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ABSTRACT
While Data-driven CDNs have the potential to provide un-
paralleled performance and availability improvements, they
open up an intricate and exciting tapestry of previously un-
addressed problems. This paper highlights these problems,
explores existing solutions, and identifies open research ques-
tions for each direction. We, also, present a strawman ap-
proach, Guard-Rails, that embodies preliminary techniques
that can be used to help safeguard data-driven CDNs against
the identified perils.
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1 INTRODUCTION
There is a growing movement to adopt data-driven network-
ing techniques to improve the performance and availabil-
ity of traditional CDNs by Akamai [54], Facebook [27, 46], 
Microsoft [10], Yahoo [3], Baidu [39, 40] (i.e., data-driven 
CDNs [23]).

These Data-driven CDNs (DD-CDNs) replace traditional 
networking heuristics (e.g., cache eviction, ABR algorithms) 
and management techniques with data-driven algorithms and 
machine learning techniques (e.g., Multi-armed Bandit-based [49] 
bitrate selection [22, 36, 48] or DeepRL driven Congestion 
control [40]). A distinguishing feature of DD-CDNs is their
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ability to collect data from multiple users, perform analysis to
generate inferences and use them to determine optimal behav-
ior for individual users. This dependency on data results in
new security, fairness, and convergence challenges within the
CDN context (specifically DD-CDN) which few have fully
explored and solved.

In this paper, we take the first step to better understand
the emerging challenges that arise due to the growing adop-
tion of these data-driven paradigms, identify practical and
valuable designs to address these challenges, and explore
holistic architectures for solving these challenges under prac-
tical deployment scenarios. Most importantly, we illustrate
the limitations of existing approaches by applying them to
a multi-armed bandit-based DD-CDN framework [38] and
analyze the system from data traces captured at a large multi-
billion user online social networking site. In particular, we
observe the following challenges.

• Security: the use of a data-driven control loop opens
the CDN to a new class of security attacks, e.g., data-
pollution – where an attacker pollutes the model by
sending malicious inputs which forces the CDN to be-
have in a suboptimal fashion;

• Unfair Resource Allocation: employing heterogeneous
policies impacts connections competing for resources
both locally within the same CDNs (e.g., a connection
may starve out others [18]) or globally across the in-
ternet (e.g., a connection may unfairly dominate the
bottleneck link [43, 52]);
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Figure 1: Canonical DD-CDN architecture.

94

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3578356.3592574
https://doi.org/10.1145/3578356.3592574
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3578356.3592574&domain=pdf&date_stamp=2023-05-08


EuroMLSys ’23, May 8, 2023, Rome, Italy Theophilus A. Benson

• Convergence: dynamically interacting and self-adaptive
closed control loops introduce novel stability and con-
vergence challenges (or lack thereof).

While security and bias in data-driven networking [16, 28,
33, 45, 55] has been previously identified, prior works of-
ten focus on problems that arise when analyzing one CDN.
Similarly, stability and fairness have been identified in the
broader multi-party setting but with limited success — ei-
ther providing fairness [1] at the cost of significant perfor-
mance [4, 5] or providing fairness and stability for a lim-
ited set of knobs [15] (e.g., transport – sending rate). They
generally overlook broader issues arising from interactions
between a broad range of control loops (both traditional and
DD-CDN) across a broad set of actions (configuration knobs).
More importantly, they do not present concrete and practically
deployable solutions for the CDN space.

In exploring the design space of existing solutions, we
discover that traditional machine learning techniques for ad-
dressing security, fair allocation, and convergence provide
limited benefits. Specifically, ML-security techniques pro-
vide limited benefits because of the inherent noisiness and
non-stationary within the CDN domain. Moreover, their mini-
mal use of rich domain knowledge unfairly limits them. On
the other hand, cutting-edge ML techniques for global and
competitive scenarios require cooperation which is unrealis-
tic in some CDN scenarios, e.g., Multi-agent Reinforcement
learning or provided limited effectiveness (generative adver-
sarial network (GAN)). The former requires joined learning
between the CDNs, which is unreasonable in specific settings,
given their inherent competition. In contrast, the latter as-
sumes that performance metrics may be untenable in highly
dynamic environments. We illustrate these issues by analyz-
ing the impact of these design choices on a representative
multi-armed bandit framework using data from a large global
CDN.

Our key observation is that these problems arise due to
unfettered trust in different entities (clients (security), local
CDN algorithms (fairness), and competing CDN algorithms
(stability)) and their interactions. We propose changes to DD-
CDN frameworks to include techniques that protect the core
DD-CDN-learning algorithm from attackers and convergence
issues due to external control loops and support a more fair
allocation of resources by dynamically constraining the learn-
ing algorithm’s action space.

This work aims to identify challenges, highlight limitations
of existing approaches, and sketch out potential solutions for
various deployment scenarios. To this end, our goal is not to
develop an entirely novel framework but to investigate ap-
propriate components and illustrate directions for integrating
them into a practical approach. Our key contributions are:

• We identify three deployment challenges that arise
when data-driven control loops are used to manage
large-scale CDNs. We demonstrate the impact of these
challenges through empirical analysis of several data-
driven frameworks with production traces.

• We then demonstrate that popular machine learning
techniques, e.g., generative adversarial networks, pro-
vide minimal impact in addressing these issues.

• We conclude with a proof-of-concept sketch for a so-
lution, Guard-Rails, that addresses these challenges by
using domain-specific algorithms to place constraints
on the inputs to the DDN technique and the set of avail-
able actions that the DDN technique can explore. We,
also, identify open research challenges.

2 DD-CDN BACKGROUND
This section provides a brief overview of existing CDNs and
approaches to designing DD-CDN.

2.1 CDN Background
To understand the potential role of data-driven enhancements,
we provide a brief overview of the interactions between CDNs
management techniques and networking protocols and the
CDN’s clients. Initially, a client needs to identify a CDN
server to connect to. Clients are assigned to CDN servers
based on latency, load, cache content, and many other fac-
tors [10, 13]. Next, the client initiates a connection to the
server, and both parties agree on the network protocols (trans-
port and HTTP layer) to use. The choice of protocol often
depends on a client’s networking conditions [3] and historical
data [40]. Finally, the client retrieves content from the CDN.
Content is either received from the CDN’s local cache or
retrieved from external servers (called origin). The CDN em-
ploys a sophisticated policy to determine what items to cache
– such policies may take into account client latency [56], back-
end performance [9], content popularity [8]. In sending the
data to the client, the CDN has several choices for its egress
path. Recently, much effort has gone into engineering egress
traffic routing for large hyperscalers [54].

In these CDNs, there are many opportunities for moving
beyond existing heuristics to data-driven approaches, specifi-
cally in CDN server selection (Targeting), protocol selections
(Transport, HTTP), caching policies (Caching), and egress
traffic engineering (Routing). Unsurprisingly, we have seen
many academic and recent industrial efforts shift towards
data-driven approaches for each of these dimensions. In Ta-
ble 1, we briefly summarize these efforts at the Transport and
Application layers.
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Protocol Knobs Learning Technique
Multi-Armed Bandit DeepRL ( No-Regret)

Transport [23, 38] [20, 29, 40? ? ? ]
Application [24? ? ] [8, 32? ]

Table 1: A list of representative DD-CDN techniques with
the type of learning models used highlighted.

2.2 Data-Driven CDNs (DD-CDNs)
A DD-CDN consists of several key defining components (il-
lustrated in Figure 1): (1) a learning framework, which infers
the appropriate configuration parameters to configure for a
client (or more specifically, the client’s workload (,⇠# )) –
the learning framework is usually run globally, (2) a configu-
ration agent, which runs on the CDN’s servers or routers and
provides a flexible, low-overhead interface for dynamically
tuning various configuration parameters – the configuration
agent is usually distributed with one agent on each CDN
server or router, to provide control over local configuration
parameters, and (3) CDN telemetry, which captures the state
of the current CDN applications and the environment (e.g.,
the network or the server) on which the application runs. The
CDN telemetry also captures the reward (or performance
metric) from client responses – either implicitly from the
TCP/HTTP level ACKs or explicitly through application sig-
nals.

The learning framework usually takes as input the system’s
current state and creates as output the set of configurations
that optimize the performance metric. Most learning frame-
works group users into clusters,,⇠# in Figure 2, to amortize
and scale learning efforts. The learning algorithm can either
be trained offline using modeled data or trained online us-
ing an exploitation/exploration-based system. The machine
learning techniques are often run in a centralized fashion,
and the clients are trusted to provide accurate results. Fi-
nally, each CDN will independently run its own control loop
due to trust and economic reasons, potentially using different
learning algorithms. As more CDNs adopt data-driven ap-
proaches (Figure 2), the learning algorithms for these systems
will start to interact with each other and potentially compete
with non-DD-CDNs (i.e., traditional CDNs using hand-tuned
configurations, )A03 �⇠⇡#⌫ in Figure 2). Moreover, we ex-
pect that DD-CDNs will start to interact and compete with
non-DD-CDNs (CDNs using hand-tuned configurations) at
various bottleneck locations.

Several interesting challenges arise as a result of the grow-
ing adoption of machine learning techniques for managing
CDNs. Next, we highlight three such challenges:

• Security: In many of these data-driven approaches,
users are often grouped based on workloads or envi-
ronmental characteristics, and the performance metric
returned by a user impacts the model’s behavior for
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Figure 2: Deployment Challenges for DD-CDN.

other members in the group – while some techniques
group users based on IP-prefixes [3, 40], others [22]
group on more extensive features (e.g., device type and
city). For example, in Figure 2, workload clusters,,⇠1
and ,⇠2, both have malicious users in their groups,
and these users can influence the CDN server’s be-
havior, thus impacting server utilization or end-user
experience.

• Resource Allocation (Fairness): While the use of tai-
lored configurations enhances the CDN’s performance,
anecdotal evidence suggests that many configuration
choices can lead to unfairness both locally within the
CDN (e.g., unfair use of CPU) or globally on the inter-
net (e.g., unfair bandwidth allocations). For example,
in Figure 2, )A03 �⇠⇡#⌫ will not dynamically adapt
to bottleneck conditions at (2 while the DD-CDNs will,
thus ensuring that the DD-CDNs get a higher share of
the bandwidth.

• Stability (and Equilibrium): Finally, a key concern
when deploying multiple interacting control loops is
stability or convergence. This is also problematic in
the DD-CDN scenario. Specifically, when multiple DD-
CDNs interact over a bottleneck link (i.e., ⇠⇡#� and
⇠⇡#⌫ over router (2), it is unclear if their control loops
will converge, under what conditions they will con-
verge, and the general characteristics of the converged
scenario. For example, in Figure 2, ⇡⇡ �⇠⇡#�, and
⇡⇡ �⇠⇡#⇠ will tune their configuration in response
to changes in the environment and may also respond to
each other’s dynamic changes.

3 OPEN CHALLENGES IN REALIZING
DD-CDNS

Next, we discuss open challenges in protecting DD-CDN
from data-poisoning (Section 3.2), discuss the implications
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of DDNs for resource allocation and internet fairness (Sec-
tion 3.3), and conclude by highlighting the impact of DD-
CDNs on global internet health (e.g., stability or convergence)
(Section 3.4).

3.1 DataSet, Methodology, and Setup
We empirically analyze the challenges within the context of a
recently proposed Multi-Armed Bandit-based DD-CDN, Con-
figanator [38] [NSDI’22], which has been slightly modified
to specifically tune the transport layer. In particular, Confi-
ganator employs a contextual multi-armed bandit to learn
configurations and uses k-means to group clients into clus-
ters. To analyze Configanator, we re-use one of the traces
from the original paper: traces from a large global CDN that
hosts an online social networking site with over a billion users
(GlobalCDN). We analyze our use-case on a day’s worth of
traces from said GlobalCDN, which constitutes several mil-
lion requests across six continents. This data-set provides
representative and heterogeneous user interactions regard-
ing last-mile connections, end-user devices, and online ser-
vice type. We note that while we focus on one use-case, our
approach and insights readily generalize to alternative ap-
proaches based on variants of traditional reinforcement learn-
ing (i.e.,Multi-Armed Bandit [23, 24] and deep reinforcement
learning [20, 29, 32, 40]).

3.2 Security: Poisoning of DD-CDNs
Background: Machine learning (ML) techniques are vulner-
able to data-poisoning attacks, wherein an attacker can influ-
ence the decisions of the machine learning model by injecting
carefully crafted data. Many studies [16, 28, 33, 45, 55] have
shown that in settings such as DD-CDNs, data-poisoning can
easily change the behavior of the ML-Model.

Empirical Analysis: To illustrate this point, in Figure 3, we
present the results of attacking our DD-CDN framework [38,
40]. In this scenario, we assume that the attacker can compro-
mise a subset of legitimate clients, e.g., via IoT compromises,
and alter the spacing between ACK packets and the contents
of the HTTP response messages, e.g., OnLoad information –
these changes will alter the “reward” or metric given to the
learning algorithm. We vary the number of endpoints an at-
tacker can compromise from 0.3% to 10%. The figure shows
that attacks can significantly impact the model’s effectiveness
by simply perturbing the inputs. More importantly, we ob-
serve that the greater the amount of attacker traffic, e.g., 0.3%
compared with 10%, the higher its impact on the model. Most
importantly, we observe that these attacks significantly impact
the entire distribution with significant consequences for tail
performance, a significant concern for modern CDNs [18].

Existing defenses [16, 50] build on the insight that: (1)
attackers try to influence the ML-model by introducing data

points that either have a distinctly different distribution than
the underlying data [16] or (2) attackers are malicious clients [50].
Thus detection can be achieved by performing anomaly detec-
tion on the clients directly [50] or anomaly detection on the
distributions of the data [16]. The DD-CDN scenario presents
distinctly different constraints: Due to several sources, e.g.,
last-mile issues, honest clients can generate unrepresentative
data points [22]. For example, a phone with a low battery
may have a page load time that does not represent normal
conditions. Thus, honest clients may occasionally but un-
knowingly poison the data set. Moreover, other more targeted
techniques require special hardware, i.e., SGX [21], at the
devices creating the data (i.e., clients); however, most CDN
operators cannot change the software and hardware of the
clients. Unfortunately, the attackers are given significantly
more freedom because of the lack of control over the end-
points. Thus, practical solutions must detect poisoning and
Sybils without client-side cooperation.

Next, we explore one of the most recently proposed and
most promising approaches for improving the security of
data-driven networking techniques, which uses Conditional
Generative Adversarial Networks (CGANs) to detect adver-
sarial attacks [31]. In Figure 3, we present results of using the
more advanced CGANs and simpler GAN (Generative Adver-
sarial Networks) to address these data-poisoning attacks; we
observe that both techniques do improve performance but that
they do not effectively eliminate the problem. Additionally, as
highlighted by prior work, we observe the CGAN does much
better than GANs.

Figure 3: Varying the level of data pollution (i.e., # of
compromised clients) reduces the accuracy and perfor-
mance of the DD-CDN framework (i.e., MAB+NC). The
MAB+NC shows initial DD-CDN performance without
any attacks. The other bars show how varying levels of
attack impact the model’s peformance.

Challenge #1: The lack of control over client-end points
introduces unique challenges because of the noise in the data
and the potential for adversarial clients.
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Opportunity #1: Unlike general Machine learning-based
defensive techniques for data pollution, within the network-
ing domain, there are side channels through which we can
reliably capture “hints”. We can use domain knowledge about
the network or active measurements from the network to iden-
tify potentially malicious behavior. For example, we can use
RTT measurements or traceroutes to confirm, detect, or label
potentially suspicious behavior. At a high level, this approach
of using “hints” is similar to existing work on problem di-
agnosis and localization, which aim to detect and pinpoint
the location of a problem. However, our problem is suffi-
ciently different; while diagnosis seeks to identify groups of
misbehaving clients, our goal is to determine further if such
misbehavior is malicious or not.

3.3 Resource Allocation: Global Fairness and
Competing Objectives

Background: Today, most approaches to enabling DD-CDNs
focus on largely solving a single objective: performance or
availability. However, there are multiple unexplored conse-
quences of using heterogeneous configurations, both locally
on the servers and globally on the internet. Specifically, tun-
ing the transport layer can lead to fairness issues in the WAN
(Wide-Area Network). Where-as tuning any parameters, e.g.,
ABR or HTTP, can lead to different resource allocations
on the server [18, 56]. More concretely, different parame-
ters/options require different CPU/memory resources.

Empirical Analysis: To illustrate, we analyze the CPU
overheads of different HTTP/TCP options for different con-
nections. To do this, we set the workload (i.e., requests per
second) and the network conditions (i.e., bandwidth, loss,
RTT) to be fixed but vary the application’s TCP/HTTP config-
uration knobs. We observe a 20-30% difference: intuitively,
such differences are not surprising because the different con-
figuration options will use different code paths, invariably
leading to different resource footprints. Similarly, when em-
ulating the wide-area network, we observe that the different
configurations can lead to different bandwidth shares and
unfairness. We do not quantify the network unfairness be-
cause significant work [11, 37, 43] has been done to explore,
analyze, and quantify unfairness between different configura-
tions.

A naive solution is to manually restrict and limit the con-
figuration space statically. To better understand the implica-
tions of such a choice, in Figure 4, we explore the impact
of re-running our DD-CDN use case but with only TCP-fair
configuration knobs – as defined in [38]. We observe that
while there is some reduction in performance (2-7%), there
is still a clear benefit to using these DD-CDN techniques,
and the benefit arises because the top configurations being
used are not necessarily the most aggressive. In fact, prior

Figure 4: performance of DD-CDN usecase without unfair
Configuration knobs (e.g., BBR, high ICW values etc.).

work [19, 51] has shown that, counterintuitively, using newly
recommended configuration knobs, e.g., BBR or higher ICW,
can have negative consequences on performance (e.g., high
ICW [19], spdy [51], BBR [11]).

Challenge #2: Unfortunately, statically restricting this con-
figuration space is overly rigid and limits a DD-CDN’s ability
to dynamically adapt and evolve to the network’s changing
characteristics: we highlight that dynamically restricting this
space and exploring suboptimal configurations can still yield
significant benefits. However, there are several challenges
to such a dynamic and automated approach. First, visibil-
ity, while a CDN can easily detect CPU or memory over-
heads, the CDN can not quantify the level of unfairness in
the WAN because network level unfairness is a function of
all flows sharing the bottleneck link: prior works have shown
that the level of unfairness depends on the number of com-
peting flows [11, 37, 52]. Second, control, while a CDN can
dynamically alter the locally competing flows to ensure safe
interactions, on a global scale, the CDN can not control other
CDN’s connections.

Both on the local and global scale, dynamically configur-
ing and tuning to greedily maximize a performance objective
is myopic and can have disastrous consequences. Addi-
tionally, extending existing reward maximization-based DD-
CDN models to address this issue directly is non-trivial in
the presence of competing DD-CDN models because these
approaches do not operate effectively in non-stationary and
adversarial environments created by competitive DD-CDN
control loops.

Opportunity #2: Abstractly, the ideal solution limits the
DD-CDN’s configuration parameters and knobs to a subset
that has been proven to be fair both locally and globally:
for example, a subset of transport configuration parameters
have been theoretically and empirically proven to be TCP-
friendly [26, 52] (i.e., they are fair with TCP NewReno).
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3.4 Stability: Global Interactions between
CDNs

Background: We conclude by discussing the interactions
between the various DD-CDN control loops. As discussed
earlier, multiple CDNs are working towards different incar-
nations of DD-CDN control loops. A challenge that arises
when multiple closed-looped networking systems [6, 17, 30]
are interacting is convergence; the DD-CDN domain is no
different. For example, the performance of a specific transport
protocol (or transport configuration parameters) is a function
of (1) the bottleneck link’s network conditions and (2) the
configurations of the other connections sharing the bottleneck
link. This fact implies that multiple DD-CDN may analyze
the current bottleneck and make the optimal decisions for
this condition; however, if any DD-CDN changes its choices,
this change may force other DD-CDNs to make changes ac-
cordingly. This cycle may continue Ad nauseam, with each
CDN continually reacting to the other CDNs or to underlying
changes in the network conditions or workloads.

Empirical Analysis: Motivated by these potential oscilla-
tions, next we attempt to understand if a “Nash equilibrium”
exists when multiple DD-CDNs are interacting over the net-
work. Specifically, we want to understand if they ever con-
verge to some stable configurations, i.e., a Nash equilibrium,
or if they are consistently oscillating between configurations.
To do this, we re-use the simulator from Configanator [38] to
simulate a scenario where two distinct CDNs with different
websites (randomly selected from the top Alexa-top 1000)
are employing our DD-CDN to tune the transport layer. We
evaluate their interactions across many different networking
conditions. To more directly characterize the equilibrium be-
havior, we generate and feed data from our simulator into a
game-theoretic tool for characterizing nash-equilibrium [25].
In Figure 5, we present the results of this analysis: we observe
that in a minority of situations (< 30%), there are situations
where no equilibrium exists; however, in many situations,
multiple different equilibria exist. Also, we observe a corre-
lation between the configuration in the equilibria and the set
of fair configurations. Intuitively, equilibria consist of fairer
configurations because there is less incentive to switch.

Challenge #3: Understanding the equilibrium behavior of
multiple interacting DD-CDN is an open challenge. The key
issue lies in the distributed and decentralized nature in which
each DD-CDN makes its decisions. Unfortunately, existing
approaches to analyze and design DD-CDNs [2, 22, 48] often
overlook this issue, and the simulation-based analysis do not
include these interactions. Despite the lack of work, under-
standing equilibrium remains a significant problem, and more
importantly, understanding the changes required to allow a

Figure 5: Nash equilibrium analysis of two interacting
DD-CDNs.

DD-CDN model to converge quickly towards a safe equilib-
rium – where safety is defined as a function of the price of
anarchy.

Opportunity #3: An essential step towards designing for
equilibrium lies in understanding if a nash-equilibrium ex-
ists for modern DD-CDNs– lacking such an equilibrium,
we would need to rethink the core algorithm underlying
these DD-CDNs fundamentally. Motivated by the existence
of such equilibria (Figure 5), we argue for exploring solu-
tions inspired by prior work on routing and transport conver-
gence [14, 44, 47]. Prior works have addressed this problem
in one of two ways: first, by adding timers and by restricting
the flexibility of the control loop [14, 44, 47] or second, my
revisiting the model design to leverage regret minimization
instead of reward maximization [7, 15, 41].

4 A PATH FORWARD: GUARD-RAILS
Our central argument is that the identified issues arise be-
cause of an overly open architecture that trusts clients (hence
security issues), trusts the control loop (thus fairness issues),
and trusts other CDNs (hence stability/convergence issues).
We take the first step towards addressing these problems by
introducing designs that limit the architecture’s trust in clients,
the learning algorithm’s control loop, and other CDNs.

To address this, our system, Guard-Rails, retroactively im-
proves a DD-CDN architecture by introducing a unique and
practical data-driven ensemble that limits the implications
of this over-trust. In designing our ensemble, our aim is to
avoid overhauling existing DD-CDNs to use a new machine-
learning algorithm but rather to propose a practical synthesis
of existing techniques that allows DD-CDNs to continue to
use their current machine-learning models. Essentially, we
provide the design of a CDN-specific data-driven pipeline
that provides a unique synthesis of standard techniques to
detect and prevent the problems under consideration (albeit
in a non-conventional method). The key emphasis and mo-
tivation for building a pipeline atop standard techniques is
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ensuring that the resulting pipeline addresses operational and
deployment issues.

4.1 Solution Design Space
Abstractly, we can address these challenges in a purely ML-
driven fashion by using techniques like GAN to identify and
filter attack traffic and by exploring recent work on multi-
agent learning or regret minimization (no regret) models to
address equilibrium and convergence. However, as shown
in section 3 and supported by prior work [53], care must be
taken when exploring purely ML-based solutions.

Alternatively, we can explore a fusion of an existing pro-
tocol and a data-driven approach. Recently, Orca [1] showed
that such combinations could improve fairness and conver-
gence. Unfortunately, such fusions have three drawbacks: first,
such techniques inherit the rigidity and inflexibility of exist-
ing protocol (e.g., Orca inherits Cubic’s limitations); second,
such fusions can compromise the effectiveness of the ML
techniques (e.g., Orca is less aggressive [4]); and third, to ef-
fectively address all challenges, we need to combine multiple
protocols whose interactions are not clearly understood (e.g.,
Orca does not address security issues).

At the other end of the spectrum is a largely domain-driven
approach, wherein domain-specific techniques protect the
DD-CDN by limiting the inputs and restricting outputs while
keeping the learning algorithm unchanged.

4.2 Guard-Rails’ Architecture
Our approach explores the last design point wherein we lever-
age domain-specific techniques to limit and provide guardrails
around the core learning framework. Our system, appropri-
ately named Guard-Rails (Figure 6), limits the inputs and the
set of actions/configuration options exposed to the learning al-
gorithm. To do this, Guard-Rails introduces two key modules
into an existing DD-CDN’s ML-pipeline.

security module: The security module detects and filters
out potentially malicious inputs from attackers using active
measurements and passive data. In particular, Guard-Rails
leverages the fact that modern CDNs collect measurements
for availability reason [10] proactively. Similar to the core
learning framework, we envision that the security module
will group user sessions and perform anomaly detection and
data-depollution independently for each group. We envision
creating domain-specific predictive models that allow us to
use low-level network telemetry (e.g., packet loss distribu-
tion and latency) to approximate and infer high-level appli-
cation quality of experience metrics (e.g., GoodPut and page
load times). Unlike existing domain-specific models, e.g.,
ECON [12], which try to provide accurate predictions, our
goals are to provide general and approximate predictions of
expected application-level metrics for arbitrary applications.

We note that designing unique models for each application
across different conditions (as required by many existing
domain-specific approaches) is prohibitively costly. Instead,
we argue for exploring black-box models. We envision build-
ing on Bayesian Optimization, a non-parametric approach,
which makes few assumptions about the underlying system.
Interestingly, Bayesian optimization also provides a confi-
dence interval that allows us to determine the likelihood that
a sample is anomalous.

stability module: The stability module tries to limit the
set of existing configurations to a set that promotes fairness
and stability. The fundamental challenge with this module
is that while fairness can be conservatively determined of-
fline (TCPFriendliness), stability requires understanding the
current dynamics and, thus, online exploration. Additionally,
others [7, 15, 41] have successfully addressed stability by
switching from reward maximizing to regret minimizing tech-
niques; we note that in our experiments, regret minimization
(e.g., exp3-bandit) provides stability but at the sacrifice of
effectiveness. We observed, similar to others [15], that regret
minimization schemes are slower to adapt and thus often have
lower performance profiles.

Within our stability module, we note that equilibrium is
easier to achieve because of the offline processing to eliminate
unfair configurations. This provides two significant benefits
that improve the performance of regret minimization schemes:
(1) the search space is smaller, and (2) the equilibria discov-
ered in Sec 3.4 consist of fair configurations.

Figure 6: Guard-Rails: novel framework for protecting
DD-CDN.

Guard-Rails’s Workflow: Putting the components together,
a DD-CDN control loop enhanced by Guard-Rails behaves
as follows: First, the input data received from end-users go
through a prefiltering step wherein the security module ana-
lyzes low-level metrics to determine the bound regions and
eliminates data points outside this region as candidates for
data poisoning attacks. Second, the “arms” or actions exposed
to the learning model are limited by the stability module to
the subset that improves fairness and promotes convergence.

5 DISCUSSION
Next, we discuss several open issues regarding Guard-Rails.
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Federated CDNs: Our current work focuses on purely
competitive scenarios; however, with the growth of over-the-
top video and the desire for rich user experience, there are now
CDN brokers [35] which control traffic and configurations
across multiple CDNs. Such cooperative and collaborative
settings introduce a new point in the design space. In particu-
lar, efforts to address stability and convergence can be made
by exploring cooperative learning algorithms. A key question
here is understanding the practicality and the fit of existing
work on cooperative multi-agent learning to the DD-CDN
domain.

Scalability: A central component of Guard-Rails involves
active probing and the development of black box models for
the security module and offline determination of fair-configs.
This naturally raises questions about the scalability and over-
heads associated with building and maintaining such models
at scale. We plan to explore system designs that minimize
such overheads.

Verifiable ML: Our work focuses on keeping the machine
learning core simple and developing guardrails around it. Oth-
ers have explored techniques to introspect into the learning
algorithm to verify [42] or interpret [34] it. We note that while
we address orthogonal issues, such introspection could prove
valuable in improving the scalability of our approach. For
example, with Metis’ [34] decision tree, we can focus on
building Bayesian optimization models for each rule.

6 CONCLUSION
There is significant work on designing effective data-driven
control loops for networks – a subset of this work focuses on
CDNs. While most works focus on performance, only some
address the practical challenges that arise when data-driven
CDNs are productized. We highlight three key issues and
provide empirical evidence of their impact: security, fairness,
and stability. We show that such issues arise because of un-
fettered trust between the learning algorithms and the entire
ecosystem. Although fairness and stability are often discussed,
existing solutions are designed for specific scenarios [15] or
provide limited effectiveness [1].

Motivated by our findings, we argue for a system that intro-
duces guardrails to address these issues by limiting the trust
placed on the ecosystem by the core learning frameworks
within existing data-driven CDNs. In presenting our system,
Guard-Rails, we aim to initiate a broader discussion on the
management challenges underlying DD-CDN deployments.
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