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Abstract

Wireless x-haul networks rely on microwave and millimeter-wave links between 4G and/or 5G

base-stations to support ultra-high data rate and ultra-low latency. A major challenge associated with

these high frequency links is their susceptibility to weather conditions. In particular, precipitation may

cause severe signal attenuation, which significantly degrades the network performance. In this paper, we

develop a Predictive Network Reconfiguration (PNR) framework that uses historical data to predict the

future condition of each link and then prepares the network ahead of time for imminent disturbances.

The PNR framework has two components: (i) an Attenuation Prediction (AP) mechanism; and (ii)

a Multi-Step Network Reconfiguration (MSNR) algorithm. The AP mechanism employs an encoder-

decoder Long Short-Term Memory (LSTM) model to predict the sequence of future attenuation levels

of each link. The MSNR algorithm leverages these predictions to dynamically optimize routing and

admission control decisions aiming to maximize network utilization, while preserving max-min fairness

among the base-stations sharing the network and preventing transient congestion that may be caused

by re-routing. We train, validate, and evaluate the PNR framework using a dataset containing over 2

million measurements collected from a real-world city-scale backhaul network. The results show that

the framework: (i) predicts attenuation with high accuracy, with an RMSE of less than 0.4 dB for a

prediction horizon of 50 seconds; and (ii) can improve the instantaneous network utilization by more than

200% when compared to reactive network reconfiguration algorithms that cannot leverage information

about future disturbances
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(a) City-scale backhaul network (b) Network Abstraction

Fig. 1. (a) A wireless backhaul network in Gothenborg, Sweden (the map area is of approximately 10x10 km2). The data

utilized in this paper was collected from this network by Ericsson AB. (b) An abstraction of the network topology (described

in Sec. II).

Wireless Networks, Millimeter-Wave, Backhaul, 5G, Routing, Machine Learning, Rain Attenuation

I. INTRODUCTION

4G and 5G networks often use high bandwidth microwave and millimeter-wave (mmWave)

links in their fronthaul, midhaul, and backhaul (x-haul) networks [1] for supporting applications

that require high data rate and ultra-low latency. These wireless x-haul networks can connect a

large number of base-stations, covering entire cities, as depicted in Fig. 1(a). A main challenge

of using microwave and mmWave links is their high susceptibility to weather conditions. The

signal attenuation due to different atmospheric and weather phenomena is described by the

International Telecommunication Union (ITU) in [2]–[5] and depicted in Fig. 2. It can be seen

that, apart from the oxygen resonance frequency at 60 GHz, the dominant factor affecting link

attenuation is precipitation. This implies that signal attenuation may vary significantly over time

and over geographic locations. Hence, the need for a high bandwidth wireless x-haul that is

robust to variations in the network conditions calls for the development of a predictive network

reconfiguration framework that can dynamically allocate resources based on current and future

estimated network conditions.

Until recently, only local Physical/Link layer mechanisms were employed to alleviate the

impact of the time-varying conditions of the links on the network performance. For example, the

Automatic Transmit Power Control is a commonly used mechanism that adjusts the transmitter

power based on measurements of the link attenuation [6]. However, with the emergence of

Software-Defined Networking (SDN) [7]–[9], it is now possible to develop global Network
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Fig. 2. Signal attenuation (in dB/km) for various atmospheric phenomena as a function of frequency [2]. The commonly used

bands of 6–40 GHz (K-band) and 60–90 GHz (E-band) are highlighted.

layer mechanisms (such as NEC’s backhaul solution in [10]) that monitor the entire network

and react to performance drops caused by weather-induced disturbances. A main drawback

of reactive reconfiguration mechanisms is their delay in recovering from performance drops,

which may severely affect time-sensitive applications. To overcome this challenge, predictive

reconfiguration mechanisms can be employed.

Prior work on predictive network reconfiguration algorithms (see [11] for a survey) focused

mainly on alleviating the effects of node mobility [12]–[17], traffic demand variability [18]–[25],

and link quality degradation due to multi-path reflection, line-of-sight occlusion, and interference

[26]–[33]. Weather effects pose fundamentally different challenges. In particular, weather-induced

attenuation can be severe, affect large contiguous geographic areas, and last for extended periods

of time. The literature on the prediction of microwave and mmWave signal attenuation due to

weather conditions uses meteorological data (e.g., weather-radar echo measurements) to predict

the current/future attenuation levels [34], [35] or uses past attenuation measurements to predict

future attenuation levels [36]–[40]. Most relevant to this paper is our prior work in [37] which

employs an encoder-decoder LSTM model to predict future link attenuation levels. The main

drawbacks of [37] are that: (i) its prediction mechanism does not capture the significant spatial

correlation of the rain-induced attenuation; and (ii) its prediction mechanism is not employed to

inform any algorithm or protocol.

The literature on predictive weather-aware reconfiguration algorithms contains only a few

works [34]–[36], [41]. Most of these works, in particular [34], [35], [41], develop modifications to

standard distributed routing protocols such as Open Shortest Path First (OSPF) which due to the
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lack of centralized coordination may converge slowly, making them unsuitable for networks that

support time-sensitive applications. Only [36] leverages SDN to perform centralized predictive

network-wide reconfiguration. The framework proposed in [36] predicts future link attenuation

levels using a model specific to rain fading and then computes current and future routing decisions

aiming to maximize throughput. Some limitations of the solution proposed in [36] are that: (i) its

attenuation prediction mechanism does not capture the spatial correlation of the weather-effects;

(ii) its prediction mechanism can only be employed during periods of rain; (iii) its network

reconfiguration mechanism allows transient link congestion (i.e., it allows flows to temporarily

exceed the link capacity); (iv) its network reconfiguration mechanism does not take fairness into

account; and (v) its re-routing mechanism does not support flow splitting.

Our contributions: In this paper, we develop and evaluate, based on a real dataset, a Predictive

Network Reconfiguration (PNR) framework that leverages existing local Physical/Link layer

mechanisms and adds two new components: an Attenuation Prediction (AP) mechanism; and a

Multi-Step Network Reconfiguration (MSNR) algorithm.

The AP mechanism employs an encoder-decoder LSTM model to predict the sequence of future

attenuation levels based on past measurements, capturing both time and spatial correlation that

are typical of weather-effects without incorporating weather-related models, which allows it to

be used both in dry and rain periods, and without relying on meteorological data from external

sources such as weather radars. To train, validate, and evaluate the AP mechanism, we use a

unique dataset obtained from the real-world city-scale backhaul network in Gothenborg, Sweden

(see Fig. 1(a)) collected by Ericsson AB. The dataset contains 2,295,000 measurements of link

attenuation. In Fig. 3(a), we display the evolution of the measured attenuation for every link in

the backhaul network over a period of 1.9 hours. Notice that in the interval between t = 300

and 600 time-steps there is an increased attenuation due to rain. The spatio-temporal correlation

is evident. The AP mechanism leverages this correlation to achieve high prediction accuracy. In

particular, the AP mechanism achieves a Root Mean Square Error (RMSE) of less than 0.4 dB for

a prediction horizon of 50 seconds. We evaluate two benchmark time series prediction methods

that do not capture the spatial correlation of the weather-effects and show that both of them can

perform 30% worse than the AP mechanism in terms of RMSE.

The MSNR algorithm leverages the predictions from the AP mechanism and uses Model

Predictive Control (MPC) [42] to compute the sequence of current and future routing and

admission control decisions that: (i) maximize network utilization, while (ii) achieving max-min
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fairness among the base-stations sharing the network and (iii) preventing transient congestion

that may be caused by re-routing. This sequence of routing and admission control decisions are

employed by the centralized SDN controller to reconfigure the network over time. For example,

based on a prediction that a set of links will become unavailable in 30 seconds, the MSNR

algorithm can determine when it is optimal for the SDN controller to redirect flows in order to

avoid potential interruptions to service and can decide whether or not it is necessary to revoke

network slices from low priority services. An important challenge associated with the MSNR

algorithm is computational complexity. In Sec. IV-C, we proposed a principled implementation

of the MSNR algorithm which has a computational complexity that grows polynomially with the

prediction horizon, as opposed to a naive implementation that can have exponential complexity.

We evaluate the PNR framework using the data collected from the backhaul network. Our

results show that the PNR framework can improve the instantaneous network utilization by more

than 200% when compared to reactive network reconfiguration algorithms that do not prepare

the network for future disturbances. To the best of our knowledge, this is the first attempt to

propose and evaluate, based on a real dataset, an integrated framework for x-haul network

reconfiguration that leverages the spatio-temporal correlation of the weather-effects to jointly

optimize routing and admission control decisions. A patent including some of the results is

pending [43].

This paper is organized as follows. Section II describes the network model and the dataset.

In Sec. III, we develop the AP mechanism. In Sec. IV, we develop the MSNR algorithm. In

Sec. V, we evaluate the performance of the PNR framework. Section VI concludes the paper

and discussed future work.

II. PROBLEM FORMULATION AND DATASET

In this section, we present the network model used to develop the PNR framework. We first

describe the model in general and then establish the connection between the model and the

real-world backhaul network. Let G = (V,E) be the directed graph that represents an x-haul

communication network with base-stations, also called nodes, n ∈ V = {1, 2, . . . , N}, connected

by wireless links (k, l) ∈ E where k, l ∈ V and (k, l) represents the link k → l. Time is divided

into time-steps with index t ∈ {1, 2, . . . , T}, where T is the time-horizon and the time interval

between t and t+ 1 is ∆ = 10 seconds. Let dn > 0 be the demand associated with commodity

n ∈ V . The demand dn represents the uplink traffic that base-station n aggregates from its
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associated users. Let zn,t ∈ [0, 1] be the fraction of the demand dn admitted during time-step t.

It follows that the admitted demand from base-station n during time t is given by zn,tdn. For

simplicity, we assume that demands dn remain fixed over time and that node N is the common

destination for all commodities n ∈ V \N . Naturally, for the common destination N , we have

dN = 0 and zN,t = 0, ∀t. Let f (k,l)
n,t ∈ [0, 1] be the fraction of the admitted demand zn,tdn that

flows through link (k, l) during time t. By definition

f
(k,n)
n,t = 0,∀(k, n) ∈ E,∀t ; (1)

f
(N,l)
n,t = 0,∀n ∈ V, ∀(N, l) ∈ E,∀t ; (2)

f
(k,l)
n,t = 0,∀n ∈ V, ∀(k, l) /∈ E,∀t , (3)

where (1) is a constraint on the incoming flows at the source nodes, (2) is a constraint on the

outgoing flows at the destination node N , and (3) enforces zero flow on non-existing links. It

follows that the total flow in link (k, l) ∈ E during time t is given by
∑N−1

n=1 zn,tdnf
(k,l)
n,t .

Feasibility and Fairness. We assume that G = (V,E) and dn are given and remain fixed over

time. We assume that routing and admission control decisions implemented by the centralized

SDN controller at time-step t, namely f
(k,l)
n,t and zn,t, respectively, remain fixed in the interval

between t and t + 1. Routing and admission control decisions at each time-step t are feasible

when they satisfy flow conservation and capacity constraints. The flow conservation associated

with commodity n ∈ V and node l ∈ V at time t is given by

N∑
k=1

f
(k,l)
n,t −

N∑
m=1

f
(l,m)
n,t =


−1, l = n

+1, l = N

0, otherwise

, (4)

where l = n indicates that node l is the source of commodity n and l = N indicates that node l

is the destination of commodity n. Let c(k,l)t ≥ 0 be the capacity of link (k, l) at time t and let

ĉ
(k,l)
t+1 ≥ 0 be the predicted capacity of link (k, l) at time t+1. Since the exact moment between t

and t+1 in which the capacity changes from c
(k,l)
t to ĉ(k,l)t+1 is unknown, we assume the worst-case

and represent the capacity in this interval by min{c(k,l)t , ĉ
(k,l)
t+1 }. Hence, the capacity constraint

associated with link (k, l) ∈ E at time t is given by∑N−1
n=1 zn,tdnf

(k,l)
n,t ≤ min{c(k,l)t , ĉ

(k,l)
t+1 } . (5)
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Definition 1 (Feasibility): The set of routing and admission control decisions at time t, namely

{f (k,l)
n,t , zn,t}, ∀n ∈ V , ∀(k, l) ∈ E, is feasible when it satisfies the flow constraints in (1)-(3),

the flow conservation in (4) and the capacity constraints in (5).

Definition 2 (Max-Min Fairness): The feasible set {f (k,l)
n,t , zn,t} at time-step t has admission

rates zn,t that are max-min fair if, in order to maintain feasibility, an increase of any zn,t

necessarily results in the decrease of zm,t of another source m for which zm,t ≤ zn,t.

The goal of the PNR framework is to dynamically optimize routing and admission control

decisions over time, taking into account future predicted network conditions, aiming to maximize

the cumulative sum of admission rates
∑T

t=1

∑N−1
n=1 zn,t, while ensuring that, in each and every

time-step t, the selected feasible set {f (k,l)
n,t , zn,t} is max-min fair and can be implemented without

inducing transient congestion. Recall that transient congestion can cause increased delay which

can severely affect time-sensitive applications. This challenging optimization problem and its

computational complexity are addressed in Sec. IV.

Real-World Network and Dataset. Consider the backhaul network in Fig. 1(a) composed of

17 wireless links whose lengths vary from 0.6 to 5.9 km and that operate between 18 and 40 GHz.

The directed graph G = (V,E) with N = 13 nodes in Fig. 1(b) is generated by assuming that

link endpoints in Fig. 1(a) that are in close proximity (up to 300 m apart) are connected by fiber

which is not capacity-limited. Under this assumption1, a node in G = (V,E) represents one or

more neighboring link endpoints in Fig. 1(a).

The backhaul network in Sweden contains a centralized data collection system (described in

detail in [44]) that periodically gathers measurements from each link (k, l) ∈ E in intervals of

∆ = 10 seconds. Each measurement in time-step t includes the transmitted and received signal

levels (in dB) represented by P
(k,l)
Tx,t and P

(k,l)
Rx,t , respectively. According to [44], the extra load

associated with the transmission of measurements via the backhaul network is insignificant.

In this paper, we consider that, in each time-step t, the following events occur: (i) the data

collection system shares the latest measurements with the centralized PNR framework; (ii) the

AP mechanism predicts the future attenuation levels x(k,l)t = P
(k,l)
Tx,t − P

(k,l)
Rx,t of every link and

the MSNR algorithm generates new routing f
(k,l)
n,t and admission control zn,t decisions; and

(iii) the SDN controller implements the new network configuration by propagating {f (k,l)
n,t , zn,t}

to the corresponding base-stations. We assume that both the transmission of measurements

1Notice that other assumptions could have been made but they should not affect the generality of the results.
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{P (k,l)
Tx,t , P

(k,l)
Rx,t} and the propagation of routes and admission control updates {f (k,l)

n,t , zn,t} utilize

a negligible amount of resources from the backhaul network. It is important to emphasize that

these control packets are transmitted at most once in every 10 seconds.

To train, validate, and evaluate the PNR framework we use the directed graph G = (V,E)

together with a dataset containing 2, 295, 000 measurements (i.e., 135, 000 per link) and a train-

validation-test split of 80-10-10. The test data utilized to evaluate the PNR framework in Sec. V

is composed of three sequences of measurements, each containing a period of rain: Test Seq. I

with 87, 890 measurements collected over a period of 14.3 hours on 2015-06-02, Test Seq. II

with 11, 900 measurements collected over a period of 1.5 hours on 2015-05-19, and Test Seq. III

with 94, 690 measurements collected over a period of 15.5 hours on 2015-06-17.

III. ATTENUATION PREDICTION MECHANISM

In this section, we present the AP mechanism which predicts future link attenuation lev-

els based on historical data, capturing both time and spatial correlation that are typical of

weather-effects. Next, we describe the encoder-decoder LSTM model and the training process.

In Sec. V-A, we compare the performance of the AP mechanism with two benchmark time series

prediction methods.

A. Encoder-Decoder LSTM Model

The encoder-decoder LSTM model is a Recurrent Neural Network designed to address sequence-

to-sequence prediction problems such as machine translation, natural language generation, and

speech recognition [45]–[47]. The model is composed of two main parts: the encoder, which

maps the input sequence into a state vector and the decoder, which maps the state vector into

a sequence of predictions.

The AP mechanism employs the sliding-window method and the encoder-decoder LSTM

model illustrated in Figs. 3(a) and 3(b), respectively, to predict the next H attenuation levels

based on the previous W measurements. In particular, let x(k,l)t = P
(k,l)
Tx,t−P

(k,l)
Rx,t be the attenuation

measurement for link (k, l) ∈ E at time t, and let xt = (x
(k,l)
t ) and x̂t+h = (x̂

(k,l)
t+h ) be the vector

of attenuation measurements and the vector of h-steps-ahead attenuation predictions for all

links at time t, respectively. In each time-step t, the encoder-decoder LSTM model employs

the sequence of measurements in the input window {xt−W+1,xt−W+2, . . . ,xt} to predict the

sequence of attenuation levels in the prediction window {x̂t+1,x̂t+2, . . ., x̂t+H}. Notice that the
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(a) (b)

Fig. 3. (a) Measured attenuation for all the 17 links in the network in Fig. 1 with time-steps t separated by 10 seconds

(adding up to 1.9 hours) together with an illustration of the sliding-window method with input window size of W time-steps and

prediction window size of H time-steps. The different baseline attenuation levels are due to the different characteristics of the

links in terms of distance between base-stations and transmission frequency. An increased attenuation due to rain is observed

in the interval between t = 300 and 600 time-steps. (b) Encoder-decoder LSTM model that employs the last W measurements

{xt−W+1,xt−W+2, . . . ,xt} from every link in the network (i.e., the input window) to predict the future H attenuation levels

{x̂t+1,x̂t+2, . . ., x̂t+H} in each link (i.e., the prediction window).

measurements contained in the input window allow the encoder-decoder LSTM model to capture

the spatio-temporal correlation that is typical of weather-induced attenuation. We employ an input

window size of W = 12 and a prediction window size of H = 5, which corresponds to 120

seconds and 50 seconds, respectively.

We train the encoder-decoder LSTM model to minimize the prediction error. In particular,

consider a dataset with a sequence of attenuation measurements in the interval t ∈ {1, . . . , T}.

The encoder and decoder are jointly trained to minimize the objective function:

L(Θ) =
∑T−H

t=1

∑H
h=1 ‖ xt+h − x̂t+h ‖2 (6)

where ‖·‖ represents the Euclidean norm, and Θ represents the parameters of the encoder-decoder

LSTM model, i.e., weights and biases. We implement the encoder and the decoder LSTM with

one hidden layer containing 128 units. We use the dataset collected from the backhaul network to

train, tune, and evaluate the AP mechanism. We train the AP mechanism using Backpropagation

Through Time [48] and Adaptive Moment Estimation (Adam) [49] with a batch size of 150.

The prediction accuracy of the AP mechanism is evaluated in Sec. V-A.

IV. MULTI-STEP NETWORK RECONFIGURATION ALGORITHM

SDN enables the design of algorithms that dynamically reconfigure the entire network. Build-

ing on that, in this section, we develop the MSNR algorithm, which leverages information about
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links’ future conditions to compute the sequence of current and future routing and admission

control decisions that attempt to maximize network utilization, while achieving max-min fairness

(in every time-step t) among the base-stations sharing the network and preventing transient

congestion that may be caused by re-routing. Hereafter, we denote this sequence of routing and

admission control decisions as the optimal sequence of network configurations.

The problem of finding the optimal sequence of network configurations is a generalization of

the well-known Maximum Concurrent Flow (MCF) problem [50], [51] for the more challenging

setting where: (i) a sequence of predictions of future network conditions are available and (ii)

transient congestion due to re-routing is taken into account. The MSNR algorithm employs

MPC to address this generalized MCF optimization problem. In particular, in each time-step t,

the MSNR algorithm uses its knowledge of future (predicted) network conditions to evaluate

and compare the performance of different congestion-free sequences of network configurations

{f (k,l)
n,t+h, zn,t+h}, ∀n ∈ V , ∀(k, l) ∈ E, ∀h ∈ {0, 1, . . . , H − 1} and then it selects the max-min

fair sequence that maximizes the cumulative sum of admission rates
∑H−1

h=0

∑N−1
n=1 zn,t+h. The

SDN controller implements the first configuration in the selected sequence, i.e., the configuration

{f (k,l)
n,t , zn,t} associated with the current time t. This iterative process allows the SDN controller

to account for future predicted network conditions when optimizing the current network config-

uration.

An important challenge associated with the MSNR algorithm is computational complexity. A

naive implementation of the MSNR algorithm computes and compares the performance of all

possible sequences of network configurations within the prediction window {t, . . . , t+H}. The

number of such sequences grows exponentially with H , as we will discuss in Sec. IV-C, which

could render the MSNR algorithm impractical. To overcome this challenge, we develop a prin-

cipled implementation of the MSNR algorithm which employs the structure of the optimization

problem to recursively explore the space of all possible sequences of network configurations.

This recursive method reduces the complexity from exponential O(2H) to polynomial O(H4).

Prior to introducing the MSNR algorithm, we describe: (i) the adaptive modulation mechanism

in [52], which is a Physical layer mechanism employed by the backhaul network in Sweden to

maximize link capacity over time; and (ii) the SWAN mechanism developed in [53], which is a

Network layer mechanisms that eliminates transient congestion that may be caused by re-routing.

The MSNR algorithm builds upon both these existing solutions to address the generalized MCF

problem, enabling the optimization of routing and admission control decisions over time in a
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setting where predictions of future network conditions are available.

A. Adaptive Modulation Mechanism

Three parameters that can be dynamically adjusted to compensate for high attenuation levels in

microwave and mmWave links are: the transmission power, the coding rate, and the modulation

scheme. The dataset utilized in this paper was collected for a backhaul network that uses radios

similar to the ones described in [44], [52] which: (i) employ a constant transmit power P (k,l)
Tx,t

and a constant coding rate over time; (ii) use Quadrature Amplitude Modulation (QAM) with

adaptive constellation size M ; and (iii) use a fixed channel bandwidth of 28 MHz that achieves

a capacity of 45 Mbps when M = 4. Recall that when M is increased by a factor of k, the

capacity c(k,l)t increases by a factor of log2 k and the Bit Error Rate (BER) decreases according

to [54, Eq. (18)].

The adaptive modulation (AM) mechanism adjusts the constellation size M over time, aiming

to maximize link capacity c(k,l)t while keeping the BER above a given threshold. For complying

with the description of the radios in [52, Sec. II.B], hereafter in this paper, we consider a

wireless x-haul network that employs the AM mechanism with hysteresis represented in Table I.

In particular, we consider that every link (k, l) ∈ E uses radios that adapt their constellation size

M at each time-step t based on Table I and on their measured received signal level P (k,l)
Rx,t . The

limit up in Table I represents the received signal level in which the adopted M should increase.

The limit down represents the received signal level in which the adopted M should decrease

to keep the BER above the set threshold. Notice that Table I represents a mapping from the

evolution of the received signal levels P (k,l)
Rx,t over time to the evolution of the link capacities

c
(k,l)
t over time.

B. The Cost of Re-routing

One possible approach to dynamically optimizing the network configuration without resorting

to predictions of links’ future conditions is for the SDN controller to carry out, in each time t,

the following procedure: (i) gather information about the current link capacities c(k,l)t ; (ii) employ

existing solutions to the MCF optimization problem (e.g., [50], [51]) to find the configuration

{f (k,l)
n,t , zn,t} that maximizes the current network utilization; and (iii) implement the new routing

decisions f (k,l)
n,t and admission rates zn,t by sending control packets to the base-stations in the x-

haul network. Upon reception of these control packets, the base-stations add/remove entries from
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TABLE I

PARAMETERS ASSOCIATED WITH THE ADAPTIVE MODULATION MECHANISM WITH HYSTERESIS FOR A BER THRESHOLD OF

10−9 .

M Bitrate (Mbps) Limit up (dBm) Limit down (dBm)

4 45 -72 N/A

16 90 -66 -74

64 135 -62.5 -68

128 157 -61 -64

256 180 -57 -62

512 202.5 -53 -58

1024 225 N/A -54

their routing tables and adjust their network slice admission and provisioning accordingly. Two

important drawbacks of this approach are the delay to recover from performance drops, which is

characteristic of reactive reconfiguration mechanisms, and that it does not take into account the

transient congestion that may be caused by re-routing. Both drawbacks may severely affect time-

sensitive traffic. The MSNR algorithm proposed in Sec. IV-C addresses both drawbacks. In this

section, we discuss the negative effects that re-routing may have on the network performance.

To update routes from f
(k,l)
n,t−1 to f

(k,l)
n,t , the SDN controller may have to send control packets

to multiple base-stations. Due to communication and processing delays, some base-stations may

apply the new routes f (k,l)
n,t while others still employ old routes f (k,l)

n,t−1, which may cause significant

transient congestion and over-utilization of communication links, namely violation of the capacity

constraints in (5). Depending on the duration and magnitude of the congestion, data packets

may be severely delayed or even lost. In this case, the re-routing process is clearly imposing a

performance cost that should be taken into account when the SDN controller decides whether

or not to re-route.

In order to reduce the transient congestion associated with re-routing, a common approach

(e.g., [36], [53], [55]) is to subdivide the re-routing process into multiple stages. In each stage,

the SDN controller updates a small number of base-stations, instead of updating all of them

at the same time. Each stage is designed to generate zero (or little) transient congestion and

the complete sequence of stages is designed to lead to the desired final routing configuration.
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An important constraint is that the time for completing the re-routing process should be shorter

than the interval between two consecutive time-steps, e.g., t and t+ 1, which in this paper is of

∆ = 10 seconds. In [36], [53], [55], the authors propose different route implementation systems

that attempt to minimize the transient congestion. Yet, these route implementation systems can

only guarantee that re-routing is performed with zero congestion when a portion of the network

capacity is vacant before the update. Naturally, when all links are fully utilized, the first update

to take effect will always congest at least one link.

In this paper, we consider an SDN controller that implements any given set of new routes

f
(k,l)
n,t by employing the SWAN mechanism developed in [53]. The SWAN mechanism leverages

scratch capacity in every link to perform congestion-free re-routing. In particular, the authors

of [53] show that SWAN can update routes, i.e., change from f
(k,l)
n,t−1 to any given f

(k,l)
n,t , with

zero transient congestion in at most d1/ste − 1 stages, where st ∈ (0, 1] represents the scratch

capacity of the network at time t. Formally, st is given by

st = argmax

{
s ∈ (0, 1]

∣∣∣∣∣
N−1∑
n=1

zn,t−1dnf
(k,l)
n,t−1 ≤ (1− s)c(k,l)t ,∀(k, l) ∈ E

}
. (7)

For details on how the SWAN route implementation mechanism works, we refer the reader to

[53]. Notice that when the network has no scratch capacity, i.e., st → 0, the SWAN mechanism

needs d1/ste − 1→∞ stages to complete a single congestion-free re-routing process. To limit

the re-routing time, we impose a lower bound of smin = 0.05 on the scratch capacity, st, needed

for a re-route. Hereafter in this paper, we assume that the SDN controller is allowed to re-route

at time t if and only if st ≥ smin = 0.05.

The SDN controller employs the MSNR algorithm to compute the optimal sequence of network

configurations over time and, when necessary, it employs the SWAN mechanism to implement

new routes. In particular, in each time-step t, given the prior routing and admission control

decisions, {f (k,l)
n,t−1, zn,t−1}, the SDN controller employs (7) to calculate the current scratch

capacity st. If st ≥ smin, the SDN controller employs the MSNR algorithm to compute the

optimal sequence of network configurations and then it employs SWAN to implement the optimal

configuration {f (k,l)
n,t , zn,t} at the current time t. Alternatively, if st < smin, the SDN controller

is not allowed to re-route at time t, but it can still optimize the admission rates zn,t. In this case,

the SDN controller employs the MSNR algorithm with fixed routing parameters f (k,l)
n,t = f

(k,l)
n,t−1

to compute the optimal sequence of network configurations and then it implements the optimal

admission rates zn,t at time t. It is easy to see that admission rates can be updated from zn,t−1
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to zn,t with zero transient congestion in at most two stages, irrespective of the value of st. In

the first stage, the SDN controller updates all base-stations in which zn,t−1 > zn,t and, in the

last stage, the SDN controller updates all base-stations in which zn,t−1 < zn,t.

The routing and admission control decisions at time t determine the scratch capacity st+1 at

time t + 1, which determines whether or not the SDN controller will be allowed to re-route at

time t+1. Hence, if the SDN controller plans to re-route at time t+1, it should select a network

configuration {f (k,l)
n,t , zn,t} that will lead to st+1 ≥ smin. This can be achieved by employing, at

time t, the following capacity constraint for every link (k, l) ∈ E∑N−1
n=1 zn,tdnf

(k,l)
n,t ≤ min{c(k,l)t , (1− smin)ĉ

(k,l)
t+1 } . (8)

Alternatively, if the SDN controller plans to keep the same routes in the next time-step, i.e.,

f
(k,l)
n,t+1 = f

(k,l)
n,t , it should attempt to fully utilize the links, leaving no scratch capacity. This can

be achieved by employing the capacity constraints in (5). Intuitively, this means that, in order to

re-route in the next time-step t+ 1, the SDN controller may need to reduce the admission rates

zn,t in the current time-step t. This potential reduction of zn,t represents the cost of re-routing,

as illustrated in the following example.

Example: consider the network in Fig. 4 with N = 3 nodes, three links {(1, 2), (2, 3), (1, 3)},

and fixed demands d1 = 1 and d2 = 0.5. Assume that this network has capacities c(k,l)t = 0.5 for

all links and predicted capacities ĉ(k,l)t+h = 0.5 for all links and prediction horizons h. Moreover,

assume that st ≥ smin = 0.05, meaning that the SDN controller is allowed to re-route at the

current decision time t.

Plan to not re-route. If the SDN controller plans to keep the same routes in future time-

steps, then it adopts the capacity constraints in (5). In this toy example, it is easy to see that

the corresponding max-min fair admission rates are z1,t = z2,t = 2/3. Notice that there exists

feasible configurations {f (k,l)
n,t , zn,t} with higher sum

∑2
n=1 zn,t, but their admission rates are not

max-min fair. An example of such unfair feasible admission rates are z1,t = 0.5, z2,t = 1.

Plan to re-route. Alternatively, if the SDN controller plans to re-route in the next time-

step, then it adopts the capacity constraints in (8) with smin = 0.05. It is easy to see that

the corresponding max-min fair admission rates are z1,t = z2,t = 2/3 ∗ (1− 0.05).

Two important observations are: (i) Planning to re-route at time t+ 1 does not guarantee that

the SDN controller will be able to re-route at time t+ 1. In particular, if the capacity prediction

is inaccurate and (by chance) ĉ(k,l)t+1 > c
(k,l)
t+1 , the SDN controller may not have enough scratch
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Fig. 4. Illustration of a network with N = 3 nodes (two commodities and a destination) and three links. The admitted demands

zn,tdn at time-step t are shown within the corresponding nodes. The total flows and capacities at time-step t are shown next to

the corresponding links.

capacity at time t+1 to re-route. (ii) Planning to re-route at time t+1, can only hurt the network

performance at the current time t due to the provision of the scratch capacity, as illustrated in

the example. The potential benefits of planning to re-route at time t + 1 can only be assessed

by computing the performance of the network at future time-steps.

C. Optimal Sequence of Network Configurations

In this section, we develop the MSNR algorithm which leverages information about current

and future predicted link capacities {c(k,l)t , ĉ
(k,l)
t+1 , . . . , ĉ

(k,l)
t+H} to dynamically optimize routing

and admission control decisions aiming to maximize the cumulative sum of admission rates∑T
t=1

∑N−1
n=1 zn,t, while ensuring that, in every time-step t, the selected feasible set {f (k,l)

n,t , zn,t}

is max-min fair and can be implemented by the SDN controller without inducing transient

congestion. The MSNR algorithm addresses a generalization of the MCF problem [50], [51] for

the more challenging setting where: (i) a sequence of predictions of future network conditions

are available and (ii) transient congestion due to re-routing is taken into account.

Prior to describing the MSNR algorithm, we introduce the concept of a re-routing plan. For

a given time t and a prediction window size H , let rt,h be an indicator function that is equal to

1, if the plan is to re-route in time-step t+ h, ∀h ∈ {0, 1, . . . , H}, and rt,h = 0, otherwise. The

re-routing plan at time t is given by the vector rt = (rt,0, rt,1, . . . , rt,H). Notice that if st < smin,

then rt,0 = 0 and if st ≥ smin, then rt,0 ∈ {0, 1}. Next, we use an example to show how the

re-routing plan rt can be utilized to separate the problem of finding the optimal sequence of

network configurations into simpler sub-problems.

Example: consider a network with a prediction window size of H = 5 and a plan rt =

(0, 1, 0, 0, 1, 0) to re-route only at times t + 1 and t + 4. The network parameters associated
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TABLE II

EVOLUTION OF NETWORK PARAMETERS ASSOCIATED WITH THE RE-ROUTING PLAN rt = (0, 1, 0, 0, 1, 0).

plan capacity constraints in (9) admis. routing

rt,0 = 0 min{c(k,l)t , (1− smin)ĉ
(k,l)
t+1 } zn,t f

(k,l)
n,t−1

rt,1 = 1 min{ĉ(k,l)t+1 , ĉ
(k,l)
t+2 } zn,t+1 f

(k,l)
n,t+1

rt,2 = 0 min{ĉ(k,l)t+2 , ĉ
(k,l)
t+3 } zn,t+2 f

(k,l)
n,t+1

rt,3 = 0 min{ĉ(k,l)t+3 , (1− smin)ĉ
(k,l)
t+4 } zn,t+3 f

(k,l)
n,t+1

rt,4 = 1 min{ĉ(k,l)t+4 , ĉ
(k,l)
t+5 } zn,t+4 f

(k,l)
n,t+4

rt,5 = 0 ĉ
(k,l)
t+6 is unknown N/A N/A

with this particular plan rt are displayed in Table II. The capacity constraints in time-step t+ h

depend on whether the plan is to re-route in the next time-step t + h + 1 or not, according to

the following expression∑N−1
n=1 zn,t+hdnf

(k,l)
n,t+h ≤ min{ĉ(k,l)t+h , (1− sminrt,h+1)ĉ

(k,l)
t+h+1},∀(k, l) ∈ E . (9)

Equation (9) is a generalization of (5) and (8). The second column of Table II represents the

RHS of the capacity constraint in (9). Notice from Table II that f (k,l)
n,t+h can be updated only at

the re-routing times t+ 1 and t+ 4 while zn,t+h can be updated at every time-step. Hence, the

routing decisions at time t+ 1, namely f (k,l)
n,t+1, affect not only zn,t+1, but also zn,t+2 and zn,t+3.

It follows that the optimization problem associated with rt = (0, 1, 0, 0, 1, 0) can be subdivided

at the re-routing times, resulting in three simpler sub-problems, each of which jointly optimizes:

(i) f (k,l)
n,t and zn,t; (ii) f (k,l)

n,t+1, zn,t+1, zn,t+2, and zn,t+3; and (iii) f (k,l)
n,t+4 and zn,t+4.

In general, the optimization problem associated with any re-routing plan rt can be subdivided

at the re-routing times (i.e., times t+h in which rt,h = 1) without loss of optimality. Let {t+h1, t+

h1+1, . . . , t+h2} represent a subdivision of a re-routing plan rt. The Generalized-MCF (G-MCF)

algorithm described in Algorithm 1 jointly optimizes the routing decisions f (k,l)
n,t+h1

, ∀n,∀(k, l)

at the initial time t + h1 and the admission rates zn,t+h, ∀n,∀h ∈ {h1, . . . , h2}. To address

this joint optimization, G-MCF solves a sequence of MCF problems with increasing admission

rates zn,t+h until all commodities in the network become saturated. In particular, let k be the

iteration index of the algorithm, let U be the set of unsaturated commodities at the beginning

of iteration k, let (n, h) be the tuple that represents the index of the (N − 1)(h2 − h1 + 1)

different commodities in this subdivision of rt, and let zS(n,h) be the admission rate zn,t+h that
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saturates commodity (n, h). Initially, we have U = {(n, h)},∀n, h. In each iteration k, the

algorithm solves the MCF problem associated with the unsaturated commodities, i.e., it assigns

zn,t+h ← z̄,∀(n, h) ∈ U , and zn,t+h ← zS(n,h),∀(n, h) /∈ U , and finds the feasible configuration

(Output 1) with maximum value of z̄ ∈ [0, 1] which we denote by z̄∗. Then, the algorithm

identifies the commodities that become saturated2 in the current iteration, stores their saturation

values zS(n,h) ← z̄∗, updates the set U accordingly, and proceeds to the next iteration k + 1. The

algorithm terminates when U = ∅ and the admission rates zS(n,h) that saturate every commodity

in the network have been determined. The G-MCF algorithm finds the optimal routing and

admission control decisions within a subdivision {t + h1, t + h1 + 1, . . . , t + h2} of the re-

routing plan rt. To compute the optimal routing and admission control decisions associated with

an entire re-routing plan rt = (rt,0, rt,1, . . . , rt,H), the G-MCF algorithm is utilized in each of

its subdivisions.

MSNR algorithm. To find the optimal sequence of network configurations at time-step

t, the MSNR algorithm selects the plan r∗t with highest cumulative sum of admission rates∑H−1
h=0

∑N−1
n=1 zn,t+h. A naive implementation of the MSNR algorithm computes and compares

the performance of the (at least) 2H admissible re-routing plans. To reduce the computational

complexity from exponential O(2H) to polynomial O(H4), we propose a principled imple-

mentation of the MSNR algorithm based on backward induction which leverages the fact that

the optimization problem can be subdivided at the re-routing times without loss of optimality.

Specifically, the algorithm separates re-routing plans rt into H + 1 disjoint sets and then finds

the best plan within each set. The first set contains plans that re-route for the first time at

step t + H − 1, the second set contains plans that re-route for the first time at step t + H − 2,

and so on, until the last set which contains a plan that never re-routes. A key observation is that

computations for earlier sets can be used to simplify computations for later sets. A description

of this computation is provided below.

First Set. Consider plans rt that re-route for the first time at step t + H − 1, i.e., rt ∈

{(0, . . . , 0, 1, 0), (0, . . . , 0, 1, 1)}. The MSNR algorithm employs the G-MCF algorithm to com-

pute the optimal routing and admission control decisions for these 2 re-routing plans and then

selects the plan r
(1)
t with highest cumulative sum of admission rates at time t+H − 1, namely

2Identifying the commodities that become saturated in iteration k is not straightforward. The authors in [50] developed a

saturation test which we adapt to our network setting in lines 10 - 23 of Algorithm 1.
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Algorithm 1: Generalized-MCF (G-MCF) algorithm

1 % Let {t + h1, . . . , t + h2} be the subdivision of the re-routing plan rt under consideration and let U be

the set of unsaturated commodities at the beginning of iteration k;

2 Initialization: U = {(n, h)}, ∀n ∈ {1, 2, . . . , N − 1}, ∀h ∈ {h1, . . . , h2} and k = 0;

3 while U 6= ∅ do

4 % Find z̄ that solves the joint optimization;

5 for n ∈ {1, . . . , N − 1} and h ∈ {h1, . . . , h2} do

6 if (n, h) ∈ U then zn,t+h ← z̄;

7 else zn,t+h ← zS(n,h);

8 Solve: max z̄, s.t. z̄ ∈ [0, 1], and (1)-(4), and capacity constraints in (9) for h ∈ {h1, . . . , h2};

9 Output 1: values of z̄∗ and f
(k,l)
n,t+h;

10 % Identify the new saturated commodities (n, h);

11 Determine the set D of disconnected commodities in the residual graph associated with Output 1;

12 Saturation F lag = ∅;

13 for (n, h) ∈ D do

14 % Find z̄(n,h) that solves the joint optimization;

15 Assign: zn,t+h ← z̄(n,h);

16 for (m, j) ∈ U \ (n, h) do zm,t+j ← z̄∗;

17 Solve: max z̄(n,h), s.t. z̄(n,h) ∈ [0, 1], and (1)-(4), and constraints in (9) for h ∈ {h1, . . . , h2};

18 Output 2: values of z̄∗(n,h) and f
(k,l)
n,t+h;

19 if z̄∗(n,h) = z̄∗ then

20 Saturation F lag ← Saturation F lag ∪ (n, h);

21 for (n, h) ∈ Saturation Flag do

22 Assign: zS(n,h) ← z̄∗;

23 Assign: U ← U \ (n, h);

24 k ← k + 1

25 % Find the max-min fair feasible configuration;

26 for n ∈ {1, . . . , N − 1} and h ∈ {h1, . . . , h2} do

27 Assign: zn,t+h ← zS(n,h);

28 Obtain: f (k,l)
n,t+h that satisfy (1)-(4) and capacity constraints in (9) for h ∈ {h1, . . . , h2};

29 Output 3: values of zn,t+h = zS(n,h) and f
(k,l)
n,t+h;
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∑N−1
n=1 zn,t+H−1.

Second Set. Consider plans that re-route for the first time at step t + H − 2, i.e., rt ∈

{(0, . . . , 0, 1, 0, 0), (0, . . . , 0, 1, 0, 1), (0, . . . , 0, 1, 1, 0), (0, . . . , 0, 1, 1, 1)}. Notice that in the sub-

set of plans that re-route both at times t + H − 2 and t + H − 1, we know from the First

Set that rt = r
(1)
t + (0, . . . , 0, 1, 0, 0) has the best performance and, hence, all other plans in

this particular subset can be excluded from consideration. The MSNR algorithm computes the

optimal routing and admission control decisions for the remaining 3 re-routing plans and selects

the plan r
(2)
t with highest cumulative sum of admission rates at times t+H − 2 and t+H − 1,

namely
∑H−1

h=H−2
∑N−1

n=1 zn,t+h.

Third Set. Consider plans that re-route for the first time at step t + H − 3, i.e., rt ∈

{(0, . . . , 0, 1, 0, 0, 0), . . ., (0, . . . , 0, 1, 1, 1, 0), (0, . . . , 0, 1, 1, 1, 1)}. Notice that in the subset of

plans that re-route both at times t + H − 3 and t + H − 2, we know from the Second Set

that rt = r
(2)
t + (0, . . . , 0, 1, 0, 0, 0) has the best performance and, hence, all other plans in this

particular subset can be excluded from consideration. Similarly, in the subset of plans that re-

route both at times t+H−3 and t+H−1, but do not re-route at time t+H−2, we know from the

First Set that rt = r
(1)
t +(0, . . . , 0, 1, 0, 0, 0) has the best performance and, hence, all other plans

in this particular subset can be excluded from consideration. The MSNR algorithm computes

the optimal routing and admission control decisions for the remaining 4 re-routing plans and

selects the plan r
(3)
t with highest cumulative sum of admission rates from times t + H − 3 to

t+H − 1, namely
∑H−1

h=H−3
∑N−1

n=1 zn,t+h.

Subsequent Sets. The MSNR algorithm considers the set of plans that re-route for the first

time at steps t + H − 4, t + H − 5, . . ., t and employs an analogous procedure in order to

determine the best plans r
(4)
t , r(5)t , . . ., r(H)

t .

Last Set. The MSNR algorithm compares the performance of the best plans r
(h)
t , ∀h ∈

{1, 2, · · · , H} with the performance of the never re-route plan (0, . . . , 0, 0) and then selects

the plan r∗t with highest cumulative sum of admission rates
∑H−1

h=0

∑N−1
n=1 zn,t+h in the entire

prediction window. The routing and admission control decisions associated with r∗t are the

optimal sequence of network configurations.

Remark 3 (Computational Complexity): To find the best plans r
(1)
t , r

(2)
t , . . ., r

(H)
t in each

of the corresponding backward induction steps, the MSNR algorithm computes and compares

the performance of 2, 3, . . . , H + 1 re-routing plans, respectively. Then, in the last step of

the induction, the MSNR algorithm computes and compares the performance of H + 2 re-
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routing plans in order to find the plan r∗t and the associated optimal sequence of network

configurations {f (k,l)
n,t+h, zn,t+h}, ∀h ∈ {0, 1, . . . , H − 1}, at time t. In total, the MSNR algorithm

employing backward induction computes the performance of (H+1)(H+4)/2 re-routing plans,

as opposed to the (at least) 2H computations associated with the naive implementation. Notice

from Algorithm 1 that to compute the performance of any given re-routing plan rt, the G-

MCF algorithm solves O(H2N2) MCF optimization problems, each of which can be solved in

polynomial time [50], [51]. It follows that the MSNR algorithm has polynomial computational

complexity which grows as O(H4).

Proposition 4 (Max-Min Fairness of the MSNR algorithm): The optimal sequence of network

configurations {f (k,l)
n,t+h, zn,t+h} given by the MSNR algorithm has admission rates {zn,t+h}N−1n=1

that are max-min fair in every time-step t+h for any given h ∈ {0, 1, . . . , H−1}, irrespective of

the network topology G = (V,E), demands dn, and current and predicted link capacities {c(k,l)t ,

ĉ
(k,l)
t+1 , . . . , ĉ

(k,l)
t+H}.

Proof: Proposition 4 holds by the design of the MSNR algorithm. In the first iteration,

Algorithm 1 finds the lowest admission rate z̄∗ that saturates at least one commodity (n, h),

assigns zn,t+h ← z̄∗, and removes the new saturated commodities from the set of unsaturated

commodities, i.e., U \ (n, h). Similarly, in each subsequent iteration k, Algorithm 1 finds the

lowest admission rate z̄∗ that saturates at least one unsaturated commodity (n, h) ∈ U , assigns

zn,t+h ← z̄∗, and performs U \ (n, h). The algorithm terminates when all commodities are

saturated, i.e. U = ∅.

Consider one of the commodities (n, h) that became saturated during iteration k. To increase

its admission rate beyond saturation zn,t+h, we would have to reduce the admission rate of at

least one other commodity (n′, h) that became saturated either in iteration k or in a previous

iteration3. Notice that, by the design of Algorithm 1, the saturation admission rate of commodity

(n′, h) is lower or equal to zn,t+h. This means that, in each iteration k, the set of saturated

admission rates {zn,t+h}(n,h)/∈U is max-min fair. It follows that, upon termination, Algorithm 1

yields admission rates {zn,t+h}N−1n=1 that are max-min fair.

3Notice that if we could increase the admission rate of (n, h) beyond saturation zn,t+h without reducing the admission rates

of another saturated commodity (n′, h), then (n, h) was not saturated.
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V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the PNR framework. In particular, in Sec. V-A

we evaluate the prediction accuracy of the AP mechanism and compare it with two benchmark

time series prediction methods. Then, in Sec. V-B, we evaluate the performance of the MSNR

algorithm and compare it with two reactive algorithms using a small network with N = 3 nodes,

synthetically generated attenuation levels x(k,l)t and synthetically generated attenuation predictions

x̂
(k,l)
t+h with different (adjustable) prediction accuracies. The goal is to draw insight from this small

and controllable setting. Finally, in Sec. V-C, we evaluate the PNR framework (with both the AP

mechanism and the MSNR algorithm) using the backhaul network with N = 13 nodes illustrated

in Fig. 1 and the attenuation measurements from the dataset.

A. Evaluation of the AP mechanism

The prediction accuracy of the AP mechanism is evaluated using the test sequences of

attenuation measurements described in Sec. II. In this section, we show the results associated

with Test Seq. I and Test Seq. II, both of which include a period of rain. We first assess the

prediction error of a given link, then we analyze the prediction RMSE of the entire network

and, finally, we assess the empirical probability of large prediction errors.

Let e(k,l)t,h = x
(k,l)
t+h − x̂

(k,l)
t+h be the h-steps-ahead prediction error associated with link (k, l) at

time t. In Fig. 5(a), we compare the evolution of the attenuation measurements x(9,13)t+3 from link

(9, 13) with the 3-steps-ahead attenuation predictions x̂(9,13)t+3 generated by the AP mechanism

during an interval of 300 time-steps from Test Seq. I. In Fig. 5(b), we display the relative

frequency distribution of the 3-steps-ahead prediction error e(9,13)t,3 from link (9, 13) associated

with the entire Test Seq. I. The results in Fig. 5 suggest that: (i) the attenuation predictions

accurately track the measurements and (ii) the distribution of the prediction error e(k,l)t,h is similar

to a normal distribution with zero mean.

Weather-induced attenuation varies over time and geographical location, and also depends

on link’s characteristics such as frequency, polarization, and length, meaning that prediction

errors may differ considerably across different links. To capture the prediction error in the entire
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(a) (b)

Fig. 5. (a) Comparison of the attenuation measurements from link (9, 13) with the corresponding 3-steps-ahead predictions. (b)

Relative frequency distribution of the 3-steps-ahead prediction error.

network, we employ

RMSEavg
h =

√√√√ 1

T −H

T−H∑
t=1

1

|E|
∑

(k,l)∈E

(
e
(k,l)
t,h

)2
(10)

RMSEmax
h =

√√√√ 1

T −H

T−H∑
t=1

max
(k,l)∈E

{(
e
(k,l)
t,h

)2}
(11)

which calculate the RMSE associated with the h-steps-ahead prediction errors of all links over

the entire time-horizon and the RMSE associated with the largest h-steps-ahead prediction error

among all the links in each time-step t, respectively. In Fig. 6, we display the RMSEavg
h and

RMSEmax
h (in dB) as a function of the prediction horizon h ∈ {1, . . . , H} for Test Seq. I

and II for three prediction mechanisms: (i) the AP mechanism; (ii) the naive AP method, also

called random-walk method, which is a commonly used benchmark [56] that employs the latest

measurement as future predictions, namely x̂(k,l)t+h (naive) = x
(k,l)
t ,∀h; and (iii) the ARIMA model,

which is a well-known time series prediction model. For an example of the ARIMA model being

employed to predict rain-induced attenuation in Ku-band satellite links, we refer the reader

to [39]. It is important to emphasize that both benchmark methods (i.e., naive and ARIMA)

consider each link in isolation when predicting future attenuation levels and, thus, they do not

capture the spatial correlation that is typical of weather-induced attenuation. The results in

Fig. 6 suggest that the AP mechanism outperforms the benchmark methods in both Test Seqs. I

and II and that this performance improvement increases as the prediction horizon h increases.

In particular, when h = 1, the performance improvement (in terms of RMSEavg
h ) of employing

the AP mechanism as opposed to any of the benchmark methods is between 0% and 12%, and

when h = 5, the performance improvement is between 12% and 34%.
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(a) Test Seq. I (b) Test Seq. II

Fig. 6. RMSEavg
h and RMSEmax

h of the prediction error for different prediction horizons h and for the AP mechanism, naive

AP method, and ARIMA model.

To analyze the empirical probability of large prediction errors, we compute the percentile

associated with the modulus of the h-steps-ahead predictions errors |e(k,l)t,h |. In particular, for a

given test sequence with attenuation measurements x(k,l)t+h and associated predictions x̂(k,l)t+h from the

AP mechanism, the η th percentile value represents the lowest |e(k,l)t,h | that is larger than or equal

to η% of all the values of |e(k,l)t,h | in the considered dataset. For example, if the 95 th percentile

value for Test Seq. I and h = 3 is 1 dB, it means that 95% of all the values of |e(k,l)t,h | computed

for the entire Test Seq. I are lower than or equal to 1 dB. In Fig. 7, we show the percentile

values for different prediction horizons h ∈ {1, . . . , 5} for Test Seq. I and II. The results in

Fig. 7 suggest that, as expected, the percentile values increase with the prediction horizon h.

Moreover, the results show that 95% of the one-step-ahead and 5-steps-ahead prediction errors

are lower than 0.5 dB and 1.5 dB, respectively.

In summary, the results in Figs. 5, 6, and 7 show that the AP mechanism predicts future link

attenuation with high accuracy. Next, we show that prediction accuracy has a significant impact

on the performance of the MSNR algorithm.

B. Evaluation of reconfiguration algorithms in a small and controllable network

We compare the performance of the MSNR algorithm with two reactive network recon-

figuration algorithms, namely NEVER RE-ROUTE and ALWAYS RE-ROUTE, in terms of their

network utilization, which is captured by the evolution of the node-average admission rate∑N−1
n=1 zn,t/(N − 1) over time t. The considered network reconfiguration algorithms are:

i) MSNR algorithm: leverages future predicted capacities to decide when to re-route. In

particular, in each time-step t, it compares the performance of different re-routing plans
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(a) Test Seq. I (b) Test Seq. II

Fig. 7. Percentile for the modulus of the prediction error.

and selects the plan r∗t with highest cumulative sum of admission rates, as described in

Sec. IV-C.

ii) NEVER RE-ROUTE algorithm: attempts to maximize the admission rates zn,t by never

provisioning scratch capacity and, thus, fully utilizing links whenever possible. This reactive

algorithm operates based on the MSNR algorithm. However, instead of selecting r∗t , it

selects, in every time-step t, the re-routing plan rt = (0, . . . , 0). Under this algorithm, the

SDN controller is rarely4 allowed to re-route, but it is continually optimizing the admission

rates.

iii) ALWAYS RE-ROUTE algorithm: attempts to provision scratch capacity st ≥ smin = 0.05

at every time-step t, enabling the SDN controller to optimize routing decisions often. This

reactive algorithm operates based on the MSNR algorithm. However, instead of selecting

r∗t , it selects, in every time-step t with st ≥ smin, the re-routing plan rt = (1, 1, . . . , 1), and

in every time-step t with st < smin, the re-routing plan rt = (0, 1, . . . , 1).

Notice that all three network reconfiguration algorithms select max-min fair admission rates

zn,t at every time-step t. The main difference between them is that only the MSNR algorithm

employs the predictions of the links’ future condition to decide when to re-route. Both the NEVER

RE-ROUTE and ALWAYS RE-ROUTE algorithms simply react to the time-varying conditions of

the network. The comparison with the predictive SDN-based routing framework developed in

[36] is not possible due to the incompatible assumptions. Recall that the framework in [36]

can only be employed during periods of rain, it allows flows to temporarily exceed the link

4Notice that if the predicted capacities ĉ(k,l)t+1 are inaccurate, in particular if ĉ(k,l)t+1 < c
(k,l)
t+1 , it may happen that st+1 ≥ smin

and the NEVER RE-ROUTE algorithm is allowed to re-route at time t+ 1.
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capacity, and it does not take fairness into account, thus, making the comparison unfit. Next, we

evaluate the three reconfiguration algorithms in a small and controllable setting using synthetic

data. In Sec. V-C, we evaluate the same three algorithms using measurements collected from the

backhaul network.

The results in this section are associated with the network in Fig. 4 with N = 3 nodes and

three links {(1, 2), (2, 3), (1, 3)}. The normalized5 demands associated with nodes 1 and 2 remain

fixed at d1 = 1 and d2 = 0.5, respectively, during the time-horizon of 1, 000 time-steps. The

(actual) attenuation levels x(k,l)t and predicted attenuation levels x̂(k,l)t+h are synthetically generated

according to the following stochastic processes

x
(k,l)
t = min{max{x(k,l)t−1 + δ

(k,l)
t ;−100};−50} ; (12)

x̂
(k,l)
t+h = min{max{x(k,l)t+h + δ̃

(k,l)
t,h ;−100};−50} , (13)

for all links (k, l) ∈ E, for all time-steps t ∈ {1, . . . , 1, 000}, for all values of h ∈ {1, . . . , H},

and with x(k,l)0 sampled from a uniform distribution in the interval (−100,−50). Notice that (12)

establishes the variation of the attenuation x(k,l)t over time, while (13) establishes the noise in the

prediction x̂(k,l)t+h of the future attenuation x(k,l)t+h . The sequence of Gaussian random variables δ(k,l)t

is i.i.d. over time t, independent across links, and sampled according to N (0, 6.25). Similarly,

the sequence of random variables δ̃(k,l)t,h are Gaussian N (0, σ̃2) with positive variance σ̃2, i.i.d.

over time, and independent across different links. Notice from (13) that, a high variance σ̃2

represents an AP mechanism with poor accuracy, i.e. large prediction error. The choice of

Gaussian distribution for δ̃(k,l)t,h was inspired by the relative frequency distribution of the prediction

error shown in Fig. 5(b).

To determine the (actual) capacities c(k,l)t and the predicted capacities ĉ(k,l)t+h associated with the

synthetic values of x(k,l)t and x̂
(k,l)
t+h , respectively, we adopt a constant transmission signal level

of P (k,l)
Tx,t = 0 dBm and use the AM mechanism described in Sec. IV-A. In Fig. 8(a), we display

the evolution of the normalized values of c(k,l)t employed to obtain the results in this section.

Notice that this is a network with highly dynamic link capacities c(k,l)t .

In Fig. 8(b), we compare the evolution of the node-average admission rate (z1,t + z2,t)/2 over

time t for different reconfiguration algorithms operating with ideal attenuation predictions, i.e.,

with x̂(k,l)t+h = x
(k,l)
t+h and, as a result, ĉ(k,l)t+h = c

(k,l)
t+h . In Fig. 8(c) and in Table III, we show the time-

5Both demands and capacities are normalized with respect to the maximum achievable bitrate of 225 Mbps from Table I.
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(a) Normalized link capacity c(k,l)t (b) Node-aver. rate (z1,t + z2,t)/2 (c) Time-aver.
∑T

t=1(z1,t + z2,t)/2T

Fig. 8. Performance of the MSNR algorithm for the network in Fig. 4 with N = 3 nodes. (a) Evolution of the normalized link

capacity c
(k,l)
t over time. (b) Node-average admission rate (z1,t + z2,t)/2 for different reconfiguration algorithms with ideal

attenuation prediction (σ̃2 = 0). (c) Time-average admission rate
∑T

t=1(z1,t + z2,t)/2T for MSNR with different prediction

window sizes H ∈ {2, 3, 4, 5} and attenuation prediction accuracies σ̃2 ∈ {0, 0.0025, . . . , 9}.

average admission rates
∑T

t=1(z1,t + z2,t)/2T for different reconfiguration algorithms operating

with attenuation predictions with different accuracies σ̃2 ∈ {0, 0.0025, 0.25, 1, 4, 9, 25} and

different prediction window sizes H ∈ {2, 3, 4, 5}.

The results in Fig. 8(b) show that, as expected, NEVER RE-ROUTE has the worse performance,

while MSNR with prediction window size H = 5 has the best performance in terms of network

utilization. The poor performance of NEVER RE-ROUTE, especially between time-steps 500 and

800, results from the SDN controller not being allowed to re-route. The lower performance of

ALWAYS RE-ROUTE when compared to MSNR is due to the frequent provisioning of scratch

capacity smin = 0.05. By leveraging the prediction of links’ future conditions, MSNR can assess

the potential future benefits of re-routing6, which allows it to choose when is the best time to

re-route. Throughout the 1, 000 time-steps, the SDN controller re-routes 31, 30, 28, and 29 times

when employing MSNR with prediction window sizes H ∈ {2, 3, 4, 5}, respectively.

The results in Fig 8(c) and Table III suggest that: (i) the performance of MSNR improves as the

prediction accuracy improves and as the window size H increases and (ii) the performance gain

of improving the prediction accuracy is more significant than the performance gain of increasing

the prediction window size H , which highlights the importance of developing an accurate AP

mechanism.

6Recall from the discussion in Sec. IV-B that planning to re-route at the next time-step t + 1, can only hurt the network

performance at the current time t due to the provision of the scratch capacity.
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(a) Normalized link capacity c(k,l)t (b) Ideal attenuation prediction (c) Prediction from AP mechanism

Fig. 9. Performance of the PNR framework using data collected from the backhaul network in Fig. 1. (a) Evolution of the

normalized measured link capacity c(k,l)t over time. (b)-(c): Evolution of the node-average admission rate
∑N−1

n=1 zn,t/(N − 1)

over time for different network reconfiguration algorithms.

TABLE III

TIME-AVERAGE ADMISSION RATES
∑T

t=1(z1,t + z2,t)/2T FOR DIFFERENT NETWORK RECONFIGURATION ALGORITHMS

AND FOR ATTENUATION PREDICTIONS WITH DIFFERENT ACCURACIES.

Prediction accuracy Ideal σ̃2 = 1 σ̃2 = 25

NEVER RE-ROUTE 0.362 0.359 0.343

ALWAYS RE-ROUTE 0.453 0.449 0.427

MSNR for H = 2 0.477 0.473 0.447

MSNR for H = 3 0.478 0.474 0.449

MSNR for H = 4 0.479 0.476 0.449

MSNR for H = 5 0.479 0.476 0.450

C. Evaluation of the PNR Framework with data from a real-world network

We now evaluate the performance of the PNR framework using the data collected from the

backhaul network in Fig. 1 with N = 13 base-stations (12 commodities and one destination)

and 17 links. The normalized demands assigned to the commodities are chosen according to a

uniform distribution in the interval (0, 2). In particular, the twelve demand values7 are d = [1.111,

0.557, 1.124, 1.266, 0.174, 1.485, 0.947, 0.067, 0.140, 0.596, 1.413, 0.999]. The values of the

(actual) capacities c(k,l)t and future predicted capacities ĉ(k,l)t+h are determined by the link attenuation

measurements in the dataset, by the AM mechanism described in Sec. IV-A, and by the AP

mechanism. To train, tune, and test the AP mechanism, we use a train-validation-test split of 80-

10-10. To assess the performance of the PNR framework in a challenging scenario, we choose a

sequence of more than 400 measurements (from Test Seq. I described in Sec. II) that includes a

7Notice that similar results can be obtained for different vectors of demands.
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TABLE IV

PERFORMANCE GAIN OF MSNR WITH H ∈ {2, 5} WHEN COMPARED TO A REACTIVE ALGORITHM: NEVER RE-ROUTE OR

ALWAYS RE-ROUTE. THE PERFORMANCE GAIN METRICS IN COLUMNS 3, 4, AND 5 ARE DEFINED IN (14).

MSNR Reactive Time-average Node-average Instantaneous

H = 5 ALWAYS 7.74% 18.00% 170.19%

H = 2 ALWAYS 15.49% 26.84% 263.58%

H = 5 NEVER 1.67% 10.37% 68.37%

H = 2 NEVER 8.98% 22.04% 208.01%

period with high attenuation variability due to a rain event. Moreover, we consider transmission

signal levels P
(k,l)
Tx,t that are 10 dBm lower than the dataset measurements. In Fig. 9(a), we

display the evolution of the normalized capacities c(k,l)t from three selected links. Notice that

the variation is significant. In Fig. 9(b), we show the evolution of the node-average admission

rates
∑N−1

n=1 zn,t/(N − 1) for different reconfiguration algorithms employing ideal attenuation

prediction, i.e., ĉ(k,l)t+h = c
(k,l)
t+h . In Fig. 9(c), we display the node-average admission rates for

algorithms employing the AP mechanism to predict ĉ(k,l)t+h over time. The results in Figs. 9(b)

and 9(c) show that MSNR outperforms both NEVER RE-ROUTE and ALWAYS RE-ROUTE.

In Table IV, we display the performance gain of MSNR with H ∈ {2, 5} employing the AP

mechanism when compared to reactive algorithms: NEVER RE-ROUTE or ALWAYS RE-ROUTE.

Let z(M)
n,t and z

(R)
n,t be the admission rates associated with MSNR and the reactive algorithm,

respectively. The third, fourth, and fifth columns of Table IV are associated with∑T
t=1

∑N−1
n=1 (z

(M)
n,t − z

(R)
n,t )∑T

t=1

∑N−1
n=1 z

(R)
n,t

, max
t

{∑N−1
n=1 (z

(M)
n,t − z

(R)
n,t )∑N−1

n=1 z
(R)
n,t

}
, max

n,t

{
z
(M)
n,t − z

(R)
n,t

z
(R)
n,t

}
; (14)

which represent the time-average performance gain, the maximum node-average performance

gain, and the maximum instantaneous performance gain, respectively. The results in Table IV

show that the MSNR algorithm can improve the time-average admission rate
∑T

t=1(z1,t+z2,t)/2T

by more than 7% when compared to either ALWAYS RE-ROUTE or NEVER RE-ROUTE and, more

importantly, they also show that the gain in terms of the instantaneous per commodity admission

rate zn,t can exceed 200%. These significant instantaneous gains occur when severe rain-induced

attenuation occurs, showing that the PNR framework is able to prepare the network ahead of

time and alleviate the impact of these severe disturbances on the network performance, which

can be paramount to time-sensitive applications.
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An important observation from the results in Secs. V-B and V-C is that, when the AP mechan-

sism has high accuracy, the performance gap between MSNR with H = 2 and reactive algorithms

is significantly larger than the performance gain obtained from increasing the prediction window

size H . Adding to this observation the fact that the computational complexity of MSNR grows

with H , as discussed in Sec. IV-C, makes the PNR framework with H = 2 an attractive choice

both in terms of performance and complexity.

VI. CONCLUSION

We developed the PNR framework, that includes: (i) the AP mechanism that uses historical

data to predict the sequence of future attenuation levels, without incorporating any specific

weather-related models; and (ii) the MSNR algorithm that dynamically optimize routing f
(k,l)
n,t

and admission control zn,t decisions over time aiming to maximize the cumulative sum of

admission rates
∑T

t=1

∑N−1
n=1 zn,t, while ensuring that, in every time-step t, the selected feasible

set {f (k,l)
n,t , zn,t} is max-min fair in every time-step t and can be implemented without inducing

transient congestion. We use a real-world dataset to thoroughly evaluate the PNR framework

and to show that it allows the SDN controllers to prepare the x-haul for imminent (and possibly

severe) weather-induced disturbances. There are several open problems that will be considered

in our future work, including consideration of time-varying traffic demands dn, consideration of

downlink/uplink traffic, application to 5G slice admission and provisioning, and experimental

evaluation in city-scale testbeds.
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