
A Multi-threaded Fast Hardware Compiler for HDLs
Sheng-Hong

Wang
UC Santa Cruz
Santa Cruz, USA

swang203@ucsc.edu

Hunter James
Coffman

UC Santa Cruz
Santa Cruz, USA

hcoffman@ucsc.edu

Kenneth Mayer
UC Santa Cruz
Santa Cruz, USA

krmayer@ucsc.edu

Sakshi Garg
UC Santa Cruz
Santa Cruz, USA
sgarg3@ucsc.edu

Jose Renau
UC Santa Cruz
Santa Cruz, USA
renau@ucsc.edu

Abstract
A set of new Hardware Description Languages (HDLs) are
emerging to ease hardware design. HDL compilation time is
a major bottleneck in the designer’s productivity. Moreover,
as the HDLs are developed independently, the possibility to
share innovations in compilation technology is limited.

We design and implement LiveHD, a new multi-threaded,
fast, and generic compilation framework across many HDLs
(FIRRTL, Verilog, and Pyrope). We propose new parallel full
and bottom-up passes to handle HDLs. The resulting com-
piler can parallelize all the compiler steps.
LiveHD can achieve 5.5x scalability speedup when elab-

orating a CHISEL RISC-V Manycore. It also gets from 7.7x
to 8.4x scalability speedup for a benchmark designed in all
three HDLs. This is achieved with a fast single-threaded
LiveHD baseline with 6x speedup compared to compilers
such as Scala-FIRRTL and 8.6x against Yosys on Verilog.

CCS Concepts: • Hardware → Hardware description
languages and compilation.

Keywords: HDL, Compiler Design, Parallel Compilation
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1 Introduction
Hardware design uses custom Hardware Description Lan-
guages (HDL) and compiler tools. Although Verilog is still
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the most popular HDL, it shows its age 1 and alternatives like
Chisel3/FIRRTL [8, 22], PyRTL [13], and Pyrope [41] have
gained popularity. Typically, each HDL is bundled with a
compiler that converts its high-level code into Verilog output.
Verilog is frequently regarded as the assembly code in the
software compiler stack.
Compilation time is a crucial parameter in any program-

ming language, and HDLs are no different. HDLs are primar-
ily used in ASIC/FPGA fabrication and simulation. Fabrica-
tion flows require synthesis, place&route which are inher-
ently slow. This paper aims to accelerate HDLs compilation,
the elaboration step in fabrication before synthesis, as well
as the main step in the simulation compilation.

The ideal way to speed up the HDL elaboration step is to
create a fast/parallel compiler flow that can manage multi-
ple HDLs. The compilation flow should be extensible and
allow new languages to leverage to construct a fast/parallel
compiler automatically. In the open source community, only
the concurrently designed CIRCT [5, 17] compiler has some
parallelism. Other popular HDL compilers like FIRRTL and
Yosys [49] are not parallelized.

This paper proposes a new HDL compilation framework
with the following key contributions: (1) We design a fast
parallel multi-HDLs compiler where all the compilation steps
can be done in parallel; (2) We implement a proof-of-concept
compiler, LiveHD. It supports Verilog, Pyrope, and CHIRRTL
(the highest form of FIRRTL). The compiler is faster than the
existing open-source alternatives.

LiveHD is amulti-threaded,multi-HDL fast compiler. Com-
pared with traditional non-HDL compilers, a parallel HDL
compiler must address the issue of lacking import language
feature. One key problem is that a module can be accessed
without any module declaration. It is an equivalent prob-
lem as if a non-HDL language allows function calls without
requiring an "include" or "import". Languages like Verilog
leverage the specified file processing order to solve the lack
of declaration problem.
A pre-scan pass would have problems in some HDLs be-

cause the input/outputs depend on the called modules. We
propose to dynamically resolved the IOs by constructing a
dependency tree during the internal IR generation phase.

The dependency tree directs the compiler on how to apply
parallelism. Some passes are not embarrassingly parallel [21].

1The original Verilog was designed in 1983, and current compilers are
semantically compatible with it.
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For these passes, LiveHD references the dependency tree
to select independent modules and compile with a parallel
bottom-up pass.2 The selection starts from the dependency
tree leaves. A parent module can start to be a candidate
once all of its children have been processed. This strategy is
what we refer to as bottom-up parallelism. The input/output
connections of a sub-module instantiation is an example
that requires correct compilation order from callee to caller.
Conversely, for the passes where the caller and callee are
independent, LiveHD can compile them parallelly in any
order; which we define as full parallelism in this paper.

LiveHD seeks to enable multiple languages to benefit from
the parallel compilation. Each HDL has a bitwidth specifi-
cation in addition to language semantics. It is a challenge
that generic multi-HDLs compilers like LiveHD, CoreIR [31],
and LLHD [39] need to address. For instance, Verilog sets
bits on every variable, while higher-level HDLs like FIRRTL
and Pyrope may only define bitwidth on the I/O, and the
compiler must propagate the bit inference globally through-
out modules. The front-end IR of LiveHD does not need a
bitwidth set on variables. Therefore, LiveHD can directly
bridge these languages to its front-end IR before conduct-
ing a bitwidth inference process. On the contrary, LLHD
and CoreIR require that every variable have its bitwidth ex-
plicitly set. To handle high-level languages like FIRRTL and
Pyrope, each language needs a custom compiler pass to infer
bitwidth because it is part of the language semantics. It is
similar to global type inference in compilers, except it only
performs bitwidth inference. Once more, LiveHD makes this
pass parallel with a bottom-up mechanism.
Our results show that when compiling the highest level

of FIRRTL language, CHIRRTL, LiveHD is 3x to 6x faster
than the original FIRRTL compiler in the single-threaded
compilation and 16.5x to 46.6x faster in the 16-threadedmode.
Compared to Yosys [49] for Verilog parsing and regeneration,
LiveHD gains 8.6x and 71.3x speedup, respectively, with 1
and 16 threads. LiveHD achieves high scalability because all
the compilation steps are parallel for languages like Pyrope.

2 Related Work
2.1 HDL Compilers and IRs
HDL compilation and hardware IR design have recently been
a research hotspot in the open-source community [1, 5, 7, 13,
22, 23, 29–31, 34, 35, 39–41, 45, 49]. The three main compil-
ers/IRs related are Yosys, Scala-FIRRTL, and CIRCT-FIRRTL.
Yosys: Yosys [49] is a framework for register-transfer-level
(RTL) synthesis. The main front end takes Verilog-2005 and
converts it to the internal RTLIL [49] IR through a Verilog
Abstract Syntax Tree (v-AST in Figure 1). RTLIL cannot rep-
resent high-level HDL constructs like tuple or vector. Several
front-end passes are needed in Yosys to translate the initial

2A parallel top-down is also possible, but it is not needed for how the HDLs
implemented.

Verilog AST to RTLIL and further down to a more netlist-like
construct through the proc and opt steps. Yosys compilation
is sequential without parallel passes.
Scala-FIRRTL: FIRRTL is the IR in the Chisel3 [8]. The first
FIRRTL compiler is implemented in Scala [36](Scala-FIRRTL).
A front-end Chisel3 compiler produces CHIRRTL as the input
for the Scala-FIRRTL compiler (Figure 1). The Scala-FIRRTL
compiler is not designed for compiling languages other than
Chisel3/FIRRTL. The FIRRTL compiler is sequential without
parallel passes.
CIRCT-FIRRTL: CIRCT [5, 17] is a new experimental hard-
ware IR extended from MLIR [28] and LLVM [27] communi-
ties. CIRCT framework shares the same ideas as LiveHD, i.e.,
to be the unified hardware development center. Theoretically,
it is possible to compile multiple languages through inter-
facing various front-end MLIR dialects designed in CIRCT
but right now, only the CHIRRTL input exists. The CIRCT-
FIRRTL flow (Figure 1) is concurrently developedwith LiveHD
and leverages the MLIR pass manager to handle parallelism.
The pass manager only allows some passes to be parallel
after the module interfaces are known. Only passes with full
parallelism will be executed parallelly, otherwise, CIRCT will
execute the pass sequentially.
OtherHDL IRs and compilers: LLHD [39] and CoreIR [31]
are IRs aiming to be the generic hardware representation for
the RTL abstraction level. LLHD is a statically-typed hard-
ware IR designed to capture SystemVerilog. In LLHD, the
bitwidth of variables must be explicitly defined. Thus it can-
not be easily interfaced with modern HDLs like CHIRRTL
or Pyrope, which only set bitwidth on the modules’ I/O. In
CoreIR, input HDLs like Halide [38] and Verilog are now sup-
ported, and the compilation speed is not the main concern.
Furthermore, before mapping to these two IRs, extra bitwidth
analysis passes are required to map HDLs’ bits-centric oper-
ators. Those two compilers are sequential without parallel
passes.

Several works [4, 11, 26, 30, 33, 34, 40] have been proposed
to handle the HLS abstraction. Generally, the higher abstrac-
tion offers more freedom for expressive syntaxes. However,
it usually puts more burden on the compiler to reason about
the relationship between high-level code and the generated
circuit. Also, in terms of multi-language compilation ability,
these HLS projects cannot compile Verilog sources; thus, they
lose the opportunity to reuse and optimize Verilog designs.

2.2 Software Programming Language Compilers
Several software frameworks have partially the same de-
sign concept as LiveHD in terms of parallelism and multi-
languages support.
Parallel compilation: The two widely used C/C++ compi-
lation frameworks, GCC [42] and LLVM [27] rely on a build
system such as Makefile to achieve compilation parallelism
at the file-level granularity. Several researchworks have been
recently proposed to improve compilation parallelism. The
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challenges of increasing scalability for Git and GCC appli-
cations are discussed in the research work by Bernardino et
al. [10]. The parallel GCC project [9] also aims to conduct a
multi-threaded compilation on the intra-procedure optimiza-
tions in GCC. Researchers in [19, 24] have been working on
getting higher parallelism in the link time optimization (LTO)
stage. In Lighting Bolt [37], the authors discuss how they
design the parallel mechanism to improve the performance
of the binary optimization pass.
Elixir [18] is a functional language that also focuses on

constructing highly scalable applications. The internal frame-
work launches multiple compilers to handle separate files
simultaneously. When a function dependency bottleneck oc-
curs, the framework sends waiting signals to the dependent
caller-compiler and pauses until the dependency is resolved.
LiveHD follows a dependency tree which avoids the need
to suspend/wait for the dependency to be resolved within a
running pass.
Multi-languages support: GraalVM [16, 48] is a Java vir-
tual machine framework that bridges multiple languages by
using Truffle [20] as the front-end IR. They are analogous to
the LiveHD compiler and its front-end IR, LNAST [47]. The
AST of several languages is mapped to the common Truf-
fle AST in this framework. A series of back-end GraalVM
optimizations like tree rewriting and just-in-time(JIT) com-
piling are applied to the common Truffle AST. Click and
Paleczny [12] present a graph-based SSA intermediate rep-
resentation to express optimization elegantly. The Common
Intermediate Language (CIL) [32] is used in the .NET system;
it is also an IR designed for multiple languages such as C#
and Basic.

3 LiveHD Overview
This section provides insights on LiveHDHDL support, inter-
nal IRs, and overall organization that is needed to understand
how to parallelize the LiveHD compiler in the following sec-
tion.

3.1 HDL Supported
Verilog is the de-facto language in industry, and Chisel3 is
the most widely used modern alternative to Verilog. As such,
it became clear early in the design that LiveHD would need
to support both. In addition, LiveHD also supports Pyrope,
an HDL that is still under development but with features
like global inference that affect the compile design options.
By supporting the full Verilog 2001 and some SystemVer-
ilog features, the compiler must address many details. By
supporting both languages directly, LiveHD can directly in-
terface Verilog and Chisel3 generated code at compile time,
performing optimizations across modules.
For Verilog, we use Slang [3] as the parser. Slang can

handle most of SystemVerilog, including non-synthesizable

constructs like classes. LiveHD only accepts the synthesiz-
able subset. For Chisel3 [8], we handle the CHIRRTL, which
is close to FIRRTL but directly generated by Chisel3. The
Scala-FIRRTL [22] compiler accepts the same CHIRRTL be-
fore the different lowering steps inside FIRRTL. For Pyrope,
we implement a custom parser.

Verilog Parser v- AST RTLIL

Chisel3 Scala- JVM Chir.fir High.fir Mid.fir Low.fir Verilog

Pyrope Parser prp- AST
LiveHD

Parser ( Slang) v- AST
HIR LIR

Scala-FIRRTL or CIRCT-FIRRTL 

Verilog

Chir.pb

Yosys

Chisel Front-end

 passes ssa

 passes

Figure 1. Overview of LiveHD compilation flow and com-
parisons between Yosys and Chisel3/FIRRTL compilers.

3.2 LiveHD IRs: HIR and LIR
LiveHD is constructed with two internal IRs infrastructures:
A High-Level IR (HIR) with a tree-like structure that follows
control flow, and a Low-Level IR (LIR) that uses a graph-
like structure that resembles a hardware netlist. The 3 dif-
ferent supported languages translate to HIR. There are no
major optimizations in HIR, it is used as a common bridge
before translating to LIR. The LIR has a graph represen-
tation and includes the main time-consuming passes like
copy-propagation.
Compared against non-hardware compiler IRs, HIR is

something between the HIR and MIR from Rust [6], or closer
to the AST than LLVM IR. TheHIR resembles the LNAST [47]
and the high-level FIRRTL [22]. Internally, HIR has a Static
Single Assignment (SSA) [14] pass that can enable its com-
piler optimization steps. However, in this paper, the primary
function of HIR is to remove all control flow structures prior
to generating an LIR.
LIR is a bi-directional hypergraph representation closer

to a hardware netlist. Each graph node corresponds to a cell
like an AND gate, and it can have multiple cell pins as sinks
or drivers. LIR resembles Lgraph [46] and Yosys RTLIR [49],
but it restricts to have a single driver per cell pin, and many
other implementation differences like the number of cells.
For each LIR node, there is an equivalent HIR node, but not
vice-versa.

LIR has HDL-specific passes like bitwidth inference and
code optimization. Although possible to do some of the steps
in HIR, LIR has several traversal algorithms like the topolog-
ical sort that simplify the design.

3.3 LiveHD Overview
Figure 1 shows the high-level overview of the LiveHD com-
piler. At the front-end, LiveHD currently compiles three
HDLs: FIRRTL, Pyrope, and Verilog. Language source codes

27



CC ’23, February 25–26, 2023, Montréal, QC, Canada Sheng-Hong Wang, Hunter James Coffman, Kenneth Mayer, Sakshi Garg, and Jose Renau

are first translated into language-specific parse trees. As an
illustration, prp-AST by our own Pyrope parser, v-AST via
Slang [3], and Chir.pb via Protocol Buffers [2].

Each language has a custom pass that translates from its in-
ternal AST to HIR. Once in HIR, the three languages share the
same data structure. By targeting HIR, the language designer
does not need to worry about SSA, control flow conversion,
variable scopes, and many other constructs shared by most
languages. Thus, targeting HIR relieves language designers’
efforts.

Unlike MLIR [28], each language does not require explicit
nodes. Instead, HIR allows for creating function calls to black-
boxed modules as needed. This is used by the FIRRTL pass,
which converts a FIRRTL operation to an HIR blackbox func-
tion call. This enables per-language custom passes while
still allowing each compiler pass to handle the semantics
correctly.
LiveHD translates from HIR to LIR. An HIR node can

require multiple LIR nodes. LIR employs most of the LiveHD
compilation passes, including copy-propagation, constant
folding, peephole optimization, and bitwidth inference, to
produce the optimized output.

LIR is a hierarchical hypergraph. By hierarchical, we mean
that a graph can point to other graphs, and there are many
constructs like hierarchical iterators to handle graphs.

4 Parallel Compilation
This section discusses the parallel compilation pipeline and
how each pass ensures parallel scalability.
The unit of parallelism of LiveHD is a module, and each

file can have several modules. A finer-grain granularity will
require many locks shared within module resources, poten-
tially complicating/slowing down single-thread performance.
Modern large system-on-chip HDL programs have millions
of lines of code spread over hundreds of modules.
A compiler pass is fully parallelizable when a pass can

operate on all modules in parallel in any order. Nevertheless,
not all passes can achieve this optimal parallelism. Function-
ally dependent caller-callee modules in a pass must adhere
to a dependency order and cannot be compiled in parallel.
To further extract more parallelization from this type of pass,
the compiler must examine the dependency tree.

4.1 Dependency Tree
In HDLs, the hierarchy of all module instantiations can al-
ways be represented as a dependency tree structure (Fig-
ure 2-a, 2-b). In LIR, a sub-module instance is represented
as a node with a sub-graph type. The sub-graph could point
to the other graph. LiveHD uses depth-first search (DFS) to
recursively traverse into the sub-graph nodes and construct
the dependency tree from the specified top module. These
sub-graph nodes have been recorded separately during LIR

construction. The DFS traversal only visits these sub-graph
nodes without traversing all nodes in the LIR.
In the dependency tree, the leaf module instances must

be functionally independent because they have no direct I/O
connections. Thus, for a not fully parallelizable pass, LiveHD
exploits the bottom-up parallelizationmechanism. It starts
by compiling the tree leaves in parallel and then immediately
allocates a new thread task for the parent module once all
its children have been processed.
A pass could benefit from a top-down approach instead

of the bottom-up one. In the passes implemented, we only
need fully parallel or bottom-up. A top-down approach can
be added if a problem is easier to solve.
In an HDL program, a module may be instantiated more

than once. In LiveHD, the instantiations of the same module
are represented as the same LIR, but they are viewed as
different nodes in the dependency tree. In order to prevent
redundant compilation on module instances, LiveHD tracks
the already optimized LIR and avoids redundantly compiling
the same module multiple times.
If accessing some global objects is mandatory in a pass,

functionally independentmodules also necessitate amutex to
acquire ownership of global objects, thus avoiding data races.
LIR IRmaintains a graph library to manage basic information
like the graph name, graph IOs, and the dependency tree
for all the LIRs. This library is a global object that needs
mutual exclusion for entry field updates, but the bottom-up
traversal guarantees that updates and reads can not happen
at the same time.

4.2 Parallelism in Compilation Passes
This section presents LiveHD’s compilation stack in Table 1
and discusses why and how each pass exploits either full
or bottom-up parallelism for the circuit modules. One impor-
tant technique in the LiveHD compiler is to cluster passes
that are bottom-up and fully parallel. The alternative would
be to schedule a task for each pass, but it will create smaller
tasks with more overhead and lower cache locality due to
scheduling the same module in multiple cores.
Since there are several passes with different degrees of

parallelism, LiveHD implements a thread pool where tasks
are executed independently of each other. To avoid waiting
for all the tasks to complete, LiveHD tracks the call depen-
dency tree. For bottom-up parallelism, when a child node
finishes, it checks if all the siblings are done; if so, it calls the
parent code. This is achieved with a simple atomic counter
per node.
Full parallelizedHIR constructionBased on the front-end
HDL, LiveHD first decides the functionality of source2HIR
(see Table 1) and converts an HDL program into HIRs. An
HDL program may have many source files, and each file
may contain several hardware modules. If more than one
module is defined in a single source file, LiveHD will create
new source2HIR threads to handle each module separately.
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Figure 2. The LiveHD parallel compilation example with a hierarchical FIRRTL front-end. Module m3 is significantly larger
than the others. The vertical dashed lines represent the Synchronization barriers.

Table 1. The LiveHD passes in the compilation order.

Name Functionality Parallelization Type

Full Bottom-up

source2HIR1
Verilog to parse tree to HIR2 ✓
Pyrope to parse tree to HIR ✓
CHIRRTL protobuf to HIR3 ✓

HIR_SSA SSA transformation for HIR ✓
HIR2LIR HIR to LIR translation ✓

cprop

Copy propagation (✓4) ✓
Dead code elimination (✓4) ✓
Constant propagation (✓4) ✓
Peephole optimization (✓4) ✓
Attribute resolving ✓
Tuple struct resolving ✓
I/O construction ✓

firbits5 FIRRTL operator bitwidth analysis ✓
firmap5 FIRRTL and LIR operator mapping ✓
bitwidth Bitwidth inference and optimization ✓
verilog_gen Back-end Verilog code generation ✓

1 choose one of three functions based on the front-end HDL 2 Verilog has a serial liveparse pass to
split files 3 CHIRRTL has a serial protobuf deserialize step 4 could be full-parallelized, but here are
merged in cprop with a bottom-up 5 FIRRTL-only passes

Since the source2HIR function merely maps the parse tree of a
module into the corresponding HIR, there is no dependency
between the executions of the threads. Thus source2HIR is
a full parallelizable pass.
Full parallelized HIR_SSA After the HIRs are constructed,
LiveHD tasks perform HIR_SSA to translate every HIR into
SSA form. Although there might be sub-module instantia-
tion statements in the HIRs, since SSA transformation only
focuses on the return value and inputs arguments of the
sub-module, the internal content of the sub-module does not
affect the parent module’s SSA. Therefore, modules in the
tree hierarchy are independent regarding HIR_SSA and can
be handled full-parallelly.
Novel uIO Techniques for Fully Parallel IR Lowering
In the HIR2LIR pass, the functional dependency issue arises
when there is a sub-module instantiation in the HDL pro-
gram. Figure 3 shows that in LIR, a sub-module is shown as

a sub-node with inputs and outputs connected to the par-
ent module graph. From the parent point of view, connect-
ing an edge to the corresponding sub-node input requires
the knowledge of all sub-module I/O in the graph library.
However, when the HIR2LIR is multi-threaded, all HIRs will
execute the HIR2LIR pass in a random order. In this case,
the graph library cannot guarantee that the submodule’s I/O
information will be ready when the parent needs it.

Top

y
x

sub
b

a

c2

c1

z2
z1

(a) original (b) uIO tuple connection 

x
y

TA TA

b

sub
uInp uOut

TG

TG

z2

z1

Top

a

c2

c1

value

ke
y

TA = tuple adds a pair of (key, value)
TG = tuple gets a value from a key

value

ke
y

key

ke
y

Figure 3. A sub-module instantiation in top-module. The
sub-module has inputs (a, b) and outputs (c1, c2). LiveHD
aggregates these I/O as tuple uInp/uOut to isolate functional
dependency while connecting the top and sub at the HIR2LIR
pass.

LiveHD solves this issue by proposing a novel technique
that uses unified input (uInp) and unified output (uOut). An
uInp or an uOut is an LIR tuple structure used to aggre-
gate inputs or outputs, as shown in Figure 3. The uInp and
uOut are the only input and output for each module during
the HIR2LIR step.
As the HIR2LIR iterates through the parent HIR, if there

is a sub-module instantiation statement, the LiveHD graph
library will check and try to create a sub-graph skeleton with
the uIO atomically. After that, regarding the input edges of
the sub-module node, the parent first creates tuple-add (TA)
operators to collect all the edge driver pins as the tuple fields
and connect this tuple to the sub-module uInp. On the other
hand, if the parent module tries to connect edges from the
sub-module outputs, the parent graph creates tuple-get (TG)
operators and fetches fields from the submodule uOut tuple.
LiveHD creates these uIO tuple structures around the sub-
module to isolate the dependency between parent and child
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graphs. The uIO resolving process is deferred until the cprop
pass, where all of the program tuples are handled together in
a single graph traversal. So, the HIR2LIR pass becomes fully
parallelizable.
Merged passes with bottom-up parallelism. LiveHD im-
plements four classical software compiler optimizations cur-
rently: copy propagation, dead code elimination, constant
propagation, and peephole optimization (CDCP). The algo-
rithm starts with the module inputs to traverse the graph lo-
cally for each optimization. LiveHD combines the passes like
a nanopass compiler [25] but the nanopasses are manually
integrated. This avoids redundant graph traversal and im-
proves cache locality because all the passes operate over the
same CPU not in different tasks. LiveHD currently merges
seven functions into a single cprop pass as listed in Table 1.
In the merged cprop pass, attribute resolving, tuple re-

solving, and I/O construction are three hardware-specific
functions required by all HDLs. These functions are all tuple-
related and have to be parallelized in a bottom-up manner.
This constraint exists because the connection around the
sub-module instantiation node needs to be resolved by flat-
tening the uIO tuple. Then the parent module can continue
the rest of the algorithm propagation.
Other bottom-up parallelized passes. firbits, firmap and
bitwidth are the other three bottom-up parallelized passes.
The reason is that their algorithms require the sub-module
outputs attribute to be ready when the parent graph traversal
visits them.

After firbits, an important optimization is that a single
bottom-up task performs the firmap and bitwidth passes for
each module. This increases cache locality and scalability
because it guarantees the same LIR to be mapped to the same
CPU.
Verilog code generation. verilog_gen is the final stage of
the LiveHD compilation pipeline. Since the functional de-
pendencies between hierarchical modules have been fully re-
solved from the previous LiveHD passes, LiveHD can run ver-
ilog_gen with full parallelization.

5 Multi-HDLs Compilation
Currently, LiveHD can compile HDLs of Verilog, CHIRRTL,
and Pyrope. All these languages can benefit from LiveHD’s
fast and parallel compilation. This section discusses some of
the challenges for each HDL.

5.1 Parallel I/O Pass
Ideally, we want to perform each compilation pass with full
parallelism for every HDL. However, as discussed in Section
1, the type of parallelism that can be achieved is determined
by (1) the modules’ I/O definition and (2) how a module is
instantiated by a caller. This subsection discusses each HDL’s
instantiation scenario.

Verilog Listing 1 provides an example of Verilog sub-module
instantiation. It is important to note that, while the statement
(line 6) expresses the instance connections, it does not show
the direction of each sub-module I/O. This I/O connection
syntax requires Verilog to be compiled in a bottom-up man-
ner to collect sub-module I/O information, which the top
module can then utilize to resolve instance connections.
1 module Sub(input inp , output out);

2 assign out = inp | inp;

3 endmodule

4

5 module Top(input inp_t , output out_t);

6 Sub sub(.inp(inp_t), .out(out_t));

7 endmodule

Listing 1. A Verilog module instantiation example

CHIRRTL In CHIRRTL, no I/O information is provided at
the instantiation statement (line 7 of listing 2), so compilers
have to figure it out from the left/right-hand sides of subse-
quent statements (line 8 and 9 of listing 2) that exploit the
instantiation.
1 module Sub:

2 output io: {flip inp: UInt <1>, out: UInt <1>}

3 node _T = or(io.inp , io.inp)

4 io.out <= _T

5 module Top:

6 output io: {flip inp_t: UInt <1>, out_t: UInt

<1>}

7 inst sub of Sub

8 sub.io.inp <= io.inp_t

9 out_t <= sub.io.out

Listing 2. A CHIRRTL module instantiation example

Interestingly, the Chisel front-end compiler (Figure 1) has
resolved all of the hierarchical I/O connections from Chisel3
code and it could output a dependency tree before generating
the FIRRTL file. Because all hierarchical I/O connections are
resolved, Scala-FIRRTL could theoretically use the depen-
dency tree to compile the FIRRTL IR in full parallel.
Pyrope In Pyrope, the function arguments are the submod-
ule input, and the return value is the sub-module output,
as shown in line 7 of listing 3. However, the instantiation
connections cannot be made as the top module cannot know
whether a tuple or a scalar data type is returned when the
sub-module is not handled yet. Thus, a bottom-up paralleliza-
tion is needed to resolve the submodule instance connection.
1 //top.prp

2 sub = ||{ //the sub -module syntax in Pyrope

3 %out1.baz = $inp.foo + $inp2 //$ means input

4 %out2 = $inp.bar + $inp2 //% means output

5 }

6 // instantiation

7 ret = sub(inp = (foo = 3, bar = 2), inp2 = 4)

8 %out = ret.out1.baz + ret.out2

Listing 3. A Pyrope module instantiation example
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5.2 Bitwidth Pass
The specification of bitwidth representations varies between
HDLs. This subsection explains how LiveHD handles these
specification variations in Verilog, CHIRRTL, and Pyrope.
Generic Bitwidth Inference Pass. In Verilog, bitwidths
are defined for every variable, but this is not necessarily true
in CHIRRTL or Pyrope, as the bitwidth may only be defined
on module I/O. LiveHD generically handles these HDLs by
leveraging the benefits of HIR and LIR IR. Both IRs do not
require an HDL variable to have bitwidth defined. Instead,
if a module I/O’s bitwidth is properly defined, LiveHD will
refer to a bitwidth optimization algorithm [43] (bitwidth pass
in Table 1) to initiate a propagation from the module I/O and
calculate the optimized bitwidth for each visited wire.
Customization for implicitHDL specification. Language
operators may implicitly present part of the bitwidth spec-
ification in an HDL. Table 2 shows such examples in the
FIRRTL language.

Table 2. FIRRTL bitwidth management operators

FIRRTL Operator Functionality

bits_op extract a value with a specified bit range from the input edge
head_op extract a value of MSB n-bits from the input edge
tail_op extract a value of LSB n-bits from the input edge
cat_op concatenate two input edges

The bitwidth of edges in these FIRRTL operators must be
known to be mapped into LIR cells. For example, the head_op
in CHIRRTL can be mapped to the shift_right_op in LIR,
but the exact shift amount depends on the number of bits.
This prerequisite raises an interfacing difficulty for hardware
IRs because the entire FIRRTL design bitwidth information
must be collected somewhere. It is important to notice that
the bitwidth is part of the language specification because
performing a different bitwidth can change the generated
code semantics.

Because LiveHD is a pass-modularized framework, these
challenges can be addressed easily by plugging-in HDL-
specific bitwidth inference passes. The CHIRRTL front-end is
handled by two CHIRRTL-specific passes, firbits and firmap
(see Table 1), to handle the CHIRRTL front-end. LiveHD
first individually translates FIRRTL operators to special LIR
sub-nodes. Then firbits follows the FIRRTL specification to
compute the bits for each node. After that, the firmap pass
leverages the bit information to translate to LIR cells. Figure 4
demonstrates a high-level view of this flow.

6 Setup
LiveHD is implemented with C++17 and compiled with GCC
11.0.3. CIRCT still does not have releases, so we use the top
of the tree on Aug 12th, 2022; Yosys uses the latest release
(v0.20+22), and the same for Scala-FIRRTL (v1.5.0-RC2) is
chosen for evaluations. For CIRCT, we follow the LLVM
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Figure 4. Idea illustration of FIRRTL bits analysis and
FIRRTL-LIR mapping passes. The FIRRTL head_op extract
the MSB 5-bits from the inp signal. (a) a FIRRTL-equivalent
LIR with an FIRRTL head_op. (b) the LIR after firbits analysis.
(c) mapping to LIR shift_right_op.

Table 3. Compiler flags or commands for fair evaluations

compiler flags/commands
Scala-FIRRTL –no-dedup -X verilog

CIRCT-FIRRTL
-inject-dut-hierarchy=false -wire-dft=false -prefix-modules=false

-inline=false -emit-metadata=false -emit-omir=false -verify-each=false

Yosys read_verilog; proc; write_verilog

benchmarking guidelines to use release and avoid assertions
and checks. All compilers are compared without the dedup
option because LiveHD has not fully implemented it (see
Table 3). The experiments are run on a server with AMD
EPYC 7542 32-Core Processor at 3.4GHz, 504GB memory,
and Linux 5.14. We measure the frequency scaling effect by
turning the turbo option on and off of the processor. All
experiment data are collected using perf profiler and Per-
fetto [15]. The Verilog output generated by the compilers
is equivalent and correct. This is confirmed by doing for-
mal logic equivalence [44, 49] checks between their Verilog
outputs.

7 Evaluation
The evaluation consists of two main parts: multi-threaded
speedup scalability and single-threaded performance. We
compare only against open-source tools because the com-
mercial EDA tools license forbids tool benchmarking.
We use a RISC-V Manycore (RVM) design in CHIRRTL

to compare against CIRCT. This RISC-V Manycore design
consisting of 128 RISC-V 32bits integer (rv32i) cores. We only
compared the scalability with CIRCT-FIRRTL because there
is no other parallel Verilog or Pyrope compiler.

To fairly compare the three different languages, we create
a Balanced Computational Tree (BCT) benchmark. BCT is a
large circuit generated with a randomized script. It consists
of 1.3 million gates spread over 3309 modules; The design
dependency tree has a depth of 7, and each parent module has
an average of 4 children. Each module contains an average
of 391 mixed xor and summation operators that are chained
together.
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Figure 5. LiveHD compiler shows high speedup scalability for a balanced computation tree circuit in Pyrope, Verilog, and
CHIRRTL HDLs. LiveHD also scales better for a 128-core RISCV processor compared to the CIRCT-FIRRTL compiler

7.1 Multi-Threaded Scalability
Figure 5 demonstrates the high speedup scalability that LiveHD
provides.With 8-thread, LiveHDhas 4.55x scalability speedup
for the RVM design and 5.34x for the BCT CHIRRTL design.
Meanwhile, the CIRCT-FIRRTL compiler only scales 1.7x and
2.9x for the two designs, respectively. When adding more
hardware resources up to 16-threads LiveHD’s increasing
tendency of scalability slows down but still hits as high as
5.5x speedup for the RVM; The 16-threaded LiveHD also
compiles the BCT design and achieves excellent scalabilities
of 8.4x in Pyrope, 8.2x in Verilog, and 7.7x in CHIRRTL.

#1

#2
#3#4 #5

firrtl2HIR cprop firmap + bitwidth verilog_genfirbitsHIR_ssa + HIR2LIR

Figure 6. LiveHD’s parallel schemes establish remarkable
thread utilization for an 8-threaded compilation.

7.1.1 Case Analysis: RVM in FIRRTL. Threads Uti-
lization. LiveHD gets an overall thread utilization of 76.57%
when compiling RVM. This means that under 25% of the
CPUs are idle without work. Figure 6 presents a visualiza-
tion of how LiveHD orchestrates the threads. A vertical line
means a pass is processing a module. The higher density of
colored vertical lines means higher thread utilization. The
8-rows in the figure represent the 8-threads run.
The passes of HIR_ssa, HIR2LIR, and verilog_gen deploy

full-parallelism, and thus each module could be compiled in
any order. To exploit the max potential of the full-parallelism
mechanism, we sort the HIR and LIR objects by their size
before piping into these passes. Thus, as arrows #1, #2, and #3
pointed, we could hide the most critical path at the beginning
of these passes.

However, this Perfetto visualization also reveals two facts
that detriment the overall scalability. The first facet is the

protobuf initialization period as pointed out by the arrow#4.
LiveHD exploits Google’s protocol buffer package to parse
CHIRRTL. At the very beginning of source2HIR pass, LiveHD
needs to call a constructor to deserialize and generate the
firrtl_protobuf object. This constructor will take 9.2% of the
entire execution period.
The second bottleneck is to resolve the top module sub-

instances I/O connection issue as pointed out by arrow#5.
In a FIRRTL design, module I/O usually consists of a deep
aggregate data type (listing 4), and LiveHD resolves it at
the cprop pass. Yet, cprop deploys bottom-up parallelism, so
the topmodule must be the last to be compiled. Moreover, the
top module contains 128 instances of RV32i CPUs, and each
instance has 28 deep hierarchical I/O connections, which
is similar to the example of listing 4. The total 3584 deep
I/O connections in total introduce a massive hierarchical
tuple chain structure in the LIR IR. Thus, the top module
introduces a considerable overhead at the cprop pass.
The main reason that LiveHD solves the I/O connection

at cprop comes from the Pyrope language semantic constraint.
Unlike the FIRRTL HDL, where every I/O has been declared
explicitly, a Pyrope submodule could infer the tuple I/O field
from the parent module and that needs to be handled at cprop.

1 inst mem of DualPortedCombinMemory

2 inst imem of ICombinMemPort

3 mem.io.imem.request.bits.operation <=

4 imem.io.bus.request.bits.operation

Listing 4. CHIRRTL’s deep-hierarchical I/O connection adds
non-trivial top-module overhead

CHIRRTL’s deep-hierarchical I/O connection adds top-
module overhead. Once the deep I/Os are resolved by the cprop
pass, the rest of the bottom-up parallelism passes ( firbits
and firmap + bitwidth) can benefit from the lowered data
structure. Their input workloads are more balanced among
each module.

The protobuf initialization and top-module cprop (arrow#4
and #5) together take up 18.8% of the time and prevent
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(a) 4-threaded LiveHD-FIRRTL  completes in 6s, and scales by 3x with 87% of thread utilization

(b) 4-threaded LiveHD-Verilog  completes in 5.7s, and scales by 3.2x with 94% of thread utilization

(c) 4-threaded LiveHD-Pyrope parallelizes all passes, completes in 3.9s, and scales by 3.8x with 94% of thread utilization

firrtl2LIR HIR_ssa + HIR2LIR

HIR_ssa + HIR2LIR

HIR_ssa + HIR2LIR

verilog2HIR

pyrope2HIR

Figure 7. LiveHD exhibits high thread utilization and speedup for all FIRRTL, Verilog, and Pyrope HDLs in the BCT compilation.

LiveHD from reaching ideal speed scalability due to Am-
dahl’s law. If excluding these two regions, LiveHD attains
high average thread utilization of 97.21%.

Table 4. IPC drop and frequency downscaling are two rea-
sons why the high thread utilization from 1 to 8 threaded
compilation does not give the ideal speedup.

name of pass
8-threaded from 1 to 8-threaded

fraction utilization speedup #inst. ipc freq.

firrtl2HIR 12.0% 34% 2.5x +3.3% -22.2% -19.0%
HIR_SSA &
HIR2LIR 23.8% 97% 4.3x +0.1% -21.0% -13.7%

cprop 30.7% 65% 5.0x +0.5% -7.9% -14.3%
firbits 4.6% 80% 6.8x +2.8% -5.2% -14.7%

firmap &
bitwidth 17.6% 95% 5.6x +0.1% -14.9% -13.9%

verilog_gen 11.3% 99% 5.4x +2.8% -27.4% -22.3%

LiveHD: all 100% 76% 4.6x +1.0% -15.8% -15.5%

CIRCT: all 100% n/a 1.7x +1.2% -17.9% - 1.8%

Breakdown Analysis Table 4 represents the pass break-
down to understand the source of scalability increment better.
Besides the firrtl2HIR and the cprop discussed in the previ-
ous paragraphs, all other passes get excellent utilization of
thread resources from 80% to 99%.
Interestingly, these high utilization numbers do not per-

fectly lead to an ideal speedup. Several reasons, like de-
creased instruction per cycle (IPC) and processor frequency,
can be observed from the table 4. LiveHD’s IPC got affected
by mixed reasons like instruction TLB (iTLB) and cache miss
rate. For example, at the firrtl2HIR pass, the main slowdown
reason in IPC is that the iTLB miss rate of a single thread

remains the same, but their effects are accumulated in 8-
threads and become a burden. At the same time, the cache
miss rate increased dramatically in 8-threads, for instance,
the verilog_gen pass. This is because, in LiveHD, each thread
handles different LIR modules and loses the cache locality
from firmap and bitwidth passes.
LiveHD also has a 15.5% impact from frequency down-

scaling overall. This is expected due to the turbo (frequency
scaling) option enabled on modern CPUs. On the other hand,
the CIRCT-FIRRTL compiler only has a parallel speedup of
1.7, and thus not so many threads are used simultaneously
during the compilation. Less utilization has less impact on
the frequency.
The third reason comes from the implicit mutex con-

tention that is not revealed in the way that Perfetto counts
traces. LiveHD protects the graph database for updates with
a single-write multiple-read mutex. Meanwhile, the RVM
contains 2945 modules, leading to high mutex lock activity
for the HIR2LIR pass because of the high amount of graph
creations. This time is added to the thread utilization and
extra instructions. The BCT benchmark allows to see this
overhead better, but it is less than 3% in all the tests evaluated.

7.1.2 Case Analysis: Balanced Computational Tree.
Wepresent the visual traces for the 4-threaded compilation in
Figure 7. The three sub-graphs are displayed with different
time scales. While LiveHD-Pyrope finishes in around 3.9
seconds, the equivalent circuit in LiveHD-FIRRTL requires 6
seconds. Table 5 shows the overall speedup, which includes
the scalability and single-threaded performance but using
the execution times, we can deduce that Verilog and Pyrope
have approximately the same scalability between 8.3-8.6x.
FIRRTL has 7.7x for a 16-threaded execution. The reason is
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consistent with the verilog_gen overhead shown in Table 4,
which has over 20% drop in IPC, over 20% drop in frequency,
a small 2.8% instruction count increase, and under 1% lock
contention.

Table 5. LiveHD provides outstanding compilation speedup
in single-threaded and multi-threaded scenarios.

design compiler 2#thd time(s) overall speedup

RVM-FIRRTL

1Scala 1 27.0 31.0x
CIRCT 1 3.8 7.1x
LiveHD 1 9.0 3.0x
CIRCT 16 2.1 12.8x
LiveHD 16 1.6 16.5x

BCT-FIRRTL

1Scala 1 122.0 31.0x
CIRCT 1 20.6 5.9x
LiveHD 1 20.2 6.0x
CIRCT 16 6.3 19.4x
LiveHD 16 2.6 46.6x

BCT-Verilog

Yosys 1 171.2 31.0x
LiveHD 1 19.9 8.6x
LiveHD 16 2.4 71.3x

BCT-Pyrope
LiveHD 1 13.7 1.0x
LiveHD 16 1.6 8.4x

note: 1 Scala-FIRRTL 2 thread numbers 3 the baselines

Source HDLs Parsing. Using BCT allows us to compare
different languages’ scalability and performance. A signifi-
cant difference happens during parsing. LiveHD-FIRRTL has
the non-parallel protobuf serialization previously mentioned.
LiveHD calls the Verilog Slang parser in parallel for each file,
but it still requires splitting the Verilog file in multiple files.
Pyrope parsing is fully parallel.
Balanced Workload of BCT Unlike RVM, BCT does not
have a significantly larger top module. The result is a higher
balance in the bottom-up passes. Therefore, as shown in
Figure 7, it leads to better thread utilization because no parent
needs to wait for any giant child. Further, Verilog has no
aggregate data types, so we generated flattened BCT I/O in
all languages. That means no deep hierarchical I/O as in the
List 4, and it leads to a faster cprop result in all three HDLs.

7.2 Single-Threaded Performance
We measure different compilers’ performance in the table 5.
The single-threaded LiveHD-FIRRTL achieves good speedups
of 3x for RVM and 6x for BCT compared to the baseline Scala-
FIRRTL compiler.
Since there is no parallel Verilog compiler in the open-

source community, we chose Yosys as the comparator. For
the BCT design, the LiveHD is 8.6x faster than Yosys in single-
thread, respectively. LiveHD is the only compiler for Pyrope,
but the performance is faster than Verilog and CHISEL for
an equivalent circuit.

7.3 Fairness in Comparing the Compiler Result
The comparison between compilers is difficult because the
compilers are rarely identical. The LiveHD-FIRRTL andCIRCT
compilers have roughly the same compilation passes. The
main difference is that CIRCT has common subexpression
elimination, whereas LiveHD conducts additional bitwidth
optimizations [43] together with bitwidth inference. Aside
from that, both compilers have passes of similar goals along
with the FIRRTL lowering process, including (1) FIRRTL
parsers, (2) IR metadata analysis, (3) IR optimizations, (4)
memory structure lowering, and (5) Verilog code generation.
Both compilers will infer critical hardware characteristics
like clock, reset, memory interface, and bitwidth. Combina-
tional loop detection and black-boxed modules are handled
by both compilers. We perform a formal logic equivalence
check between outputs to verify the correctness.
When comparing with Yosys on Verilog compilation, we

disable all Yosys optimization passes (no opt), and only the
Verilog to RTLIR and Verilog generation are executed.

8 Conclusions
Compilation time is a key bottleneck in hardware productiv-
ity only exacerbated by new HDLs. We propose LiveHD, a
fast multi-HDL compiler. The main novelty of this paper is
theHDL parallel compiler. The paper goes over themain chal-
lenges of parallelizing all the compiler passes. We pick the
FIRRTL, Verilog, and Pyrope HDLs to demonstrate LiveHD’s
ability of generic compilation.
The parallel scalability results are on top of a fast single-

threaded LiveHD compiler. Compared to the Scala-FIRRTL
compiler, single-threaded LiveHD has over 6 times speedup.
Compared to the popular Yosys, single-threaded LiveHD is
8.6 times faster.
The highly parallelized and generic LiveHD compilation

framework opens many exciting opportunities for HDLs and
EDA research. A hardware designer could enjoy LiveHD’s
high compilation to improve productivity. A developer for a
new HDL could interface with LiveHD’s generic HIR. Simi-
larly, an EDA research project could exploit LiveHD’s ability
to interface with the Verilog front-end, then use the provided
parallelization framework to develop a parallelized EDA tool.
We plan to release the LiveHD compiler as open-source to
enhance the impact on the community.
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