
Actionable Data Insights for Machine Learning
Manuel Bähr

Apple
Heidelberg, Germany
mbaehr@apple.com

Nils Braun
Apple

Heidelberg, Germany
nbraun@apple.com

Katrin Honauer
Apple

Heidelberg, Germany
khonauer@apple.com

Ming-Chuan Wu
Apple

Seattle, WA, USA
ming-chuan.wu@apple.com

Abstract
Artificial Intelligence (AI) and Machine Learning (ML) have
made tremendous progress in the recent decade and have
become ubiquitous in almost all application domains. Many
recent advancements in the ease-of-use of ML frameworks
and the low-code model training automations have further
reduced the threshold for ML model building. As ML algo-
rithms and pre-trained models become commodities, curat-
ing the appropriate training datasets and model evaluations
remain critical challenges. However, these tasks are labor-
intensive and require ML practitioners to have bespoke data
skills. Based on the feedback from different ML projects, we
built ADIML (Actionable Data Insights for ML) – a holis-
tic data toolset. The goal is to democratize data-centric ML
approaches by removing big data and distributed system
barriers for engineers. We show in several case studies how
the application of ADIML has helped solve specific data chal-
lenges and shorten the time to obtain actionable insights.

Keywords: data-centric machine learning, interactive diagnostics,
data insights

ACM Reference Format:
Manuel Bähr, Nils Braun, Katrin Honauer, and Ming-Chuan Wu.
2023. Actionable Data Insights for Machine Learning. In 3rd Work-
shop on Machine Learning and Systems (EuroMLSys ’23), May 8, 2023,
Rome, Italy. ACM, New York, NY, USA, 7 pages. https://doi.org/10.
1145/3578356.3592581

1 Introduction
Applied ML is a highly iterative experimentation process
with intertwined loops of data preparation, training tuning,
and failure analysis. With advancements in hardware and
software, many efforts have contributed to training accelera-
tion [10] and training automation [9], leading to fast loops
of model training. However, the data activities, including

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroMLSys ’23, May 8, 2023, Rome, Italy
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0084-2/23/05. . . $15.00
https://doi.org/10.1145/3578356.3592581

the initial training dataset curation, post-training failure
analysis, and model evaluation, remain a time-consuming
manual process. Continuous monitoring and data updates
require a certain level of automation to guarantee a satisfac-
tory model quality over time. Data activities often require
cross-disciplinary expertise of distributed system and data
science literacy, which further prolongs turnaround time.

Post-training failure analysis is another data intensive task.
Training metrics need to be analyzed at a subpopulation level
to reveal possible limitations or biases. ML engineers need to
slice and dice the high-dimensional feature space of failure
cases so as to identify hidden patterns where models per-
form poorly. Often time, they also need to cross reference
distributions of different feature dimensions between failure
and success learning samples. The complexity of analytical
queries and the accessibility of data pose barriers that pre-
vent ML engineers from obtaining actionable data insight
promptly. The ever-growing volume of data further exacer-
bates the challenges and prolongs the turnaround time of
failure analysis.

Based on interview feedback from internal ML teams, we
derived the requirements for ADIML (Actionable Data In-
sights for ML) to democratize data-centric methods for ML.
ADIML is aimed at enabling data-centric ML [4] approaches
in a simple and intuitive way so that data scientists and ML
engineers can focus on troubleshooting data and model per-
formance. The high-level declarative programming interface
allows users to fully leverage the rich and familiar Python
ML ecosystem without an additional steep learning curve.
Interactive data diagnostics allows ML engineers to exper-
iment data improvements with rapid feedback. The main
contributions include the following.

• We summarize the data challenges and pain points
based on the interviews of various ML teams.

• We present the design of ADIML that allows ML engi-
neers and data scientists to directly explore, prepare,
drill-in, and diagnose data without the prolonged turn-
around time due to the data and system barriers.

• We present real-world case studies on how ADIML
helps improve ML productivity. The case studies range
from actionable model analysis, to sophisticated train-
ing data curation, to rapid prototyping of novel multi-
modal models, to reliable dataset reports.

The rest of the paper is organized as follows. In Section 2,
we describe the motivation of this work based on user chal-
lenges and pain points. In Section 3, we discuss the high-level

1

https://doi.org/10.1145/3578356.3592581
https://doi.org/10.1145/3578356.3592581
https://doi.org/10.1145/3578356.3592581
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3578356.3592581&domain=pdf&date_stamp=2023-05-08

design and implementation of ADIML. Next, we present use
cases in Section 4. Related work is discussed in Section 5, fol-
lowed by concluding remarks and future work in Section 6.

2 Motivation
We focus on the data challenges associated with improv-
ing ML models. In order to understand specific challenges
and pain points, we interviewed more than a dozen of ML
practitioners who work in different projects of various ML
domains. The projects range from early-stage research to
large-scale production features. The ML applications include
image understanding, machine translation, voice isolation,
and text understanding. The raw data used by those appli-
cations range from tens of thousands to millions of images,
audio snippets, videos, translations, and others. The teams
we interviewed mostly consist of specialists with deep do-
main expertise on different fields, such as linguistics, data
engineering, and ML research and engineering.

We reflect the interview feedback on the recent movement
of data-centric AI [4] and the data roadmap proposed in [8],
including data design for AI, data sculpting for AI, and data
strategies for model testing. As a result, we identified and pri-
oritized the following obstacles that slow down the adoption
of data-centric methods based on the degree of impediments.

1. Existing big data technologies require distributed sys-
tem and parallel data processing expertise. ML teams
either depend on dedicated teams to manage resources
and conduct the data tasks, or have to acquire addi-
tional data and system expertise and absorb those over-
heads. This barrier prohibits ML engineers from rapid
ad-hoc data experiments.

2. Throughout the ML lifecycle, development environ-
ments range from local machines, to data centers, to
devices. In addition, ML data appear in a wide variety
of data formats and data storage systems. A data so-
lution that abstracts away the physical compute and
storage fabric helps ML engineers focus on the qual-
ity of data and models.

3. ML model development is a scientific experiment. Ev-
ery step in the ML lifecycle is a part of the experimen-
tal setup. As a result, the experiment quickly expands
into a complex graph of different experiment configu-
rations. Such a complex experimental process requires
collaboration and reproducibility. Reproducibility
enables efficient collaboration. By easily reproducing
any failure analysis, it enables team members and part-
ner teams to verify, to refine, and to improve the ML
models.

3 Design and Implementation
We describe the high-level design goals and implementa-
tion through simple examples in this section and continue
discussions on real-world use cases in Section 4.

3.1 Overview
ADIML consists of three components – Data Diagnostics,
Data Validation, and Interactive Session Service. These com-
ponents cover all major areas of data design, data sculpting,
and model evaluation in ML model development lifecycle.
The Data Diagnostics component offers a software de-

velopment kit (SDK) to define custom data visualization
that supports interactive roll-up and drill-down, slicing-and-
dicing by configured dimensions, and dynamic filters through
a graphical user interface (GUI). The ability to roll up to statis-
tical summaries and to drill down into individual raw assets
in real-time over large scale of data enables engineers to
obtain actionable data insights easily. The Data Diagnostics
component provides its applications with data access trans-
parency and scaling transparency by leveraging open source
data processing frameworks like Dask [11] or Spark. This
is achieved by establishing an abstraction for the necessary
computation of aggregate statistics as well as filtering. We
provide an in-memory implementation as well as distributed
implementations so that aggregations and filters can be exe-
cuted on a cluster of machines.

The Data Validation component provides an SDK for defin-
ing custom data validation logic. Data Validation is similar
to unit-tests in software development, but on data. It offers a
programmatic way to guarantee desired quality of the data
before training. It also offers a programmatic way to cross
validate training data with evaluation data during failure
analysis.

Finally, the Interactive Session Service provides versioned,
configurable, and persistent interactive sessions for the ML
teams to share, to collaborate, and to reproduce results. Cur-
rently, the service provides Jupyter Notebook sessions as the
development environment. Each session allows personalized
configurations for code assets and software bundles from
a software version control system, such as git. Data Diag-
nostics, and Validation SDKs can seamlessly transition from
interactive session to unattended batch execution.

3.2 Data Diagnostics
To support data understanding, data exploration, and data
improvement via an interactive GUI, the Data Diagnostics
component provides the Explorer concept to define visual-
ization elements in View, such as single column or multidi-
mensional histograms, and custom raw data previews. One
can also add custom Filter conditions to slice and dice data
into desired subsets.

Listing 1 shows an example of creating an interactive sta-
tistical analysis for the data design and sculpting steps in
Python. The interactive GUI supporting real-time data sum-
mary and filtering is shown in Figure 1. The Explorer expects
a Pandas DataFrame or equivalent distributed data structure

2

2

as input. The user-defined function (UDF) load_dataset ab-
stracted out the nuisances of loading data from bespoke data
systems.

Listing 1. The sample code creates interactive statistical analysis.
def show_sample(row, **kwargs):.. # images with bounding box

animal_dataset = load_dataset(ANIMAL_DATA)
Explorer(filters = ["animal"],

views = ["animal", "weight",
("animal", "background"),
SampleView(details = [

CustomDetail(show_sample),
detail.Row(["animal", "background",

"weight", "age"]),
])]).show(animal_dataset)

The interactive GUI makes it easy for human experts to
identify patterns, trends, or anomalies in large datasets. In
addition to the initial dataset curation, the interactive vi-
sualization will also allow users to drill into error regions
visually or audibly during model failure analysis. The visual-
ization is integrated with Jupyter Notebooks for real-time
programmability so that the applications can be deployed
as a web page for no-code data exploration, or as a Note-
book session for rapid prototyping. The Data Diagnostics
component is extensible such that users can bring their own
custom, task-specific visualization libraries, such as those
introduced in [3].

Table 1 in Appendix A shows the programming API of the
Data Diagnostics component. It consists of basic elements
such as Filter, View, and Detail, which can be composed,
customized, and re-used in Explorer specifications.

3.3 Data Validation
Similar to check constraints in database systems, a data vali-
dation can simply be a constraint on the column domain or
a check for missing values. Data validation can also perform
more comprehensive checks, such as setting expectations on
columns’ means, or setting an expectation on the maximum
variance of a distribution. Expectations are also extensible to
take user-defined functions, e.g., using a pre-trained model
to validate the object category distribution in a new dataset.
Table 2 in Appendix A shows the programming API of

the Data Validation component. It consists of filters and
expectations, which can be composed and customized in a
Validator specification. The sample code in Listing 2 checks
the dummy animal dataset that 1) animals must be one of
the four types specified in the list, 2) the bounding box area
must be bigger than 16000 pixels, 3) the mean age of ani-
mals in each group must be less than ten, and 4) the weight
of each animal must be within 0.6 unit of its own group’s
mean weight. The execution of the expectations are opti-
mized with the common sub-expression optimization, and
the evaluation will scale out transparently based on the data

volume. The execution of the Validator returns a Boolean
value for each expectation, as well as an interactive GUI
for drilling into the failed expectations. Figure 2a shows
two out of four expectations failed. Engineers can drill into
one of the failures to see which animal category failed the
expectation in Figure 2b. The ease-of-use data validation
abstraction enables every engineer to easily conduct data
quality checks before training happens, instead of spending
time on tedious model/data troubleshooting afterwards.

Listing 2. The sample code defines four expectations on the ani-
mal dataset, where bbox_area, mean, and max_diff_from_mean are UDFs.
results = Validator(

expectations = [
Cell("animal") in ["elephant", "tiger", "lion",

"giraffe"],
Cell("box", bbox_area) < 16000,
Group("animal", Column("age", mean) < 10),
Group("animal", Column("weight", max_diff_from_mean)

< 0.6)
]

).run(animal_dataset)

3.4 Interactive Session Service
Jupyter Notebook is a vital tool for data scientists and ML
engineers to conduct rapid prototyping, troubleshooting, and
to share results. However, collaboration requires manually
passing the Notebooks around in various communication
channels, making it difficult to keep track of who made what
changes or which is the last known good version. Worse
even, if the collaboration requires other software bundles,
ensuring the integrity between code and configuration poses
significant overheads.
To tackle these common pain points, we designed and

deployed the Interactive Session Service, which is built on
top of a general Jupyter Notebook service. The Interactive
Session Service integrates with an in-house ML lifecycle
management service, authentication and authorization ser-
vices, a cloud storage service for session configurations, and
a project-centric catalog for easy sharing and collaboration.
The session configurations are strongly versioned and con-
tain references to git repositories so that code version con-
trol is handled by git. Users have the capability to pin a
session to a particular git hash for reproducibility.
Once a session is configured, with a clickable URL users

can start an interactive Jupyter Notebook session with pre-
populated software bundles, user code, and other assets based
on the configuration. The URL can now be shared to enable
collaboration easily and to ensure the consistent progress.
Common example use cases include data validation, data
exploration, or prototyping/debugging data pipelines.
To promote insight sharing, the service also offers the

possibility to store and share artifacts. For example, the re-
sults from data validation and diagnostics examples from the

3

3

(a) An interactive filter and statistical sum-
maries of animals and weights.

(b) A 2-D distribution of animal and background color. (c) A sample image preview.

Figure 1. Exploring the animal dataset via interactive summaries and previews.

(a) Clicking the arrow circled in red
to drill into failures, as shown in (b).

(b) Details showing which group(s)
failed the expectation.

Figure 2. Interactive Data validation summary report.

previous section can be exported as static and self-contained
HTML files, which include all graphical and textual represen-
tations of the results. The result files can either be archived
for later reference, or embedded in rich READMEs for dataset
documentation. For reproducibility of the results, the Interac-
tive Session Service can turn these stored artifacts back into
interactive live sessions. This not only allows team members
to retrace the steps that lead to the results, but also to be
able to continue or change the analysis.

4 Case Studies
To validate the initial product and the future directions, we
have conducted case studies on various ML domains with
positive feedback from our users.

Case 1: Robust and Reproducible Dataset Documentation

In this case study, we worked with a data engineering
team whose charter is to curate datasets for downstream ML
teams to conduct model training. Their pipelines start with
data acquisition, annotation, QA, and end with publishing
the datasets. The data range from images, to videos, to text.
In order to support as many ML teams as possible, the team
employs a high level of automation and standardization in
their data preparation workflows. Initially, their existing
pipelinesmet all the individual data requests. However, as the
number of ML projects grew, the team faced additional scale
challenges due to increased loads of specialized adjustments
on the dataset composition and data request coordination
with overlapping requirements.

Using ADIML, the team creates interactive dataset docu-
mentations, similar to data sheet proposed in [5], to allow
their users to self-service data creation and sculpting. The
rich interactive documentation enables data consumers from
different ML teams to explore and filter existing datasets be-
fore initiating a new data curation request. The benefits are
two-fold. First, exploring existing datasets and reusing them
eliminates the duplicate efforts of starting a costly and time-
consuming user-study and data acquisition. Second, since
the data acquisition and preparation represents a significant
amount of time spent on an ML project, any reduction in
latency during this phase presents material gains in produc-
tivity.

Figure 3. A static dataset summary can be easily turned into a
live Notebook session for interactive data exploration.

The interactive dataset documentation is a reusable Note-
book template that consists of necessary software packages
and a set of tailored visual components using ADIML, as
shown in Figure 3. The visual components may include sta-
tistical summaries and custom individual raw asset previews.
The dataset owners can use the template to generate a static
dataset report and publish the report with the dataset. The
dataset consumers can use the template to initiate an inter-
active Notebook session to further understand the dataset
composition or to dive deep into individual samples by slic-
ing and dicing various feature dimensions. In the interactive
session, the consumers can program additional Explorer or

4

4

Validator, as discussed in Section 3, to meet their custom
data needs.
The data engineering team, in this case study, published

a dataset Notebook template for each dataset to allow ML
teams to self-service dataset composition and sculpting. Static
reports derived from the Notebooks serve as easily accessible
dataset summaries which are updated automatically with the
creation of each new dataset version. ML teams can easily
explore existing datasets by invoking the template into an
interactive data exploration session to assess the suitability
of a dataset. The Notebook also serves as a living documenta-
tion on how to consume the data, how to visualize individual
raw assets, and how to join different datasets.

Case 2: Large Corpora Curation with Linguists in the Loop

Curating a high-quality corpus is a time-consuming ef-
fort, that often requires linguists and engineers to work in
lockstep. In this case study, a huge volume of variety of lan-
guage content was extracted from the web. However, it also
contains noise in the data. After inspecting sample content,
the linguists conveyed the idea of noise filtering to data en-
gineers. The filtered data was then presented to the linguists
for validation. Such iteration repeats as many times as neces-
sary until a satisfactory corpus is created. In most scenarios,
the linguists and the engineers will go back and repeat the
entire process to refine the corpus if the trained ML models
on the original corpus do not produce adequate quality.
The iterations between different domain experts can be

tedious and time-consuming. A small communication hiccup
or a minor change request in the filter parameters will result
in another iteration. Between iterations, the ML project is
in a busy-waiting state resulting in loss of productivity. The
problem of productivity losses exacerbates as the iteration
latency increases due to the increase of data volume.
By employing ADIML, the engineers implement an in-

teractive GUI for data exploration and filtering. It allows
the linguists to fine-tune the filters by themselves without
having to rely on engineers to intervene. It also enables engi-
neers to quickly implement new filters, which the linguists
may come up with, regardless of the scale of the data volume.
With a little training, the linguists can even implement the
visual filtering and exploration by themselves.

In this case study, the initial corpus contains 100+ million
paragraphs, but some text contains large portion of numbers
that are not very useful. Using a user-defined digit_ratio

filter allows the linguists to easily remove text that exceeds
the desired digit ratio. Visual samples of the filtered text are
displayed in real-time, as shown in Figure 4. The statistical
summaries over the entire filtered text are also available
within seconds. With the reduced overhead within each it-
eration and the reduced number of iterations, the team can
scale up the corpora curation for more language locales than
previously possible within a given timeframe.

Figure 4. Using the digits_ratio slider to filter text.

Case 3: Actionable Failure Analysis of an Image Classifier

In this application, we demonstrate how ADIML helps
with failure analysis of an image classification project. Dur-
ing the project, a candidate model yields a higher confusion
ratio among “human”, “dolphin”, and “hippopotamus”. While
there were no immediate correlations between incorrect pre-
dictions and available metadata, a visual inspection of the
samples quickly revealed clues. Using sample previews in
ADIML, as shown in Figure 5a, engineers quickly recognized
a failure pattern that many of the incorrect predictions oc-
curred on scenery with water. To test the hypothesis, the
team used an image-text encoder model to search for addi-
tional images from multiple data sources with and without
water scenery in the same Notebook session, as shown in
Figure 5b. After the re-trained model exhibits improvements
in both accuracy and recall, the team initiated a complemen-
tary data collection and annotation, adjusted the training
data, re-trained the model, and re-ran the model analysis to
verify that the misclassification problem is mitigated.

(a) Sample preview of
failed images.

(b) Using an image-text encoder model to ex-
plore images by natural language phrases.

Figure 5. Actionable Failure Analysis.

The same process is repeated to tackle the next highest
confusion errors. In many long-tail problems in ML, the abil-
ity to quickly address the most dominant errors and then
move on to address the next ones is critical to achieve the de-
sired model quality within a constrained timeframe. ADIML
allows the team to iterate fast and to validate the hypotheses

5

5

Figure 6. The customizable preview for multi-modal speech trans-
lation data: metadata, audio playback, and audio spectrograms.

before taking a potentially costly full-scale data collection
and annotation.

Case 4: Rapid Iteration on Multi-Modal Datasets from Het-
erogeneous Data Sources

In this case study, we investigated a multi-modal machine
translation ML project in its early stage. One of the chal-
lenges was due to the high variety of data sources, large
volume of data, and inconsistent data qualities. In fact, these
are common challenges that many ML teams face. The data
modalities spanned from speech audio snippets, transcrip-
tions, translations, to various combinations of these modali-
ties.
Using the custom sample previews the user could listen

to speech snippets together with visual inspection of the
audio spectrograms, transcripts, translations, and derived
metadata, such as predicted language or segment length, as
shown in Figure 6.
The capability to inspect the data visually and audibly

allows quick assessment of the data quality at this early
stage of the ML project lifecycle. The validation library can
be used to specify basic desired properties of the training
dataset, such as “transcripts should not be empty”, “audio files
should not be corrupted”, or “original and translated phrase
should be of similar length”. The set of validation criteria was
then compiled into a unit-test suite for the training data. This
unit-test suite becomes the automatic quality assurance for
the training dataset as the dataset evolves.

5 Related Work
The importance of data quality for ML has attracted recent
attention from both industry and academia [1, 2, 6, 12, 13].
Prior work focus on the validation of the training datasets,
either using traditional algorithms or employing ML to pre-
dict the data quality metrics, or to detect anomalies in the
data. They serve as inspiration and a reference of our work.

ADIML enables interactive data diagnostics, both visually
and audibly, to assist data activities throughout the ML life-
cycle.
Data visualization is an active discipline in computer sci-

ence by itself. It is not our goal to create novel data visu-
alizations, but instead ADIML combines data diagnostic al-
gorithms with user-defined interactive visualization com-
ponents. Prior works, such as [3, 7], presented how data
visualization helps ML engineers identify data anomalies
effectively, can be integrated with ADIML to enrich its visu-
alization experiences. Similarly, other visualization libraries,
such as matplotlib, plotly, altair, or LUX, are complemen-
tary to ADIML.

Other data visualization BI tools, such as Tableau and Su-
perset, are similar to ADIML in the way that they can create
interactive data visualizations. However, they require clean,
rectangular data as inputs. Scalability, pricing, and vendor
lock-ins might also be concerns when choosing a data visual-
ization solution. ADIML is lightweight Python package and
depends on a minimum set of OSS packages. ADIML’s data
engine is horizontally scalable, based on open source project
Dask [11], and it allows data processing of both rectangular
data and unstructured blob data in a consistent program-
ming experience. The data processing of ADIML can natively
span heterogeneous computes (server machines or mobile
devices) based on the modeling fidelity requirements. Lastly,
ADIML can easily integrate with pre-trained ML models as
user-defined functions for data diagnostics. The extensibility
to take user-defined functions as the first-class concept in
ADIML will enable ad-hoc use cases to satisfy the experi-
mental nature of applied ML.

6 Concluding Remarks
We presented ADIML, a toolset to democratize data tech-
nology throughout the ML lifecycle and to enable the data-
centric ML approach in a simple and intuitive way. The
design of ADIML is based on the set of challenges and pain
points we collected and validated from a wide range of ML
teams. The case studies showing how easily ADIML can en-
able ML teams to focus and to improve data quality at scale
are testimonies of its values.

Currently, ADIML provides the programming framework
with limited set of system-defined intrinsic functions to cover
common use cases. We would like to accelerate its adoption
by creating a rich content of UDFs for data visualization,
data validation, failure analysis, etc., as reusable data recipes.
In particular, we will integrate ML models as UDFs to assist
data curation as well as failure diagnosis in the near future.

References
[1] Niels Bantilan. 2020. pandera: Statistical Data Validation of Pandas

Dataframes. Python in Science Conference (SCIPY) (2020).
[2] E. Breck, M. Zinkevich, N. Polyzotis, S. Whang, and S. Roy. 2019.

Data validation for machine learning. Proceedings of the 2nd SysML
6

6

https://github.com/lux-org/lux

Component Arguments Description
Explorer (filters, views) The Explorer supports explorative statistical analysis by combining filters and views. The views show summary statistics of the

filtered data. Both filters and views can be of type Filter or View (as described below) or plain string type denoting column names.
For the latter, ADIML derives suitable Filter and View objects based on the column.

Filter (column, **kwargs) Filters are column predicates and return a filtered dataset. Available built-in filters include: CategoricalFilter, NumericalFilter,
RegexFilter. and CustomFilter. The CustomFilter allows filter operations based on a user-defined Boolean function.

View (column, **kwargs) Views define data visualization schemes. Available views are CategoricalChart, NumericalChart, Chart2D, TableView, SampleView,
and CustomView. The CustomView() allows custom data summaries and integrates with existing plotting functionality. The
SampleView accepts a list of customized Details (defined below). It also supports sorting and pagination.

Detail (column, **kwargs) Details visualize information per row. Available details are Row, Image, Audio, Video, and CustomDetail. The CustomDetail()
allows custom sample previews, e.g., user-defined functions which create audio spectrograms or images with bounding boxes.

Table 1. Programming API for Data Diagnostics.

Component Arguments Description
Validator (filters, expectations) The Validator supports data validation by combining Filters and Expectations. Filters, as defined in Table 1, are Boolean

functions for selecting the target subset of data for validation. An Expectation is a supposition that a predicate on a given
data context is true. A Context can be either Cell, Column, Row, or Group. Each expectation checks whether the specified data
characteristics are met on the filtered subset of data.

Cell (column, transformation,
predicate)

Cell performs checks defined by the predicate on a single cell. If transformation is specified, it will be applied to the cell
before the evaluation of the predicate.

Column (column, transformation,
predicate)

Column performs checks on the vector-value of the specified column. Similarly, transformation is optional and is evaluated
before the predicate.

Row (transformation,
predicate)

Row performs checks on a row basis.

Group (column, context) Group performs checks defined in the context after grouping the data on the defined column. The context is used to express
the condition that is evaluated on each group.

Table 2. Programming API for Data Validation.

Conference (2019).
[3] Alex Bäuerle, Ángel Alexander Cabrera, Fred Hohman, Megan Maher,

David Koski, Xavier Suau, Titus Barik, and Dominik Moritz. 2022.
Symphony: Composing Interactive Interfaces for Machine Learning.
Proceedings of the 2022 CHI Conference on Human Factors in Computing
Systems (2022).

[4] DeepLearningAI. 2021; accessed April, 2021. A Chat with Andrew on
MLOps: From Model-centric to Data-centric AI. https://www.youtube.
com/watch?v=06-AZXmwHjo.

[5] Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wort-
man Vaughan, Hanna M. Wallach, Hal Daumé III, and Kate Crawford.
2021. Datasheets for datasets. Communications of ACM 64, 12 (2021).

[6] Hannes Hapke and Catherine Nelson. 2020. Building Machine Learning
Pipelines, Chapter 4: Data Validation. O’Reilly Media, Inc.

[7] Fred Hohman, Kanit Wongsuphasawat, Mary Beth Kery, and Kayur
Patel. 2020. Understanding and Visualizing Data Iteration in Machine
Learning. Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems (2020).

[8] Weixin Liang, Girmaw Abebe Tadesse, Daniel Ho, L. Fei-Fei, Matei
Zaharia, Ce Zhang, and James Zou. 2022. Advances, challenges and
opportunities in creating data for trustworthy AI. Nature Machine
Intelligence 4, 8 (2022), 669–677.

[9] Lizhi Liao, Heng Li, Weiyi Shang, and Lei Ma. 2022. An Empirical
Study of the Impact of Hyperparameter Tuning and Model Optimiza-
tion on the Performance Properties of Deep Neural Networks. ACM
Transactions on Software Engineering and Methodology 31, 3 (2022).

[10] Don Monroe. 2022. Accelerating AI. Communications of ACM 65, 3
(2022).

[11] M. Rocklin. 2015. Dask: Parallel computation with blocked algorithms
and task scheduling. Proceedings of the 14th python in science conference
(2015).

[12] Christian Ruiz. 2018. Improving Data Validation using Machine Learn-
ing. Conference of European Statistics, Workshop on Statistical Data
Editing (2018).

[13] S. Schelter, D. Lange, P. Schmidt, M. Celikel, F. Viessmann, and A.
Grafberger. 2018. “Automating Large-Scale Data Quality Verification”.
Proceedings of the VLDB endowment 11, 12 (2018).

A Programming API
Tables 1 lists the high-level concepts provided by the Data
Diagnostics component. Applications start by defining an
Explorer, which contains Views and optional Filters. Filters
are Boolean functions for selecting the desirable subset of
data. Views are defined by Details, which implement the
appropriate visualization. The resulting Explorer object is
schema-bound, not data-bound. To invoke an Explorer, one
must apply it to an input dataset with compatible schema.
As a result, an Explorer is sharable and reusable.

Table 2 lists the data validation API. Applications start
by defining a Validator, which consists of optional filters
and a list of expectations. Filters are used to select the
subset of data for validation. Expectations are suppositions
that the selected data meet certain criteria. Expectations
can be expressed on cells, vectors, rows, or groups. Data
transformations can also be used to define expectations on
computed data. Validators are also schema-bound, sharable,
and reusable.
Both APIs require tabular input. However, they are most

commonly used for unstructured data. In those cases the
table typically consists of metadata about the unstructured
data that allows efficient filtering or checking. This metadata
is typically inferred from the underlying raw data or acquired
via human annotation. The Data Diagnostics component
supports this setup explicitly by visualizing raw data that
is given in form of a reference to the underlying data blob.
This also reduces the amount of necessary data transfer to
those elements that have been selected via filters.

7

7

https://www.youtube.com/watch?v=06-AZXmwHjo
https://www.youtube.com/watch?v=06-AZXmwHjo

	Abstract
	1 Introduction
	2 Motivation
	3 Design and Implementation
	3.1 Overview
	3.2 Data Diagnostics
	3.3 Data Validation
	3.4 Interactive Session Service

	4 Case Studies
	5 Related Work
	6 Concluding Remarks
	References
	A Programming API

