses model information from subsystem 𝑖 , which is transmitted to 𝑗 from 𝑖 with delay 𝑑 (𝑖 → 𝑗).
Therefore, we substitute (35) into (34) to get

(34) =max
𝑖∈[𝑁 ]

∑︁
𝑗 ∈Din (𝑖)

����� (𝑎𝑖𝑡 )𝑇 Φ𝑥
𝑡−1 [𝑘 − 1] (:, 𝑗) −

(
𝑎𝑖
𝑡−𝑑 ( 𝑗→𝑖)−𝑑 (𝑖→𝑗)

)𝑇
𝜙
𝑗,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1]

+
(
𝑏𝑖𝑡

)𝑇
Φ𝑢
𝑡−1 [𝑘 − 1] (:, 𝑗) −

(
𝑏𝑖
𝑡−𝑑 ( 𝑗→𝑖)−𝑑 (𝑖→𝑗)

)𝑇
𝜙
𝑗,𝑢

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1]
����� (36)

Adding and subtracting

(
𝑎𝑖𝑡

)𝑇
𝜙
𝑗,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1] and
(
𝑏𝑖𝑡

)𝑇
𝜙
𝑗,𝑢

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1] in (36), we can group

terms and get

(36) ≤ max
𝑖∈[𝑁 ]

∑︁
𝑗 ∈Din (𝑖)

����� (𝑎𝑖𝑡 )𝑇 (
Φ𝑥
𝑡−1 [𝑘 − 1] (:, 𝑗) − 𝜙

𝑗,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1]
)

+
(
𝑏𝑖𝑡

)𝑇 (
Φ𝑢
𝑡−1 [𝑘 − 1] (:, 𝑗) − 𝜙

𝑗,𝑢

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1]
) ����� (37a)

+ max
𝑖∈[𝑁 ]

∑︁
𝑗 ∈Din (𝑖)

����� (𝑎𝑖𝑡 − 𝑎𝑖𝑡−𝑑 ( 𝑗→𝑖)−𝑑 (𝑖→𝑗)

)𝑇
𝜙
𝑗,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1]

+
(
𝑏𝑖𝑡 − 𝑏𝑖𝑡−𝑑 ( 𝑗→𝑖)−𝑑 (𝑖→𝑗)

)𝑇
𝜙
𝑗,𝑢

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1]
�����. (37b)
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We now consider (37a) and (37b) separately. For the remainder of the proof, we use 𝝓 𝑗,𝑥
𝑡 and 𝝓 𝑗,𝑢

𝑡 as

shorthand for the 𝑗th column of Φx
t and Φu

t respectively. Apply Cauchy-Schwarz,

(37a) ≤ max
𝑖∈[𝑁 ]

∑︁
𝑗 ∈Din (𝑖)

𝑎𝑖𝑡2 𝜙 𝑗,𝑥

𝑡−1 [𝑘 − 1] − 𝜙
𝑗,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1]

2

+
𝑏𝑖𝑡2 𝜙 𝑗,𝑢

𝑡−1 [𝑘 − 1] − 𝜙
𝑗,𝑢

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1]

2

(38a)

(by Assumption 2) ≤ ^ · max
𝑖∈[𝑁 ]

∑︁
𝑗 ∈Din (𝑖)

𝜙 𝑗,𝑥

𝑡−1 [𝑘 − 1] − 𝜙
𝑗,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1]

2

+
𝜙 𝑗,𝑢

𝑡−1 [𝑘 − 1] − 𝜙
𝑗,𝑢

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1]

2

(38b)

= ^ · max
𝑖∈[𝑁 ]

∑︁
𝑗 ∈Din (𝑖)

©«
∑︁

ℓ∈Dout ( 𝑗)

���𝜙 𝑗,𝑥

𝑡−1 [𝑘 − 1] (ℓ) − 𝜙
𝑗,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1] (ℓ)
���2ª®¬

1/2

+ ©«
∑︁

ℓ∈Dout ( 𝑗)

���𝜙 𝑗,𝑢

𝑡−1 [𝑘 − 1] (ℓ) − 𝜙
𝑗,𝑢

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1] (ℓ)
���2ª®¬

1/2

(38c)

= ^ · max
𝑖∈[𝑁 ]

∑︁
𝑗 ∈Din (𝑖)

©«
∑︁

ℓ∈Dout ( 𝑗)

���𝜙 𝑗,𝑥

𝑡−1−𝑑 ( 𝑗→ℓ) [𝑘 − 1] (ℓ) − 𝜙
𝑗,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1] (ℓ)
���2ª®¬

1/2

+ ©«
∑︁

ℓ∈Dout ( 𝑗)

���𝜙 𝑗,𝑢

𝑡−1−𝑑 ( 𝑗→ℓ) [𝑘 − 1] (ℓ) − 𝜙
𝑗,𝑢

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1] (ℓ)
���2ª®¬

1/2

,

(38d)

where to arrive at (38c) we used the fact that the nonzero elements in any column/sub-controller

synthesized or assembled at subsystem 𝑗 corresponds to the elements in Dout ( 𝑗). The last equality
comes from the definition of Φx

t−1,Φ
u
t−1. Continuing, we bound any sum using the largest summand

multiplied by the number of summands:

(37a) ≤ (38d) ≤ ^ · max
𝑖∈[𝑁 ]

∑︁
𝑗 ∈Din (𝑖)

(
𝑛 · max

ℓ∈Dout ( 𝑗)

𝜙 𝑗,𝑥

𝑡−1−𝑑 ( 𝑗→ℓ) [𝑘 − 1] − 𝜙
𝑗,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1]
2
2

)1/2
+

(
𝑛 · max

ℓ′∈Dout ( 𝑗)

𝜙 𝑗,𝑢

𝑡−1−𝑑 ( 𝑗→ℓ′) [𝑘 − 1] − 𝜙
𝑗,𝑢

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1]
2
2

)1/2
, (39a)

= ^𝑛3/2 · max
𝑖∈[𝑁 ]

max
𝑗 ∈Din (𝑖)

( (
max

ℓ∈Dout ( 𝑗)

𝜙 𝑗,𝑥

𝑡−1−𝑑 ( 𝑗→ℓ) [𝑘 − 1] − 𝜙
𝑗,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1]
2
2

)1/2
+

(
max

ℓ′∈Dout ( 𝑗)

𝜙 𝑗,𝑢

𝑡−1−𝑑 ( 𝑗→ℓ′) [𝑘 − 1] − 𝜙
𝑗,𝑢

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1]
2
2

)1/2 )
. (39b)

Recall that 𝜙
𝑗

𝑡−1−𝑑 ( 𝑗→ℓ) are generated by subsystem 𝑗 using model information Θ̂𝑗

𝑡−1−𝑑 ( 𝑗→ℓ) dur-

ing synthesis procedure ((19), Algorithm 2). Similarly, 𝜙
𝑗

𝑡−𝑑 ( 𝑗→𝑖) are generated using Θ̂𝑗

𝑡−𝑑 ( 𝑗→𝑖) .
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Therefore, we can invoke Corollary C.3 and arrive at

(37a) ≤ (38d) ≤ (39b)

≤ ^𝑛3/2Γ max
𝑖∈[𝑁 ]

max
𝑗 ∈Din (𝑖)

( (
max

ℓ∈Dout ( 𝑗)

Θ̂𝑗

𝑡−1−𝑑 ( 𝑗→ℓ) − Θ̂
𝑗

𝑡−𝑑 ( 𝑗→𝑖)

2
𝐹

)1/2
+ max

ℓ′∈Dout ( 𝑗)

(Θ̂𝑗

𝑡−1−𝑑 ( 𝑗→ℓ′) − Θ̂
𝑗

𝑡−𝑑 ( 𝑗→𝑖)

2
𝐹

)1/2 )
(40)

For any fixed 𝑖 , 𝑗 , ℓ , ℓ ′, the following holds true.

(40) = ^𝑛3/2Γ
(Θ̂𝑗

𝑡−1−𝑑 ( 𝑗→ℓ) − Θ̂
𝑗

𝑡−𝑑 ( 𝑗→𝑖)


𝐹
+

Θ̂𝑗

𝑡−1−𝑑 ( 𝑗→ℓ′) − Θ̂
𝑗

𝑡−𝑑 ( 𝑗→𝑖)


𝐹

)
= ^𝑛3/2Γ

∑︁
𝑚∈M( 𝑗)

\𝑚𝑡−1−𝑑 ( 𝑗→ℓ)−𝑑 (𝑚→𝑗) − \
𝑚
𝑡−𝑑 ( 𝑗→𝑖)−𝑑 (𝑚→𝑗)


𝐹

+
∑︁

𝑚∈M( 𝑗)

\𝑚𝑡−1−𝑑 ( 𝑗→ℓ′)−𝑑 (𝑚→𝑗) − \
𝑚
𝑡−𝑑 ( 𝑗→𝑖)−𝑑 (𝑚→𝑗)


𝐹

≤ ^𝑛3/2Γ
∑︁

𝑚∈M( 𝑗)

©«
min(𝑡1,𝑡2)+𝛿𝑡+1∑︁
𝑝=min(𝑡1,𝑡2)

\𝑚𝑡−𝑝+1 − \𝑚𝑡−𝑝
𝐹
+

min(𝑡 ′1,𝑡2)+𝛿′𝑡+1∑︁
𝑝=min(𝑡 ′1,𝑡2)

\𝑚𝑡−𝑝+1 − \𝑚𝑡−𝑝
𝐹

ª®¬ , (41)

where we define 𝑡1 = 1+𝑑 ( 𝑗 → ℓ) +𝑑 (𝑚 → 𝑗), 𝑡 ′1 = 1+𝑑 ( 𝑗 → ℓ ′) +𝑑 (𝑚 → 𝑗), 𝑡2 = 1+𝑑 ( 𝑗 → 𝑖) +
𝑑 (𝑚 → 𝑗), and 𝛿𝑡 = |𝑑 ( 𝑗 → 𝑖) − 𝑑 ( 𝑗 → ℓ) − 1|, 𝛿𝑡 ′ = |𝑑 ( 𝑗 → 𝑖) − 𝑑 ( 𝑗 → ℓ ′) − 1|. We stop at (41)

for the moment for our bound for (37a) and change course to bound the other term (37b) in (37).

We start with cauchy-schwarz for (37b).

(37b) ≤ max
𝑖∈[𝑁 ]

∑︁
𝑗 ∈Din (𝑖)

𝑎𝑖𝑡 − 𝑎𝑖𝑡−𝑑 ( 𝑗→𝑖)−𝑑 (𝑖→𝑗)


2

𝜙 𝑗,𝑥

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1]

2

+
𝑏𝑖𝑡 − 𝑏𝑖𝑡−𝑑 ( 𝑗→𝑖)−𝑑 (𝑖→𝑗)


2

𝜙 𝑗,𝑢

𝑡−𝑑 ( 𝑗→𝑖) [𝑘 − 1]

2

≤ 𝐶𝜌𝑘−1𝑛 · max
𝑖∈[𝑁 ]

max
𝑗 ∈Din (𝑖)

𝑎𝑖𝑡 − 𝑎𝑖𝑡−𝑑 ( 𝑗→𝑖)−𝑑 (𝑖→𝑗)


2
+

𝑏𝑖𝑡 − 𝑏𝑖𝑡−𝑑 ( 𝑗→𝑖)−𝑑 (𝑖→𝑗)


2

= 𝐶𝜌𝑘−1𝑛 · max
𝑖∈[𝑁 ]

max
𝑗 ∈Din (𝑖)

\ 𝑖𝑡 − \ 𝑖𝑡−𝑑 ( 𝑗→𝑖)−𝑑 (𝑖→𝑗)


2

(42)

Here we have used the decay property of the finite-impulse-response closed-loop responses to

bound the decay rate of the sub-controllers. The last equality holds by recalling that we have

defined 𝑎𝑖𝑡 and 𝑏
𝑖
𝑡 to be the 𝑖th row of the 𝐴𝑡 and 𝐵𝑡 respectively, which is constructed from the

global consistent parameter Θ𝑡 = ∪𝑁𝑖=1\ 𝑖𝑡 . Therefore, by definition, [𝑎𝑖𝑡 , 𝑏𝑖𝑡 ] = \ 𝑖𝑡 .
We now return to bound

∑∞
𝑡=0

∑𝐻
𝑘=1

𝐴𝑡Φ
𝑥
𝑡−1 [𝑘 − 1] + 𝐵𝑡Φ𝑢

𝑡−1 [𝑘 − 1] − Φ𝑥
𝑡 [𝑘]


∞. In particular,

we have so far showed that

∞∑︁
𝑡=0

𝐻∑︁
𝑘=1

𝐴𝑡Φ
𝑥
𝑡−1 [𝑘 − 1] + 𝐵𝑡Φ𝑢

𝑡−1 [𝑘 − 1] − Φ𝑥
𝑡 [𝑘]


∞ ≤

∞∑︁
𝑡=0

𝐻∑︁
𝑘=1

(41) + (42). (43)
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Therefore, our goal is to bound each component of the right hand side. Specifically,

∞∑︁
𝑡=0

𝐻∑︁
𝑘=1

(41)

≤
∞∑︁
𝑡=0

𝐻∑︁
𝑘=1

^𝑛3/2Γ
∑︁

𝑚∈M( 𝑗)

©«
min(𝑡1,𝑡2)+𝛿𝑡+1∑︁
𝑝=min(𝑡1,𝑡2)

\𝑚𝑡−𝑝+1 − \𝑚𝑡−𝑝
𝐹
+

min(𝑡 ′1,𝑡2)+𝛿′𝑡+1∑︁
𝑝=min(𝑡 ′1,𝑡2)

\𝑚𝑡−𝑝+1 − \𝑚𝑡−𝑝
𝐹

ª®¬ ,
(44)

for a different tuple of (𝑖 ∈ [𝑁 ], 𝑗 ∈ Din (𝑖) , ℓ ∈ Dout ( 𝑗) , ℓ ′ ∈ Dout ( 𝑗)) at each 𝑡 . However, for
any (𝑖, 𝑗, ℓ, ℓ ′), the following holds.
∞∑︁
𝑡=0

𝐻∑︁
𝑘=1

(41)

≤ ^𝑛3/2Γ
𝐻∑︁
𝑘=1

∑︁
𝑚∈M( 𝑗)

©«
min(𝑡1,𝑡2)+𝛿𝑡+1∑︁
𝑝=min(𝑡1,𝑡2)

∞∑︁
𝑡=0

\𝑚𝑡−𝑝+1 − \𝑚𝑡−𝑝
𝐹
+

min(𝑡 ′1,𝑡2)+𝛿′𝑡+1∑︁
𝑝=min(𝑡 ′1,𝑡2)

∞∑︁
𝑡=0

\𝑚𝑡−𝑝+1 − \𝑚𝑡−𝑝
𝐹

ª®¬ ,
≤ 2^𝑛9/2Γ𝐻diam(P0)

(
max

𝑖∈[𝑁 ] , 𝑗 ∈Din (𝑖), ℓ∈Dout ( 𝑗)
(1 + 1 + |𝑑 ( 𝑗 → 𝑖)) − 𝑑 ( 𝑗 → ℓ) − 1|

)
(45a)

≤ 2^𝑛9/2Γ𝐻diam(P0) (𝑑 + 3). (45b)

Here we have used in the competitiveness of each local Steiner point selector via (3) in (45a) with

competitive ratio of 𝑛/2. Furthermore, by definition of Din (𝑖) and Dout ( 𝑗), we know that the

largest delay for 𝑑 ( 𝑗 → 𝑖) and 𝑑 ( 𝑗 → ℓ) for any choice of 𝑖, 𝑗, ℓ is less than 𝑑 .

Finally, we investigate the second component of the right hand side of (43).

∞∑︁
𝑡=0

𝐻∑︁
𝑘=1

(42) =

∞∑︁
𝑡=0

𝐻∑︁
𝑘=1

𝐶𝜌𝑘−1𝑛 · max
𝑖∈[𝑁 ]

max
𝑗 ∈Din (𝑖)

\ 𝑖𝑡 − \ 𝑖𝑡−𝑑 ( 𝑗→𝑖)−𝑑 (𝑖→𝑗)


2

(46a)

≤
𝐻∑︁
𝑘=1

𝐶𝜌𝑘−1𝑛 max
𝑖∈[𝑁 ]

max
𝑗 ∈Din (𝑖)

𝑑 ( 𝑗→𝑖)+𝑑 (𝑖→𝑗)+1∑︁
𝑝=0

∞∑︁
𝑡=0

\ 𝑖𝑡−𝑝+1 − \ 𝑖𝑡−𝑝
2

(46b)

≤ 𝐶𝑛3diam(P0) (𝑑 + 1)/(1 − 𝜌) (46c)

where we once again used the competitive ratio of the local Steiner point selector (3). Moreover, by

definition of Din (𝑖), the largest delay 𝑑 (𝑖 → 𝑗) for any 𝑗 ∈ Din (𝑖) is less than 𝑑 .
Finally, we have the bound on the target quantity with (45b) and (46c) and conclude

∞∑︁
𝑡=1

𝐻∑︁
𝑘=1

𝐴𝑡Φ
𝑥
𝑡−1 [𝑘 − 1] + 𝐵𝑡Φ𝑢

𝑡−1 [𝑘 − 1] − Φ𝑥
𝑡 [𝑘]


∞ ≤ (45b) + (46c)

≤ 2(𝑑 + 3)𝑛3diam(P0)
(
^𝑛

3
2 Γ𝐻 + 𝐶

1 − 𝜌

)
.

□

Corollary C.3 (of Theorem D.10, Structured SLS sensitivity). Consider the optimal solutions
𝜙 , 𝜙 ′ to (20) with two different parameters input Θ, Θ′ respectively. Then we have

∥𝜙 − 𝜙 ′∥2 ≤ Γ ∥Θ − Θ′∥2 ,
with Γ = 𝑂 (Γ𝐴 + Γ𝐵) where Γ𝐴 and Γ𝐵 are constants in Theorem D.10.
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Proof. The SLS synthesis problem that we consider in (20) has one additional sparsity constraints

than general SLS synthesis presented in (51) to which Theorem D.10 apples. Therefore, we need

to de-constrain the synthesis problem (20) and turn it into a problem of the form (51) in order

to apply Theorem D.10. To do so, we follow the procedure in section IV.A of [89], where a re-

parameterization of 𝝓 𝑗,𝑢
𝑡 is used to characterize all sparse 𝝓 𝑗,𝑢

𝑡 which will result in sparse 𝝓 𝑗,𝑥
𝑡

according to the dynamical evolution (20b). First, we rewrite (20b) with the nonzere variables

grouped together as follows.[
𝜙 𝑗,𝑥

𝜙
𝑗,𝑥

𝑏

]
[𝑘 + 1] =

[
𝐴
( 𝑗)
𝑛𝑛 𝐴

( 𝑗)
𝑛𝑏

𝐴
( 𝑗)
𝑏𝑛

𝐴
( 𝑗)
𝑏𝑏

] [
𝜙 𝑗,𝑥

𝜙
𝑗,𝑥

𝑏

]
[𝑘] +

[
𝐵
( 𝑗)
𝑛

𝐵
( 𝑗)
𝑏

]
𝜙 𝑗,𝑢 [𝑘] (47)

where 𝜙 𝑗,𝑥
denotes the vector of nonzero entries in 𝝓 𝑗,𝑥

𝑡 and 𝜙
𝑗,𝑥

𝑏
denotes the “boundary” positions

of 𝜙 𝑗,𝑥
. The “boundary” positions of 𝜙 𝑗,𝑥

corresponds to the positions in the vector that would

become nonzero from zero due to the dynamical evolution (20b) in one time step. We refer interested

reader to [89] for detailed setup/derivation for (47). We also partition𝐴,𝐵 in (20b) to correspond the

entries that are associated with 𝜙 𝑗,𝑥
and 𝜙

𝑗,𝑥

𝑏
. 𝜙 𝑗,𝑢

denote the reduced vector with only non-zero

entries of 𝜙
𝑖,𝑢
𝑡 .

Lemma C.4 (Lemma 2, [89]). If 𝐵 ( 𝑗)
𝑏
𝐵
( 𝑗)†
𝑏

= 𝐼 , then the vectors {𝑣 𝑗 [𝑘]} characterize all 𝜙 𝑗,𝑢 [𝑘] via

𝜙 𝑗,𝑢 [𝑘] = −𝐵 ( 𝑗),†
𝑏

𝐴
( 𝑗)
𝑏𝑛
𝜙 𝑗,𝑥 [𝑘] +

(
𝐼 − 𝐵 ( 𝑗),†

𝑏
𝐵
( 𝑗)
𝑏

)
𝑣 𝑗 [𝑘] . (48)

We remark that the pseudo-inverse condition in Lemma C.4 is equivalently to Assumption 5, as

observed in Yu et al. [89] and Anderson and Matni [8].

We can now substitute (48) into the synthesis problem (20) and obtain an SLS synthesis problem

in the same form as (51) with transformed dynamical evolution in terms of the new variables 𝜙 𝑗,𝑥 [𝑘]
and 𝑣 𝑗 [𝑘]. Consider the optimal solutions 𝜙 and 𝜙 ′ (concatenated from 𝜙 𝑗,𝑥

and 𝑣 𝑗 ) computed from

the de-constrained problem with two different model input Θ and Θ′. By Theorem D.10, we have𝜙 − 𝜙 ′
2
≤ (Γ𝐴 + Γ𝐵) ∥Θ − Θ′∥𝐹 . (49)

Observe that

𝜙 𝑗,𝑢 =

[
−𝐵 ( 𝑗),†

𝑏
𝐴
( 𝑗)
𝑏𝑛

(
𝐼 − 𝐵 ( 𝑗),†

𝑏
𝐵
( 𝑗)
𝑏

)]
𝜙.

Therefore, we could bound the sensitivity of the solution to (20) via

∥𝜙 − 𝜙 ′∥2 ≤

[

𝐼 0

−𝐵 ( 𝑗),†
𝑏

𝐴
( 𝑗)
𝑏𝑛

(
𝐼 − 𝐵 ( 𝑗),†

𝑏
𝐵
( 𝑗)
𝑏

)]
𝜙 −

[
𝐼 0

−𝐵
′ ( 𝑗),†
𝑏

𝐴
′ ( 𝑗)
𝑏𝑛

(
𝐼 − 𝐵

′ ( 𝑗),†
𝑏

𝐵
′ ( 𝑗)
𝑏

)]
𝜙 ′


2

≤
([ 0 0

−𝐵 ( 𝑗),†
𝑏

𝐴
( 𝑗)
𝑏𝑛
+ 𝐵

′ ( 𝑗),†
𝑏

𝐴
′ ( 𝑗)
𝑏𝑛

−𝐵 ( 𝑗),†
𝑏

𝐵
( 𝑗)
𝑏
+ 𝐵

′ ( 𝑗),†
𝑏

𝐵
′ ( 𝑗)
𝑏

] )
𝜙


2

+

[

𝐼 0

−𝐵
′ ( 𝑗),†
𝑏

𝐴
′ ( 𝑗)
𝑏𝑛

(
𝐼 − 𝐵

′ ( 𝑗),†
𝑏

𝐵
′ ( 𝑗)
𝑏

)] (
𝜙 − 𝜙 ′

)
2

≤ 4𝐶^

𝜎min (1 − 𝜌)
+

(
2 + 2^

𝜎min

)
(Γ𝐴 + Γ𝐵) ∥Θ − Θ′∥𝐹

= 𝑂 (Γ𝐴 + Γ𝐵) ∥Θ − Θ′∥𝐹 ,
where 𝜎min denotes the minimum singular value of the matrix 𝐵𝑏 for all 𝐵(\ 𝑖 ) with \ 𝑖 ∈ P𝑖

0. Note

that the left pseudo-inverse has the largest singular value of 1/𝜎min with 𝜎min the smallest singular

value of the original matrix. Due to Assumption 3 and Assumption 5, we know that 𝐵𝑏 has to be
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bounded from below so that (20) is feasible. We have also used the fact that norm of an lower

triangular block matrix is upperbounded by the sum of the norm of each component block. We

invoke the exponential decay property of the closed-loop responses to bound the decay rate of 𝜙

by relating the nonzero component of the solution to (20) and 𝜙 via (49). □

D PERTURBATION ANALYSIS OFH2-OPTIMAL SLS SYNTHESIS
D.1 FromH2-optimal control to Least Squares
This section presents results about general SLS synthesis. Due to notation overhead, we will drop

time indices and suppress the horizon index𝑘 ∈ [𝐻 ] in closed-loop operatorsΦ𝑥 [𝑘],Φ𝑥 [𝑘] andwrite
Φ𝑥
𝑘
, Φ𝑢

𝑘
instead. Let Φ𝑥

𝑘
∈ R𝑛×𝑛 and Φ𝑢

𝑘
∈ R𝑚×𝑛 and consider the following canonical SLS synthesis

problem with LQR cost for system matrices [𝐴, 𝐵] and weighting matrices 𝐶 ∈ R𝑛×𝑛, 𝐷 ∈ R𝑚×𝑚 :

𝑆 = min

[𝐶 0
0 𝐷

] [
Φ𝑥
1 Φ𝑥

2 . . . Φ𝑥
𝑇

Φ𝑢
1 Φ𝑢

2 . . . Φ𝑢
𝑇

]2
𝐹

(50)

s.t.: Φ𝑥
1 = 𝐼

Φ𝑥
𝑘+1 = 𝐴Φ𝑥

𝑘
+ 𝐵Φ𝑢

𝑘
, ∀ 𝑘 : 1 ≤ 𝑘 ≤ 𝐻

Φ𝑥
𝐻+1 = 0

The objective in (50) is equivalent to weightedH2 norm on the closed-loop operators Φx
and Φu

,

as well as the LQR cost on the state and control input weighed by 𝐶2
and 𝐷2

. Denote 𝜙
𝑗,𝑥

𝑘
∈ R𝑛 ,

𝜙
𝑗,𝑢

𝑘
∈ R𝑚 as the 𝑗 th column of Φ𝑥

𝑘
∈ R𝑛×𝑛 , Φ𝑢

𝑘
∈ R𝑚×𝑛 and 𝑒 𝑗 the unit vector in the 𝑗-th coordinate

axis. As described in Section 2.3.2, we can separate the problem by columns and can equivalently

restate (50) in terms of each column 𝜙
𝑗,𝑥

𝑘
and 𝜙

𝑗,𝑢

𝑘
:

𝑆 𝑗 := min

[𝐶 𝐷
] [
𝜙
𝑗,𝑥

1 𝜙
𝑗,𝑥

2 . . . 𝜙
𝑗,𝑥

𝐻

𝜙
𝑗,𝑢

1 𝜙
𝑗,𝑢

2 . . . 𝜙
𝑗,𝑢

𝐻

]2
𝐹

(51)

s.t.: 𝜙
𝑗,𝑥

1 = 𝑒 𝑗

𝜙
𝑗,𝑥

𝑘+1 = 𝐴𝜙
𝑗,𝑥

𝑘
+ 𝐵𝜙 𝑗,𝑢

𝑘
, ∀ 1 ≤ 𝑘 ≤ 𝐻

𝜙
𝑗,𝑥

𝐻+1 = 0

We will now fix 𝑗 and rewrite (51) further and introduce new variables to avoid tedious notation.

Define 𝑢𝑘 = 𝜙
𝑗,𝑢

𝑘
,∀1 ≤ 𝑘 ≤ 𝐻 , 𝒖 = [𝑢⊤1 , . . . , 𝑢⊤𝐻 ]⊤ and the block-lower-triangular matrix 𝑮𝑢 ∈

R𝐻𝑛×𝐻𝑚
, the vector b 𝑗 ∈ R𝐻𝑛

and the lifted weight matrices 𝑪 , 𝑫 as

𝑮𝑢 =


𝐵 0 0 . . . 0
𝐴𝐵 𝐵 0 . . . 0
𝐴2𝐵 𝐴𝐵 𝐵 . . . 0

. . . . . .

𝐴𝐻−1𝐵 𝐴𝐻−2𝐵 𝐴𝐻−3𝐵 . . . 𝐵


b 𝑗 =


−𝐴𝑒 𝑗
−𝐴2𝑒 𝑗
. . .

−𝐴𝐻𝑒 𝑗

 𝑪 = 𝐼𝐻 ⊗ 𝐶 𝑫 = 𝐼𝐻 ⊗ 𝐷, (52)

where 𝐼𝑘 is the identity matrix for R𝑘 . Denote by 𝑃𝑖 , 1 ≤ 𝑖 ≤ 𝐻 the 𝑖-th block-row of 𝑮𝑢 :

𝑃𝑖 = [𝐴𝑖−1𝐵,𝐴𝑖−2𝐵, . . . , 𝐵, 0, . . . , 0] (53)

Observe that with these definitions, it holds that for any feasible 𝜙
𝑗,𝑢

𝑘
, 𝜙

𝑗,𝑥

𝑘
and fro all ∀1 ≤ 𝑘 ≤ 𝐻 :

𝜙
𝑗,𝑥

𝑘+1 = −b 𝑗,𝑘 + 𝑃𝑘𝒖
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due to the constraints in (51). Now we can rewrite the subproblem 𝑆 𝑗 as

𝑆 𝑗 = min
𝒖

[𝑪𝑮𝑢

𝑫

]
𝒖 −

[
𝑪b 𝑗
0

]2
2

+ (𝐶⊤𝐶) 𝑗 𝑗 (54a)

s.t.: 0 = 𝐴⊤𝑒 𝑗 + 𝑃𝐻𝒖 (54b)

For large systems which consist of many interconnected (sparsely) small systems, it is often the

case that the overall system is 𝐻 -controllable for some suitable choice of 𝐻 ≪ 𝑛 where 𝑛 is the

global state dimension.

D.2 Representation as a Least-Squares problem
We now rewrite (54) as a least square problem. Define 𝒖∗𝑐 := 𝑃⊤

𝐻
(𝑃𝐻𝑃⊤𝐻 )−1𝐴⊤𝑒 𝑗 , which is the solution

to the optimization problem

min
𝒖

∥𝒖∥22
s.t. 0 = −𝐴⊤𝑒 𝑗 + 𝑃𝐻𝒖 .

We can interpret 𝒖∗𝑐 as the smallest control action, measured in ℓ2, that drives the system from the ori-

gin to−𝐴⊤𝑒 𝑗 in𝐻 time-steps. This relates to controllability grammians as described in [25]. Using𝑀+

to denote the Moore-Penrose Inverse of a matrix𝑀 , we can also write 𝒖∗𝑐 := 𝑃+
𝐻
𝐴⊤𝑒 𝑗 = 𝑃⊤𝐻𝑊

−1
𝐻
𝐴⊤𝑒 𝑗 ,

where𝑊𝐻 = 𝑃𝐻𝑃
⊤
𝐻
.

Let 𝐻 denote the FIR-Horizon of the problem, then define the matrices

𝑮𝑤 (𝐴) =


𝐼 0 0 . . . 0
𝐴 𝐼 0 . . . 0
𝐴2 𝐴 𝐼 . . . 0

. . . . . .

𝐴𝐻−1 𝐴𝐻−2 𝐴𝐻−3 . . . 𝐼


, 𝑮𝑢 (𝐴, 𝐵) =


𝐵 0 0 . . . 0
𝐴𝐵 𝐵 0 . . . 0
𝐴2𝐵 𝐴𝐵 𝐵 . . . 0

. . . . . .

𝐴𝐻−1𝐵 𝐴𝐻−2𝐵 𝐴𝐻−3𝐵 . . . 𝐵


.

(55)

and denote 𝑃𝑖 (𝐴, 𝐵) as the 𝑖th block matrix row of 𝑮𝑢 (𝐴, 𝐵):

𝑃𝑖 (𝐴, 𝐵) = [𝐴𝑖−1𝐵,𝐴𝑖−2𝐵, . . . , 𝐵, 0, . . . , 0] (56)

𝑮𝑢 (𝐴, 𝐵) can be written as 𝑮𝑢 (𝐴, 𝐵) = 𝑮𝑤 (𝐴) (𝐼𝐻 ⊗ 𝐵), where 𝐼𝐻 is the identity matrix in R𝐻 . Let
𝑍 ∈ R𝐻×𝐻 be defined as the nilpotent matrix

𝑍 =

[
0𝐻−1×1 𝐼𝐻−1

0 01×𝐻−1

]
, (57)

and notice it’s psuedo-inverse is 𝑍+ = 𝑍⊤. Using 𝑍 , it is easy to verify that 𝑮𝑤 (𝐴) can be expressed

as:

𝑮𝑤 (𝐴) =
(
𝐼𝐻 − 𝑍+ ⊗ 𝐴

)−1
. (58)

Ignoring the constant terms in (54a), we can reparametrize 𝒖 = −𝒖∗𝑐 + 𝒖 ′ where 𝒖 ′ ∈ null(𝑃𝐻 )
and describe (54) as the optimization problem:

𝑆 𝑗 := min
𝒖′∈null(𝑃𝐻 (𝐴,𝐵))

 [
𝑪 0
0 𝑫

] [
𝑮𝑢 (𝐴, 𝐵)

𝐼

]
(𝒖 ′ − 𝒖∗𝑐 (𝐴, 𝐵))

2
2
. (59)
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Let 𝒖∗ (𝐴, 𝐵) be a minimizer of the above problem for fixed 𝐴, 𝐵, we are interested in the SLS

solutions

𝜙∗𝑗 (𝐴, 𝐵) :=
[
𝜙
∗𝑗
𝑥 (𝐴, 𝐵)
𝜙
∗𝑗
𝑢 (𝐴, 𝐵)

]
=

[
𝑮𝑢 (𝐴, 𝐵)

𝐼

]
(𝒖∗ (𝐴, 𝐵) − 𝒖∗𝑐 (𝐴, 𝐵))

and how these solutions are perturbed with changes in 𝐴, 𝐵.

For the rest of the discussion, we will drop mentioning the explicit dependence on (𝐴, 𝐵) and
the column index 𝑗 to reduce the notational burden. First, we (over-)parametrize 𝒖 as

𝒖 = (𝐼 − 𝑃+𝐻𝑃𝐻 )𝜼,
to cast the above problem into an unconstrained one:

𝑆 𝑗 := min
𝜼

 [
𝑪 0
0 𝑫

] [
𝑮𝑢 (𝐴, 𝐵)

𝐼

]
(𝐼 − 𝑃+𝐻𝑃𝐻 )︸                                    ︷︷                                    ︸

𝑭

𝜼 −
[
𝑪 0
0 𝑫

] [
𝑮𝑢 (𝐴, 𝐵)

𝐼

]
𝒖∗𝑐 (𝐴, 𝐵)︸                                ︷︷                                ︸

𝒈

2
2

(60)

The unique min-norm solution [∗ to the above problem is [∗ = 𝑭 +𝒈 and therefore the optimal

solution 𝜙∗ takes the form

𝜙∗ =

[
𝑪−1 0
0 𝑫−1

]
(𝑭 𝑭 +𝒈 − 𝒈) =

[
𝑪−1 0
0 𝑫−1

]
(𝑭 𝑭 + − 𝐼 )𝒈︸       ︷︷       ︸

a∗

=:

[
𝑪−1 0
0 𝑫−1

]
a∗ (61)

D.3 Local lipshitzness ofH2-optimal closed-loop operators
Here, we perform perturbation analysis on the term a∗ = (𝑭 𝑭 + − 𝐼 )𝒈. Throughout the discussion,
we will make frequent use of the following identities:

Lemma D.1. For arbitrary matrices 𝑋,𝑌 ∈ R𝑛×𝑚 and 𝐴, 𝐵 ∈ R𝑛×𝑛 , it holds that
i) 𝐴𝑘

1 −𝐴𝑘
2 =

∑𝑘−1
𝑗=0 𝐴

𝑘−1−𝑗
1 (𝐴1 −𝐴2)𝐴 𝑗

2

ii) 𝑋𝑋 + − 𝑌𝑌 + = (𝐼 − 𝑋𝑋 +) (𝑋 − 𝑌 )𝑌 + + [(𝐼 − 𝑌𝑌 +) (𝑋 − 𝑌 )𝑋 +]⊤
iii) If 𝐴 and 𝐵 are invertible, then 𝐴−1 − 𝐵−1 = 𝐴−1 (𝐵 −𝐴)𝐵−1.

The following is a corollary from Theorem 4.1 in [84]:

Theorem D.2. Let 𝑋 and 𝑌 be matrices with equal rank, let ∥ · ∥2 denote the induced 2-norm and
∥ · ∥𝐹 denote the Frobenius norm. The following inequalities hold:

∥𝑋 + − 𝑌 +∥2 ≤ 𝜑 ∥𝑋 +∥2∥𝑌 +∥2∥𝑋 − 𝑌 ∥2
∥𝑋 + − 𝑌 +∥𝐹 ≤

√
2∥𝑋 +∥2∥𝑌 +∥2∥𝑋 − 𝑌 ∥𝐹

where 𝜑 =
1+
√
5

2 denotes the golden ratio constant.

Next we present the core theorem of the perturbation analysis: Given two arbitrary controllable

systems (𝐴1, 𝐵1) and (𝐴2, 𝐵2), (Thm.D.3) bounds the worst-case difference in solutions ∥𝜙∗1 − 𝜙∗2∥2
in terms of the differences in parameters space ∥𝐴1 −𝐴2∥2 and ∥𝐵1 − 𝐵2∥2 between both systems.

This result is the first perturbation bound forH2-optimal control with SLS (considering arbitrary

pairs of 𝐴1, 𝐴2 and 𝐵1, 𝐵2) .

Theorem D.3. Let 𝐶, 𝐷 ≻ 0, let (𝐴1, 𝐵1) and (𝐴2, 𝐵2) be two controllable pairs of system matrices
with FIR horizon 𝐻 and let 𝜙∗𝑗1 and 𝜙∗𝑗2 be the corresponding SLS-solutions to the subproblem 𝑆 𝑗 . Then,
it holds that:

∥𝜙 𝑗∗
1 − 𝜙

𝑗∗
2 ∥2 ≤ Γ𝐴∥𝐴1 −𝐴2∥𝐹 + Γ𝐵 ∥𝐵1 − 𝐵2∥𝐹 (62)
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where the Lipshitz-constants Γ𝐴, Γ𝐵 stand for

Γ𝐴 = ^𝐶𝐷Γ
′
1 + ^𝐶𝐷Γ′2∥𝐵1∥2∥𝑮𝑤 (𝐴1)∥2, ^𝐶𝐷 =

max{𝜎𝑚𝑎𝑥 (𝐶), 𝜎𝑚𝑎𝑥 (𝐷)}
min{𝜎𝑚𝑖𝑛 (𝐶), 𝜎𝑚𝑖𝑛 (𝐷)}

Γ𝐵 = ^𝐶𝐷Γ
′
2∥𝑮𝑤 (𝐴2)∥2

and Γ′1 and Γ′2 are defined as:

Γ′1 = 𝛼𝐻,1𝛼𝐻,2𝐻 (1 +
𝑮𝑢,2


2
)∥𝑃+𝐻,2∥2

Γ′2 = 𝛼𝐻,1∥𝑃+𝐻,1∥2
(
1 + 𝜑 ∥𝑃+𝐻,2∥2 + 𝜑 ∥𝑃+𝐻,2∥2

𝑮𝑢,2


2

)
+ ∥𝒈2∥2 (∥𝑭 +1 ∥2 + ∥𝑭 +2 ∥2) + . . .

+ 𝜑 ∥𝒈2∥2 (∥𝑭 +1 ∥2 + ∥𝑭 +2 ∥2)∥𝑃+𝐻,1∥2∥𝑃+𝐻,2∥2 (∥𝑃𝐻,1∥2 + ∥𝑃𝐻,2∥2) (1 + ∥𝑮𝑢,1∥2).

and 𝜑 =
1+
√
5

2 is the golden ratio.

Proof. Recall the identities of (Lem.D.1). Write a∗1 − a∗2 where a∗𝑖 is from (61) for (𝐴𝑖 , 𝐵𝑖 ) as
a∗1 − a∗2 = (𝑭1𝑭 +1 − 𝐼 ) (𝒈1 − 𝒈2) + (𝑭1𝑭 +1 − 𝑭2𝑭 +2 )𝒈2

∥a∗1 − a∗2∥2 ≤ ∥𝒈1 − 𝒈2∥2 + ∥𝑭1𝑭 +1 − 𝑭2𝑭 +2 ∥2∥𝒈2∥2, (63)

where we used the fact that (𝑭1𝑭 +1 − 𝐼 ) is a projection and therefore ∥𝑭1𝑭 +1 − 𝐼 ∥2 = 1. Rewrite
𝑭1𝑭 +1 − 𝑭2𝑭 +2 as

(𝐼 − 𝑭1𝑭 +1 ) (𝑭1 − 𝑭2)𝑭 +2 +
[
(𝐼 − 𝑭2𝑭 +2 ) (𝑭1 − 𝑭2)𝑭 +1

]⊤
to conclude that

∥𝑭1𝑭 +1 − 𝑭2𝑭 +2 ∥2 ≤ ∥𝑭1 − 𝑭2∥2 (∥𝑭 +1 ∥2 + ∥𝑭 +2 ∥2). (64)

Substitution into (63) yields:

∥a∗1 − a∗2∥2 ≤ ∥𝒈1 − 𝒈2∥2 + ∥𝑭1 − 𝑭2∥2 (∥𝑭 +1 ∥2 + ∥𝑭 +2 ∥2)∥𝒈2∥2, (65)

(1) Bounding ∥𝑭1 − 𝑭2∥2: Rewrite 𝑭1 − 𝑭2 as[
𝑪−1 0
0 𝑫−1

]
(𝑭1 − 𝑭2) =

[
𝑮𝑢,1

𝐼

]
(𝐼 − 𝑃+𝐻,1𝑃𝐻,1) −

[
𝑮𝑢,2

𝐼

]
(𝐼 − 𝑃+𝐻,2𝑃𝐻,2) (66)

=

[
𝑮𝑢,1

𝐼

]
(𝑃+𝐻,2𝑃𝐻,2 − 𝑃+𝐻,1𝑃𝐻,1) +

[
𝑮𝑢,1 − 𝑮𝑢,2

0

]
(𝐼 − 𝑃+𝐻,2𝑃𝐻,2) (67)

From the above we can derive the inequality:

∥𝑭1 − 𝑭2∥2
max{∥𝐶 ∥2, ∥𝐷 ∥2}

≤ (1 + ∥𝑮𝑢,1∥2)∥𝑃+𝐻,2 − 𝑃+𝐻,1∥2 (∥𝑃𝐻,1∥2 + ∥𝑃𝐻,2∥2) + ∥𝑮𝑢,1 − 𝑮𝑢,2∥2 (68)

Now we will use the result (Thm.D.2) to bound ∥𝑃+
𝐻,2 − 𝑃+𝐻,1∥2 as

∥𝑃+𝐻,2 − 𝑃+𝐻,1∥2 ≤ 𝜑 ∥𝑃+𝐻,1∥2∥𝑃+𝐻,2∥2∥𝑃𝐻,2 − 𝑃𝐻,1∥2 (69)

Furthermore, noticing 𝑃𝐻,2 − 𝑃𝐻,1 = [0, . . . , 0, 𝑰𝑛] (𝑮𝑢,2 − 𝑮𝑢,1) we can conclude

∥𝑃+𝐻,2 − 𝑃+𝐻,1∥2 ≤ 𝜑 ∥𝑃+𝐻,1∥2∥𝑃+𝐻,2∥2∥𝑮𝑢,2 − 𝑮𝑢,1∥2. (70)

We combine this into (68) to obtain

∥𝑭1 − 𝑭2∥2
max{∥𝐶 ∥2, ∥𝐷 ∥2}
≤

(
1 + 𝜑 ∥𝑃+𝐻,1∥2∥𝑃+𝐻,2∥2 (1 + ∥𝑮𝑢,1∥2) (∥𝑃𝐻,1∥2 + ∥𝑃𝐻,2∥2)

)
∥𝑮𝑢,1 − 𝑮𝑢,2∥2 (71)
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(2) Bounding ∥𝒈1 − 𝒈2∥2: Introduce the constant 𝛼𝐻 := max0≤𝑘≤𝐻 ∥𝐴𝑘 ∥2 and observe that

∥𝐴𝐻
1 −𝐴𝐻

2 ∥2 can be bounded as:

∥𝐴𝐻
1 −𝐴𝐻

2 ∥2 = ∥
𝐻−1∑︁
𝑗=0

𝐴
𝐻−1−𝑗
1 (𝐴1 −𝐴2)𝐴 𝑗

2∥ ≤ 𝐻𝛼𝐻,1𝛼𝐻,2∥𝐴1 −𝐴2∥2 (72)

We can rewrite 𝒈1 − 𝒈2 as[
𝑪−1 0
0 𝑫−1

]
(𝒈1 − 𝒈2) =

[
𝑮𝑢,1

𝐼

]
𝑃+𝐻,1𝐴

𝐻
1 𝑒 𝑗 −

[
𝑮𝑢,2

𝐼

]
𝑃+𝐻,2𝐴

𝐻
2 𝑒 𝑗 (73)

=

[
(𝑮𝑢,1 − 𝑮𝑢,2)

0

]
𝑃+𝐻,1𝐴

𝐻
1 𝑒 𝑗 +

[
𝑮𝑢,2

𝐼

]
(𝑃+𝐻,1 − 𝑃+𝐻,2)𝐴𝐻

1 𝑒 𝑗 (74)

· · · +
[
𝑮𝑢,2

𝐼

]
𝑃+𝐻,2 (𝐴𝐻

1 −𝐴𝐻
2 )𝑒 𝑗

and obtain the bound:

∥𝒈1 − 𝒈2∥2
max{∥𝐶 ∥2, ∥𝐷 ∥2}

≤ 𝛼𝐻,1

𝑮𝑢,1 − 𝑮𝑢,2


2
∥𝑃+𝐻,1∥2 + 𝛼𝐻,1 (1 +

𝑮𝑢,2


2
)
𝑃+𝐻,1 − 𝑃+𝐻,2


2

(75)

· · · + 𝛼𝐻,1𝛼𝐻,2𝐻 (1 +
𝑮𝑢,2


2
)∥𝑃+𝐻,2∥2∥𝐴1 −𝐴2∥2 (76)

≤ 𝛼𝐻,1∥𝑃+𝐻,1∥2
(
1 + 𝜑 ∥𝑃+𝐻,2∥2 + 𝜑 ∥𝑃+𝐻,2∥2

𝑮𝑢,2


2

) 𝑮𝑢,1 − 𝑮𝑢,2


2

(77)

· · · + 𝛼𝐻,1𝛼𝐻,2𝐻 (1 +
𝑮𝑢,2


2
)∥𝑃+𝐻,2∥2∥𝐴1 −𝐴2∥2 (78)

We get the bound

∥a∗1 − a∗2∥2
max{∥𝐶 ∥2, ∥𝐷 ∥2}

≤ Γ′1∥𝐴1 −𝐴2∥2 + Γ′2∥𝑮𝑢,1 − 𝑮𝑢,2∥2 (79)

where Γ′1 and Γ′2 are the constants:

Γ′1 = 𝛼𝐻,1𝛼𝐻,2𝐻 (1 +
𝑮𝑢,2


2
)∥𝑃+𝐻,2∥2 (80)

Γ′2 = 𝛼𝐻,1∥𝑃+𝐻,1∥2
(
1 + 𝜑 ∥𝑃+𝐻,2∥2 + 𝜑 ∥𝑃+𝐻,2∥2

𝑮𝑢,2


2

)
+ ∥𝒈2∥2 (∥𝑭 +1 ∥2 + ∥𝑭 +2 ∥2) + . . . (81)

+ 𝜑 ∥𝒈2∥2 (∥𝑭 +1 ∥2 + ∥𝑭 +2 ∥2)∥𝑃+𝐻,1∥2∥𝑃+𝐻,2∥2 (∥𝑃𝐻,1∥2 + ∥𝑃𝐻,2∥2) (1 + ∥𝑮𝑢,1∥2)

Using (Lem.D.4), we obtain the final bound:

∥𝜙∗1 − 𝜙∗2∥2 ≤ ^𝐶𝐷 ∥a∗1 − a∗2∥2 ≤ Γ𝐴∥𝐴1 −𝐴2∥2 + Γ𝐵 ∥𝐵1 − 𝐵2∥2 (82)

with the constants Γ𝐴, Γ𝐵 defined as:

Γ𝐴 = ^𝐶𝐷Γ
′
1 + ^𝐶𝐷Γ′2∥𝐵1∥2∥𝑮𝑤 (𝐴1)∥2∥𝑮𝑤 (𝐴2)∥2 (83)

Γ𝐵 = ^𝐶𝐷Γ
′
2∥𝑮𝑤 (𝐴2)∥2 (84)

□

D.4 Global lipshitzness ofH2-optimal closed-loop operators over compact sets S
This section derives a global Lipshitz bound forH2-optimal SLS solutions over a compact set of

controllable systems S. As a starting point we consider the previous theorem (Thm.D.3). Our main

proof strategy is to derive global bounds on the constants Γ𝐴 and Γ𝐵 instead of for a fixed pair of

systems. We proceed with a collection lemmas bounding individual terms in the equations (82) and

(83) for S.
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D.4.1 Auxiliary Lemmas.

Lemma D.4. For any pair of system matrices (𝐴1, 𝐵1) and (𝐴2, 𝐵2) (with compatible dimensions)
holds

∥𝑮𝑤 (𝐴1) − 𝑮𝑤 (𝐴2)∥2 ≤ ∥𝑮𝑤 (𝐴1)∥2∥𝑮𝑤 (𝐴2)∥2∥𝐴1 −𝐴2∥2 (85)

∥𝑮𝑢 (𝐴1, 𝐵1) − 𝑮𝑢 (𝐴2, 𝐵2)∥2 ≤ ∥𝐵1∥2∥𝑮𝑤 (𝐴1)∥2∥𝑮𝑤 (𝐴2)∥2∥𝐴1 −𝐴2∥2 + ∥𝑮𝑤 (𝐴2)∥2∥𝐵1 − 𝐵2∥2

Proof. Using (Lem.D.1) we can write Using 𝑮𝑢 (𝐴, 𝐵) = 𝑮𝑤 (𝐴) (𝐼𝐻 ⊗ 𝐵) and (Lem.D.1) we can

write 𝑮𝑢,1 − 𝑮𝑢,2 as

𝑮𝑢,1 − 𝑮𝑢,2 = 𝑮𝑤 (𝐴1) (𝐼𝐻 ⊗ 𝐵1) − 𝑮𝑤 (𝐴2) (𝐼𝐻 ⊗ 𝐵2) (86)

= (𝑮𝑤 (𝐴1) − 𝑮𝑤 (𝐴2)) (𝐼𝐻 ⊗ 𝐵1) + 𝑮𝑤 (𝐴2) (𝐼𝐻 ⊗ (𝐵1 − 𝐵2)) (87)

It holds that

𝑮𝑤 (𝐴1) − 𝑮𝑤 (𝐴2) = 𝑮𝑤 (𝐴1) (𝑮𝑤 (𝐴2)−1 − 𝑮𝑤 (𝐴1)−1)𝑮𝑤 (𝐴2) (88)

= 𝑮𝑤 (𝐴1) (𝑍+ ⊗ (𝐴1 −𝐴2))𝑮𝑤 (𝐴2) (89)

which leads to the bound

∥𝑮𝑤 (𝐴1) − 𝑮𝑤 (𝐴2)∥2 ≤ ∥𝑮𝑤 (𝐴1)∥2∥𝐴1 −𝐴2∥2∥𝑮𝑤 (𝐴2)∥2 (90)

□

In total, we need to global bounds on the quantities ∥𝑮𝑢 ∥2,∥𝑮𝑤 ∥2, ∥𝑃+𝐻 ∥2, ∥𝑃𝐻 ∥2, ∥𝑭 +∥2, ∥𝒈∥2.

Lemma D.5. Let (𝐴, 𝐵) be pair of fixed system matrices, let 𝑮𝑢 (𝐴, 𝐵), 𝑮𝑤 (𝐴) be the matrices defined
in (55), and let𝑊 𝑢

𝐻
=

∑𝐻−1
𝑖=0 𝐴𝑖𝐵𝐵⊤𝐴𝑖⊤,𝑊 𝑤

𝐻
=

∑𝐻−1
𝑖=0 𝐴𝑖𝐴𝑖⊤ be the 𝐻 th controllability grammian w.r.t

to the input 𝑢 and the distrubance𝑤 , respectively. Then it holds:

∥𝑮𝑢 (𝐴, 𝐵)∥2 ≤
√︃
𝐻𝜎𝑚𝑎𝑥 (𝑊 𝑢

𝐻
(𝐴, 𝐵)) ∥𝑮𝑤 (𝐴)∥2 ≤

√︃
𝐻𝜎𝑚𝑎𝑥 (𝑊 𝑤

𝐻
(𝐴)) (91)

Proof. ∥𝑮𝑢 ∥2 is defined as ∥𝑮𝑢 ∥22 := max
∥𝑢 ∥2=1

∥𝑮𝑢𝒖∥22, by decomposing 𝒖 = [𝑢⊤0 , . . . , 𝑢⊤𝐻−1]⊤ we

can rewrite this as

∥𝑮𝑢 ∥22 = max
∥𝑢 ∥2=1




𝐵𝑢0
𝐴𝐵𝑢0 + 𝐵𝑢1

. . .

𝐴𝐻−1𝐵𝑢0 + · · · + 𝐵𝑢𝐻−1



2

2

= max
∥𝑢 ∥2=1

𝐻∑︁
𝑘=1

∥𝑃𝑘𝒖∥22 (92)

≤
𝐻∑︁
𝑘=1

max
∥𝑢 ∥2=1

∥𝑃𝑘𝒖∥22 =

𝐻∑︁
𝑘=1

∥𝑃𝑘 ∥22 ≤ 𝐻 ∥𝑃𝐻 ∥22 ≤ 𝐻 ∥𝑊 𝑢
𝐻 ∥2 (93)

Where we used the fact that ∥𝑃𝑘 ∥22 increases in 𝑘 and that ∥𝑃𝑘 ∥22 is equal to the induced 2-norm of

the corresponding controllabillity grammian𝑊 𝑢
𝑘
=

∑𝑘−1
𝑖=0 𝐴

𝑖𝐵𝐵⊤𝐴𝑖⊤
. Thus, we obtain the bound

∥𝑮𝑢 (𝐴, 𝐵)∥2 ≤
√︃
𝐻𝜎𝑚𝑎𝑥 (𝑊 𝑢

𝐻
(𝐴, 𝐵)),

and the bound on ∥𝑮𝑤 (𝐴)∥2 follows in the same way. □
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Lemma D.6. Let (𝐴, 𝐵) be pair of 𝐻 -controllable fixed system matrices, let 𝑃𝐻 (𝐴, 𝐵) be the matrix
defined in (56), and let𝑊 𝑢

𝐻
=

∑𝐻−1
𝑖=0 𝐴𝑖𝐵𝐵⊤𝐴𝑖⊤ be the 𝐻 th controllability grammian w.r.t to the input

𝑢. Then, the induced 2 norm of 𝑃𝐻 (𝐴, 𝐵) and its Moore-Penrose Inverse 𝑃+
𝐻
(𝐴, 𝐵) can be written as:

∥𝑃𝐻 (𝐴, 𝐵)∥2 =
(
𝜎𝑚𝑎𝑥 (𝑊 𝑢

𝐻 (𝐴, 𝐵))
) 1
2 ∥𝑃+𝐻 (𝐴, 𝐵)∥2 =

(
𝜎𝑚𝑖𝑛 (𝑊 𝑢

𝐻 (𝐴, 𝐵))
)− 12 (94)

Proof. Because we assume a sufficient degree of controllability, 𝑃𝐻 (𝐴, 𝐵) is full row-rank. This
implies that

∥𝑃𝐻 (𝐴, 𝐵)∥2 =

√︃
_𝑚𝑎𝑥 (𝑃𝐻 (𝐴, 𝐵)𝑃⊤𝐻 (𝐴, 𝐵)) =

√︃
𝜎𝑚𝑎𝑥 (𝑊 𝑢

𝐻
(𝐴, 𝐵)) (95)(

∥𝑃+𝐻 (𝐴, 𝐵)∥2
)−1

=

√︃
_𝑚𝑖𝑛 (𝑃𝐻 (𝐴, 𝐵)𝑃⊤𝐻 (𝐴, 𝐵)) =

√︃
𝜎𝑚𝑖𝑛 (𝑊 𝑢

𝐻
(𝐴, 𝐵)) (96)

□

Lemma D.7. Let (𝐴, 𝐵) be a fixed pair of 𝐻 -controllable system matrices, and let 𝑭 (𝐴, 𝐵) denote the
matrix

𝑭 (𝐴, 𝐵) =
[
𝑪 0
0 𝑫

] [
𝑮𝑢 (𝐴, 𝐵)

𝐼

]
(𝐼 − 𝑃+𝐻 (𝐴, 𝐵)𝑃𝐻 (𝐴, 𝐵)) . (97)

Then, ∥𝑭 + (𝐴, 𝐵)∥2 ≤ 𝜎−1𝑚𝑖𝑛 (𝐷).

Proof. For an arbitrary matrix𝑀 , (∥𝑀+∥2)−1 is equal to the smallest non-zero singular eigen-

value of𝑀 (we will denote this quantity as 𝜎−1 (𝑀)). Thus, in order to bound ∥𝑀+∥2 from above,

we have to bound 𝜎−1 (𝑀) from below. Denote 𝑳 as the matrix

𝑳 :=

[
𝑪 0
0 𝑫

] [
𝑮𝑢 (𝐴, 𝐵)

𝐼

]
and notice that it is full column rank and has rank of 𝐻 × 𝑛𝑢 . The projection ΠN(𝑃𝐻 ) := (𝐼 −
𝑃+
𝐻
(𝐴, 𝐵)𝑃𝐻 (𝐴, 𝐵)) has rank 𝐻 × 𝑛𝑢 − 𝑛𝑥 due the assumption of 𝐻 -controllability. Hence, 𝑭 =

𝑳ΠN(𝑃𝐻 ) is full column rank with rank 𝑟𝑭 := 𝐻 × 𝑛𝑢 − 𝑛𝑥 and has a null space N(𝑭 ) of dimension

𝑛𝑥 . From these observations, we can equivalently say that 𝜎−1 (𝑭 ) is the 𝑟𝑭 th largest (or equivalently
𝑛𝑥 + 1 smallest) singular eigenvalue of 𝑭 . Using the Minimax principle, we can therefore write:

𝜎−1 (𝑭 ) = max
proj.Π, s.t.: rank(Π)=𝑟𝑭

min
𝑥 s.t.: ∥Π𝑥 ∥=1

𝑥⊤Π𝑭⊤𝑭Π𝑥 (98)

= max
proj.Π, s.t.: rank(Π)=𝑟𝑭

min
𝑥 s.t.: ∥Π𝑥 ∥=1

𝑥⊤ΠΠN(𝑃𝐻 )𝑳
⊤𝑳ΠN(𝑃𝐻 )Π𝑥 (99)

Now recall that ΠN(𝑃𝐻 ) is of rank 𝑟𝑭 , hence it is a feasible choice for the variable Π of the outer

optimization problem. This leads to the bound

𝜎−1 (𝑭 ) ≥ min
𝑥 s.t.: ∥ΠN(𝑃𝐻 )𝑥 ∥=1

𝑥⊤ΠN(𝑃𝐻 )𝑳
⊤𝑳ΠN(𝑃𝐻 )𝑥 (100)

≥ min
𝑧 s.t.: ∥𝑧 ∥=1

𝑧⊤𝑳⊤𝑳𝑧 = 𝜎𝑚𝑖𝑛 (𝑳) (101)

We obtain a simple, but possibly conservative, lower bound on 𝜎𝑚𝑖𝑛 (𝑳) as follows:
𝜎2
𝑚𝑖𝑛 (𝑳) = min

𝑧 s.t.: ∥𝑧 ∥=1
∥𝑳𝑧∥22 = min

𝑧 s.t.: ∥𝑧 ∥=1
∥𝑪𝑮𝑢 (𝐴, 𝐵)𝑧∥22 + ∥𝑫𝑧∥22 ≥ 𝜎2

𝑚𝑖𝑛 (𝑪𝑮𝑢 (𝐴, 𝐵)) + 𝜎2
𝑚𝑖𝑛 (𝑫)

=⇒ 𝜎𝑚𝑖𝑛 (𝑳) ≥ 𝜎𝑚𝑖𝑛 (𝑫)

Finally, this provides us with the final result: ∥𝑭 + (𝐴, 𝐵)∥2 = 𝜎−1−1 (𝑭 ) ≤ 𝜎−1𝑚𝑖𝑛 (𝑳) ≤ 𝜎−1𝑚𝑖𝑛 (𝑫) □

We obtain an upper bound for ∥𝒈∥2, as a corollary of the previous three Lemmas:
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Lemma D.8. Let (𝐴, 𝐵) be a fixed pair of 𝐻 -controllable system matrices. Let 𝒈 = 𝑳𝒖∗𝑐 , where 𝑳 and
𝒖∗𝑐 are defined as:

𝑳 :=

[
𝑪 0
0 𝑫

] [
𝑮𝑢 (𝐴, 𝐵)

𝐼

]
𝒖∗𝑐 := 𝑃+𝐻𝐴

𝐻𝑒 𝑗 = 𝑃
⊤
𝐻𝑊

−1
𝐻 𝐴𝐻𝑒 𝑗 . (102)

Then, it holds:

∥𝒈∥2 ≤
(
∥𝐶 ∥2
√
𝐻𝜎

1
2
𝑚𝑎𝑥 (𝑊 𝑢

𝐻 ) + ∥𝐷 ∥2
)
𝜎
− 12
𝑚𝑖𝑛
(𝑊 𝑢

𝐻 )𝛼𝐻

where 𝛼𝐻 := max0≤𝑘≤𝐻 ∥𝐴𝑘 ∥2
D.4.2 The final bound. With the results of the last section, we can now bound the constants Γ𝐴
and Γ𝐵 used in (Thm.D.3). Rather than writing the explicit form of the constants we shall only

analyze how they scale with system parameters. Recall Γ𝐴, Γ𝐵 are defined as

Γ𝐴 = ^𝐶𝐷Γ
′
1 + ^𝐶𝐷Γ′2∥𝐵1∥2∥𝑮𝑤 (𝐴1)∥2∥𝑮𝑤 (𝐴2)∥2

Γ𝐵 = ^𝐶𝐷Γ
′
2∥𝑮𝑤 (𝐴2)∥2,

where Γ′1, Γ
′
2 are dominated by the terms:

Γ′1 ∼ O
(
𝛼𝐻,1𝛼𝐻,2𝐻

𝑮𝑢,2


2
∥𝑃+𝐻,2∥2

)
Γ′2 ∼ O

(
∥𝒈2∥2 (∥𝑭 +1 ∥2 + ∥𝑭 +2 ∥2)∥𝑃+𝐻,1∥2∥𝑃+𝐻,2∥2 (∥𝑃𝐻,1∥2 + ∥𝑃𝐻,2∥2) (1 + ∥𝑮𝑢,1∥2)

)
Let us first revisit the collection of bounds we have derived:

i) ∥𝑮𝑢 (𝐴, 𝐵)∥2 ≤
√︁
𝐻𝜎𝑚𝑎𝑥 (𝑊 𝑢

𝐻
(𝐴, 𝐵)), ∥𝑮𝑤 (𝐴)∥2 ≤

√︁
𝐻𝜎𝑚𝑎𝑥 (𝑊 𝑤

𝐻
(𝐴))

ii) ∥𝑃𝐻 (𝐴, 𝐵)∥2 =
(
𝜎𝑚𝑎𝑥 (𝑊 𝑢

𝐻
(𝐴, 𝐵))

) 1
2 , ∥𝑃+

𝐻
(𝐴, 𝐵)∥2 =

(
𝜎𝑚𝑖𝑛 (𝑊 𝑢

𝐻
(𝐴, 𝐵))

)− 12
iii) ∥𝑭 + (𝐴, 𝐵)∥2 ≤ 𝜎−1𝑚𝑖𝑛 (𝐷)

iv) ∥𝒈∥2 ≤
(
∥𝐶 ∥2
√
𝐻𝜎

1
2
𝑚𝑎𝑥 (𝑊 𝑢

𝐻
) + ∥𝐷 ∥2

)
𝜎
− 12
𝑚𝑖𝑛
(𝑊 𝑢

𝐻
)𝛼𝐻

v) 𝛼𝐻 := max0≤𝑘≤𝐻 ∥𝐴𝑘 ∥2
vi) ^𝐶𝐷 =

max{𝜎𝑚𝑎𝑥 (𝐶),𝜎𝑚𝑎𝑥 (𝐷) }
min{𝜎𝑚𝑖𝑛 (𝐶),𝜎𝑚𝑖𝑛 (𝐷) }

Before we state the final bound, we require the following standard controllability result [25].

Lemma D.9. Let S be a compact set of matrices where each element (𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑚) ∈ S
represents a controllable linear dynamical system with equations 𝑥 (𝑡 + 1) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) +𝑤 (𝑡),
state 𝑥 (𝑡) ∈ R𝑛 , input 𝑢 (𝑡) ∈ R𝑚 and disturbance𝑤 (𝑡) ∈ R𝑛 . Then, there exists an FIR Horizon𝐻 ≤ 𝑛,
and positive scalar constants 𝜎𝑤 , 𝜎𝑤 , 𝜎𝑢 , 𝜎𝑢 such that the following statements hold:
• For any (𝐴, 𝐵) ∈ S and any initial state, Z0, there exists an input 𝑢 (0), 𝑢 (1), . . . , 𝑢 (𝐻 − 1), such
that the system trajectory 𝑥 (𝑡 + 1) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡),∀𝑡 ≤ 𝐻 − 1, 𝑥 (0) = Z0 satisfies 𝑥 (𝐻 ) = 0
at time 𝐻 .
• For any (𝐴, 𝐵) ∈ S, the matrix 𝑃𝐻 = [𝐴𝐻−1𝐵,𝐴𝐻−2𝐵, . . . , 𝐵] ∈ R𝑛×𝐻𝑚 is full column rank.
• For any (𝐴, 𝐵) ∈ S, the following FIR-SLS-constraint is feasible:
There exist Φ𝑥 [1], . . . ,Φ𝑥 [𝐻 ] ∈ R𝑛×𝑛 and Φ𝑢 [0], . . . ,Φ𝑢 [𝐻 − 1] ∈ R𝑚×𝑛 such that:

Φ𝑥 [0] = 𝐼 , ∀𝑘 = 0, ..., 𝐻 − 1 : Φ𝑥 [𝑘 + 1] = 𝐴Φ𝑥 [𝑘] + 𝐵Φ𝑢 [𝑘], and Φ𝑥 [𝐻 ] = 0

• For any (𝐴, 𝐵) ∈ S, the corresponding grammians𝑊 𝑢
𝐻
(𝐴, 𝐵) and𝑊 𝑤

𝐻
(𝐴) are positive-definite

and their singularvalues satisfy the inequalities:

𝜎𝑢 ≤ 𝜎𝑚𝑖𝑛 (𝑊 𝑢
𝐻 (𝐴, 𝐵)), 𝜎𝑚𝑎𝑥 (𝑊 𝑢

𝐻 (𝐴, 𝐵)) ≤ 𝜎
𝑢

𝜎𝑤 ≤ 𝜎𝑚𝑖𝑛 (𝑊 𝑤
𝐻 (𝐴)), 𝜎𝑚𝑎𝑥 (𝑊 𝑤

𝐻 (𝐴)) ≤ 𝜎
𝑤
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We can not use 𝜎
𝑢
, 𝜎𝑢 , 𝜎𝑤 , 𝜎𝑤 in Lemma D.9 in conjuncture of the bounds derived above to obtain

Γ′2 = O
(
𝛼𝐻 ^𝐶𝐷 𝐻

(
𝜎𝑢

𝜎
𝑢

) 3
2

)
Γ′1 = O

(
𝛼2
𝐻𝐻

3
2

(
𝜎𝑢

𝜎
𝑢

) 1
2

)
(103)

and finally

Γ𝐴 = O
(
𝛼2
𝐻 ^

2
𝐶𝐷 ∥𝐵1∥2 𝐻2

(
𝜎𝑢

𝜎
𝑢

) 3
2

𝜎𝑤

)
Γ𝐵 = O

(
𝛼𝐻 ^

2
𝐶𝐷 𝐻

3
2

(
𝜎𝑢

𝜎
𝑢

) 3
2

𝜎
1
2
𝑤

)
(104)

Theorem D.10. Let 𝐶, 𝐷 ≻ 0, and let S be a compact set of controllable systems with known FIR
horizon 𝐻 and constants 𝜎

𝑢
, 𝜎𝑢 , 𝜎𝑤 , 𝜎𝑤 as defined in (Lem.D.9). Then there are fixed constants Γ𝐴, Γ𝐵 ,

such that for any two pairs of system matrices (𝐴1, 𝐵1), (𝐴2, 𝐵2) ∈ S the correspondingH2 optimal
SLS-solutions of problem 𝑆 𝑗 ( 𝑗 arbitrary), denoted 𝜙

∗𝑗
1 and 𝜙∗𝑗2 , satisfy the following inquality:

∥𝜙 𝑗∗
1 − 𝜙

𝑗∗
2 ∥2 ≤ Γ𝐴∥𝐴1 −𝐴2∥𝐹 + Γ𝐵 ∥𝐵1 − 𝐵2∥𝐹 . (105)

Furthermore, Γ𝐴 and Γ𝐵 satisfy

Γ𝐴 = O
(
𝛼2
𝐻 ^

2
𝐶𝐷 𝛽 𝐻

2

(
𝜎𝑢

𝜎
𝑢

) 3
2

𝜎𝑤

)
Γ𝐵 = O

(
𝛼𝐻 ^

2
𝐶𝐷 𝐻

3
2

(
𝜎𝑢

𝜎
𝑢

) 3
2

𝜎
1
2
𝑤

)
, (106)

where 𝛽 := max
(𝐴,𝐵) ∈S

∥𝐵∥2 and ^𝐶𝐷 stands for

^𝐶𝐷 =
max{𝜎𝑚𝑎𝑥 (𝐶), 𝜎𝑚𝑎𝑥 (𝐷)}
min{𝜎𝑚𝑖𝑛 (𝐶), 𝜎𝑚𝑖𝑛 (𝐷)}

E EXTENSIONS TO NON-CONVEX PARAMETER SET SETTING
Representing model uncertainty as convex compact parameter sets is not always practical; some-

times potentially even impossible. Our approach can be readily extended to compact non-convex

parameter sets S, if those can be written as a finite union of convex sets

⋃𝑁
𝑖=1 P𝑖 . This class of

non-convex sets covers a large range of practical scenarios and the presented approach can be

extended without losing stability guarantees. We can ensure by wrapping the proposed algorithm

in a high-level routine SETSELECT, which runs the algorithm on the smaller convex sets P𝑖 until
they become entirely inconsistent:

(1) At 𝑡 = 0, we select an arbitrary convex set P𝑘0
and perform consistent model chasing with

CONSIST as before.

(2) If at some point P𝑘0
becomes entirely inconsistent, we select an arbitrary set P𝑘1

from the

remaining collection {P1, . . . ,P𝑁 } \ P𝑘0
and restart CONSIST with that set P𝑘1

. If P𝑘1
is

also entirely inconsistent, repeat that selection process.

Per definition, the above algorithm never violates consistency. Because there are finitely many

convex sets P𝑘𝑖 , the cost accrued due to restarting CONSIST scales up the total movement cost of

the convex counterpart by a fixed constant. Overall, the stability proof is not impacted.
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