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We consider the load balancing system under Poisson arrivals, exponential services, and homogeneous servers.
Upon arrival, a job is to be routed to one of the servers, where it is queued until service. We consider the
Power-of-d choices routing algorithm, which chooses the queue with minimum length among d randomly
sampled queues. We study this system in the many-server heavy-traffic regime where the number of servers
goes to infinity simultaneously when the load approaches the capacity. In particular, we consider a sequence
of systems with n servers, where the arrival rate of the nth system is λ= n−n1−γ for some γ ∈ (0,0.5), known
as the sub-Halfin-Whitt regime. It was shown by [Liu Ying (2020)] that under Power-of-d choices routing
with d≥ nγ logn, the queue length behaves similarly to that of JSQ and that there are asymptotically zero
queueing delays.

The focus of this paper is to characterize the behavior when d is below this threshold. We obtain high
probability bounds on the queue lengths for various values of d and large enough n. In particular, we show

that when d grows polynomially in n but slower than in [Liu Ying (2020)], i.e., if d is Θ
(

(nγ logn)1/m)
)

for

some integer m> 1, then the asymptotic queue length is m with high probability. This finite queue length
behavior is similar to JSQ in the so-called nondegenerate slowdown regime (where γ = 1). Moreover, if d
grows polylog in n, i.e., slower than any polynomial, but is at least Ω(log(n)3), the queue length blows up to
infinity asymptotically. Such behavior is similar to that under JSQ in the so-called super slowdown regime
(γ > 1). We obtain these results by using an iterative state space collapse approach. We first establish a weak
state-space collapse (SSC) on the queue lengths. Then, we bootstrap on weak SSC to iteratively narrow
down the region of the collapse. After enough steps, this inductive refinement provides the bounds we seek.
We establish these sequences of collapse using Lyapunov drift arguments.

Key words : Load Balancing, Sub-Halfin-Whitt, Many Server Heavy Traffic, Iterative State Space Collapse

1. Introduction
We study a load-balancing queuing system in which a single stream of jobs arrives governed by a
Poisson process and is routed to one of the n homogeneous servers, operating with a service rate
equal to one. Each server is endowed with a queue of maximum buffer size b.
The job dispatcher uses a load balancing or routing algorithm to route arriving jobs to the

queues. The literature considers many possible routing algorithms ranging from random routing to
Joining the Shortest Queue (JSQ). In random routing, a new job joins a queue selected uniformly at
random. On the other hand, a new job joins the shortest queue under JSQ. While random routing
has no informational requirements—the dispatcher does not need to know any information about
the system primitives and state—it does not provide optimal delay performance. In contrast, JSQ
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has more informational requirements—the dispatcher needs to know the system state to determine
the shortest queue—but it has a proven near-optimal delay performance, e.g., see [13]. In this
paper, we consider an in-between policy known as Power-of-d choices, in which once a job arrives,
d queues are sampled uniformly at random from the n queues. Then, the job joins the shortest
among the d sampled ones. Note that d= 1 is the same as random routing, and d= n is the same
as JSQ.
For a tractable analysis of the performance of the routing algorithm, the literature considers

different asymptotic regimes, where the number of servers goes to infinity, the load on the system
approaches its capacity, or both happen simultaneously. As we explain below in Section 1.1, the
performance of JSQ has been studied extensively under these regimes and combinations thereof.
On the other hand, the performance analysis of Power-of-d choices is comparatively limited. We
contribute towards this deficiency by analyzing Power-of-d under the sub-Halfin-Whitt asymptotic
regime (see Section 1.1). In this regime, the arrival rate of jobs increases with the number of servers
at a rate of λ= n−n1−γ with γ ∈ (0,0.5). Under this scaling, our goal is to characterize the system’s
asymptotic delay and steady-state behavior for growing choices, i.e. d→∞ as n→∞.
It is known by [22] that if d is sufficiently large (d ≥ nγ logn), Power-of-d behaves like JSQ,

and the jobs experience zero asymptotic delays in steady-state. In particular, [22] shows that the
asymptotic queue lengths at each server are either zero or one. However, for smaller values of d,
one expects the delay to be higher. In particular, we will later show that the queue lengths can be
finite but greater than one or even asymptotically infinite depending on how d scales with n. Thus
the asymptotic queue lengths are qualitatively different from JSQ, i.e., they are not just zero-one
but exhibit a rich steady-state distribution. Characterizing such behavior under all the scenarios
warrants a new approach. In this paper, we aim to provide a unified framework for almost all
scalings of d. Before presenting our main contributions, we briefly outline prior work on various
asymptotic regimes

1.1. Many-Server-Heavy-Traffic Regimes
In general, it is challenging to determine the exact delay under a routing policy. So, it has been
studied in various asymptotic regimes to gain insights into the optimality of routing policies. We
now provide a comprehensive overview of these asymptotic regimes and the insights obtained in the
literature for different routing policies. In turn, we explain how our results fit into the literature.
Mean field. In this regime, the number of servers increases to infinity while maintaining a

constant load on each server. It has been shown in the literature [26, 25, 28, 30] that under the
Power-of-d choices algorithm, even for d = 2, the steady-state queue lengths exhibits a double
exponential tail as opposed to an exponential tail for random routing. On the other hand, under
JSQ, it was shown [27] that almost all the queues have length zero or one. Thus, all the jobs
experience asymptotically zero delay. In addition, it was shown that the same behavior holds true
for Power-of-d with growing choices, i.e. d→∞, as n→∞.
Classical heavy-traffic . Another popular regime considered in the literature is the classical

heavy-traffic regime. In this regime, the load converges to the capacity while the number of servers is

constant. In particular, let ǫ
∆
=1−λ/n be such that 1−ǫ quantifies the load on the system. Then, ǫ ↓

0 is the heavy-traffic regime. This regime allows one to analyze the bottlenecks in the system. Under
any routing algorithm, the queue lengths in this regime increase to infinity asymptotically. Under
JSQ [13, 10, 18], an appropriately scaled queue length converges to an exponential distribution with
a mean depending on the variance of the arrivals and services. In addition, the limiting behavior
of Power-of-d for all d≥ 2 is identical to that of JSQ [24], while that of random routing is worse
by a factor of n.
Many-server-heavy-traffic. One can also consider a hybrid of the mean field and the classical

heavy-traffic regime, i.e., many-server-heavy-traffic regime, wherein the load increases to capacity
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simultaneously while the number of servers increases to infinity. Depending on the relative rate at
which the load and the number of servers converge to their asymptotes, one can obtain different
viewpoints on the performance of the routing algorithms. In particular, the mean-field and clas-
sical heavy traffic are two extreme ways to scale the system and provide different perspectives.
For instance, there is a distinction between the performance of JSQ and Power-of-d for small d in
the mean-field as opposed to an identical limiting behavior in classical heavy traffic. Considering
many-server-heavy-traffic regimes provides us with a more comprehensive understanding of the
performance of various load balancing algorithms, allows us to differentiate between their perfor-
mance, and enables us to pick the right d in Power-of-d type algorithms. Studying such regimes
was first initiated by Halfin-Whitt [15] in an M/M/n queue.
More precisely, the parameterization of the arrival rate as λ= n− βn1−γ for some γ ∈ (0,∞) is

defined as the many-server-heavy-traffic regimes. The parameter γ determines the relative rate at
which λ and n converge to their asymptotes. As γ increases from 0 to ∞, the load on each server is
more prominent, resulting in higher delays. Note that the mean-field regime is a special case with
γ = 0 and β < 1, and the classical heavy traffic is interpreted as γ →∞.
Now, we discuss the performance of JSQ for γ ∈ (0,∞) as summarized in Fig. 1. For the sub-

Halfin-Whitt regime, i.e., γ ∈ (0,0.5), similar to the mean-field regime, the delay experienced by
the jobs is asymptotically zero. A phase transition occurs in the Halfin-Whitt regime, i.e., γ = 0.5.
In this regime [12, 6, 1, 2], a vanishing fraction of jobs experiences a constant delay bounded
away from zero. Similar results were proved by [23, 31] for the super-Halfin-Whitt regime, i.e.,
γ ∈ (0.5,1). Another phase transition occurs at the nondegenerate slowdown (NDS) regime, i.e.,
γ = 1. In this case [14], incoming jobs experience a non-zero, finite delay. When γ increases beyond
one, it is called the super slowdown regime, and the limiting queue length at each server increases
to infinity. The authors of [18] analyze the limiting stationary distribution of appropriately scaled
queue lengths for γ ≥ 2 and show that its behavior is similar to the classical heavy-traffic regime.
The case γ ∈ (1,2) is still an open problem. Figure 1 (left) summarizes this discussion by illustrating
the delay performance of the JSQ policy under different asymptotic regimes.
As the load in the system increases, one expects the delay under any routing algorithm to be

higher. Consistent with the intuition, increasing delay with γ is observed under JSQ, as previously
discussed. On the other hand, one can fix a γ and consider the delay performance as d is varied in
the Power-of-d choices routing. Similar to how JSQ exhibits higher delay for more loaded regimes,
one would expect the delay to increase as d reduces. In this paper, we quantify such behavior
exhibited by Power-of-d for all γ ∈ (0,0.5). We now present our main contributions.

1.2. Main Contributions
Our focus is on understanding the performance of the Power-of-d for different choices of d. Note
that Figure 1 (left) provides the performance of JSQ, and augmenting it with Power-of-d would
correspond to adding a third dimension for d as a function of n. The special case of JSQ as depicted
in Figure 1 (left) corresponds to one slice of the three dimensional figure with d= n.
In this paper, we restrict ourselves to the sub-Halfin-Whitt regime, i.e. γ ∈ (0,0.5), and consider

a broad range of values of d. It was shown in [22] that Power-of-d with d≥ nγ logn has an identical
limiting behavior as JSQ. We go beyond this range and provide a quantitative distinction between
JSQ and Power-of-d by characterizing the performance of the Power-of-d for d < nγ . A summary
of the results in this paper is given in Figure 1 (right).
Finite Delay: First, we consider the case when d= (nγ logn)1/m for some positive integer m.

We show that the queue lengths exhibits the following behavior with high probability: most of
the queues are of length m and a vanishing fraction are either longer or shorter. In particular, we
show that the fraction of queues with length less than i is equal to n−γdi−1(1+o(1)) for i≤m and
the fraction of queues with length more than m is at most o(n−γdm−1) which is o(1). It is worth
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Figure 1 Performance of JSQ (d= n) under many-server-heavy-traffic regimes (γ ∈ [0,∞]), where ǫ= n−γ (left)
and performance of Power-of-d for different choices of d under the sub-Halfin-Whitt regime, i.e. γ ∈
(0,0.5) (right).
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noting that these results are applicable for the pre-limit system as well, i.e. for all finite, large
enough n (and we provide explicit expressions for all the o(·) terms). These results imply that when
m≥ 2, the queue lengths are non-zero but finite, behaving qualitatively similar to that of JSQ in
NDS regime. However, a fundamental difference in behavior is that while our results show that the
queue lengths are essentially concentrated around m for Power-of-d in sub-Halfin-Whitt regime,
the limiting queue lengths of JSQ in NDS are spread over multiple values and the distribution
has a nontrivial support. Also note that, when we pick m = 1, our result implies that the jobs
experience zero asymptotic delay and the queue lengths are either zero or one. The result in this
special case was first established in [22].
Infinite Asymptotic Delay: Now, we consider the case when d is Poly-Log(n) but is at

least Ω (log(n)3). Note that, Poly-Log(n) is smaller than d = (nγ logn)1/m for any m ∈ Z+. We
show that all the queue lengths are Θ(logn/ logd) with high probability. This implies that the
asymptotic queue lengths are infinite. Similar to the finite delay case, we characterize the fraction
of queue lengths smaller or larger than m for the pre-limit system. Note that, such a behavior
is qualitatively similar to that of JSQ in the super slowdown regime. However, there is again
a fundamental difference in behavior because while we show that the queue lengths concentrate
around Θ(logn/ logd) for Power-of-d, JSQ in the super slowdown regime has a large support.
Extending the result to the case when d< log(n)3 is an open future research direction.
Methodological Contribution: In contrast to the prior work on load balancing that is based

on fluid and diffusion limits (e.g. see: [12, 1]), Stein’s method (e.g. see: [22, 30]), transform method
(e.g. see: [18]), and a combination of iterative SSC and Stein’s method [21, 20], our approach
uses iterative SSC alone without the use of Stein’s method. We first obtain a crude bound on the
possible values of the queue lengths, i.e., a weak state space collapse. We then iteratively bootstrap
from this weak SSC to obtain more and more refined SSC. This iterative refinement is inductively
repeated (m times) until a tight characterization of the steady-state queue lengths as described
above is obtained. Lyapunov drift-based arguments achieve each step of the refinement.
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Table 1 Power-of-d choices for γ ∈ (0,0.5)

Value of d Regime Queue Length References

d≥ nγ logn Zero-Delay ≈ 1 This paper and [22]

Polynomial (d= (nγ logn)1/m) Finite-Delay ≈m=Θ
(

logn
logd

)

This paper and [7]

Poly-log and d≥ log(n)3 Infinite-Delay Θ
(

logn
logd

)

This paper

d≤ log(n)3 Infinite-Delay Θ
(

logn
logd

)

Open

Iterative SSC was used as an intermediate step in characterizing the limiting distribution of
queue lengths in [21, 20] to study the case of m = 1 with Coxian service times. Using their SSC
methodology directly in our setting does not suffice as it results in only a crude bound (see Section
5.1 for detailed discussion), so further refinement is required to obtain tight queue length bounds.
The novelty of our approach lies in independently constructing a sequence of Lyapunov functions
which allows us to obtain tight queue length bounds simply by applying iterative SSC enough
times. The main takeaway of our methodology is that iterative SSC is a powerful tool to analyze
queueing systems in mean field types of regimes, i.e., the queueing system concentrates around the
fixed point of the corresponding deterministic, dynamical system.

1.3. Related Work
The prior work that is closest to ours are [4, 22, 7]. In [4], the analysis for Power-of-d was carried
out for the ‘finite delay’ regime, i.e. d= (nγ logn)1/m for m ∈ Z+, and a process level law of large
numbers is established to show convergence of the queue length process to its mean. By observing
the mean, it was noted that most of the queue lengths are m in the limit. However, the lower order
terms, i.e. the fraction of queues with length larger or smaller than m is not characterized in this
result. Although [4] also provides a diffusion process that characterizes further fluctuations around
the mean, the steady-state distribution of the diffusion process is not characterized. In addition,
to conclude that these results holds for the steady-state of the pre-limit process, interchange of
limits is required which is not established. If these two steps were completed, then the approach
in [4] would obtain the lower order terms. In contrast, by directly working with the steady-state
quantities (as opposed to process level convergence), we characterize the dominant lower order term
and show that it is exactly n−γdi−1 thereby obtaining a sharper characterization of the steady-
state queue lengths distribution. Moreover, we also obtain bounds on the fluctuations around these
lower-order terms.
In addition, [22] is also closely related to our result which shows that the asymptotic delay

experienced by the jobs is zero under Power-of-d for d ≥ nγ logn. A key difference is that [22]
characterizes all the moments of the total number of jobs in the system, whereas we present high
probability tail bounds on the queue length distribution. Another difference is in the methodology.
The proof technique used in [22] is SSC combined with Stein’s method, whereas we use iterative
SSC without the use of Stein’s method. In particular, we carefully construct a sequence of Lyapunov
functions that results in tight queue length bounds as opposed to obtaining crude bounds as an
intermediary step in [22].
The main result of [7] and its previous (arXiv) version [8] are closely related to our result. In

addition to a few technical differences, the papers differ on the proof methodology. In particular,
[7] considers the case of m /∈ Z+, whereas we consider m ∈ Z+ along with a logarithmic function
for our choice of d. Also, while [7] considers a broader range of values of γ, we consider a broader
range of values of d, that is, we allow for d to be smaller than any polynomial (poly-log). Note
that [8] considers the same range of γ and d as ours but their result requires n ≥ 1015, so it is
essentially an asymptotic characterization. On the other hand, our result provides tight bounds on
the queue lengths that are applicable in the pre-limit as well. We also verify that our suggested
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bounds are tight by conducting simulations on the pre-limit system. Lastly, our proof methodology
is more simplified and can be thought of as a steady-state version of [7]. In particular, [7] analyzes
the drift of a sequence of Lyapunov functions in a finite time. As the analysis is carried out in
finite time, [7] have to ensure that the Lyapunov function stays small while the other Lyapunov
functions in the sequence decrease. Such a complication is circumvented in our methodology as
we take a steady-state approach. Also, our sequence of Lyapunov functions is completely different
from that of [7] providing an alternative proof and revealing geometric insights. In particular, while
[7] provides an elegant algebraic construction of the sequence of Lyapunov functions, our sequence
is based on geometric intuition via the trajectory of the ODE approximation.
Now, we present a non-exhaustive overview of the literature on load balancing under the sub-

Halfin-Whitt regime. JSQ and Power-of-d for d ≥ nγ logn was analyzed in [22]. This result was
extended for more general settings in the literature: coxian-2 service distribution in [21], coxian-k
service distribution in [20], and parallel jobs arriving in the system in [29]. In addition, Power-of-d
choices has been analyzed in [30, 11] for d = 2, and [4] provides a transient analysis for growing
sequences of d. The reader can refer to the survey paper [9] for a holistic review of the literature.
Lastly, we would like to point out that our results have a similar qualitative flavor as in [19].

In particular, for a given m ∈ Z+, [19] characterizes the critical load below which the blocking
probability is very small for a load balancing system with finite buffer equal to m; under a state-
dependent random routing policy.

1.4. Notation
The set of all positive integers (excluding zero) is denoted by Z+. For some k ∈Z+, the set of num-
bers {1,2, . . . , k} is denoted by [k]. We use the shorthand w.h.p. to denote “with high probability”.

2. Model
Consider a load balancing system with n homogeneous servers. A single stream of jobs arrive,
governed by a Poisson process with rate λ<n. Upon arrival, the job is routed to one of the servers,
where it waits in a queue before getting served. Each queue has a maximum buffer size b ∈ Z+.
Preemption is not allowed and the job cannot move within queues. The service times for all servers
are i.i.d. exponential random variables with rate µ = 1. An illustration of the model is given in
Fig. 2. A natural state descriptor for the system is the number of jobs in each queue. However, it

Figure 2 A homogeneous load balancing model with n-servers.

1

2

n

Load Balancer
λ

µ=1

µ=1

µ=1

is mathematically more convenient to consider s ∈ (Z+ ∪ {0})b as the state descriptor. Here, si is
the number of queues with length at least i, and b is the maximum buffer size. The state space is
given by

S :=
{
s∈ (Z+ ∪{0})b : si1 ≤ si2 ≤ n ∀i1 ≥ i2 ∈ [b]

}
.
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In addition, we also denote the number of queues with at least 0 jobs by s0 = n. Once a job arrives, d
queues are sampled uniformly at random, with replacement from n queues. Then, the job is routed
to the smallest among the d sampled queues. This algorithm is known as Power-of-d choices in the
literature. Under this routing scheme, the process {s(t) : t≥ 0} is a finite state-space, irreducible,
continuous time Markov chain. Thus, the CTMC {s(t) : t≥ 0} is positive recurrent and exhibits a
unique stationary distribution. Denote by s̄ a random variable with the same distribution as the
stationary distribution of the CTMC.
As the exact analysis is challenging, we consider a many-server-heavy-traffic asymptotic regime,

wherein the number of servers are scaled to infinity (n→∞) and the arrival rate increases to the
capacity (λ/n→ 1). In particular, consider a sequence of load balancing systems parameterized by
n. The arrival rate for the nth system is given by λ= n−n1−γ . In this paper, we are interested in
the case of γ ∈ (0,0.5), known as the sub-Halfin-Whitt regime. In addition, our focus is on growing
choices in Power-of-d, i.e. d→∞ as n→∞. The goal is to characterize the limiting steady-state
distribution s̄(n) as n → ∞. In the rest of the paper, we suppress the dependence of s̄ on n for
notational convenience.

3. Results and Insights
In this section, we develop intuition by considering an ODE approximation of the load-balancing
system. This will guide the limiting behavior of the stochastic model. In particular, we expect the
limiting stationary distribution of the stochastic model to concentrate around the fixed point of
the ODE approximation. Note that, we do not directly work with the ODE to prove the result for
the stochastic model. We only leverage intuition from the ODE approximation. To prove such a
result, we find the region where the steady-state stochastic system resides with high-probability
by iteratively narrowing down the possible regions of the state-space [21, 20].

3.1. Intuition: ODE approximation
To simplify the arguments in this section, consider b = ∞, i.e., the queues have infinite buffer
capacity. Now, the evolution of nth system can be approximated by abstracting out the stochasticity
to obtain the following ODE:

dsi
dt

= λ

((si−1

n

)d

−
(si
n

)d
)

− (si − si+1) ∀i∈ Z+. (1)

The rate of change of si is the difference of the rate at which it increases and decreases. The first
term on the RHS is the product of arrival rate of the customers (λ) and the probability that the
incoming customer will join a queue with length equal to i− 1. This is equal to the rate at which
si is increasing. The rest of the terms is the product of the service rate (µ= 1) and the number of
queues (si− si+1) with queue length equal to i. This is equal to the rate at which si is decreasing.
To obtain the fixed point of the dynamical system, substitute dsi/dt= 0 for all i∈Z+ resulting

in a set of non-linear equations. After solving these equations, one obtains the following solution:

si
n
=

(
λ

n

) di−1
d−1

∀i∈ Z+. (2)

The above suggests a candidate stationary distribution of the stochastic system. In [26, 28], this
intuition is made formal in the mean field regime, i.e., for λ= (1− β)n with β ∈ (0,1), and d= 2.
Now, we consider the regime where λ = n− n1−γ for γ ∈ (0,0.5) and the routing is governed by
Power-of-d with d→∞ as n→∞. Then, (2) can be approximated as follows:

si = n
(
1−n−γ

) di−1
d−1

(a)≈ n
(
1−n−γ

)di−1 (b)≈
{

n−n1−γdi−1 ∀i∈ [b] : n1−γdi−1 = o(n)

o(n) otherwise.
(3)
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where (a) follows by approximating di−1≈ di and d−1≈ d as d scales to infinity. Next, (b) follows
by Taylor’s series expansion up to the first order term. Now, define m ∈ Z+ to be the smallest
integer such that the number of queues with length at least m+ 1 is o(n), i.e. sm+1 = o(n) and
sm =Θ(n). Then, we must have n1−γdm ≈ n implying that d≈ nγ/m. More precisely, our choice of
d is such that it satisfies d= (2mnγ)1/m log(d)1/m which is approximately equivalent to d≈ nγ/m

when the lower order terms are ignored. For this value of d, from (3), we get

si ≈
{

n− 2mn log d
dm−i+1 ∀i∈ [m]

o(n) otherwise.
(4)

Fig. 3 illustrates the fixed point in terms of queue occupancy. We expect the stationary distribution
of the stochastic model to concentrate around the above fixed point. The main contribution of our
paper is to prove that the heuristic argument is indeed correct. We state the formal result in the
next sub-section.

Figure 3 Illustration of the fixed point of the ODE approximation in terms of queue occupancy.

s1 ≈ n− 2mn log d
dm

= λ

s2 ≈ n− 2mn log d
dm−1

s3 ≈ n− 2mn log d
dm−2

sm−1 ≈ n− 2mn log d
d2

sm ≈ n− 2mn log d
d

sm+1 = o(n)

3.2. Main Result
Now, we present the main results of the paper below.

Theorem 1. Let {mn ∈ Z+ : n ∈Z+} be a sequence such that either mn ≡ m ∈ Z+ or mn →
∞. Consider a load balancing model operating under Power-of-d routing algorithm with d =
(2mnn

γ)1/mn log(d)1/mn. If further d=Ω(log(n)3) and b=O(log(n)3), then with probability at least

1−
(
1
n

)(mn logn)/9
, for large enough n, we have

s̄i =







n− 2mnn log d
dmn−i+1 + o

(
2mnn log d
dmn−i+1

)
∀i∈ [mn]

o(n) for i=mn +1

o(1) otherwise.

The result in Theorem 1 is obtained by proving a high probability lower bound and a high proba-
bility upper bound separately on s in Theorem 2 and Theorem 3, respectively. These are presented
at the end of this section, wherein, we also explicitly characterize the o(·) terms.
Note that the above theorem considers d as a solution of an implicit equation. However, one can

obtain upper and lower bounds on d, matching up to a logarithmic term. In particular, we have
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(2mnγ)1/m ≤ d ≤ (2mnγ)1/m log(n)1/m. Also note that, since d is the number of sampled queues,
it should be an integer. However, we ignore this issue and in our results and proofs we do not
explicitly impose the constraint that d should be an integer. This can be easily fixed by introducing
floors and ceilings at appropriate places, which we do not do for ease of exposition. Moreover, as
d→∞ as n→∞, the integrality approximation error will be negligible for large n.
The above result shows that the stationary distribution of the stochastic model concentrates

around the fixed point of the ODE approximation given by (4). To further understand the result,
consider the limit as n→∞ to get

lim
n→∞

s̄i
n
=

{

1 ∀i∈ [m]

0 otherwise.

Thus, most of the queues have lengths equal to m which implies that an incoming customer joins
a queue with length m− 1 with high probability. In particular, we have

m= γ
logn

log d
+

log(2m logd)

logd
= γ

logn

log d
(1+ o(1)) . (5)

So, if d is a polynomial in n, thenm is finite. On the other hand, if d is smaller than any polynomial,
then m will increase to infinity as n→∞. We discuss such a phase transition in the queue length
behavior below.

3.2.1. Phase Transitions The limiting steady-state performance in this regime exhibits
phase transitions as the values of different parameters like γ and d are varied. We outline two such
phase transitions below.
Phase Transition as d varies: It was shown in [22] that if d≥ nγ logn, the delay experienced by

the customers is asymptotically zero. This is consistent with our result as d= nγ logn corresponds
to the case of m= 1 implying asymptotically zero-delay. Now, if the value of d decreases beyond nγ ,
one would expect the steady-state queue length distribution to be higher. According to Theorem
1, if d is of the form d = nγ/m for some m ≥ 2, the steady-state queue lengths are equal to m.
In particular, if d is a polynomial less than nγ, then the waiting times are non-zero but finite.
As discussed before, such a qualitative behavior is similar to that of JSQ in the NDS regime.
Now, consider the case when d is smaller than any polynomial, for instance, Poly-Log(n). This
corresponds to d≈ nγ/m with m≈ γ logn/ logd which increases to infinity as n→∞. In this case,
the queue lengths are asymptotically infinite, which corresponds to infinite delay. As discussed
before, such behavior is qualitatively similar to that of JSQ in the super slowdown regime.
To summarize, we characterize the limiting steady-state behavior of the stochastic model in

Theorem 1. Based on this, we show that different orders of delays can emerge depending on the
choice of d. In particular, zero-delay for d≥ nγ logn, finite-delay for polynomial d(n), and infinite
delay for poly-log d(n). Such a phase transition is reminiscent of the phase transition of JSQ as
the load increases from the mean field to the classical heavy traffic regime. To summarize, we
characterize the limiting steady-state behavior of the stochastic model in Theorem 1. Based on
this, we show that different orders of delays can emerge depending on the choice of d. In particular,
zero-delay for d ≥ nγ logn, finite-delay for polynomial d(n), and infinite delay for poly-log d(n).
Such a phase transition is reminiscent of the phase transition of JSQ as the load increases from
the mean field to the classical heavy traffic regime.
Phase Transition as γ varies: It is well known [28, 26] that the queue length under the power

of d choices for d≥ 2 is approximately Θ(log logn/ logd) for the mean field regime, i.e. γ = 0. On
the other hand, we show that the queue lengths are m=Θ(γ logn/ logd) when γ > 0. In particular,
we observe a phase transition in the queue length behavior as the value of γ moves from 0 to > 0.
In other words, as the value of γ increases, the arrival rate increases resulting in a higher load on
the system, which results in larger queue lengths.
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3.2.2. Matching Upper and Lower Bounds We present two theorems characterizing

matching high probability lower and upper bounds on s. Taken together, these two theorems give

us Theorem 1.

Theorem 2. Consider the same setup as Theorem 1. Then, there exists nLB ∈Z+ such that for

all n≥ nLB, we have

s̄i ≥ n− 2m
n logd

dm−i+1
− 4mdi−1

√
mn logn− 16m3n log(d)

2

dm−i+2
w.p. at least 1−

(
1

n

)(m logn)/5

∀i∈ [m].

Theorem 3. Consider the same setup as Theorem 1. Then, there exists nUB ∈ Z+, such that

for all n≥ nUB, we have

s̄i ≤ n− 2m
n logd

dm−i+1
+19mdi−1

√
mn logn+39m3n log(d)

2

dm−i+2
+

n1−γ

dm−i
1{m> 1} ∀i∈ [m]

s̄m+1 ≤ 18mdm−1
√
mn logn+36m3n log(d)

2

d2
+n1−γ

1{m> 1}
b∑

l=m+2

s̄l ≤ 1.

each one with probability at least
(
1
n

)(m logn)/9
.

We prove Theorem 2 in Section 4.2 and Theorem 3 in Section 5.2. Our result only holds true for b≤
log(n)3 for technical reasons discussed in Section 5.2. However, note that, since the queue lengths

are of size m w.h.p. which is o(logn), the finite buffer requirement b≤ log(n)3 is inconsequential.

So, we expect that the result holds true for all b∈Z+. In particular, by (5), we have

m=Θ

(
logn

logd

)

= o(logn),

where the last equality follows as d=Ω(log(n)3).

The terms 4mdi−1
√
mn logn, 16m3 n log(d)2

dm−i+2 , and
n1−γ

dm−i1{m> 1} in Theorem 2 and similar terms
in Theorem 3 are lower order terms compared to the leading term 2m n log d

dm−i+1 . We verify it by

considering their ratio as follows:

4mdi−1
√
mn logn+16m3 n log(d)2

dm−i+2 + n1−γ

dm−i1{m> 1}
2m n log d

dm−i+1

=
2
√
mdm logn√
n logd

+
8m2 log d

d
+

dn−γ {m> 1}
2m logd

(a)

≤ 4nγ−0.5 log(n)2.5+
8 log(n)2 log d

d
+(2m logd)1/m−1n−γ(1−1/m) {m> 1} (b)→ 0, (6)

where (a) follows as dm = 2mnγ log d and m = o(logn). Next, (b) follows by substituting d =

Ω(log(n)3) and noting that γ < 0.5. This shows that the rate of increase of d should be large enough

to assure that the bound obtained in Theorem 2 concentrates around the fixed point (4). One can

observe that even d≈ log(n)2 suffices to ensure (b) holds. However, we require a slightly stronger

condition due to certain intermediate bounds in the proof. To extend the result to d < log(n)2, one

needs to improve the lower order terms obtained in Theorem 2. We leave this as a possible future

work.
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3.3. Iterative State Space Collapse
The central idea to prove Theorem 1 is the iterative state space collapse framework based on drift
analysis which was first developed in [21, 20]. As the stochastic system is expected to concentrate
around the fixed ‘point’ of the ODE approximation, we keep slicing off the state space until the
stationary distribution is implied to live in a ball around the fixed point. In particular, the station-
ary distribution is iteratively shown to collapse to smaller regions of the state space. Each step of
the iteration is achieved by analyzing drift of a carefully engineered Lyapunov function. We present
an intuitive overview of the framework and defer the details to Appendix B.2
Weak SSC: We start by proving a weak SSC. Let V1(·) be a Lyapunov functions with ∆V1(s)≤

−γ for s ∈ S such that V1(s) ≥ B for some γ,B ∈ R+. Then, by standard drift arguments [3,
Theorem 1], we obtain that P (V1(̄s)≥B+ j) is very small for a large enough j. This implies that
s̄ collapses to the set E1 = {V1(s)≤B+ j} ⊆ S.
Refining the SSC: Now, consider the subset of the state space E1 ⊆ S where s̄ resides with

high probability as shown in the previous step. We analyze the drift of another Lyapunov function
V2(·) restricted to the set s∈ E1 such that V2(s)≥B. As E1 ⊆S, one would obtain a stronger upper
bound on the drift of V2(·) as opposed to the bound over all whole state-space. Iterative SSC [21,
Lemma 10] framework says that, as long as P (̄s /∈ E1)≈ 0, negative drift of V2(·) over E1 implies a
high probability bound on the steady-state distribution. This implies that s̄ now collapses to the
set E2 = E1∩{V2(s)≤B+ j}. A key takeaway is that, the SSC framework poses a trade-off between
relaxing the negative drift condition to s∈ E1 and the steady-state probability P (̄s /∈ E1). One can
carefully negotiate this trade-off to obtain meaningful results.
Further Refinements: The refinement can be repeated multiple times. Consider a family of

Lyapunov functions {Vk(s) : k ∈Z+} and define

Ek = Ek−1 ∩{Vk(s)≤B+ j}.

Now, we inductively analyze the drift of Vk+1(s) for s∈ Ek such that Vk+1(s)≥B. By iterative SSC
framework, negative drift of Vk+1(s) implies the high probability bound P (Vk+1(s)≤B+ j) ≈ 1.
Thus, after k+1 iterations, the region of SSC shrinks to Ek+1 = Ek ∩{Vk+1(s)≤B+ j}. In further
sections, we use this inductive framework to prove Theorem 2 and Theorem 3.
Lemma 14 in Appendix B.2 formalizes the above intuition and is the workhorse of our proof, used

to show each step of the SSC refinement. Our proof is tailored to analyze a queueing system in the
steady state allowing us to greatly simplify the methodology compared to [7]. In particular, each
step of our refinement directly implies high probability bounds on the steady-state distribution
of the queue length (s) process. On the other hand, [7] (see Lemma 3 in their paper) essentially
works with a transient version of Lemma 14, so they need to worry about any given Lyapunov
function to stay small while the other Lyapunov functions decrease, further complicating the proof.
Another difference is that our sequence of Lyapunov functions is completely different from that of
[7] providing an alternative proof and revealing geometric insights. In particular, while [7] provides
an elegant algebraic construction of the sequence of Lyapunov functions, our sequence is based on
geometric intuition via the trajectory of the ODE approximation.

4. Lower Bound
In this section, we prove Theorem 2, by iteratively showing high probability lower bounds on
{si}i∈[m] based on iterative SSC described in the previous section. At a high level, starting with an
empty system, we prove a high probability lower bound on s1 as most of the incoming jobs would
join an empty queue. Further, using the lower bound on s1, we obtain a lower bound on s2. This
procedure is continued for {si}i∈[m]. As most of the proof is algebraic, we first focus on the special
case of m= 2 to provide intuition behind the methodology.
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4.1. Special case (m= 2)
4.1.1. Approximate ODE Trajectory We start by analyzing the trajectory of the ODE

approximation for m= 2. The main idea is that the stochastic model would follow a noisy sample
path around the ODE trajectory. We present a cartoon of the approximate ODE trajectory based
on the differential equations given by (1) in Fig. 4. The model is initialized by an all-empty system.
Trajectory (o)− (a): Each incoming job joins an empty queue until s1 = n− n/d, as there is

a surplus of empty queues. In particular, if s1 ≤ n−n logd/d, then the probability of sampling at
least one empty queue (1− (s1/n)

d) is almost one. On the other hand, if s1 ≥ n−n/(d logd), then
the probability is almost zero. Mathematically, we have

1−
(

1− logd

d

)d

≈ 1− 1

d
→ 1

1−
(

1− 1

d logd

)d

≈ 1

logd
→ 0.

Consistent with the intuition, one can confirm that ds1/dt > 0 when s1 ≤ n−n logd/d. We have

ds1
dt

= λ

(

1−
(s1
n

)d
)

− s1 + s2 ≥ λ

(

1−
(

1− log d

d

)d
)

−n+
n logd

d

≈ n

(

1− 1

d

)

−n+
n logd

d
=

n(logd− 1)

d
> 0.

Note that, one can show that s2 increases as well but at a smaller rate compared to s1 by observing
that 0 < ds2/dt≪ ds1/dt. We omit the details here for brevity. We approximately represent the
trajectory as horizontal from (o) to (a) in Fig. 4.
Trajectory (a)− (b): Once s1 ≈ n−n/d, most of the incoming jobs start joining a queue with

length one, as the probability of sampling an empty queue is asymptotically zero. Mathematically,
for s1 ≥ n−n/(d logd) and s2 = o(n), we have

ds2
dt

= λ

((s1
n

)d

−
(s2
n

)d
)

− s2 + s3 ≥ λ

((

1− 1

d logd

)d

− o(1)d

)

− o(n)≈ n− n

log d
− o(n)> 0.

Thus, s2 increases until s2 =Θ(n). Similar to (o)− (a), s1 increases as well but at a smaller rate
compared to s2 as ds1/dt≪ ds2/dt. We approximately represent the trajectory as vertical from (a)
to (b) in Fig. 4.
Trajectory (b)− (c): As s2 increases, ds1/dt increases and ds2/dt decreases. After a critical

point, ds1/dt and ds2/dt are comparable resulting in both s1 and s2 increasing at a similar rate.
This is approximately represented as a tilted trajectory from (b) to (c). Once s1 = λ≈ n−n/d2, the
arrival rate is equal to the effective service rate (number of busy servers), and the ODE trajectory
converges to that point. One can verify that (c) is indeed the fixed point (ignoring the logarithmic
terms) of the ODE approximation.
Note that Fig. 4 is the transient behavior of the ODE approximation starting from an all-empty

system. On the other hand, our goal is to characterize the steady-state behavior of the stochastic
system. Steady-state corresponds to a fixed distribution invariant with time and it doesn’t follow
a transient trajectory as shown in Fig. 4. However, the sequence of SSC we establish in the next
sub-section is inspired by the transience of the ODE approximation. Such an interpretation of the
ODE approximation is also consistent with the fundamentals of the Lyapunov drift arguments. In
particular, drift of a Lyapunov function is a transient quantity as it depends on the state of the
system. In turn, it implies a high probability bound on the steady-state distribution. Lastly, note
that we do not have a cartoon for the ODE approximation for the general case as it would be
m dimensional. However, we carry forward the algebraic intuitions developed using m= 2 for the
general case.



Varma and Maguluri: Power-of-d Choices Load Balancing

13

Figure 4 Approximate ODE trajectory with the initial condition equal to s1 =0.

n

n

s1

s2

(o) (a)

(b)

(c)

s1 s2
(o) 0 0
(a) n−n/d 0
(b) n−n/d Θ(n)
(c) s1 = n−n/d2 s2 = n−n/d

4.1.2. Stochastic Analysis The form of iterative SSC is inspired by the ODE trajectory
depicted in Fig. 5. In particular, there is a drift that pulls the system closer to the ODE trajectory.
We use this idea to show that the states that are far from the trajectory are experienced with low
steady-state probability. Now, we elucidate the steps to prove the theorem that are outlined in Fig.

Figure 5 Graphical representation of iterative SSC for lower bound for m= 2: The red hatched region is shown
to have low steady-state probability leading to the collapse into the solid blue region. In addition, the
arrows represent the drift - (ds1/dt, ds2/dt).

Large s1

(a) s1 ↑ in the red region
until it enters the blue
region.

Large s2

Small s1

(b) s1 ↓& s2 ↑ in the red
region until it enters the
blue region.

La
rg
e
s 1
+
s 2

(c) s1 + s2 ↑ in the red
region until it enters the
blue region.

Large s1

(d) s1 increases in the
red region until it enters
the blue region.

6.
• Step 1: We first show that s̄1 ≥ n−2mn log d/d w.h.p. corresponding to trajectory (o)− (a) in
the ODE approximation. Intuitively, all incoming jobs join empty queues due to their availability
in surplus.

• Step 2a: Given the lower bound on s̄1, we obtain s̄2 ≥ n− 6m2n logd/d w.h.p. corresponding
to trajectory (a)− (b) in the ODE approximation. This is carried out in two-steps as depicted
in Fig. 5b and 5c.

• Step 2b: We improve the lower bound on s̄1 using the lower bound on s̄2 to get s̄1 ≥ n −
9m2n logd/d2 that loosely corresponds to trajectory (b)− (c) in the ODE approximation. This
step is illustrated in Fig. 5d.

• Step 2c: This step improves the lower bound on s̄2 previously obtained in Step 2a. In particular,
we leverage the newly obtained lower bound on s̄1 and repeat the same steps as in Step 2a, to
obtain a better lower bound on s̄2. We call this a bootstrapping step as a weaker lower bound
on s̄2 results in a stronger lower bound on itself.
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• Step 2d: Similar to the previous step, we improve the lower bound on s̄1 previously obtained
in Step 2b. In particular, using a better lower bound on s̄2 obtained in Step 2c, we obtain a
better lower bound on s̄1 by following the outline of Step 2b.

Why Iterative SSC?: Ideally, we would like to construct a single Lyapunov function whose drift
analysis would reveal that the stochastic system concentrates around the fixed point of the ODE.
However, it is not clear if such a Lyapunov function exists, or at least, we were not successful
in constructing such a function. In our approach, we construct a sequence of Lyapunov functions
that mimics the trajectory of the ODE. The ODE trajectory in Fig. 4 reveals that the drift of s1
and s2 are of different orders in different parts of the state space. For example, the upward drift
of s1 is very large compared the drift of s2 when the system is close to an empty system. Such a
behavior is reminiscent of the state space collapse result in classical heavy-traffic regime [10] and
two timescale algorithms in reinforcement learning (e.g. see [5, Chapter 6] and [16]). Such a two
timescale behavior warrants the need of constructing multiple Lyapunov functions to analyze the
collapse of s1 and s2.
In the next sub-section, we build upon the intuition to extend the proof to the general case as

shown in Fig. 6. We do not separately present the proof for m= 2 as it is subsumed in the general
case.

Figure 6 Proof Outline: High Probability Lower Bounds.

Step 1: s̄1 ≥ n− 2mn log d
d

(1+ o(1)) (Fig. 5a)

Step 2: s̄1 ≥ n− 2mn log d
d2

(1+ o(1))
and s̄2 ≥ n − 2mn log d

d
(1+ o(1))

Step k: s̄i ≥ n −
2mn log d

dk−i+1 (1+ o(1)) for all i ∈ [k]

Step m: s̄i ≥ n −
2mn log d
dm−i+1 (1+ o(1)) for all i ∈ [m]

Step 2a: s̄2 ≥ n−
(

6m2n log d
d

)

(Fig. 5b & 5c)

Step 2b: s̄1 ≥ n−
(

9m2n logd
d2

)

(Fig. 5d)

Step 2c: s̄2 ≥ n− 2mn log d
d

(1+ o(1))

Step 2d: s̄1 ≥ n− 2mn logd
d2

(1+ o(1))

Base Case

First iteration of Bootstrapping

Second iteration of Bootstrapping

4.2. General Case
The proof is mainly divided in five steps and we present five lemmas corresponding to these steps.
The proof outline is presented in Fig. 6 and we naturally prove it using induction. In step k,
we provide a high probability lower bound on s̄k and improve the previous bounds obtained for
{s̄i}i∈[k−1]. The proof of all the lemmas mentioned in this section is deferred to Appendix C.
Base Case: We start by obtaining a high probability lower bound on s̄1 (Step 1) in the following

lemma.
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Lemma 1 (Base Case). Consider the same setup as Theorem 1. Then, there exists n0 ∈ Z+

such that for all n≥ n0,

P

(

s̄1 ≤ n− 2mn logd

d
− 2n logd

d2
− 2

√
mn logn

)

≤
(
1

n

)m logn/4

.

The proof of the lemma follows by showing that the drift of the Lyapunov function,

V1(s) = n− 2mn logd

d
− 2n logd

d2
−
√
mn logn− s1,

is negative when V1(s) ≥ 0. Thus, s1 increases w.h.p. when s1 ≤ n− 2mn log d
d

(1 + o(1)), implying
that s̄1 >n− 2mn log d

d
(1+ o(1)) w.h.p. This completes the base case.

Induction Step: For some k ∈ {2, . . . ,m}, we define our induction hypothesis as follows. There
exists nIH ∈Z+, independent of k such that for all n≥ nIH , we have

P

(

s̄i ≤ n− 2m
n logd

dk−i
− 4mdi−1

√
mn logn− 16m3n log(d)

2

dk−i+1

)

≤
(
1

n

)m logn
4 −4(k−1)m

∀i∈ [k− 1].

(IH)

Note that, (IH) is equivalent to Step k−1 as in the proof outline given by Fig. 6. After completing
the induction step, we improve the bound on (n− s̄i) by a factor of d for all i∈ [k−1] and moreover,
we introduce a lower bound on s̄k of the order n−2nm logd/d. Similar to the way Step 2 is proved
in four parts as in Fig. 6, we present four lemmas that together completes the induction step.
The first of the four lemmas corresponds to part a of the induction step (Steps 2 to m in Fig. 6),
wherein we obtain a lower bound on s̄k.

Lemma 2 (Induction Part a). Consider the same setup as Theorem 1. Also, assume that (IH)
holds for some k≤m. Then, there exists n1 ∈ Z+ such that for all n≥ n1, we have

P

(

s̄k ≤ n− 6m2n logd

d

)

≤
(
1

n

)m logn
4 −4(k− 3

4)m
.

Note that, the above lower bound is weak, as the term accompanying n logn/d is 6m2 which is
larger than the required 2m in the induction step. We improve this bound in part c (Lemma 4).
Now, we present the proof sketch.
Proof Sketch of Lemma 2 The proof of this lemma is induction based. To state the induction

hypothesis, consider a Lyapunov function of the following form (the exact expression is presented
in the proof):

Lik(s) =min

{

si −n+Θ

(
m2n logd

dk−i+1

)

, (k− i+1)n−Θ

(
m2n logd

d

)

−
k∑

l=i+1

sl

}

∀i∈ [k− 1].

Now, for some i∈ [k−1], the induction hypothesis is given as follows, which runs backwards on the
index i: Lik (̄s) =O(

√
mn logn). To prove the induction step, we show that the drift of the Lyapunov

function Li−1,k(s) is negative for all states such that Li,k(s) = O(
√
mn logn) and Li−1,k(s) ≥ 0.

Thus, by applying the iterative SSC framework with V =Lik and, E = {Li+1,k(s) =O(
√
mn logn)},

we conclude that Li−1,k (̄s) = O(
√
mn logn) w.h.p. Thus, the induction implies that L1k (̄s) =

O(
√
mn logn) w.h.p. Note that Li−1,k(s) is small implies that either si−1 is small or

∑k

l=i sl is large.
This form of state space collapse is reminiscent of the first sub-task of Step 2a as depicted in Fig.
5b in which we showed that either s̄1 is small or

∑b

l=2 s̄l is large.
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To complete the proof, we further consider the following Lyapunov function:

L0k(s) = kn−Θ

(
m2n logd

d

)

−
k∑

l=1

sl.

Using the fact that L1k (̄s) =O(
√
mn logn) w.h.p., we show that L0k (̄s) =O(

√
mn logn) w.h.p. In

particular, we show that the drift of L0k(s) is negative for all states such that L1k(s) =O(
√
mn logn)

and L0k(s) ≥ 0. Thus, by Lemma 14 with V = L0k, E = {L1k = O(
√
mn logn)}, B = 0, and j =√

mn logn, we conclude that
∑k

l=1 s̄l ≥ kn−Θ(m2n logd/d) w.h.p. Observing that s̄l ≤ n w.p. 1,
we get s̄k ≥ n−Θ(m2n logd/d) w.h.p. This completes the proof. Note that, analyzing the drift of
L0k(s) is equivalent to the second sub-task of Step 2a as depicted in Fig. 5c. �

In the next lemma, we prove weak lower bounds on s̄i for all i∈ [k−1] completing part b of steps
2−m, analogous to Step 2b as outlined in Fig. 6.

Lemma 3 (Induction Part b). Consider the same setup as Theorem 1. Also, assume that m≥
2 and (IH) holds for some k≤m. Then, there exists n2 ∈Z+ such that for all n≥ n2, we have

P

(

s̄i ≤ n− 9m2n log d

dk−i+1

)

≤
(
1

n

)m logn
4 −4(k− 1

2)m
∀i∈ [k].

Note that, the bound obtained in the above lemma is weaker compared to the required bound for
the induction step as 9m2 > 2m. We improve on this bound in part d to obtain the induction step.
We now present the sketch of the proof.
Proof Sketch of Lemma 3 We again use induction on i to prove bounds on s̄i for all i ∈ [k] by

going backwards over the index i. The base case (i= k) is already proved in Lemma 2. To prove
the induction step, we analyze the drift of the following Lyapunov function:

Wi(s) = n−Θ

(
m2n logd

dk−i+1

)

− si.

We consider the induction hypothesis Wi+1(̄s) =O(
√
mn logn) w.h.p. which is equivalent to a high

probability lower bound on s̄i+1. We show that the drift of Wi(s) is negative when Wi+1(s) =
O(

√
mn logn) and Wi(s)≥ 0. Thus, by Lemma 14, we conclude that Wi(̄s) =O(

√
mn logn) w.h.p.

This provides a lower bound on s̄i which completes the proof. Note that, the bound on Wi+1(s) is
crucial in obtaining the negative drift for Wi(s). Thus, the iterative version of SSC is an integral
part of the proof. �

Now, we prove the required lower bound on s̄k completing part c of steps 2−m, analogous to
Step 2c as in Fig. 6.

Lemma 4 (Induction Part c). Consider the same setup as Theorem 1. Also, assume that m≥
2 and (IH) holds for some k≤m. Then, there exists n3 ∈Z+ such that for all n≥ n3, we have

P

(

s̄k ≤ n− 2m
n logd

d
− 3mdk−1

√
mn logn− 12m2n logd

d2

)

≤
(
1

n

)m logn
4 −4(k− 1

4)m
.

Note that the above lemmas replaces the coefficient of n logd/d from 6m2 in Lemma 2 with the
required 2m for the induction step. The proof of the above lemma follows similarly to the proof of
Lemma 2 but leverages the lower bound on s̄k−1 proved in Lemma 3. As the lower bound provided
by Lemma 3 is sharper than the induction hypothesis (IH), we obtain a better lower bound on s̄k.
Turns out, applying this bootstrapping step once suffices to prove the induction step for s̄k. Now,
using this bound, we obtain the required lower bound on s̄i for all i ∈ [k− 1] which completes the
part d of steps 2−m, analogous to Step 2d as outlined in Fig. 6.
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Lemma 5 (Induction Part d). Consider the same setup as Theorem 1. Also, assume that m≥
2 and (IH) holds for some k≤m. Then, there exists n4 ∈Z+ such that for all n≥ n4, we have

P

(

s̄i ≤ n− 2m
n logd

dk−i+1
− 4mdi−1

√
mn logn− 16m3n log(d)

2

dk−i+2

)

≤
(
1

n

)m logn
4 −4km

∀i∈ [k]. (7)

Note that the above lemma proves the coefficient of n logd/dk−i+1 from 9m2 in Lemma 3 to the
required 2m for the induction step. The proof follows similarly to the proof of Lemma 3 but
leverages a sharper lower bounds on s̄i for all i ∈ [k− 1] proved in Lemma 3. Note that the above
lemma essentially completes the induction because (7) is same as (IH) with k − 1 replaced by k.
Now, we use the above lemmas below to prove Theorem 2.
Proof of Theorem 2 Consider the induction hypothesis as defined in (IH). The base case follows

by Lemma 1 for nIH ≥ maxl∈[4]{nl}, and the induction step follows by Lemma 5. Thus, for all
n≥ nIH , we have

P

(

s̄i ≤ n− 2m
n logd

dm−i+1
− 4mdi−1

√
mn logn− 16m3n log(d)

2

dm−i+2

)

≤
(
1

n

)m logn
4 −4m2

≤
(
1

n

)m logn
5

∀i∈ [m],

where the last inequality follows for all n≥ n5 for some n5 ∈Z+ by noting that m= o(logn). Now,

by defining nLB
∆
=max{n5, nIH}, the proof is complete. �

5. Upper Bound
Similar to the previous section, the analysis for the upper bound follows the iterative SSC frame-
work. We first prove high probability upper bounds on s̄m+1 and

∑b

l=m+2 s̄l and then inductively
prove high probability upper bounds on {s̄i}i∈[m]. We start by focusing on the special case of m=1
to provide intuition behind the methodology.

5.1. Special Case (m= 1)
The geometric intuition for the steps to prove the special case is given in Fig. 7. In particular, Fig.
7a corresponds to Theorem 2 (lower bound on s1) for the special case of m = 1. The other two
sub-figures correspond to proving matching upper bounds. Now, we elucidate the steps to obtain
the upper bound for m= 1, as outlined in Fig. 8.
• Step 1a: We first show that

∑b

l=2 s̄l = O (b
√
n logn) w.h.p. Noting that s̄i ≥ 0 for all i ∈

{3, . . . , b}, we get s̄2 =O (b
√
n logn) = o(n) w.h.p. This is a weaker bound than what is required

for Theorem 3. We improve it further in Step 1c by first proving a high probability upper bound
on
∑b

l=m+2 s̄l in the next step.
• Step 1b: The probability of an incoming job joining a queue with length at least two is equal

to the probability of sampling d queues with length at least two. This is equal to
(
s̄2
n

)d
= o(1)d

w.h.p. which converges to zero very fast. Consistent with the intuition, we show that
∑b

l=3 s̄l =
o(1) w.h.p.

• Steps 1c and 1d: Using the upper bound proved in Step 1b, we show that s̄2 =O (
√
n logn)

and s̄1 ≤ λ+O(
√
n logn) w.h.p. This is obtained by first showing (8a) holds, which allows us

to prove (8b) as shown below.

min

{
b∑

l=2

s̄l −O(
√
n logn), λ+O(

√
n logn)− s̄1

}

≤ 0 w.h.p. (8a)

b∑

l=1

s̄l ≤ λ+O(
√
n logn) w.h.p. (8b)
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Figure 7 Graphical representation of iterative SSC for lower and upper bound for m= 1: The red hatched region
is shown to have low steady-state probability leading to the collapse into the solid blue region. In
addition, the arrows represents the drift - (ds1/dt, ds2/dt).

λ

Large s1

(a) s1 ↑ in the red region until
it enters the blue region

λ

Large s1

Small s2

(b) s1 ↑ & s2 ↓ in the red region
until it enters the blue region

λ

Small

s1+
s2

(c) s1 + s2 ↓ in the red region
until it enters the blue region

Eq. (8b) immediately implies that s̄1 ≤ λ+O(
√
n logn) as

∑b

l=2 s̄l ≥ 0. In addition, by using the

lower bound on s̄1 given by Theorem 2 in (8b), we obtain that
∑b

l=2 s̄l ≤O(
√
n logn) completing

Step 1c and 1d. The SSC corresponding to (8a) is depicted in Fig. 7b which shows that either
s1 is large or s2 is small. In particular, if s1 is small and s2 is large, then most of incoming
jobs will join an empty queue resulting in s1 increasing and s2 decreasing. Further, the SSC
corresponding to (8b) is depicted in Fig. 7c which upper bounds

∑b

l=1 s̄l w.h.p.
Tight characterization of s̄ for the special case of m = 1 was first obtained in [22]. The authors
used Stein’s method in conjunction with SSC to prove the result. In particular, the SSC proved
in [22] is equivalent to (8a) as depicted in Fig. 7b. This alone is not sufficient to characterize
the complete stationary distribution. So, Stein’s method was used along with (8a) to obtain the
stationary distribution. On the other hand, we circumvent the use of Stein’s method by using the
iterative SSC framework, to further improve the SSC and obtain tight bounds on the stationary
distribution. A takeaway from our paper is that one can simply use the iterative SSC approach to
obtain tight bounds on the queue lengths if the stochastic system lives close to the fixed point of
the corresponding dynamical system given by a set of ODEs.

5.2. General Case
To present the required intermediate results in a concise manner, define the following:

Bi = 18mdi−1
√
mn logn+36m3n log(d)

2

dm−i+2
+

n1−γ

dm−i
1{m> 1} . (9)

Note that, Bi consists of lower order terms. In particular, Bi = o
(
mn log d
dm−i+1

)
by (6). Now, correspond-

ing to Step 1a, we provide a high probability upper bound on s̄m+1 in the following lemma.

Lemma 6 (Step 1a). There exists ñ1 ∈Z+ such that for all n≥ ñ1, we have

P (s̄m+1 ≥ bBm)≤
(
1

n

)(m logn)/6

.

Proof Sketch of Lemma 6 To prove the lemma, we first consider a family of functions defined as
follows:

Ui(s) =min

{
b∑

l=i+1

sl − (m− i)n− o

(
2mn logd

d
b

)

, n− 2mn logd

dm−i+1
(1− o(1))− si

}

∀i∈ [m− 1].
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The proof is induction based. The induction hypothesis assumes that Ui+1(̄s) = O(
√
mn logn)

w.h.p. and the induction runs backward in the index i. To prove the induction step, we show that
the drift of Ui(s) is negative for s∈ {Ui+1(s) =O(

√
mn logn)} and Ui(s)≥ 0. By the iterative SSC

framework, we get Ui(̄s) =O(
√
mn logn) w.h.p. This completes the induction step which shows that

U1(̄s) =O(
√
mn logn) w.h.p. Note that, Ui(s) is small implies that either si is large or

∑b

l=i+1 sl is
small. Such a form of SSC is a generalization of the special case of m= 1 as depicted in Fig. 7b,
where we show that either s1 is large or

∑b

l=2 sl is small as in (8a).
To complete the proof, we further consider the following Lyapunov function:

U0(s) =
b∑

l=1

sl −mn− o

(
2mn logd

d
b

)

.

Now, using the fact that U1(̄s) =O(
√
mn logn) w.h.p., by the iterative SSC framework, we show

that U0(̄s) = O(
√
mn logn) w.h.p. Lastly, by lower bounding {s̄i : i ∈ [m]} using Theorem 2, we

obtain

b∑

l=m+1

s̄l = o

(
2mn logd

d
b

)

.

This completes the proof of the lemma. �

Note that, the bound in Lemma 6 only makes sense if bBm = o(n). One can verify that bBm = o(n)
by substituting b≤ log(n)3 and d≥ log(n)3. This implies that an appropriate upper bound on b is
essential for the proof to work. It turns out that b≤ log(n)3 works for all d≥ log(n)3. The result
can be easily extended for b ≤min{n0.5−γ , d}. Relaxing the requirements on b and d are part of
future work.
Now, the next lemma corresponds to Step 1b in Fig. 8 and proves an o(1) high probability upper

bound on
∑b

l=m+2 s̄l by using the high probability upper bound s̄m+1 = o(n) that was proved in
Lemma 6.

Lemma 7 (Step 1b). There exists ñ2 ∈Z+ such that for all n≥ ñ2, we have

P

(
b∑

l=m+2

s̄l ≥ 1

)

≤
(
1

n

)(m logn)/7

.

As s̄m+1 = o(n) w.h.p., we have s̄m+1 ≤ n/2 w.h.p. for large enough n. Thus, the probability that an
incoming customer will be matched with a queue with at least m+1 customers is 0.5d ≤ (1/n)log(n)

2

w.h.p. as d ≥ Ω(log(n)3). We analyze the drift of
∑b

l=m+2 s̄l to obtain a high probability upper
bound on itself.
Next, we employ this bound to improve the upper bound on s̄m+1, corresponding to Step 1c in

the following lemma:

Lemma 8 (Step 1c). There exists ñ3 ∈ Z+ such that for all n≥ ñ3, we have

P (s̄m+1 ≥Bm)≤
(
1

n

)(m logn)/8

.

The proof of the lemma is a more fine tuned version of the proof of Lemma 6. In particular, the
proof of Lemma 6 uses the coarse bound

∑b

l=m+1 sl ≤ bsm+1. Lemma 7 improves this bound by

showing
∑b

l=m+2 s̄l = o(1) w.h.p., which implies
∑b

l=m+1 sl ≤ sm+1+ o(1). With this refinement, we
repeat the steps of the proof of Lemma 6, to get Lemma 8.
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The rest of the proof of Theorem 3 is based on induction. In particular, we inductively prove
upper bounds on {s̄i : i ∈ [m]}, where the induction on i runs backward. The induction hypothesis

is given as follows: There exists ñIH ∈ Z+ such that for all n≥ ñIH , we have

P

(

s̄i ≥ n− 2m
n logd

dm+i−1
+Bi +2(m− i)m

n logd

dm−i+2
+
√
mn logn

)

≤
(
1

n

)(m logn)/8−(m−i)

. (IH2)

The base case is to prove an upper bound on s̄m that corresponds to Step 1d in Fig. 8. This is

done in the lemma below.

Lemma 9 (Step 1d). There exists ñ4 ∈Z+ such that for all n≥ ñ4, we have

P

(

s̄m ≥ n− 2m
n logd

d
+Bm

)

≤
(
1

n

)(m logn)/8

.

Further, we prove the induction step, corresponding to Steps 2 to m in Fig. 8.

Lemma 10 (Steps 2 to m). Assume that (IH2) holds true for i+1. Then, (IH2) holds true for

i.

Proof Sketch of Lemma 10 Consider the following family of functions:

Wi(s) = si−n+
2mn logd

dm−i+1
+ o

(
2mn logd

dm−i+1

)

∀i∈ [m].

We consider the induction hypothesis Wi+1(̄s) = O(
√
mn logn) w.h.p. and show that the drift of

Wi(s) is negative when Wi+1(s) =O(
√
mn logn), si−1 ≥ n−Θ(2mn logd/dm−i+2), and Wi(s)≥ 0.

Now, by applying Lemma 14 with V = Wi+1 and E = {Wi+1(s) = O(
√
mn logn)} ∩ {si−1 ≥ n −

Θ(2mn logd/dm−i+2)} and noting that P (̄s ∈ E)≈ 1 by the induction hypothesis and Theorem 2,

we obtain that Wi(̄s) =O(
√
mn logn) w.h.p. This provides the required bound on s̄i. �

We conclude this section by presenting the proof of Theorem 3 using the results outlined above.

Proof of Theorem 3 Consider the induction hypothesis defined in (IH2). By setting ñIH ≥ ñ4,

the base case is complete by Lemma 9. In addition, the induction step is complete by Lemma 10.

Thus, for all n≥ ñIH and i∈ [m],

P

(

s̄i ≥ n− 2m
n logd

dm−i+1
+19mdi−1

√
mn logn+39m3n log(d)

2

dm−i+2
+

n1−γ

dm−i
1{m> 1}

)

≤ P

(

s̄i ≥ n− 2m
n logd

dm+i−1
+Bi +2(m− i)m

n logd

dm−i+2
+
√
mn logn

)

≤
(
1

n

)(m logn)/8−(m−i)

≤
(
1

n

)(m logn)/9

,

where the last inequality follows for all n≥ ñ6 for some ñ6 ∈ Z+ as m= o(logn). Thus, by setting

nUB
∆
=maxk∈{2,3,6}{ñk, ñIH}, and using Lemma 7 and 8, completes the proof of Theorem 3. �

6. Simulations
In this section, we simulate the load balancing model for various values of n and d. To avoid
confusion, all the simulated variables are denoted with a dagger in the super-script.
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Figure 8 Outline of the proof to establish high probability upper bounds, where Bm is defined in (9)

Step 1a: s̄m+1 ≤ bBm

Step 1b:
∑b

l=m+2 s̄l = o(1)

Step 1c: s̄m+1 ≤ Bm

Step 1d: s̄m ≤ n −
2mn log d

d
(1 − o(1))

Step 2: s̄m−1 ≤ n− 2mn log d
d2

(1− o(1))

Step k: s̄k ≤ n− 2mn log d

dm−k+1 (1− o(1))

Step m: s̄1 ≤ n− 2mn log d
dm

(1− o(1))

6.1. Setup
Load balancing under power-of-d choices routing algorithm is governed by a continuous time
Markov chain (CTMC) with transition rates qs1,s2 given by

qs1,s2 =







λ

((
s1i
n

)d

−
(

s1i+1

n

)d
)

for s2 = s1 + ei+1 ∀i∈ [b− 1]

s1i − s1i+1 for s2 = s1 − ei ∀i∈ [b]

0 otherwise.

We fix the initial state s(0) = 0b, buffer size b = 10, arrival rate λ = n − n0.6 and carry out the
simulation for various values of n and d. For each tuple, (n,d), the CTMC is simulated until it
approximately reaches the steady state. This is verified by plotting the evolution of s†(t) as a
function of time, as in Fig. 9. The mean estimate, i.e. E [̄s†] is calculated by considering only the
last 40% of the data to ensure that a steady state has already been reached. In addition, to ensure
repeatability of results, this procedure is repeated 5 times for each (n,d) tuple, and the mean of
the 5 estimates is reported in Table 2.
The goal of this section is to compare the theoretical bounds with the simulated steady state

expectations (E [s̄i]). We massage the bounds given by Theorem 2 and Theorem 3 to hypothesize
the following expression for s̄i for a finite n: define m⋆ =max{i : n−n1−γdi−1 > 0} and consider

s̄i
n
≈







(
λ
n

)di−1
d−1 + di−1

√
n

∀i≤m⋆

0 ∀i≥m⋆ +2.
w.h.p. (10)

The advantage of (10) is that it is defined for all d∈Z+ as opposed to the result in Theorem 1 that
requires d≈ nγ/m for m∈Z+. Note that, m⋆ can be viewed as a generalization of m as m⋆ =m for
d≈ nγ/m and m⋆ is defined for all d∈ Z+. Equation 10 is inspired from Theorem 2 and 3 and it is
consistent with it except for i=m⋆ +1, in which case the upper bound in Theorem 3 turns out to
be loose for the simulated pre-limit system. Thus, we omit it from (10) and focus on i 6=m⋆ +1.
For the case of i≥m⋆ +2, by Theorem 3, we have s̄i ≤ 1 w.h.p. Thus, s̄i/n≈ 0 w.h.p. For the case
of i ≤m⋆, consider the bounds given by Theorem 2 and Theorem 3. By dropping the constants
and logarithmic terms in the bounds, we get

s̄i
n
≍ 1− 2m logd

dm+1−i
︸ ︷︷ ︸

(λ
n)

di−1
d−1

± 1

dm+2−i
︸ ︷︷ ︸

Dropped in (10)

± di−1

√
n

︸︷︷︸

Preserved in (10)

.
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By Taylor’s series expansion, observe that the sum of the first two terms in the above equation is
approximately equal to the ODE fixed point as in (3), i.e. 1− (2m logd)/dm+1−i ≈ (λ/n)(d

i−1)/(d−1).
Next, we believe that the lower order term logn

dm+2−i is an artefact of our proof but it can be improved
by further bootstrapping the result of Theorem 2, so we drop it in (10). As it is already o

(
logn

dm+1−i

)
,

we do not attempt to improve it in the theoretical analysis. Lastly, the lower order term di−1/
√
n is

also an artefact of our proof but cannot be improved using our proof technique, and so, we keep it
in (10). Note that di−1/

√
n has a non-negligible contribution in (10) for large i. For example, when

i=m and γ = 0.4, we have dm−1/
√
n≥ 0.05 for all n≤ 2010 as dm−1/

√
n∼ n−0.5+γ−γ/m ≈ n−0.1.

Observe that the error from the fixed point, i.e., s̄i
n
−
(
λ
n

) di−1
d−1 , is a different order of n for different

indices i ∈ [m⋆] in (10). We observe such a qualitative behavior in the simulations as well and
outline the results in Appendix A.

6.2. Results
We simulate the system for n= (102,103,104,105) and set d to be the greatest integer such that
d ≤ (2mnγ log d)1/m for m = (1,2,3,4,5). We summarize the results in Table 2. In particular, we

Table 2 Simulated mean, error from (10), and max{i : maxt∈Z+ s†i (t) > 0} for different values
of n and m. Errors greater than 0.05 are boldfaced and highlighted in orange. Cell
corresponding to s†i such that maxt∈Z+ s†i (t) = 0 are highlighted in blue.

Simulated mean: E
[

s̄†i

]

/n Error from (10): E
[

s̄†i − s̄i
]

/n

m n d i= 1 i= 2 i= 3 i= 4 i= 5 i=1 i= 2 i= 3 i= 4 i=5 i : s≥i = 0

1 102 49 0.92 0.10 0.00 0.00 0.00 -0.02 − 0.00 0.00 0.00 3

2 102 7 0.92 0.52 0.02 0.00 0.00 -0.02 − 0.02 0.00 0.00 4

3 102 3 0.91 0.70 0.32 0.04 0.00 -0.03 -0.10 − 0.04 0.00 6

4 102 2 0.92 0.76 0.54 0.26 0.07 -0.03 -0.03 -0.16 − 0.07 8

1 103 161 0.97 0.04 0.00 0.00 0.00 0.00 − 0.00 0.00 0.00 3

2 103 12 0.97 0.66 0.01 0.00 0.00 0.00 -0.15 − 0.00 0.00 4

3 103 5 0.97 0.83 0.38 0.01 0.00 -0.01 -0.02 − 0.01 0.00 5

4 103 3 0.97 0.88 0.66 0.28 0.02 0.00 0.02 -0.05 − 0.02 7

5 103 2 0.97 0.91 0.79 0.61 0.36 0.00 0.03 0.03 0.02 − 9

1 104 493 0.99 0.01 0.00 0.00 0.00 0.00 − 0.00 0.00 0.00 3

2 104 22 0.99 0.75 0.00 0.00 0.00 0.00 -0.03 − 0.00 0.00 4

3 104 7 0.99 0.90 0.48 0.01 0.00 0.00 0.02 − 0.01 0.00 5

4 104 4 0.99 0.94 0.77 0.35 0.02 0.00 0.02 0.02 − 0.02 6

5 104 3 0.99 0.95 0.84 0.59 0.21 0.00 0.02 0.04 -0.04 − 8

1 105 1456 1.00 0.00 0.00 0.00 0.00 0.00 − 0.00 0.00 0.00 3

2 105 38 1.00 0.82 0.00 0.00 0.00 0.00 0.03 − 0.00 0.00 4

3 105 11 0.99 0.94 0.51 0.00 0.00 0.00 0.02 − 0.00 0.00 5

4 105 6 1.00 0.97 0.81 0.28 0.00 0.00 0.01 0.04 − 0.00 6

5 105 4 0.99 0.98 0.90 0.65 0.18 0.00 0.01 0.04 0.03 − 7

document the simulated mean {E
[
s̄†i
]
/n}5i=1, the error from (10), i.e. {E

[
s̄†i − s̄i

]
/n}5i=1, and the

maximum queue lengths that were observed in the simulation, i.e. min{i : s†i (t) = 0 ∀t ∈ Z+}.
Furthermore, to understand the transient behavior, we plot the evolution of s†(t) with time for
n= 105 and m= (2,4,5) in Fig. 9 and 10. We now summarize the takeaways from Table 2, Fig. 9,
and Fig. 10.
• Equation (10) closely approximates the stationary distribution even for n as small as 104.
Thus, one can directly employ (10) in practice to obtain close approximations of the stationary
distribution for n≥ 104 and any d ∈Z+.
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Figure 9 Evolution of the load balancing CTMC with n=105 and d= 4.
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Figure 10 Load balancing CTMC with n=105 and d= 38 (left) and d= 6 (right).
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• No incoming customers are rejected due to a finite waiting space for b≥ 8. This suggests that
the assumption b=O(log(n)3) is not fundamental to the model. It is merely an artefact of the
proof.

• Under steady state, s†(t) stays close to s̄ given by (10) for all t ∈ R+. In particular, s†(t)≈ s̄
w.h.p.

7. Conclusion and Future Work
In this paper, we characterized the performance of Power-of-d choices routing algorithm for the
sub-Halfin-Whitt regime in the load balancing model. We showed that if d grows polynomially
with n, then the jobs experience a finite delay. On the other hand, if d grows only as Poly-Log(n),
then the jobs experience infinite asymptotic delay. In particular, we characterized the delay for
Power-of-d with d ∈ [Ω(log(n)3), n] and γ ∈ (0,0.5). Future work is to similarly understand the
performance of Power-of-d choices for other many-server-heavy-traffic regimes.
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Appendix A: Error from the Fixed Point

In Theorem 1, we show that the stochastic system concentrates around the fixed point of the corresponding
dynamical system for large values of n. In this section, we want to understand how the error of the pre-limit
system from this fixed point scales with n. We proceed as follows: fix a value of m ∈ {3,4,5} and set d to
be the smallest integer such that n−n1−γdm−1 ≤ 0, motivated by our intuition for the choice of d given by
(3). We then simulate this system for n ∈ {104, 5 · 104, 105, 5 · 105, 106, 5 · 106} and report the results in
Fig. 11.

Figure 11 Log-log plot of the error of the simulated mean E

[

s̄†i

]

from the fixed point (s⋆i ) of the ODE (2) for

m= 3 (top left), m= 4 (top right), and m= 5 (bottom left).
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Slope (Fit)
index i m= 3 m= 4 m= 5

1 -0.41 -0.41 -0.42
2 -0.23 -0.31 -0.35
3 -0.02 -0.17 -0.26
4 - 0 -0.13
5 - - 0.03

✖

⋆

✚

Observe that the reported values of the slope in Fig. 11 is an increasing function of i, and so, the error
(si − s⋆i ) scales differently as a function of n for i ∈ [m]. Such a qualitative behavior is consistent with our
prescription for the pre-limit si in (10). In particular, the error from the fixed point in (10) is di−1/

√
n∼

n−0.5+(i−1)γ/m, which is qualitatively consistent with the simulations as the exponent is an increasing func-
tion of i. However, the numerical values of the slope reported in Fig. 11 does not closely match with the
prescription −0.5+ (i− 1)γ/m as in (10). Nonetheless, the error of si compared to the fixed points is non-
negligible (Fig. 11) for large values of i and reduces significantly (Table 2) by adding the correction term
di−1/

√
n in (10) inspired by our theoretical results.

Note that, [4] shows that the scaling of the error is o(1/
√
n) for all i ∈ [m − 1], which appears to be

inconsistent with our simulation results. While we considered a realistic and feasible range of the values of
n, the error might eventually scale as o(1/

√
n) as the value of n increases further. We considered the range

of values of n such that the run time of the simulation is at most one day.
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Appendix B: Preliminary Lemmas

B.1. Taylor Series Based Inequalities

In this section, we present a few inequalities based on Taylor’s series expansion which will be useful later to
bound some of the terms.

Lemma 11. Let f(d) be such that df(d)→ 0 as d→∞. Then, there exists d0 such that for all d≥ d0, we
have

(

1− r
logd

d
+ f(d)

)d

≤ 2

dr
.

Lemma 12. Let f(d) be such that df(d)→ 0 as d→∞ and f(d)≥ 0 for d≥ d1 for some d1 ∈R+. Then,
there exists d2 ∈R+ such that for all d≥ d2, we have

1− df(d)≤ (1− f(d))
d ≤ 1− df(d)+

1

2
d2f(d)2.

Lemma 13. There exists na ∈Z+ such that for all n≥ na, we have

(
n

n+
√
mn logn

)√
mn(logn)/2

≤ 1

n(m logn)/4
.

For the rest of the appendix, we consider n to be large enough such that all the results in this section holds
true.

B.2. Iterative State Space Collapse

We start by formally defining the drift of a Lyapunov function. Let q
s,s′ be the rate at which the CTMC

transitions from s to s′.
Definition 1. Consider a Lyapunov function V : S →R and define the drift of V at state s as

∆V (s) =
∑

s
′∈S,s′ 6=s

q
s,s′ (V (s′)−V (s)) .

State Space Collapse: If the drift of V (·) is such that ∆V (s)≤−γ when V (s)≥B for some γ,B ∈ R+,
then, one can obtain high probability tail bounds on V (̄s) [3] that depends on B,γ and the properties of
the CTMC. Intuitively, every time the CTMC jumps to a state s such that V (s)≥B, due to a strong drift
(∆V (s) ≤ −γ), the CTMC will quickly jump back to a state such that V (s) ≤ B. Loosely speaking, the
stationary probability P (V (̄s)≥B+ j) decreases exponentially in terms of j. This implies that the underlying
CTMC {s(t) : t ≥ 0} “collapses” to a subset of the state space {s ∈ S : V (s) ≤ B + j} for a large enough
j ∈R+.
Iterative State Space Collapse: The main challenge in obtaining SSC is to show that the Lyapunov

function V (·) exhibits negative drift when V (s)≥B. The authors in [21] ingeniously showed that if E ⊆ S
such that P (̄s /∈ E)≈ 0, then, it suffices to show negative drift for s ∈ E : V (s)≥B. Thus, by exploiting the
properties of the stationary distribution of {s(t) : t≥ 0}, one needs to show negative drift for only a subset
of the state space. We state this as a lemma below.

Lemma 14. Consider a Lyapunov function V : S →R such that V (s)≥D for all s ∈ S for some D ∈ R.
Consider

νmax := max
s,s′∈S,q

s,s′>0

∣
∣V (s′)−V (s)|<∞,

and define

qmax :=max
s∈S

∑

s
′∈S:V (s)<V (s′)

q
s,s′ .

Assume that there exists a set E with B > 0, γ > 0, δ≥ 0 such that the following conditions are satisfied.
• ∆V (s)≤−γ when V (s)≥B and s∈ E,
• ∆V (s)≤ δ when V (s)≥B and s /∈ E.
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Then,

P (V (̄s)≥B+2νmaxj)≤ αj + βP (̄s /∈ E) ∀j ∈ Z+, (11)

with

α=
qmaxνmax

qmaxνmax + γ
and β =

δ

γ
+1.

The above lemma is obtained by directly using [21, Lemma 10] with V ′ = V −D as [21, Lemma 10] requires
the Lyapunov function to be non-negative. It’ll be helpful to note that proof of almost all the following
lemmas follows a four-part template.
1.Define a Lyapunov function V (s) depending on what is required to be proved.

2.Show that ∆V (s) ≤ −√
mn logn for all s ∈ E such that V (s) ≥ 0, where P (̄s∈ E) ≈ 1. Lemma 11 and

Lemma 12 will be useful in completing this step.

3.Apply Lemma 14 to obtain a high probability bound on V (̄s). In all the instances of application of
Lemma 14, we use B =0, j =

√
mn(logn)/2, νmax = 1, qmax = δ= n, and γ =

√
mn logn. This also implies

that β ≤√
n for large enough n. Also note that, Lemma 13 will be useful in simplifying the expression

obtained. In particular, we have

P
(
V (̄s)≥

√
mn logn

)
≤
(

n

n+
√
mn logn

)√
mn(logn)/2

+
√
nP (̄s /∈ E)

≤
(
1

n

)(m logn)/4

+
√
nP (̄s /∈ E) .

4.Translate the high probability bound on V (̄s) to the required bound by employing basic results in
probability like union bound, law of total probability, etc.

Appendix C: Proof of Lemmas for Lower Bound

Proof of Lemma 1 (Base Case) To prove the lemma, we consider the following Lyapunov function:

V1(s) = n− 2mn logd

d
− 2n logd

d2
−
√
mn logn− s1.

Now, we analyze the drift of V1(s) when V1(s)≥ 0. Thus, we have s1 ≤ n− 2mn log d

d
− 2n log d

d2
−√

mn logn.
Now, the drift is given as follows:

∆V1(s) = s1 − s2−λ

(

1−
(s1
n

)d
)

≤ n− 2mn logd

d
− 2n logd

d2
−
√
mn logn−λ

(

1−
(

1− 2m logd

d

)d
)

(a)

≤ n− 2mn logd

d
− 2n logd

d2
−
√
mn logn−λ

(

1− 2

d2m

)

≤−2mn logd

d
− 2n logd

d2
−
√
mn logn+

2n

d2m
+n1−γ

(b)

≤ −
√
mn logn,

where (a) follows for all n≥ n0 for some n0 ∈ Z+ by Lemma 11. Next, (b) follows by the following observations:
2mn logd

d
≥ 2mn log d

dm
= n1−γ, and 2n

d2m
≤ 2n

d2
. Thus, we have V1(s)≤−√

mn logn for all n≥ n0. By Lemma 14,
we get

P
(
V1 (̄s)≥

√
mn logn

)
≤
(

n

n+
√
mn logn

)√
mn(logn)/2

≤ 1

n(m logn)/4
,

where the last inequality follows by Lemma 13. This completes the proof. �



30

Proof of Lemma 2 Define a family of functions {Vik(s) : i∈ [k]} for k≥ 2 as follows:

Vik(s) = si −n+3im
n logd

dk−i+1
∀i∈ [k− 1]

Vkk(s) = n− 3km
n logd

d
− sk.

Now, using the above family of functions, we define the Lyapunov functions {Llk : l ∈ [k− 1]} as follows:

L
(1)
lk = Vkk −

k−1∑

j=l+1

Vjk, L
(2)
lk = Vlk ∀l ∈ [k− 1]

Llk =min
{

L
(1)
lk , L

(2)
lk

}

∀l ∈ [k− 1].

To prove the lemma, we make use of the following claim:

Claim 1. There exists nc1 ∈ Z+ such that for all n≥ nc1, we have

P
(
L1k(̄s)≥

√
mn logn

)
≤
(
1

n

)(m logn)/4−4(k−1)m−(k−1)

.

We defer the proof of the claim to Appendix E and continue with the proof of Lemma 2. We analyze the drift

of L
(1)
0k (s) resulting in a high probability upper bound on L

(1)
0k (s) which will imply a high probability lower

bound on s̄k. We start by analyzing the drift of L
(1)
0k (s) when L

(1)
0k (s)≥ 0 and s∈ C(1)

1,k ∩
⋂k−1

l=1 D(1)
l where

C(1)
l,k =

{
Llk ≤

√
mn logn

}
∀l ∈ [k− 1] (12a)

D(1)
l =

{

sl ≥ n− 5mn logd

2dk−l

}

∀l ∈ [k− 1]. (12b)

First, by using that s∈ C(1)
1,k , we get a useful upper bound on s1 as follows:

L
(1)
0k (s)≥ 0⇒ Vkk(s)−

k∑

j=2

Vjk(s)≥ V1k(s)

⇒ V1k(s)≤
√
mn logn as s∈ C(1)

1,k

⇒ s1 ≤ n− 3m
n logd

dk
+
√
mn logn≤ n− 5m

n logd

2dk
, (13)

where the last inequality holds because mn log d

2dk
≥ mn logd

2dm
= n1−γ/4 ≥ √

mn logn for all n ≥ n
(1)
1 for some

n
(1)
1 ∈ Z+ independent of k. Next, we get a useful upper bound on sk as follows:

L
(1)
0k (s)≥ 0⇒ Vkk(s)−

k−1∑

j=1

Vjk(s)≥ 0

⇒ sk ≤ n− 3km
n logd

d
−

k−1∑

j=1

Vjk(s)

⇒ sk ≤ n− 3km
n logd

d
+2.5mn logd

k−1∑

l=1

1

dl
as s∈

k−1⋂

l=1

D(1)
l

⇒ sk ≤ n− 3m
n logd

d
, (14)
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where the last assertion follows by using the bound 1/dl ≤ 1/d for l ∈ {1,2, . . . , k− 1}. Now, the drift is given
as follows:

∆L
(1)
0k (s) = s1 − sk+1 −λ

(

1−
(sk
n

)d
)

(a)

≤ n− 5m
n logd

2dk
−λ

(

1−
(

1− 3m
logd

d

)d
)

(b)

≤ n− 5m
n logd

2dk
−λ

(

1− 2

d3m

)

≤ − 5m
n logd

2dk
+

2n

d3m
+n1−γ

(c)

≤ −m
n logd

2dk
+

2n

d3m
(d)

≤ −m
n logd

4dk
≤−m

n logd

4dm

≤ − 1

8
n1−γ

(e)

≤ −
√
mn logn,

where (a) follows by lower bounding sk+1 by zero and using the upper bounds on s1 and sk given by (13) and
(14) respectively. Next, (b) follows by Lemma 11. Further, (c) follows as 2mn log d

dk
≥ 2mn logd

dm
= n1−γ. Now,

(d) follows as mn log d

4dk
≥mn log d

4dm
. Thus, there exists n

(2)
1 ∈ Z+ independent of k such that for all n ≥ n

(2)
1 ,

we have mn log d

4dk
≥ 2n/d3m as d increases with n. Lastly, (e) follows as there exists n

(3)
1 ∈ Z+ such that for

all n≥ n
(3)
1 , we have n1−γ/8≥√

mn logn. Thus, for all n≥maxk∈[3]{n(k)
1 }, we have ∆L

(1)
0k (s)≤−√

mn logn

when L
(1)
0k (s)≥ 0 and s∈ C(1)

1,k ∩
⋂k−1

l=1 D(1)
l . Now, by using Lemma 14, we get a high probability upper bound

on L
(1)
0k (̄s) as follows:

P

(

L
(1)
0k (̄s)≥

√
mn logn

)

≤
(

n

n+
√
mn logn

)(
√

mn logn)/2

+
√
nP

(

s̄ /∈ C(1)
1,k ∩

k−1⋂

l=1

D(1)
l

)

(a)

≤
(
1

n

)(m logn)/4

+
√
n

(

P

(

s̄ /∈ C(1)
1,k

)

+

k−1∑

l=1

P

(

s̄ /∈D(1)
l

)
)

(b)

≤
(
1

n

)(m logn)/4

+
√
n

(
1

n

)(m logn)/4−4(k−1)m−(k−1)

+
√
n(k− 1)

(
1

n

)(m logn)/4−4(k−1)m

(c)

≤
(
1

n

)(m logn)/4−4(k−1)m−k

≤
(
1

n

)(m logn)/4−4(k−1)m−m

,

where (a) follows by Lemma 13. Next, (b) follows by bounding P

(

s̄ /∈ C(1)
1,k

)

using Claim 1 and P

(

s̄ /∈D(1)
l

)

is

bounded by using (IH) and noting that the lower order terms in (IH) are upper bounded by mn logd/(2dk−l).
In particular, by (6) there exists n

(4)
1 ∈ Z+ independent of k such that for all n≥ n

(4)
1 , we have

m
n logd

2dk−l
≥ 16m3n log(d)

2

dk−l+1
+4mdl−1

√
mn logn ∀l ∈ [k− 1]. (15)

Lastly, (c) holds for all n≥ n
(5)
1 ∈ Z+ for some n≥ n

(5)
1 ∈ Z+. Now, we use the above probability bound to

obtain the required result for the lemma as follows.

{

L
(1)
0k (s)≥

√
mn logn

}

=

{

kn− 3km
n logd

d
− 3mn logd

k−1∑

l=1

l

dk−l+1
−

k∑

l=1

sl ≥
√
mn logn

}

⊇
{

sk ≤ n− 3km
n logd

d
− 3mn logd

k−1∑

l=1

l

dk−l+1
−
√
mn logn

}

⊇
{

sk ≤ n− 6m2n logd

d

}

,
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where the last assertion follows as there exists n
(6)
1 ∈Z+ independent of k such that for all n≥ n

(6)
1 , we have

3mn logd

k−1∑

l=1

l

dk−l+1
+
√
mn logn

(a)

≤ 3mn logd

(
m

d2
+

m2

d3

)

+
√
mn logn

(b)

≤ 6m2n logd

d2
+
√
mn logn

(c)

≤ 3m2n logd

d
,

where (a) follows by using the bounds k ≤m and 1/dl ≤ 1/d3 for all l ∈ {3, . . . , k− 1}. Next, (b) follows as
m2/d3 ≤m/d2 for large enough n. Lastly, (c) follows as

√
mn logn≤ n1−γ = 2mn logd/dm ≤ 2mn logd/d≤

2m2n logd/d and 6/d2 ≤ 1/d for large enough n. Thus, by defining n1
∆
=maxk∈[6]

{

n
(k)
1 , nc1

}

, the proof is

complete. �

Proof of Lemma 3 We will prove this using induction. For some j ∈ {1, . . . , k−1}, the induction hypothesis
is given as follows. There exists n

(1)
2 ∈ Z+ such that for all n≥ n

(1)
2 , we have

P

(

s̄j ≤ n− 3 (2m+ k− j)m
n logd

dk−j+1
−
√
mn logn

)

≤
(
1

n

) 1
4
m logn−4(k− 3

4 )m−(k−j)

. (IH2)

Note that, the above expression would directly imply the required result as shown later in (16). The base
case (j = k) is satisfied for all n≥ n1 by Lemma 2. Now, we show the induction step for j. Define the family
of Lyapunov functions {Wl(s) : l ∈ [k− 1]} for k≥ 2 as follows:

Wl(s) = n− 3 (2m+ k− l)m
n logd

dk−l+1
− sl.

We analyze the drift of Wj(s) when Wj(s)≥ 0 and s∈ C(2)
j+1 ∩D(2)

j−1 where

C(2)
l =

{
Wl(s)≤

√
mn logn

}
∀l ∈ [k− 1]

D(2)
l =

{

sl ≥ n− 5mn logd

2dk−l

}

∀l ∈ [k− 1].

The drift is given as follows:

∆Wj(s)

= sj − sj+1 −λ

((sj−1

n

)d

−
(sj
n

)d
)

(a)

≤ 3 (2m+ k− j− 1)m
n logd

dk−j
+
√
mn logn

−λ

((

1− 5m logd

2dk−j+1

)d

−
(

1− 3 (2m+ k− j)m
logd

dk−j+1

)d
)

(b)

≤ 3 (2m+ k− j− 1)m
n logd

dk−j
+
√
mn logn

−λ

(

−5m logd

2dk−j
+3(2m+ k− j)m

logd

dk−j
− 9 (2m+ k− j)

2
m2 log(d)

2

2d2k−2j

)

≤ −m
n logd

2dk−j
+
√
mn logn+3(2m+ k− j)m

n1−γ logd

dk−j
+9(2m+ k− j)

2
m2n log(d)

2

2d2k−2j

(c)

≤ −m
n logd

4dk−j

(d)

≤ −
√
mn logn.

where (a) follows by bounding sj−1, sj and sj+1 using s ∈ C(2)
j+1 ∩D(2)

j−1 and Wj(s)≥ 0. Next, (b) follows by
Lemma 12.
Further, (c) follows as there exists n

(2)
2 ∈Z+, independent of j and k such that for all n≥ n

(2)
2 , we have

m
n logd

12dk−j

(c1)

≥ m
n logd

12dm
≥ 1

24
n1−γ

(c2)

≥
√
mn logn

m
n logd

12dk−j

(c3)

≥ m
n logd

12dk−j
× 108mn−γ

(c4)

≥ 3 (2m+ k− j)m
n1−γ logd

dk−j

m
n logd

12dk−j

(c5)

≥ m
n logd

12dk−j
× 486m3 logd

d

(c6)

≥ 9 (2m+ k− j)2m2n log(d)
2

2d2k−2j
,
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where (c1) follows as k − j ≤ k ≤ m, and (c2) follows as γ < 0.5. Next, (c3) follows as γ > 0 and m ≤
logn, and (c4) follows as 3 (2m+ k− j) ≤ 9m. Lastly, by (5), (c5) follows as m3 logd/d ≤ γ3 log(n)3(1 +
o(1))/(d log(d)2)→ 0 as n→∞, and (c6) follows as 3 (2m+ k− j)≤ 9m.
Further, (d) follows as there exists n

(3)
2 ∈ Z+, independent of j and k such that for all n≥ n

(3)
2 we have

mn logd/4dm ≥√
mn logn. Thus, for all n≥max{n(2)

2 , n
(3)
2 }, we have ∆Wj(s)≤−√

mn logn when Wj(s)≥ 0

and s∈ C(2)
j+1 ∩D(2)

j−1. Now, by using Lemma 14, we get a high probability upper bound on s̄j as follows:

P

(

s̄j ≤ n− 9m2 n logd

dk−j+1

)

(a)

≤ P
(
Wj (̄s)≥

√
mn logn

)

(b)

≤
(

n

n+
√
mn logn

)(
√
mn logn)/2

+
√
nP
(

s̄ /∈ C(2)
j+1 ∩D(2)

j−1

)

(c)

≤
(
1

n

)(m logn)/4

+
√
n
(

P

(

s̄ /∈ C(2)
j+1

)

+P

(

s̄ /∈D(2)
j−1

))

(d)

≤
(
1

n

)(m logn)/4

+
√
n

(
1

n

)(m logn)/4−4(k−1)m−m−(k−j)

+
√
n

(
1

n

)(m logn)/4−4(k−1)m

(e)

≤
(
1

n

)(m logn)/4−4(k−1)m−m−(k−j+1)

,

where (a) follows for all n≥ n
(4)
2 for some n

(4)
2 ∈Z+ as

n− 3(2m+ k− j)m
n logd

dk−j+1
−
√
mn logn

≥ n− 9m2 n logd

dk−j+1
+3m

n logd

dk−j+1
−
√
mn logn

≥ n− 9m2 n logd

dk−j+1
+3m

n logd

dm
−
√
mn logn≥ n− 9m2 n logd

dk−j+1
. (16)

Next, (b) follows by Lemma 14 and (c) follows by Lemma 13. Now, (d) follows by upper bounding P
(

s̄ /∈ C(2)
j+1

)

using (IH2). In addition, P
(

s̄ /∈D(2)
j−1

)

is upper bounded by using (IH) and noting that the lower order terms

in (IH) are upper bounded by mn logd/(2dk−j+1) using (15) for all n≥ n
(5)
2 for some n

(5)
2 ∈ Z+. Lastly, (e)

follows for all n≥ n
(6)
2 for some n

(6)
2 ∈ Z+. Now, by considering n2

∆
= n

(1)
2 ≥maxk∈[6]{n(k)

2 , n1}, the induction
step is complete. Thus, we have

P

(

s̄l ≤ n− 9m2 n logd

dk−l+1

)

≤
(
1

n

)(m logn)/4−4(k−1)m−m−(k−l+1)

≤
(
1

n

)(m logn)/4−4(k−0.5)m

∀l ∈ [k].

This completes the proof of the lemma. �

Proof of Lemma 4 Define the family of functions {Wik(s) : i∈ [k]} as follows:

Wik(s) = si −n+2m
n logd

dk−i+1
+(2i+1)di−1

√
mn logn+3(i+1)m

n logd

dk−i+2
∀i∈ {1, . . . , k− 1}

Wkk(s) = n− 2m
n logd

d
− 2kdk−1

√
mn logn− 10m2n logd

d2
− sk.

Now, we use the above family of functions to define the Lyapunov functions {Zik : i∈ [k]} as follows:

Z
(1)
ik =Wkk −

k−1∑

l=i+1

Wlk, Z
(2)
ik =Wik ∀i∈ [k− 1]

Zik =min
{

Z
(1)
ik , Z

(2)
ik

}

∀i∈ [k− 1].

To prove the lemma, we make use of the following claim:

Claim 2. There exists nc2 ∈ Z+ such that for all n≥ nc2, we have

P
(
Z1k (̄s)≥

√
mn logn

)
≤
(
1

n

)(m logn)/4−4(k−0.5)m−(k−1)

.
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We defer the proof of claim to Appendix E and continue with the proof of Lemma 4. We analyze the drift
of Z

(1)
0k (s) when Z

(1)
0k (s)≥ 0 and s∈ C(3)

1,k ∩
⋂k−1

l=1 D(3)
l where

C(3)
l,k =

{
Zl,k(s)≤

√
mn logn

}
∀l ∈ [k− 1] (17a)

D(3)
l =

{

sl ≥ n− 9m2n logd

dk−l+1

}

∀l ∈ [k− 1]. (17b)

We first obtain a useful upper bound on s1 as follows.

Z
(1)
0k (s)≥ 0⇒Wkk(s)−

k−1∑

l=2

Wlk(s)≥W1k(s)

⇒W1k(s)≤
√
mn logn as s∈ C(3)

1,k

⇒ s1 ≤ n− 2m
n logd

dk
− 2

√
mn logn− 6m

n logd

dk+1
. (18)

Next, we will get a useful upper bound on sk as follows:

Z
(1)
0k (s)≥ 0⇒ sk ≤ n− 2m

n logd

d
− 2kdk−1

√
mn logn− 10m2n logd

d2
−

k−1∑

l=1

Wlk(s)

(∗)⇒ sk ≤ n− 2m
n logd

d
− 2kdk−1

√
mn logn− 10m2n logd

d2
+9m2n logd

k∑

l=2

1

dl

(∗∗)⇒ sk ≤ n− 2m
n logd

d
, (19)

where (∗) follows as s ∈⋂k−1
l=1 D(3)

l and (∗∗) follows as there exists n
(1)
3 ∈ Z+ such that for all n≥ n

(1)
3 we

have

9m2n logd

k∑

l=2

1

dl
≤ 9m2n logd

(
1

d2
+

m

d3

)

≤ 10m2n logd

d2
.

where the last inequality follows by noting that m/d→ 0 as n→∞. Now, the drift of Z
(1)
0k (s) is given as

follows:

∆Z
(1)
0k (s) = s1 − sk+1 −λ

(

1−
(sk
n

)d
)

(a)

≤ n− 2m
n logd

dk
− 2

√
mn logn− 6m

n logd

dk+1
−λ

(

1−
(

1− 2m
logd

d

)d
)

(b)

≤ n− 2m
n logd

dk
− 2

√
mn logn− 6m

n logd

dk+1
−λ

(

1− 2

d2m

)

≤ − 2m
n logd

dk
− 2

√
mn logn− 6m

n logd

dk+1
+n1−γ +

2n

d2m
(c)

≤ − 2
√
mn logn≤−

√
mn logn.

where (a) follows as sk+1 ≥ 0, s1 is upper bounded as in (18), and sk is upper bounded as in (19). Next, by

Lemma 11, there exists n
(2)
3 ∈ Z+ independent of k such that for all n≥ n

(2)
3 , (b) follows. Lastly, (c) follows

by noting that

2m
n logd

dk
≥ 2m

n logd

dm
= n1−γ ,

6m
n logd

dk+1
≥ 6m

n logd

dm+1
≥ 6m

n logd

d2m
≥ 2n

d2m
,

where the last set of inequalities follows as m≥ 2 and there exists n
(3)
3 ∈ Z+ such that for all n≥ n

(3)
3 , we

have logd ≥ 1. Thus, for all n ≥ maxk∈[3]

{

n
(k)
3

}

, we have ∆Z
(1)
0k (s) ≤ −√

mn logn when Z
(1)
0k (s) ≥ 0 and
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s ∈ C(3)
1k ∩

⋂k−1
l=1 D(3)

l . Now, by using Lemma 14, we obtain a high probability upper bound on Z
(1)
0k (̄s) as

follows:

P
(
Z0k (̄s)≥

√
mn logn

)

≤
(

n

n+
√
mn logn

)(
√
mn logn)/2

+
√
nP

(

s̄ /∈ C(3)
1k ∩

k−1⋂

l=1

D(3)
l

)

(a)

≤
(
1

n

)(m logn)/4

+
√
n

(

P

(

s̄ /∈ C(3)
1k

)

+

k−1∑

l=1

P

(

s̄ /∈D(3)
l

)
)

(b)

≤
(
1

n

)(m logn)/4

+
√
n

(
1

n

)(m logn)/4−4(k−0.5)m−(k−1)

+
√
n(k− 1)

(
1

n

)(m logn)/4−4(k−1)m

(c)

≤
(
1

n

)(m logn)/4−4(k−0.5)m−k

≤
(
1

n

)(m logn)/4−4(k−0.5)m−m

,

where (a) follows by Lemma 13. Next, (b) follows by upper bounding P

(

s̄ /∈ C(3)
1k

)

by Claim 2, and upper

bounding P

(

s̄ /∈D(3)
l

)

for all n ≥ n2 by Lemma 3. Lastly, (c) follows for all n ≥ n
(4)
3 for some n

(4)
3 ∈ Z+

independent of k. Now, to complete the proof, note that
{
Z0k(̄s)≥

√
mn logn

}

=

{

kn− 2mn logd

k∑

l=1

1

dl
−
√
mn logn

k∑

l=1

(2l+1)dl−1− 10m2n logd

d2
− 3mn logd

k−1∑

l=1

(l+1)

dk−l+2
−

k∑

l=1

s̄l

≥
√
mn logn

}

⊇
{

s̄k ≤ n− 2m
n logd

d
− 3mdk−1

√
mn logn− 12m2n logd

d2

}

,

where the last assertion follows as there exists n
(5)
3 ∈Z+ independent of k such that for all n≥ n

(5)
3 , we have

3mn logd

k−1∑

l=1

(l+1)

dk−l+2
≤ 3m3n logd

d3
≤m2n logd

2d2

2mn logd

k∑

l=2

1

d
≤ 2mn logd

(
1

d2
+

m

d3

)

≤ 3mn logd

d2

(∗)
≤ 3m2n logd

2d2

√
mn logn

k∑

l=1

(2l+1)dl−1+
√
mn logn≤ (2m+1)

(
dk−1 +mdk−2 +1

)√
mn logn

≤ 3mdk−1
√
mn logn,

where we used the fact that k≤m and m2/d→ 0 as n→∞. Note that, (∗) follows as m≥ 2. Now, by defining

n3
∆
=maxk∈[5]{n(k)

3 , n2, nc2}, the proof is complete. �

Proof of Lemma 5 We will prove this using induction. For some j ∈ [k], the induction hypothesis is given
as follows: there exists n

(1)
4 ∈ Z+ such that for all n≥ n

(1)
4 , we have

P

(

s̄j ≤ n− 2m
n logd

dk−j+1
− (4m− j)dj−1

√
mn logn− 16(k− j+1)m2n log(d)

2

dk−j+2
−
√
mn logn

)

≤
(
1

n

)(m logn)/4−4(k−0.25)m−(k−j)

. (IH3)

The base case (j = k) is satisfied for all n≥ n3 by Lemma 4 as

(4m− k)dk−1
√
mn logn+16m2n log(d)

2

d2
+
√
mn logn≥ 3mdk−1

√
mn logn+12m2n logd

d2
.

Now, we show the induction step corresponding to j ∈ [k]. Consider the Lyapunov function

W̃j(s) = n− 2m
n logd

dk−j+1
− (4m− j)dj−1

√
mn logn− 16(k− j+1)m2n log(d)

2

dk−j+2
− sj.
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We analyze the drift of W̃j(s) when W̃j(s)≥ 0 and s∈ C(4)
j+1 ∩D(4)

j−1, where

C(4)
l =

{

W̃l ≤
√
mn logn

}

∀l ∈ [k]

D(4)
l =

{

sl ≥ n− 9m2 n logd

dk−l+1

}

∀l ∈ [k].

Now, the drift is given as follows:

∆W̃j(s)

= sj − sj+1 −λ

((sj−1

n

)d

−
(sj
n

)d
)

(a)

≤ 2m
n logd

dk−j
+(4m− j− 1)dj

√
mn logn+16(k− j)m2n log(d)

2

dk−j+1
+
√
mn logn

−λ

(

1− 9m2 logd

dk−j+2

)d

+λ

(

1− 2m
logd

dk−j+1
− (4m− j)

√
mdj−1 logn√

n
− 16(k− j+1)m2 log(d)

2

dk−j+2

)d

(b)

≤ 2m
n logd

dk−j
+(4m− j− 1)dj

√
mn logn+16(k− j)m2n log(d)

2

dk−j+1
+
√
mn logn

−λ

(

−9m2 logd

dk−j+1
+2m

logd

dk−j
+(4m− j)

√
mdj logn√

n
+16(k− j+1)m2 log(d)

2

dk−j+1

)

+
3λ

2

(

4m2 log(d)
2

d2k−2j
+(4m− j)2md2j

log(n)2

n
+256(k− j+1)2m4 log(d)4

d2k−2j+2

)

≤ − dj
√
mn logn− 7m2n log(d)

2

dk−j+1
+
√
mn logn+6m2n log(d)

2

d2k−2j
+24m3d2j log(n)2 +384m6n log(d)

4

d2k−2j+2

+2m
n1−γ logd

dk−j
+4

√
mmdjn0.5−γ logn+16m3n

1−γ log(d)2

dk−j+1

(c)

≤ − dj
√
mn logn−m2n log(d)

2

dk−j+1
+
√
mn logn+24m3d2j log(n)2 +384m6n log(d)

4

d2k−2j+2

+2m
n1−γ logd

dk−j
+4

√
mmdjn0.5−γ logn+16m3n

1−γ log(d)2

dk−j+1

(d)

≤ − 1

2
dj
√
mn logn+

√
mn logn

(e)

≤ −
√
mn logn,

where (a) follows by the lower bound on sj−1, sj+1 and upper bound on sj. In particular, as s∈D(4)
j−1, we get

a lower bound on sj−1, as W̃j(s)≥ 0, we get an upper bound on sj , and as s ∈ C(4)
j+1, we get a lower bound

on sj+1. Next, (b) follows by Lemma 12 and using the identity (a+ b+ c)2 ≤ 3(a2+ b2+ c2). Now, (c) follows

as k− j ≥ 1 which implies that k− j+1≤ 2(k− j). Lastly, (d) follows as there exists n
(2)
4 ∈Z+ such that for

all n≥ n
(2)
4 , we have

1

2
m2n log(d)

2

dk−j+1

(d1)

≥ 1

2
m2n log(d)

2

dk−j+1
× 768m4 log(d)2

dk−j+1
= 384m6n log(d)

4

d2k−2j+2

1

2
m2n log(d)

2

dk−j+1

(d2)

≥ 1

4
m
n1−γ logd

dk−j+1−m

(d3)

≥ 3m
n1−γ logd

dk−j

(d4)

≥ 2m
n1−γ logd

dk−j
+16m3n

1−γ log(d)2

dk−j+1

1

4
dj
√
mn logn

(d5)

≥ 24m3dj log(n)2(2mnγ logd)
(d6)

≥ 24m3d2j log(n)2

1

4
dj
√
mn logn

(d7)

≥ 4
√
mmdjn0.5−γ logn,

where (d1) follows asm
4 log(d)2/dk−j+1 ≤m4 log(d)2/d2 ≤ log(n)4/(d logd)2 → 0 as n→∞. Next, (d2) follows

as 2nγm logd≥ dm, (d3) follows as m≥ 2, and (d4) follows as m
2 logd/d≤ log(n)2/(d logd)→ 0. Now, (d5)

follows as γ < 0.5 and m≤ logn, and (d6) follows as d
j ≤ dm ≥ 2mnγ logd. Lastly, (d7) follows as γ > 0 and

m≤ logn. Further, (e) follows as there exists n
(3)
4 ∈Z+ such that for all n≥ n

(3)
4 , we have

1

2
dj
√
mn logn≥ 1

2
d
√
mn logn≥ 2

√
mn logn.
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Thus, for all n≥max
{

n
(2)
4 , n

(3)
4

}

, we have ∆W̃j(s)≤−√
mn logn when W̃j(s)≥ 0 and s∈ C(4)

j+1∩D(4)
j−1. Now,

by using Lemma 14, we obtain a high probability upper bound on s̄j as follows:

P

(

s̄j ≤ n− 2m
n logd

dk−j+1
− (4m− j)dj−1

√
mn logn− 16(k− j+1)m2n log(d)

2

dk−j+2
−
√
mn logn

)

= P

(

W̃j (̄s)≥
√
mn logn

)

(a)

≤
(

n

n+
√
mn logn

)(
√

mn logn)/2

+
√
nP
(

s̄ /∈ C(4)
j+1 ∩D(4)

j−1

)

(b)

≤
(
1

n

)(m logn)/4

+
√
n
(

P

(

s̄ /∈ C(4)
j+1

)

+P

(

s̄ /∈D(4)
j−1

))

(c)

≤
(
1

n

)(m logn)/4

+
√
n

(
1

n

)(m logn)/4−4(k−0.25)m−(k−j)

+
√
n

(
1

n

)(m logn)/4−4(k−1)m

(d)

≤
(
1

n

)(m logn)/4−4(k−0.25)m−(k−j+1)

,

where (a) follows by Lemma 14 and (b) follows by Lemma 13. Next, (c) follows by upper bounding

P

(

s̄ /∈ C(4)
j+1

)

using induction hypothesis (IH3) and upper bounding P

(

s̄ /∈D(4)
j−1

)

for all n≥ n2 using Lemma

3. Lastly, (d) follows for all n≥ n
(4)
4 for some n

(4)
4 ∈ Z+. By considering n4

∆
= n

(1)
4 ≥maxk∈[4]

{

n
(k)
4 , n2, n3

}

,

the induction step is complete. To complete the proof, note that

P

(

s̄j ≤ n− 2m
n logd

dk−j+1
− 4mdj−1

√
mn logn− 16m3n log(d)

2

dk−j+2

)

(∗)
≤ P

(

s̄j ≤ n− 2m
n logd

dk−j+1
− (4m− j)dj−1

√
mn logn− 16(k− j+1)m2n log(d)

2

dk−j+2
−
√
mn logn

)

≤
(
1

n

)(m logn)/4−4(k−0.25)m−(k−j+1)

≤
(
1

n

)(m logn)/4−4km

∀j ∈ [k],

where (∗) follows as j ≥ 1 and k≤m. This completes the proof of the lemma. �

Appendix D: Proof for the Upper Bound

D.1. Proof of Lemmas for Upper Bound

We start by re-stating the expression of Bi below that was defined in (9) for convenience.

Bi = 18mdi−1
√
mn logn+36m3n log(d)

2

dm−i+2
+

n1−γ

dm−i
1{m> 1} ∀i∈ [m].

Now, we start by stating and proving a ‘master’ lemma that will help us in proving Lemma 6, Lemma 8,
and Lemma 9.

Lemma 15. Let Bm+2 ≤ nb and x∈R+ and ñ
(1)
0 ∈ Z+ be such that for all n≥ ñ

(1)
0 , we have

P

(
b∑

l=m+2

s̄l ≥Bm+2

)

≤
(
1

n

)m logn
x

. (20)

Define

B′
m = (1+ (b− 1)1{Bm+2 ≥ 2})

(

17mdm−1
√
mn logn+36m3n log(d)

2

d2
+n1−γ

1{m> 1}
)

.

Then, there exists ñ
(2)
0 ∈ Z+ such that for all n≥ ñ

(2)
0 , we have

P
(
s̄m+1 ≥B′

m +
√
mn logn

)
≤
(
1

n

) m logn
max{x,5}−m−2

(21)

P

(

s̄m ≥ n− 2m
n logd

d
+B′

m +
√
mn logn

)

≤
(
1

n

) m logn
max{x,5}−m−2

. (22)
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Proof of Lemma 15 Consider the following functions:

Lm+1(s) =

b∑

l=m+1

sl − (1+ (b− 1)1{Bm+2 ≥ 2})×
(

8mdm−1
√
mn logn+18m3n log(d)

2

d2
+n1−γ

1{m> 1}
)

Ll(s) = n− 2m
n logd

dm−l+1
+3ldl−1

√
mn logn+ lm

n logd

dm−l+2
− sl ∀l ∈ [m].

Now, we define the Lyapunov function Uj(s) in terms of {Ll(s) : l ∈ [m+1]} as follows:

U
(1)
j (s) =Lm+1(s)−

m∑

l=j+1

Ll(s)

U
(2)
j (s) =Lj(s)

Uj(s) =min
{

U
(1)
j (s), U

(2)
j (s)

}

.

We use induction on j ∈ {1, . . . ,m} to show the following claim:

Claim 3. There exists ñc ≥ ñ
(1)
0 such that for all n≥ ñc, we have

P
(
U1(̄s)≥

√
mn logn

)
≤
(
1

n

) m logn
max{x,5}−m

.

We use the high probability upper bound
∑b

l=m+2 sl ≤Bm+2 to prove the above claim. We defer the details

of the proof to Appendix F and continue with the proof of Lemma 15. Now, we analyze the drift of U
(1)
0 (s)

when U
(1)
0 (s)≥ 0 and s ∈ C̃(1)

1 where C̃(1)
1 = {U1(s)≤

√
mn logn}. First, we obtain a useful lower bound on

s1 as follows:

U
(1)
0 (s)≥ 0⇒Lm+1(s)−

m∑

l=2

Ll(s)≥L1(s)

(∗)⇒L1(s)≤
√
mn logn

⇒ s1 ≥ n− 2m
n logd

dm
+2

√
mn logn+m

n logd

dm+1
, (23)

where (∗) follows as s∈ C̃(1)
1 . Now, the drift is given as follows:

∆U
(1)
0 (s) =−s1 +λ

(

1−
(sb
n

)d
)

(a)

≤ −n+2m
n logd

dm
− 2

√
mn logn−m

n logd

dm+1
+n−n1−γ

(b)
= −2

√
mn logn−m

n logd

dm+1

≤−
√
mn logn.

where (a) follows by using the trivial bound sb ≥ 0 and lower bounding s1 using (23). Next, (b) follows as
m is assumed to be integer. In particular, we have n1−γ = 2mn log d

dm
. Thus, we have ∆U

(1)
0 (s)≤−√

mn logn

when U
(1)
0 (s)≥ 0 and s∈ C̃(1)

1 . Now, using Lemma 14, we have

P

(

U
(1)
0 (̄s)≥

√
mn logn

)

≤
(

n

n+
√
mn logn

)(
√

mn logn)/2

+
√
nP
(

s̄ /∈ C̃(1)
1

)

(a)

≤
(
1

n

)(m logn)/4

+
√
nP
(

s̄ /∈ C̃(1)
1

)

(b)

≤
(
1

n

)(m logn)/4

+

(
1

n

) m logn
max{x,5}−m

(c)

≤
(
1

n

) m logn
max{x,5}−m−1

, (24)
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where (a) follows by Lemma 13 and (b) follows by Claim 3 for all n≥ ñc. Lastly, (c) follows for all n≥ ñ
(2)
0

for some ñ
(2)
0 ∈ Z+. Now, we will translate the above probability bound to the one required for the lemma.

Define D̃(1)
l as follows:

D̃(1)
l =

{

sl ≥ n− 2m
n logd

dm−l+1
− 4mdl−1

√
mn logn− 16m3n log(d)

2

dm−l+2

}

∀l ∈ [m].

We first prove the high probability upper bound on s̄m+1 below.

P (s̄m+1 ≥B′
m)

(a)
= P

(

s̄∈ {sm+1 ≥B′
m}∩

m⋂

l=1

D̃(1)
l

)

+P

(

s̄∈ {sm+1 ≥B′
m}∩

m⋃

l=1

D̃(1),c
l

)

(b)

≤ P

(

s̄∈ {sm+1 ≥B′
m}∩

m⋂

l=1

D̃(1)
l

)

+

m∑

l=1

P

(

s̄ /∈ D̃(1)
l

)

(c)

≤ P

(

s̄∈ {sm+1 ≥B′
m}∩

m⋂

l=1

D̃(1)
l

)

+

(
1

n

)(m logn)/5−1

(d)

≤ P

(

U
(1)
0 (̄s)≥

√
mn logn

)

+

(
1

n

)(m logn)/5−1

(e)

≤
(
1

n

) m logn
max{x,5}−m−1

+

(
1

n

)(m logn)/5−1

≤
(
1

n

) m logn
max{x,5}−m−2

,

where (a) follows by the law of total probability, and (b) follows by the union bound. Next, (c) follows by
Theorem 2. Now, (d) follows by noting the following:

{sm+1 ≥B′
m}∩

m⋂

l=1

{

s∈ D̃(1)
l

} (∗)
⊆
{

Lm+1(s)≥ 9mdm−1
√
mn logn+18m3n log(d)

2

d2

}

∩
m⋂

l=1

{

s∈ D̃(1)
l

}

(∗∗)
⊆
{

U
(1)
0 (s)≥

√
mn logn

}

. (25)

where (∗) follows as 1{m> 1}n1−γ ≥ 0 and (∗∗) holds for all n≥ ñ
(3)
0 for some ñ

(3)
0 ∈ Z+. In particular, note

that U
(1)
0 (s) =Lm+1(s)−

∑m

l=1 Ll(s) and we can upper bound
∑m

l=1 Ll(s) as follows:

s∈
m⋂

l=1

D̃(1)
l ⇒

m∑

l=1

Ll(s)≤ 7m
√
mn logn

m∑

l=1

dl−1 +17m3n log(d)2
m∑

l=1

1

dm−l+2

≤ 8mdm−1
√
mn logn+18m2n log(d)

2

d2
.

Lastly, (e) follows by (24). This completes the proof of (21). Now, we will prove (22). Similar to the upper
bound on s̄m+1, we get

P

(

s̄m ≥ n− 2m
n logd

d
+B′

m

)

≤ P

(

s̄∈
{

sm ≥ n− 2m
n logd

d
+B′

m

}

∩
m−1⋂

l=1

{

s∈ D̃(1)
l

}
)

+

(
1

n

)(m logn)/5−1

(∗)
≤ P

(

U
(1)
0 (̄s)≥

√
mn logn

)

+

(
1

n

)(m logn)/5−1

≤
(
1

n

) m logn
max{x,5}−m−1

+

(
1

n

)(m logn)/5−1

≤
(
1

n

) m logn
max{x,5}−m−2

.

where (∗) follows by noting that U
(1)
0 (s) = Lm+1(s) − ∑m

l=1Ll(s) and bounding the terms
{Ll(s) : l ∈ [m+1]\{m}}. In particular, note that

Lm+1(s)≥−(1+ (b− 1)1{Bm+2 ≥ 2})
(

8mdm−1
√
mn logn+18m3n log(d)

2

d2
+n1−γ

1{m> 1}
)
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Also, as s∈
⋂m−1

l=1 D̃(1)
l , there exists ñ

(5)
0 ∈Z+ such that for all n≥ ñ

(5)
0 , we have

m−1∑

l=1

Ll(s)≤ 7m
√
mn logn

m−1∑

l=1

dl−1 +17m3n log(d)2
m−1∑

l=1

1

dm−l+2

≤ 8mdm−2
√
mn logn+18m3n log(d)

2

d3

≤mdm−1
√
mn logn+17m3n log(d)

2

d2
.

Where the last inequality follows for d≥ 18/17. Combining the bounds, we have

Lm+1(s)−
m∑

l=1

Ll(s)

≥ − (1+ (b− 1)1{Bm+2 ≥ 2})
(

9mdm−1
√
mn logn+35m3n log(d)

2

d2
+n1−γ

1{m> 1}
)

−Lm(s)

≥ − (1+ (b− 1)1{Bm+2 ≥ 2})
(

12mdm−1
√
mn logn+36m3n log(d)

2

d2
+n1−γ

1{m> 1}
)

+B′
m

≥
√
mn logn,

where the second last inequality follows by using the lower bound sm ≥ n− 2mn logd/d+ B′
m. Thus, by

defining ñ
(2)
0 =maxk∈{3,4,5}{ñ(k)

0 , ñc}, the proof is complete. �

Proof of Lemma 6 By applying Lemma 15 with Bm+2 = nb, x = 1, ñ
(1)
0 = 1 and noting that B′

m +√
mn logn≤ bBm, for all n≥ ñ

(2)
0 , we have

P (s̄m+1 ≥ bBm)≤
(
1

n

)(m logn)/5−m−2

≤
(
1

n

)(m logn)/6

,

where the last inequality follows for all n ≥ ñ
(1)
1 for some ñ

(1)
1 ∈ Z+ and Bm is defined in (9). Thus, by

defining ñ1
∆
=max{ñ(2)

0 , ñ
(1)
1 }, the proof is complete. �

Proof of Lemma 7 Consider the Lyapunov function:

Um+2(s) =

b∑

l=m+2

sl.

In steady-state, we have

0=E [∆Um+2 (̄s)] =−E [s̄m+2] +E

[

λ

(( s̄m+1

n

)d

−
( s̄b
n

)d
)]

.

Thus, we have

E [s̄m+2]

=E

[

λ

(( s̄m+1

n

)d

−
( s̄b
n

)d
)]

(a)

≤ nE

[( s̄m+1

n

)d
]

(b)
= nE

[( s̄m+1

n

)d
∣
∣
∣
∣
s̄m+1 ≥ bBm

]

P (s̄m+1 ≥ bBm) +nE

[( s̄m+1

n

)d
∣
∣
∣
∣
s̄m+1 ≤ bBm

]

P (s̄m+1 ≤ bBm)

(c)

≤ n

(
bBm

n

)d

+nP (s̄m+1 ≥ bBm)

(d)

≤ n

(
bBm

n

)d

+

(
1

n

)(m logn)/6−1

(e)

≤
(
1

n

)log(n)2

+

(
1

n

)(m logn)/6−1 (f)

≤
(
1

n

)(m logn)/7

,

where (a) follows as λ≤ n and sb ≥ 0. Next, (b) follows by the law of total expectation. Further, (c) follows
as P (s̄m+1 ≥ bBm)≤ 1 and sm+1 ≤ n. Now, (d) follows for all n≥ ñ1 by Lemma 6. Lastly, (e) follows for all
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n≥ ñ
(1)
2 for some ñ

(1)
2 ∈ Z+ as bBm = o(n) and d≥Ω(log(n)3) and (f) follows for all n≥ ñ

(2)
2 for some ñ

(2)
2

as m= o(logn). Now, by Markov’s inequality, we have

P (s̄m+2 ≥ 1)≤E [s̄m+2]≤
(
1

n

)(m logn)/7

.

Lastly, note that as sk1
≥ sk2

for all k1 ≤ k2, we have

{s̄m+2 ≥ 1}=
{

b∑

l=m+2

s̄l ≥ 1

}

.

Thus, by defining ñ2
∆
=max

{

ñ1, ñ
(1)
2 , ñ

(2)
2

}

, the proof is complete. �

Proof of Lemma 8 and Lemma 9 By using Lemma 7, for all n≥ ñ2, we have

P

(
b∑

l=m+2

s̄l ≥ 1

)

≤
(
1

n

)(m logn)/7

.

Now, by using Lemma 15 with Bm+2 = 1, x= 7, ñ
(1)
0 = ñ2 and noting that B′

m+
√
mn logn≤Bm as Bm+2 =1,

for all n≥ ñ
(2)
0 , we have

P (s̄m+1 ≥Bm)≤
(
1

n

)(m logn)/7−m−2 (∗)
≤
(
1

n

)(m logn)/8

P

(

s̄m ≥ n− 2m
n logd

d
+Bm

)

≤
(
1

n

)(m logn)/7−m−2 (∗)
≤
(
1

n

)(m logn)/8

,

where (∗) follows for all n≥ ñ
(1)
3 for some ñ

(1)
3 ∈ Z+. Thus, by defining ñ3 =max

{

ñ
(2)
0 , ñ

(1)
3

}

, the proof is

complete. �

Proof of Lemma 10 Define the Lyapunov function:

W̃j(s) = sj −n+2m
n logd

dm−j+1
−Bj − 2(m− j)m

n logd

dm−j+2
,

where Bj = o(mn logd/dm−j+1) as defined in (9). We analyze the drift of W̃j(s) when W̃j(s)≥ 0 and s∈ C̃(2)
j+1

where

C̃(2)
j+1 =

{

W̃j+1(s)≤
√
mn logn

}

.

Thus, we have

sj ≥ n− 2m
n logd

dm−j+1
+Bj +2(m− j)m

n logd

dm−j+2
(26a)

sj+1 ≤ n− 2m
n logd

dm−j
+Bj+1 +2(m− j− 1)m

n logd

dm−j+1
+
√
mn logn. (26b)

Now, the drift is given as follows:

∆W̃j(s) = − sj + sj+1 +λ

((sj−1

n

)d

−
(sj
n

)d
)

(a)

≤ 2m
n logd

dm−j+1
−Bj − 2(m− j)m

n logd

dm−j+2

− 2m
n logd

dm−j
+Bj+1 +2(m− j− 1)m

n logd

dm−j+1
+
√
mn logn

+n

(

1−
(

1− 2m
logd

dm−j+1
+

Bj

n
+2(m− j)m

logd

dm−j+2

)d
)

(b)

≤ 2m
n logd

dm−j+1
−Bj − 2(m− j)m

n logd

dm−j+2

− 2m
n logd

dm−j
+Bj+1 +2(m− j− 1)m

n logd

dm−j+1
+
√
mn logn

+n

(

2m
logd

dm−j
− Bj+1

n
− 2(m− j)m

logd

dm−j+1

)

≤
√
mn logn−Bj

≤
√
mn logn− 18mdj−1

√
mn logn

≤ −
√
mn logn,
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where (a) follows as sj−1 ≤ n, and sj−1 and sj is bounded as in (26) and (b) follows by Lemma 12 and noting

that dBj =Bj+1. Thus, we have ∆W̃j(s)≤−√
mn logn when W̃j(s)≥ 0 and s ∈ C̃(2)

j+1. Thus, by Lemma 14,

we have

P

(

W̃j (̄s)≥
√
mn logn

)

≤
(

n

n+
√
mn logn

)(
√

mn logn)/2

+
√
nP
(

s̄ /∈ C̃(2)
j+1

)

(a)

≤
(
1

n

)(m logn)/4

+
√
nP
(

s̄ /∈ C̃(2)
j+1

)

(b)

≤
(
1

n

)(m logn)/4

+
√
n

(
1

n

)(m logn)/8−(m−j−1)

(c)

≤
(
1

n

)(m logn)/8−(m−j)

,

where (a) follows by Lemma 13 and (b) follows by the induction hypothesis (IH2). Lastly, (c) follows for all

n≥ ñ5 for some ñ5 ∈ Z+. Now, by setting ñIH ≥ ñ5, the induction step is complete. This completes the proof

of the lemma. �

Appendix E: Proof of Claims for Lower Bound

Proof of Claim 1 For l ∈ {1, . . . , k− 1}, we consider the following induction hypothesis: There exists nc1 ∈
Z+ such that for all n≥ nc1, we have

P
(
Llk(̄s)≥

√
mn logn

)
≤
(
1

n

)(m logn)/4−4(k−1)m−(k−l)

. (27)

Base Case: We analyze the drift of Lk−1,k(s) when Lk−1,k(s)≥ 0. Thus, we have

sk−1 ≥ n− 3(k− 1)m
n logd

d2
(28a)

sk ≤ n− 3kmn logd

d
. (28b)

First, consider the case when L
(1)
k−1,k(s)≥L

(2)
k−1,k(s). The drift is given as follows:

∆Lk−1,k(s)≤ λ

((sk−2

n

)d

−
(sk−1

n

)d
)

− sk−1+ sk

(a)

≤ λ

(

1−
(

1− 3(k− 1)m
logd

d2

)d
)

+3(k− 1)m
n logd

d2
− 3kmn logd

d
(b)

≤ λ

(

3(k− 1)m
logd

d

)

+3(k− 1)m
n logd

d2
− 3kmn logd

d

≤−3mn logd

d
+3(k− 1)m

n logd

d2
(c)

≤ −2mn logd

d

(d)

≤ −
√
mn logn,

where (a) follows as sk−2 ≤ n, and we use the bounds on sk−1 and sk given by (28). Next, (b) follows by
Lemma 12. Now, (c) follows as there exists n

(1)
c1 such that for all n≥ n

(1)
c1 , we have

mn logd

d

(c1)

≥ 3m2n logd

d2
≥ 3(k− 1)m

n logd

d2
,

where (c1) follows as m/d→ 0 as d→∞. Lastly, (d) follows as

2mn logd

d
≥ 2mn logd

dm
= n1−γ ≥

√
mn logn.
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where the last inequality follows as γ ∈ (0,0.5). Now, consider the case when L
(1)
k−1,k(s)≤L

(2)
k−1,k(s). The drift

is given as follows:

∆Lk−1,k(s)≤ sk − sk+1−λ

((sk−1

n

)d

−
(sk
n

)d
)

(a)

≤ n− 3kmn logd

d
−λ

((

1− 3(k− 1)m
logd

d2

)d

−
(

1− 3km logd

d

)d
)

(b)

≤ n− 3kmn logd

d
−λ

(

1− 3(k− 1)m
logd

d
− 2

d3km

)

≤−3mn logd

d
+

2n

d3km
+n1−γ

(c)

≤ −mn logd

d
+

2n

d3km

(d)

≤ −
√
mn logn,

where (a) follows as sk−2 ≤ n, and we use the bounds on sk−1 and sk given by (28). Next, (b) follows for all

n≥ n
(2)
c1 for some n

(2)
c1 ∈ Z+ by Lemma 12 and Lemma 11. Now, (c) follows by (29a). Lastly, (d) follows as

there exists n
(3)
c1 such that for all n≥ n

(3)
c1 we have

mn logd

2d
≥ 2n

d3k
≥ 2n

d3km
mn logd

2d
≥ mn logd

2dm
≥ 1

4
n1−γ ≥

√
mn logn,

where the last inequality follows as γ < 0.5. By combining the two cases, we get ∆Lk−1,k(s)≤−√
mn logn

when Lk−1,k(s)≥ 0. Thus, by Lemma 14, we have

P
(
Lk−1,k(̄s)≥

√
mn logn

)
≤
(

n

n+
√
mn logn

)(
√

mn logn)/2

≤
(
1

n

)m logn/4

≤
(
1

n

)m logn/4−4(k−1)m−1

,

where the last inequality follows by Lemma 13. By considering nc1 ≥ maxk∈[3]

{

n
(k)
c1

}

, the base case is

complete.
Induction Step: We analyze the drift of Li−1,k(s) when Li−1,k(s)≥ 0 and s ∈ C(1)

i,k ∩
⋂k−1

l=i D(1)
l defined

as in (12). Similar to the proof of Lemma 2 (Eq. (13) and (14)), there exists n
(4)
c1 ∈ Z+, such that for all

n≥ n
(4)
c1 , we have

si ≤ n− 3imn logd

dk−i+1
+
√
mn logn (29a)

sk ≤ n− 3m
n logd

d
. (29b)

We proceed by analyzing the drift for the case when L
(1)
i−1,k(s)≥L

(2)
i−1,k(s).

∆Li−1,k(s)≤ λ

((si−2

n

)d

−
(si−1

n

)d
)

− si−1+ si

(a)

≤ λ

(

1−
(

1− 3(i− 1)m
logd

dk−i+2

)d
)

+3(i− 1)m
n logd

dk−i+2
− 3imn logd

dk−i+1
+
√
mn logn

(b)

≤ λ

(

3(i− 1)m
logd

dk−i+1

)

+3(i− 1)m
n logd

dk−i+2
− 3imn logd

dk−i+1
+
√
mn logn

≤−3m
n logd

dk−i+1
+3(i− 1)m

n logd

dk−i+2
+
√
mn logn

(c)

≤ −m
n logd

dk−i+1

(c)

≤ −
√
mn logn,

where (a) follows by lower bounding si−1 using Li−1,k(s) ≥ 0, upper bounding si using (29), and trivially

upper bounding si−2 by n. Next, (b) follows by Lemma 12. Lastly, (c) follows as there exists n
(5)
c1 ∈ Z+ such

that for all n≥ n
(5)
c1 , we have

m
n logd

dk−i+1

(c1)

≥ 3m2 n logd

dk−i+2
≥ 3(i− 1)m

n logd

dk−i+2

m
n logd

dk−i+1
≥m

n logd

dm
≥ 1

2
n1−γ

(c2)

≥
√
mn logn,
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where (c1) follows as m/d≤ logn/d→ 0 as n→∞ and (c2) follows as γ < 0.5. Now, consider the case when
L

(1)
i−1,k(s)≤L

(2)
i−1,k(s). The drift is given as follows:

∆Li−1,k(s)
(a)

≤ si − sk+1 −λ

((si−1

n

)d

−
(sk
n

)d
)

(b)

≤ n− 3imn logd

dk−i+1
+
√
mn logn−λ

((

1− 3(i− 1)m
logd

dk−i+2

)d

−
(

1− 3m
logd

d

)d
)

≤ n− 3imn logd

dk−i+1
+
√
mn logn−λ

(

1− 3(i− 1)m
logd

dk−i+1
− 2

d3m

)

≤ − 3m
n logd

dk−i+1
+
√
mn logn+

2n

d3m
+n1−γ

(c)

≤ −m
n logd

dk−i+1
+
√
mn logn+

2n

d3m

(d)

≤ −
√
mn logn,

where (a) follows by lower bounding si−1 using Li−1,k(s) ≥ 0, upper bounding si and sk using (29), and

trivially lower bounding sk+1 by 0. Next, (b) follows for all n≥ n
(6)
c1 for some n

(6)
c1 ∈ Z+ by Lemma 11 and

Lemma 12. Further, (c) follows as

2m
n logd

dk−i+1
≥ 2m

n logd

dm
= n1−γ .

Lastly, (d) follows as there exists n
(7)
c1 such that for all n≥ n

(7)
c1 , we have

m
n logd

2dk−i+1
≥m

n logd

2dm
≥ 2n

d3m

m
n logd

4dk−i+1
≥m

n logd

4dm
≥ 1

8
n1−γ ≥

√
mn logn.

By combining the two cases, we get ∆Li−1,k(s)≤−√
mn logn when Li−1,k(s)≥ 0 and s ∈ C(1)

i,k ∩⋂k−1
l=i

D(1)
l .

Thus, by Lemma 14, we have

P
(
Li−1,k (̄s)≥

√
mn logn

)

≤
(

n

n+
√
mn logn

)(
√

mn logn)/2

+
√
nP

(

s̄ /∈ C(1)
i,k ∩

k−1⋂

l=i

D(1)
l

)

(a)

≤
(
1

n

)(m logn)/4

+
√
n

(

P

(

s̄ /∈ C(1)
i,k

)

+

k−1∑

l=i

P

(

s̄ /∈D(1)
l

)
)

(b)

≤
(
1

n

)(m logn)/4

+
√
n

(
1

n

)(m logn)/4−4(k−1)m−(k−i)

+
√
nm

(
1

n

)(m logn)/4−4(k−1)m

(c)

≤
(
1

n

)m(logn)/4−4(k−1)m−(k−i+1)

,

where (a) follows by Lemma 13. Next, (b) follows by upper bounding P

(

s̄ /∈ C(1)
i,k

)

using the induction

hypothesis (27). Also, similar to (15), P
(

s̄ /∈D(1)
l

)

is upper bounded for all n ≥ n
(8)
c1 for some n

(8)
c1 ∈ Z+

by Theorem 2. Lastly, (c) follows for all n ≥ n
(9)
c1 for some n

(9)
c1 ∈ Z+ By fixing nc1 ≥maxk∈[9]

{

n
(k)
c1

}

, the

induction step is complete. This completes the proof of the claim. �

Proof of Claim 2 For some l ∈ [k− 1], we consider the following induction hypothesis: There exists nc2 ∈
Z+, such that for all n≥ nc2, we have

P
(
Zlk (̄s)≥

√
mn logn

)
≤
(
1

n

)m(logn)/4−4(k−0.5)m−(k−l)

. (30)

Base Case: We analyze the drift of Zk−1,k(s) when Zk−1,k(s)≥ 0. Thus, we have

sk−1 ≥ n− 2m
n logd

d2
− (2k− 1)dk−2

√
mn logn− 3km

n logd

d3
(31a)

sk ≤ n− 2m
n logd

d
− 2kdk−1

√
mn logn− 10m2n logd

d2
. (31b)
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First, consider the case when Z
(1)
k−1,k(s)≥Z

(2)
k−1,k(s). The drift is given as follows:

∆Zk−1,k(s)

≤ λ

((sk−2

n

)d

−
(sk−1

n

)d
)

− sk−1 + sk

(a)

≤ λ

(

1−
(

1− 2m
logd

d2
− (2k− 1)dk−2

√
m logn√

n
− 3km

logd

d3

)d
)

+2m
n logd

d2

+(2k− 1)dk−2
√
mn logn+3km

n logd

d3
− 2m

n logd

d
− 2kdk−1

√
mn logn− 10m2n logd

d2
(b)

≤ λ

(

2m
logd

d
+(2k− 1)dk−1

√
m logn√

n
+3km

logd

d2

)

+(2k− 1)dk−2
√
mn logn

+3km
n logd

d3
− 2m

n logd

d
− 2kdk−1

√
mn logn− 8m2n logd

d2
(c)

≤ − dk−1
√
mn logn+(2k− 1)dk−2

√
mn logn

(d)

≤ − 1

2
dk−1

√
mn logn

(e)

≤ −
√
mn logn,

where (a) follows by upper bounding sk−2 by n and using the bounds on sk−1 and sk given by (31). Next,
(b) follows by Lemma 12. Now, (c) follows as

3km
n logd

d2
+3km

n logd

d3
≤ 3m2n logd

d2
+3m2n logd

d3
≤ 6m2n logd

d2
≤ 8m2n logd

d2
.

Lastly, (d) follows as there exists n
(1)
c2 such that for all n≥ n

(1)
c2 , we have

1

2
dk−1

√
mn logn≥ 2mdk−2

√
mn logn≥ (2k− 1)dk−2

√
mn logn,

where the first inequality follows as m/d≤ logn/d→ 0 as n→∞. Lastly, (e) follows for all n≥ n
(2)
c2 for some

n
(2)
c2 ∈ Z+ as k≥ 2. Note that k= 1 corresponds to the base case of (IH) which is proved in Lemma 1. Now,

consider the case when Z
(1)
k−1,k(s)≤Z

(2)
k−1,k(s). The drift is given as follows:

∆Zk−1,k(s)≤ sk − sk+1−λ

((sk−1

n

)d

−
(sk
n

)d
)

(a)

≤ n− 2m
n logd

d
− 2kdk−1

√
mn logn− 10m2n logd

d2

−λ

((

1− 2m
logd

d2
− (2k− 1)dk−2

√
m logn√

n
− 3km

logd

d3

)d

−
(

1− 2m
logd

d

)d
)

(b)

≤ n− 2m
n logd

d
− 2kdk−1

√
mn logn− 10m2n logd

d2

−λ

(

1− 2m
logd

d
− (2k− 1)dk−1

√
m logn√

n
− 3km

logd

d2
− 2

d2m

)

≤ − dk−1
√
mn logn− 10m2n logd

d2
+3km

n logd

d2
+

2n

d2m
+n1−γ

(c)

≤ − dk−1
√
mn logn≤−

√
mn logn.

where (a) follows by noting that sk+1 ≥ 0 and using the bounds on sk−1 and sk given by (31). Next, (b)
follows for all n≥ n

(3)
c2 for some n

(3)
c2 ∈ Z+ by Lemma 11 and Lemma 12. Lastly, (c) follows as

3km
n logd

d2
+

2n

d2m
+n1−γ ≤ 5m2n logd

d2
+n1−γ ≤ 5m2n logd

d2
+2m

n logd

dm
≤ 10m2n logd

d2
,

where the last inequality follows as m≥ 2. Thus, by the above two cases, we have ∆Zk−1,k(s)≤−√
mn logn

when Zk−1,k(s)≥ 0. Thus, by Lemma 14, we have

P
(
Zk−1,k(̄s)≥

√
mn logn

)
≤
(

n

n+
√
mn logn

)(
√
mn logn)/2

≤
(
1

n

)(m logn)/4

,
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where the last inequality follows by Lemma 13. Thus, by considering nc2 ≥maxk∈[3]

{

n
(k)
c2

}

, the base case is

complete.
Induction Step: We analyze the drift of Zi−1,k(s) when Zi−1,k(s)≥ 0 and s∈ C(3)

i,k ∩⋂k−1
l=i

D(3)
l , where C(3)

i,k

and D(3)
l are defined in (17). Similar to the proof of Lemma 4 (Eq. (18) and (19)), we can get the following

bounds on si and sk:

si ≤ n− 2m
n logd

dk−i+1
− (2i+1)di−1

√
mn logn− 3(i+1)m

n logd

dk−i+2
+
√
mn logn, (32)

sk ≤ n− 2m
n logd

d
. (33)

Now, we analyze the drift for the case when Z
(1)
i−1,k(s)≥Z

(2)
i−1,k(s).

∆Zi−1,k(s)

≤ λ

((si−2

n

)d

−
(si−1

n

)d
)

− si−1 + si

(a)

≤ λ

(

1−
(

1− 2m
logd

dk−i+2
− (2i− 1)di−2

√
m logn√

n
− 3im

logd

dk−i+3

)d
)

+2m
n logd

dk−i+2

+(2i− 1)di−2
√
mn logn+3im

n logd

dk−i+3
− 2m

n logd

dk−i+1
− (2i+1)di−1

√
mn logn

− 3(i+1)m
n logd

dk−i+2
+
√
mn logn

(b)

≤ λ

(

2m
logd

dk−i+1
+(2i− 1)di−1

√
m logn√

n
+3im

logd

dk−i+2

)

+2m
n logd

dk−i+2
+(2i− 1)di−2

√
mn logn

+3im
n logd

dk−i+3
− 2m

n logd

dk−i+1
− (2i+1)di−1

√
mn logn− 3(i+1)m

n logd

dk−i+2
+
√
mn logn

≤− 2di−1
√
mn logn−m

n logd

dk−i+2
+(2i− 1)di−2

√
mn logn+3im

n logd

dk−i+3
+
√
mn logn

(c)

≤ − di−1
√
mn logn≤−

√
mn logn,

where (a) follows by noting that si−2 ≤ n, using the bound on si given by (32), and bounding si−1 by using
the fact that Zi−1,k(s)≥ 0. Next, (b) follows by Lemma 12. Lastly, (c) follows as there exists n

(4)
c2 ∈Z+ such

that for all n≥ n
(4)
c2 , we have

m
n logd

dk−i+2

(c1)

≥ 3m2 n logd

dk−i+3
≥ 3im

n logd

dk−i+3
∀i≤m

di−1
√
mn logn

(c2)

≥ 2mdi−2
√
mn logn≥ 2idi−2

√
mn logn

≥ (2i− 1)di−2
√
mn logn+

√
mn logn ∀i≤m,

where (c1) and (c2) follows asm/d≤ logn/d→ 0 as n→∞. Now, consider the case when Z
(1)
i−1,k(s)≤Z

(2)
i−1,k(s).

The drift is given as follows:

∆Zi−1,k(s)≤ si − sk+1 −λ

((si−1

n

)d

−
(sk
n

)d
)

(a)

≤ n− 2m
n logd

dk−i+1
− (2i+1)di−1

√
mn logn− 3(i+1)m

n logd

dk−i+2
+
√
mn logn

−λ

((

1− 2m
logd

dk−i+2
− (2i− 1)di−2

√
m logn√

n
− 3im

logd

dk−i+3

)d

−
(

1− 2m
logd

d

)d
)

(b)

≤ n− 2m
n logd

dk−i+1
− (2i+1)di−1

√
mn logn− 3(i+1)m

n logd

dk−i+2
+
√
mn logn

−λ

(

1− 2m
logd

dk−i+1
− (2i− 1)di−1

√
m logn√

n
− 3im

logd

dk−i+2
− 2

d2m

)

≤ − 2di−1
√
mn logn− 3m

n logd

dk−i+2
+

2n

d2m
+n1−γ +

√
mn logn

(c)

≤ − 2di−1
√
mn logn+

√
mn logn≤−

√
mn logn,
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where (a) follows by using the bound on si and sk given by (32) and (33), and bounding si−1 by using the
fact that Zi−1,k(s)≥ 0. Next, (b) follows for all n≥ n

(5)
c2 for some n

(5)
c2 ∈ Z+ by Lemma 11 and Lemma 12.

Lastly, (c) follows as there exists n
(6)
c2 such that for all n≥ n

(6)
c2 , we have

3m
n logd

dk−i+2

(c1)

≥ 3m
n logd

dm
≥ 2n

d2m
+2m

n logd

dm
≥ 2n

d2m
+n1−γ,

where (c1) follows as i ≥ 2 and k ≤ m. By the above two cases, we get ∆Zi−1,k(s) ≤ −√
mn logn when

Zi−1,k(s)≥ 0 and s∈ C(3)
i,k ∩⋂k−1

l=i
D(3)

l . Thus, by Lemma 14, we have

P
(
Zi−1,k (̄s)≥

√
mn logn

)

≤
(

n

n+
√
mn logn

)(m logn)/2

+
√
nP

(

s̄ /∈ C(3)
i,k ∩

k−1⋂

l=i

D(3)
l

)

(a)

≤
(
1

n

)(m logn)/4

+
√
n

(

P

(

s̄ /∈ C(3)
i,k

)

+

k−1∑

l=i

P

(

s̄ /∈D(3)
l

)
)

(b)

≤
(
1

n

)(m logn)/4

+
√
n

(
1

n

)(m logn)/4−4(k−0.5)m−(k−i)

+
√
nm

(
1

n

)(m logn)/4−4(k−1)m

(c)

≤
(
1

n

)(m logn)/4−4(k−0.5)m−(k−i+1)

,

where (a) follows by Lemma 13. Next, (b) follows by upper bounding P

(

s̄ /∈ C(3)
i,k

)

using the inducting

hypothesis given by (30). Also, P
(

s̄ /∈D(3)
l

)

is upper bounded for all n≥ n2 by Lemma 3. Lastly, (c) follows

for all n≥ n
(7)
c2 for some n

(7)
c2 ∈Z+. By fixing nc2 ≥maxk∈[7]

{

n
(k)
c2 , n2

}

, the induction step is complete. �

Appendix F: Proof of Claims for Theorem 3

Proof of Claim 3 The proof is induction based. The induction hypothesis is as follows. There exists ñc ∈Z+

such that for all n≥ ñc, we have

P
(
Uj (̄s)≥

√
mn logn

)
≤
(
1

n

) m logn
max{x,5}−(m−j+1)

. (34)

Base Case (j =m): We analyze the drift of Um(s) when Um(s)≥ 0 and s∈ D̃m−1 ∩ D̃m+2 where

D̃m−1 =

{

sm−1 ≥ n−
(

2m
n logd

d2
+4mdm−2

√
mn logn+16m3n log(d)

2

d3

)

1{m> 1}
}

. (35)

D̃m+2 =

{
b∑

l=m+2

sl ≤Bm+2

}

.

As Um(s)≥ 0, we get the following bounds on sm and sm+1:

sm+1 ≥ 8mdm−1
√
mn logn+18m3n log(d)

2

d2
+n1−γ

1{m> 1}− 2 (36a)

sm ≤ n− 2m
n logd

d
+3mdm−1

√
mn logn+m2n logd

d2
, (36b)

where (36a) follows by considering two cases. If Bm+2 ≥ 2, then we use the bound
∑b

l=m+1 sl ≤ bsm+1 to

obtain (36a). Else if Bm+2 < 2, then we use the bound
∑b

l=m+1 sl ≤ sm+1+Bm+2 ≤ sm+1+2 to obtain (36a).
First, consider the case when U (1)

m (s)≤U (2)
m (s). In this case, the drift is as follows:

∆Um(s)

≤ − sm+1 +λ

((sm
n

)d

−
(sb
n

)d
)

(a)

≤ − 8mdm−1
√
mn logn− 18m3n log(d)

2

d2
+2+n

(

1− 2m
logd

d
+3m

√
mdm−1 logn√

n
+m2 logd

d2

)d

(b)

≤ − 8mdm−1
√
mn logn− 18m3n log(d)

2

d2
+2+

2n

d2m

(c)

≤ −
√
mn logn,
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where (a) follows as sb ≥ 0, and sm and sm+1 are bounded as in (36). Next, (b) follows by Lemma 11.

Lastly, (c) follows as 18m3 n log(d)2

d2
≥ 2n

d2m
and 8mdm−1

√
mn logn≥√

mn logn. Now, consider the case when
U (1)

m (s)≥U (2)
m (s). In this case, the drift is as follows:

∆Um(s)

≤ sm − sm+1 −λ

((sm−1

n

)d

−
(sm
n

)d
)

(a)

≤ n− 2m
n logd

d
+3mdm−1

√
mn logn+m2n logd

d2
− 8mdm−1

√
mn logn− 18m3n log(d)

2

d2

−n1−γ
1{m> 1}+2−λ

(

1−
(

2m
logd

d2
+4mdm−2

√
m logn√

n
+16m3 log(d)

2

d3

)

1{m> 1}
)d

+λ

(

1− 2m
logd

d
+3mdm−1

√
m logn√

n
+m2 logd

d2

)d

(b)

≤ n− 2m
n logd

d
− 5mdm−1

√
mn logn− 17m3n log(d)

2

d2
−n1−γ

1{m> 1}+2

−λ

(

1− 2m
logd

d
1{m> 1}− 4mdm−1

√
m logn√

n
− 16m3 log(d)

2

d2
− 2

d2m

)

(c)

≤ −mdm−1
√
mn logn−m3n log(d)

2

d2
+

2n

d2m
+2

(d)

≤ −
√
mn logn,

where (a) follows by substituting bounds on sm−1, sm, and sm+1 given by (35) and (36). Next, (b) follows by

Lemma 12 and Lemma 11. Now, (c) follows as 2mn logd/d≥ n1−γ . Lastly, (d) follows as m3 n log(d)2

d2
≥ 2n

d2m

and mdm−1
√
mn logn ≥ √

mn logn. Thus, by the above two cases, we have ∆Um(s) ≤ −√
mn logn when

Um(s)≥ 0 and s∈ D̃m−1 ∩ D̃m+2. Combining the two cases and using Lemma 14, we get

P
(
Um(̄s)≥

√
mn logn

)
≤
(

n

n+
√
mn logn

)(
√
mn logn)/2

+P

(

s̄ /∈ D̃m−1 ∩ D̃m+2

)

(a)

≤
(
1

n

)(m logn)/4

+
√
nP
(

s̄ /∈ D̃m−1

)

+
√
nP
(

s̄ /∈ D̃m+2

)

(b)

≤
(
1

n

)(m logn)/4

+

(
1

n

)(m logn)/5−0.5

+
√
nP
(

s̄ /∈ D̃m+2

)

(c)

≤
(
1

n

)(m logn)/4

+

(
1

n

)(m logn)/5−0.5

+

(
1

n

)(m logn)/x−0.5

(d)

≤
(
1

n

) m logn
max{x,5}−1

,

where (a) follows by Lemma 13. Next, if m= 1, then (b) follows trivially as P
(

s̄ /∈ D̃m−1

)

= 0. Else if, m> 1,

then (b) follows for all n ≥ nLB by Theorem 2. Now, (c) follows by the high probability upper bound on
∑b

l=m+2 s̄l assumed in the statement of the lemma. Lastly, (d) follows for all n≥ ñ(1)
c for some ñ(1)

c ∈Z+. By
considering ñc ≥ ñ(1)

c , the base case is complete.
Induction Step: We will analyze the drift of Uj−1(s) when Uj−1(s)≥ 0 and s∈ C̃(1)

j ∩ D̃(1)
j−2 where

C̃(1)
j =

{
Uj(s)≤

√
mn logn

}

D̃(1)
j−2 =

{

sj−2 ≥ n− 2m
n logd

dm−j+3
− 4mdj−3

√
mn logn− 16m3n log(d)

2

dm−j+4

}

. (37)

Now, we obtain a useful lower bound on sj as follows:

Uj−1(s)≥ 0⇒ Lm+1(s)−
m∑

l=j+1

Ll(s)≥Lj(s)

(∗)⇒Lj(s)≤
√
mn logn

⇒ sj ≥ n− 2m
n logd

dm−j+1
+3jdj−1

√
mn logn+ jm

n logd

dm−j+2
−
√
mn logn, (38)
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where (∗) follows as s∈ C̃(1)
j . Next, we obtain a useful upper bound on sj−1 as follows:

Uj−1(s)≥ 0⇒ sj−1 ≤ n− 2m
n logd

dm−j+2
+3(j− 1)dj−2

√
mn logn+(j− 1)m

n logd

dm−j+3
. (39)

First, consider the case when U
(1)
j (s)≤U

(2)
j (s). The drift is given as follows:

∆Uj−1(s)≤ − sj +λ

((sj−1

n

)d

−
(sb
n

)d
)

(a)

≤ −n+2m
n logd

dm−j+1
− 3jdj−1

√
mn logn− jm

n logd

dm−j+2
+
√
mn logn

+n

(

1− 2m
logd

dm−j+2
+3(j− 1)dj−2

√
m logn√

n
+(j− 1)m

logd

dm−j+3

)d

(b)

≤ −n+2m
n logd

dm−j+1
− 3jdj−1

√
mn logn− jm

n logd

dm−j+2
+
√
mn logn

+n

(

1− 2m
logd

dm−j+1
+3(j− 1)dj−1

√
m logn√

n
+(j− 1)m

logd

dm−j+2

)

≤ − 3dj−1
√
mn logn−m

n logd

dm−j+2
+
√
mn logn

≤ −
√
mn logn,

where (a) follows as sb ≥ 0, λ≤ n, and sj−1 and sj are bounded as in (39) and (38) respectively. Next, (b)

follows by Lemma 12. Now, consider the case when U
(1)
j (s)≥U

(2)
j (s). The drift is given as follows:

∆Uj−1(s)

≤ sj−1 − sj −λ

((sj−2

n

)d

−
(sj−1

n

)d
)

(a)

≤ − 2m
n logd

dm−j+2
+3(j− 1)dj−2

√
mn logn+(j− 1)m

n logd

dm−j+3

+2m
n logd

dm−j+1
− 3jdj−1

√
mn logn− jm

n logd

dm−j+2
+
√
mn logn

−λ

(

1− 2m
logd

dm−j+3
− 4mdj−3

√
m logn√

n
− 16m3 log(d)

2

dm−j+4

)d

+λ

(

1− 2m
logd

dm−j+2
+3(j− 1)dj−2

√
m logn√

n
+(j− 1)m

logd

dm−j+3

)d

(b)

≤ − 2m
n logd

dm−j+2
+3(j− 1)dj−2

√
mn logn+(j− 1)m

n logd

dm−j+3

+2m
n logd

dm−j+1
− 3jdj−1

√
mn logn− jm

n logd

dm−j+2
+
√
mn logn

−λ

(

1− 2m
logd

dm−j+2
− 4mdj−2

√
m logn√

n
− 16m3 log(d)

2

dm−j+3

)

+λ

(

1− 2m
logd

dm−j+1
+3(j− 1)dj−1

√
m logn√

n
+(j− 1)m

logd

dm−j+2

)

+
3λ

2

(

4m2 log(d)2

d2m−2j+2
+9m(j− 1)2d2j−2 log(n)

2

n
+(j− 1)2m2 log(d)2

d2m−2j+4

)

≤ − 3dj−1
√
mn logn−m

n logd

dm−j+2
+(4m+3(j− 1))dj−2

√
mn logn+m

(
16m2+ j− 1

) n log(d)2

dm−j+3

+
√
mn logn+6m2 n log(d)

2

d2m−2j+2
+

27m

2
(j− 1)2d2j−2 log(n)2 +

3

2
(j− 1)2m2 n log(d)

2

d2m−2j+4

(c)

≤ − 3dj−1
√
mn logn+(4m+3(j− 1))dj−2

√
mn logn+

√
mn logn

(d)

≤ − dj−1
√
mn logn≤−

√
mn logn,

where (a) follows by using the bounds on sj−2, sj−1 and sj given by (37), (39) and (38) respectively. Next, (b)

follows by Lemma 12. Now, (c) follows as there exists ñ(2)
c ∈ Z+ independent of j such that for all n≥ ñ(2)

c ,
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we have

m

3

n logd

dm−j+2

(c1)

≥ 17m3n log(d)
2

dm−j+3
≥m

(
16m2+(j− 1)

) n log(d)2

dm−j+3

m

3

n logd

dm−j+2

(c2)

≥ 7m2 n log(d)
2

d2m−2j+2

(c3)

≥ 6m2 n log(d)
2

d2m−2j+2
+

3

2
(j− 1)2m2 n log(d)

2

d2m−2j+4

m

3

n logd

dm−j+2

(c4)
=

1

12m logd
dm+j−2n1−2γ

(c5)

≥ 1

12m logd
d2j−2n1−2γ

(c6)

≥ 27m

2
(j− 1)2d2j−2 log(n)2,

where (c1) follows asm
2 logd/d≤ log(n)2/(d logd)→ 0 as n→∞. Next, (c2) follows asm−j+2< 2m−2j+2

as j ≤m− 1. Further, (c3) follows as (j− 1)2/d2 ≤m2/d2 → 0 as n→∞. Lastly, (c4) follows by noting that
2mn logd/dm = n1−γ as m is assumed to be an integer, (c5) follows as m≥ j, and (c6) follows as 1− 2γ > 0.
Next, (d) follows as there exists ñ(3)

c ∈Z+ independent of j such that for all n≥ ñ(3)
c , we have

dj−1
√
mn logn≥

√
mn logn

dj−1
√
mn logn

(∗)
≥ 7mdj−2

√
mn logn≥ (4m+3(j− 1))dj−2

√
mn logn,

where (∗) follows as m/d→ 0 as n→∞. By combining the above two cases, we get ∆Uj−1(s)≤−√
mn logn

when Uj−1(s)≥ 0 and s∈ C̃(1)
j ∩ D̃(1)

j−2. Now, for all n≥max{ñ(2)
c , ñ(3)

c }, using Lemma 14, we get

P
(
Uj−1(̄s)≥

√
mn logn

)
≤
(

n

n+
√
mn logn

)(
√

mn logn)/2

+
√
nP
(

s̄ /∈ C̃(1)
j ∩ D̃(1)

j−2

)

(a)

≤
(
1

n

)(m logn)/4

+
√
n
(

P

(

s̄ /∈ C̃(1)
j

)

+P

(

s̄ /∈ D̃(1)
j−2

))

(b)

≤
(
1

n

)(m logn)/4

+

(
1

n

) m logn
max{x,5}−(m+1−j)−0.5

+
√
nP
(

s̄ /∈ D̃(1)
j−2

)

(c)

≤
(
1

n

)(m logn)/4

+

(
1

n

) m logn
max{x,5}−(m+1−j)−0.5

+

(
1

n

)(m logn)/5−0.5

(d)

≤
(
1

n

) m logn
max{x,5}−(m+2−j)

,

where (a) follows by Lemma 13, (b) follows by the induction hypothesis (34), and (c) follows by Theorem 2.
Lastly, (d) follows for all n≥ ñ(4)

c for some ñ(4)
c ∈ Z+. By considering ñc ≥maxk∈{2,3,4}{ñ(k)

c }, the induction
step is complete. �

Appendix G: Proof of Preliminary Lemmas

Proof of Lemma 11 Let d0 be such that (r logd− df(d))/d>−1 as df(d)→ 0. Now, we have

log

(

dr

(

1− r
logd

d
+ f(d)

)d
)

= d log

(

1− r
logd

d
+ f(d)

)

+ r logd

≤ df(d)→ 0 as d→∞, (40)

where the last inequality follows as log(1 + x) ≤ x for x > −1. Lastly, note that (40) implies that

limsupd→∞ dr
(
1− r logd

d
+ f(d)

)d ≤ 1 which completes the proof. �

Proof of Lemma 12 Note that 1 − xd ≤ (1 − x)d holds for all x ≤ 1 by the Bernoulli’s inequality. This
completes the first part of the lemma. Now to prove the second part of the lemma, by Binomial series
expansion, we have

(1− f(d))
d
=

∞∑

k=0

(
d

k

)

(−f(d))k

=1− df(d)+
1

2
d(d− 1)f(d)2 − 1

6
d(d− 1)(d− 2)f(d)3+

∞∑

k=4

(
d

k

)

(−f(d))k

(a)

≤ 1− df(d)+
1

2
d2f(d)2 − 1

6
d(d− 1)(d− 2)f(d)3 +

1

6
d(d− 1)(d− 2)f(d)3

∞∑

k=1

(df(d))k
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= 1− df(d)+
1

2
d2f(d)2 − 1

6
d(d− 1)(d− 2)f(d)3

(

1− df(d)

1− df(d)

)

(b)

≤ 1− df(d)+
1

2
d2f(d)2 − 1

12
d(d− 1)(d− 2)f(d)3

(c)

≤ 1− df(d)+
1

2
d2f(d)2,

where (a) follows as f(d) ≥ 0 for all d ≥ d1, and we have
(
d

k

)
≤ (d(d− 1)(d− 2)dk/6) for all k ≥ 4. Next,

(b) follows for all d≥ d2 for some d2 ≥ d1 as df(d)→ 0. Lastly, (c) follows for all d≥ d1 as f(d) ≥ 0. This
completes the proof. �

Proof of Lemma 13 We have

(
n

n+
√
mn logn

)(
√
mn logn)/2

=

(

1+

√
m logn√

n

)−(
√

mn logn)/2

= e
−m log(n)2/2

(

log(1+
√

m logn/
√

n)√
m logn/

√
n

)

≤ e−m log(n)2/4 =

(
1

n

)(m logn)/4

,

where the inequality holds due to the following. As
√
m logn/

√
n → 0, we have log(1 +√

m logn/
√
n)/(

√
m logn/

√
n) → 1. Thus, there exists na ∈ Z+ such that for all n ≥ na, we have log(1 +√

m logn/
√
n)/(

√
m logn/

√
n)≥ 0.5. This completes the proof. �
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